
Algorithms for the Line-Constrained Disk
Coverage and Related Problems

Logan Pedersen and Haitao Wang(B)

Department of Computer Science, Utah State University, Logan, UT 84322, USA
logan.pedersen@aggiemail.usu.edu, haitao.wang@usu.edu

Abstract. Given a set P of n points and a set S of m weighted disks
in the plane, the disk coverage problem asks for a subset of disks of
minimum total weight that cover all points of P . The problem is NP-
hard. In this paper, we consider a line-constrained version in which all
disks are centered on a line L (while points of P can be anywhere in the
plane). We present an O((m + n) log(m + n) + κ log m) time algorithm
for the problem, where κ is the number of pairs of disks that intersect.
For the unit-disk case where all disks have the same radius, the running
time can be reduced to O((n + m) log(m + n)). In addition, we solve in
O((m+n) log(m+n)) time the L∞ and L1 cases of the problem, in which
the disks are squares and diamonds, respectively. Using our techniques,
we further solve two other geometric coverage problems. Given in the
plane a set P of n points and a set S of n weighted half-planes, we solve
in O(n4 log n) time the problem of finding a subset of half-planes to cover
P so that their total weight is minimized. This improves the previous best
algorithm of O(n5) time by almost a linear factor. If all half-planes are
lower ones, our algorithm runs in O(n2 log n) time, which improves the
previous best algorithm of O(n4) time by almost a quadratic factor.

Keywords: Disk coverage · Line-constrained · Half-plane coverage ·
Geometric coverage · Facility location

1 Introduction

Given a set P of n points and a set S of m disks in the plane such that each disk
has a weight, the disk coverage problem asks for a subset of disks of minimum
total weight that cover all points of P . We assume that the union of all disks cov-
ers all points of P . The problem is known to be NP-hard [11] and approximation
algorithms have been proposed, e.g., [17,19].

In this paper, we consider a line-constrained version of the problem in which
all disks (possibly with different radii) have their centers on a line L, say, the
x-axis. To the best of our knowledge, this line-constrained problem was not
particularly studied before. We present an O((m+n) log(m+n)+κ log m) time

This research was supported in part by NSF under Grant CCF-2005323. A full version
of this paper is available at https://arxiv.org/abs/2104.14680.

c© Springer Nature Switzerland AG 2021
A. Lubiw and M. Salavatipour (Eds.): WADS 2021, LNCS 12808, pp. 585–598, 2021.
https://doi.org/10.1007/978-3-030-83508-8_42

586 L. Pedersen and H. Wang

algorithm, where κ is the number of pairs of disks that intersect (and thus
κ ≤ m(m − 1)/2; e.g., if the disks are disjoint, then κ = 0 and the algorithm
runs in O((m + n) log(m + n)) time). For the unit-disk case where all disks have
the same radius, the running time can be reduced to O((n+m) log(m+n)). We
also solve in O((m + n) log(m + n)) time the L∞ and L1 cases of the problem,
in which the disks are squares and diamonds, respectively. As a by-product, we
obtain an O((m+n) log(m+n)) time algorithm for the 1D version of the problem
where all points of P are on L and the disks are line segments of L. In addition,
we show that the problem has an Ω((m + n) log(m + n)) time lower bound in
the algebraic decision tree model even for the 1D case. This implies that our
algorithms for the 1D, L∞, L1, and unit-disk cases are all optimal.

Our algorithms potentially have applications, e.g., in facility locations. For
example, suppose we want to build some facilities along a railway which is rep-
resented by L (although an entire railway may not be a straight line, it may be
considered straight in a local region) to provide service for some customers that
are represented by the points of P . The center of a disk represents a candidate
location for building a facility that can serve the customers covered by the disk
and the cost for building the facility is the weight of the disk. The problem is to
determine the best locations to build facilities so that all customers can be served
and the total cost is minimized. This is exactly an instance of our problem.

Although the problems are line-constrained, our techniques can actually be
used to solve other geometric coverage problems. If all disks of S have the same
radius and the set of disk centers are separated from P by a line �, the problem
is called line-separable unit-disk coverage. The unweighted case of the problem
where the weights of all disks are 1 has been studied in the literature [2,9,10]. In
particular, the fastest algorithm was given by Claude et al. [9] and the runtime
is O(n log n + nm). The algorithm, however, does not work for the weighted
case. Our algorithm for the line-constrained L2 case can be used to solve the
weighted case in O(nm log(m + n)) time or in O((m + n) log(m + n) + κ log m)
time, where κ is the number of pairs of disks that intersect on the side of � that
contains P . More interestingly, we can use the algorithm to solve the following
half-plane coverage problem. Given in the plane a set P of n points and a set
S of m weighted half-planes, find a subset of the half-planes to cover all points
of P so that their total weight is minimized. For the lower-only case where
all half-planes are lower ones, Chan and Grant [8] gave an O(mn2(m + n)) time
algorithm. In light of the observation that a half-plane is a special disk of infinite
radius, our line-separable unit-disk coverage algorithm can be applied to solve
the problem in O(nm log(m + n)) time or in O(n log n + m2 log m) time. This
improves the result of [8] by almost a quadratic factor (note that the techniques
of [8] are applicable to more general problem settings such as downward shadows
of x-monotone curves). For the general case where both upper and lower half-
planes are present, Har-Peled and Lee [13] proposed an algorithm of O(n5) time
when m = n. By using our lower-only case algorithm, we solve the problem in
O(n3m log(m + n)) time or in O(n3 log n + n2m2 log m) time. Hence, our result
improves the one in [13] by almost a linear factor.

Algorithms for the Line-Constrained Disk Coverage and Related Problems 587

1.1 Related Work

Our problem is a new type of set cover. The general set cover problem, which
is fundamental and has been studied extensively, is hard to solve, even approx-
imately [12,14,18]. Many set cover problems in geometric settings, often called
geometric coverage problems, are also NP-hard, e.g., [8,13]. As mentioned above,
if the line-constrained condition is dropped, then the disk coverage problem
becomes NP-hard, even if all disks are unit disks with the same weight [11].
Polynomial time approximation schemes (PTAS) exist for the unweighted prob-
lem [19] as well as the weighted unit-disk case [17].

Alt et al. [1] studied a problem closely related to ours, with the same input,
consisting of P , S, and L, and the objective is also to find a subset of disks of
minimum total weight that cover all points of P . But the difference is that S
is comprised of all possible disks centered at L and the weight of each disk is
defined as rα with r being the radius of the disk and α being a given constant at
least 1. Alt et al. [1] gave an O(n4 log n) time algorithm for any Lp metric and
any α ≥ 1, an O(n2 log n) time algorithm for any Lp metric and α = 1, and an
O(n3 log n) time algorithm for the L∞ metric and any α ≥ 1. Recently, Pedersen
and Wang [20] improved all these results by providing an O(n2) time algorithm
for any Lp metric and any α ≥ 1. A 1D variation of the problem was studied
in the literature where points of P are all on L and another set Q of m points
is given on L as the only candidate centers for disks. Bilò et al. [5] first showed
that the problem is solvable in polynomial time. Lev-Tov and Peleg [16] gave an
algorithm of O((n + m)3) time for any α ≥ 1. Biniaz et al. [6] recently proposed
an O((n + m)2) time algorithm for the case α = 1. Pedersen and Wang [20]
solved the problem in O(n(n + m) + m log m) time for any α ≥ 1.

Other line-constrained problems have also been studied in the literature,
e.g., [15,21].

1.2 Our Approach

We first solve the 1D problem by a simple dynamic programming algorithm.
Then, for the “1.5D” problem (i.e., points of P are in the plane), an observation
is that if the points of P are sorted by their x-coordinates, then the sorted list
can be partitioned into sublists such that there exists an optimal solution in
which each disk covers a sublist. Based on the observation, we reduce the 1.5D
problem to an instance of the 1D problem with a set P ′ of n points and a set S′

of segments. But two challenges arise.
The first challenge is to give a small bound on |S′|. A naive method shows

that |S′| ≤ n · m. In the unit-disk case and the L1 case, we prove that |S′| can
be reduced to m by similar methods. In the L∞ case, we show that |S′| can be
bounded by 2(n + m). The most challenging case is the L2 case. By a number
of observations, we prove that |S′| ≤ 2(n + m) + κ.

The second challenge is to compute the set S′ (P ′, which actually consists of
all projections of the points of P onto L, can be easily obtained in O(n) time).
Our algorithms for computing S′ for all cases use the sweeping technique. The

588 L. Pedersen and H. Wang

algorithms for the unit-disk case and the L1 case are relatively easy, while those
for the L∞ and L2 cases require much more effort. Although the two algorithms
for L∞ and L2 are similar in spirit, the intersections of the disks in the L2 case
bring more difficulties and make the algorithm more involved and less efficient.
In summary, computing S′ can be done in O((n + m) log(n + m)) time for all
cases except the L2 case which takes O((n + m) log(n + m) + κ log m) time.

Outline. The rest of the paper is organized as follows. We define notation in
Sect. 2. The algorithms for the L∞ and L2 cases are given in Sect. 3. Due to
the space limit, lemma proofs, algorithms for the unit-disk, and L1 cases, the
lower bound proof (which is based on a reduction from the element uniqueness
problem), algorithms for the line-separable disk coverage and half-plane coverage
problems are all omitted but can be found in the full paper.

2 Preliminaries

We assume that L is the x-axis. We also assume that all points of P are above
or on L because if a point pi is below L, then we could obtain the same optimal
solution by replacing pi with its symmetric point with respect to L. For ease of
exposition, we make a general position assumption that no two points of P have
the same x-coordinate and no point of P lies on the boundary of a disk of S.

For any point p in the plane, we use x(p) and y(p) to refer to its x-coordinate
and y-coordinate, respectively. We sort all points of P by their x-coordinates, and
let p1, p2, . . . , pn be the sorted list from left to right on L. For any 1 ≤ i ≤ j ≤ n,
let P [i, j] denote the subset {pi, pi+1, . . . , pj}. Sometimes we use indices to refer
to points of P , e.g., point i refers to pi.

We sort all disks of S by the x-coordinates of their centers from left to right,
and let s1, s2, . . . , sm be the sorted list. For each si, let ci denote its center and
wi denote its weight. We assume that each wi is positive (otherwise one could
always include si in the solution). For each disk si, let li and ri refer to its
leftmost and rightmost points, respectively.

We often talk about the relative positions of two geometric objects O1 and
O2 (e.g., two points, or a point and a line). We say that O1 is to the left of O2 if
x(p) ≤ x(p′) holds for any point p ∈ O1 and any point p′ ∈ O2, and strictly left
means x(p) < x(p′). Similarly, we can define right, above, below, etc.

For convenience, we use p0 (resp., pn+1) to denote a point on L strictly to the
left (resp. right) of all points of P and all disks of S. We use the term optimal
solution subset to refer to a subset of S used in an optimal solution.

In the 1D problem, each disk si ∈ S is a line segment on L. The problem
can be solved by a straightforward dynamic programming algorithm of O((n +
m) log(n+m)) time. The details are omitted but can be found in the full paper.

3 The L∞ and L2 Cases

In this section, we give our algorithms for the L∞ and L2 cases. The algorithms
are similar in the high level. However, the L2 case is more involved in the low

Algorithms for the Line-Constrained Disk Coverage and Related Problems 589

level computations. In Sect. 3.1, we present a high-level algorithmic scheme that
works for both metrics. Then, we complete the algorithms for the L∞ and L2

cases in Sects. 3.2 and 3.3, respectively.

3.1 An Algorithmic Scheme for L∞ and L2 Metrics

In this subsection, unless otherwise stated, all statements are applicable to both
metrics. Note that a disk in the L∞ metric is a square.

For a disk sk ∈ S, we say that a subsequence P [i, j] of P with 1 ≤ i ≤ j ≤ n
is a maximal subsequence covered by sk if all points of P [i, j] are covered by sk

but neither pi−1 nor pj+1 is covered by sk (it is well defined due to p0 and pn+1).
Let F (sk) be the set of all maximal subsequences covered by sk. Note that the
subsequences of F (sk) are pairwise disjoint.

Lemma 1. Suppose Sopt is an optimal solution subset and sk is a disk of Sopt.
Then, there is a subsequence P [i, j] in F (sk) such that the following hold.

1. P [i, j] has a point that is not covered by any disk in Sopt \ {sk}.
2. For any point p ∈ P that is covered by sk but is not in P [i, j], p is covered by

a disk in Sopt \ {sk}.
In light of Lemma 1, we reduce the problem to an instance of the 1D problem

with a point set P ′ and a line segment set S′, as follows.
For each point of P , we vertically project it on L, and the set P ′ is comprised

of all such projected points. Thus P ′ has exactly n points. For any 1 ≤ i ≤ j ≤ n,
we use P ′[i, j] to denote the projections of the points of P [i, j]. For each point
pi ∈ P , we use p′

i to denote its projection point in P ′.
The set S′ is defined as follows. For each disk sk ∈ S and each subsequence

P [i, j] ∈ F (sk), we create a segment for S′, denoted by s[i, j], with left endpoint
at p′

i and right endpoint at p′
j . Thus, s[i, j] covers exactly the points of P ′[i, j].

We set the weight of s[i, j] to wk. Note that if s[i, j] is already in S′, which is
defined by another disk sh, then we only need to update its weight to wk in case
wk < wh (so each segment appears only once in S′). We say that s[i, j] is defined
by sk (resp., sh) if its weight is equal to wk (resp., wh).

By Lemma 1, we intend to say that an optimal solution OPT ′ to the 1D
problem on P ′ and S′ corresponds to an optimal solution OPT to the original
problem on P and S as follows: if a segment s[i, j] ∈ S′ is included in OPT ′,
then we include the disk that defines s[i, j] in OPT . However, since a disk of S
may define multiple segments of S′, to guarantee the correctness of the corre-
spondence, we need to show that OPT ′ is a valid solution: no two segments in
OPT ′ are defined by the same disk of S. For this, we have the following lemma.

Lemma 2. Any optimal solution on P ′ and S′ is a valid solution.

With our algorithm for the 1D problem, we have the following result.

Lemma 3. If the set S′ is computed, then an optimal solution can be found in
O((n + |S′|) log(n + |S′|)) time.

590 L. Pedersen and H. Wang

Fig. 1. Illustrating the definition of bounding couples: the numbers are the indices of
the points of P . In this example, pl(sk) is point 2 and pr(sk) is point 11, and the
bounding couples are: (2, 3), (3, 5), (5, 7), (7, 10), (10, 11).

It remains to determine the size of S′ and compute S′. An obvious answer
is that |S′| is bounded by m · �n/2� because each disk can have at most �n/2�
maximal sequences of P , and a trivial algorithm can compute S′ in O(nm log(m+
n)) time by scanning the sorted list P for each disk. Therefore, by Lemma 3, we
can solve the problem in both L∞ and L2 metrics in O(nm log(m + n)) time.

With more geometric observations, we will prove the following two lemmas.

Lemma 4. In the L∞ metric, |S′| ≤ 2(n + m) and S′ can be computed in
O((n + m) log(n + m)) time.

Lemma 5. In the L2 metric, |S′| ≤ 2(n + m) + κ and S′ can be computed in
O((n + m) log(n + m) + κ log m) time, where κ is the number of pairs of disks
of S that intersect each other.

With Lemma 3, we can solve the L∞ case in O((n+m) log(n+m)) time and
the L2 case in O((n + m) log(n + m) + κ log m) time.

Bounding Couples. Before moving on, we introduce a new concept bounding
couples, which will be used to prove Lemmas 4 and 5 later.

Consider a disk sk ∈S. Let pl(sk) denote the rightmost point of P ∪ {p0, pn+1}
strictly to the left of lk; similarly, let pr(sk) denote the leftmost point of P ∪
{p0, pn+1} strictly to the right of rk. Let P (sk) denote the subset of points of P
between pl(sk) and pr(sk) inclusively that are outside sk. We sort the points of
P (sk) by their x-coordinates, and we call each adjacent pair of points (or their
indices) in the sorted list a bounding couple (e.g., see Fig. 1). Let C(sk) denote
the set of all bounding couples of sk, and for each bounding couple of C(sk), we
assign wk to it as the weight. Let C =

⋃
1≤k≤m C(sk), and if the same bounding

couple is defined by multiple disks, we only keep the copy in C with the minimum
weight. Also, we consider a bounding couple (i, j) as an ordered pair with i < j,
and i is considered as the left end of the couple while j is the right end.

The reason why we define bounding couples is that if P [i, j] is a maximal
subsequence of P covered by sk then (i − 1, j + 1) is a bounding couple. On the
other hand, if (i, j) is a bounding couple of C(sk), then P [i+1, j−1] is a maximal
subsequence of P covered by sk unless j = i + 1. Hence, each bounding couple
(i, j) of C with j �= i + 1 corresponds to a segment in the set S′, and |S′| ≤ |C|.

Algorithms for the Line-Constrained Disk Coverage and Related Problems 591

Observe that C has at most n − 1 couples (i, j) with j = i + 1, and given C, we
can obtain S′ in additional O(|C|) time. According to our above discussion, to
prove Lemmas 4 and 5, it suffices to prove the following two lemmas.

Lemma 6. In the L∞ metric, |C| ≤ 2(n+m) and C can be computed in O((n+
m) log(n + m)) time.

Lemma 7. In the L2 metric, |C| ≤ 2(n + m) + κ and C can be computed in
O((n + m) log(n + m) + κ log m) time.

Consider a bounding couple (i, j) of C, defined by a disk sk. We call it a
left bounding couple if pi = pl(sk), a right bounding couple if pj = pr(sk), and
a middle bounding couple otherwise (e.g., in Fig. 1, (2, 3) is the left bounding
couple, (10, 11) is the right bounding couple, and the rest are middle bounding
couples). Note that a disk can define at most one left bounding couple and at
most one right bounding couple. Therefore, the number of left and right bounding
couples in C is at most 2m. It remains to bound the number of middle bounding
couples of C. We will prove Lemma 6 and 7 in Sects. 3.2 and 3.3, respectively.

3.2 The L∞ Metric

In this section, our goal is to prove Lemma 6. In the L∞ metric, every disk is a
square that has four axis-parallel edges. We use lk and rk to particularly refer
to the left and right endpoints of the upper edge of sk, respectively.

For a point pi and a square sk, we say that pi is vertically above (resp.,
below) the upper edge of sk if pi is above (resp., below) the upper edge of sk and
x(lk) ≤ x(pi) ≤ x(rk). Due to our general position assumption, pi is not on the
boundary of sk, and thus pi above/below the upper edge of sk implies that pi

is strictly above/below the edge. Also, since no point of P is below L, a point
pi ∈ P is in sk if and only if pi is vertically below the upper edge of sk. If pi is
vertically above the upper edge of sk, we also say that pi is vertically above sk

or sk is vertically below pi. The following lemma proves an upper bound for |C|.
Lemma 8. |C| ≤ 2(n + m).

We proceed to compute the set C. The following lemma gives an algorithm
to compute all left and right bounding couples of C.

Lemma 9. All left and right bounding couples of C can be computed in O((n +
m) log(n + m)) time.

Computing the Middle Bounding Couples We now compute all middle
bounding couples of C. We sweep a vertical line l from left to right, and an
event happens if l encounters a point in P ∪ {lk, rk| 1 ≤ k ≤ m}. Let H be
the set of disks that intersect l. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 2).

592 L. Pedersen and H. Wang

Fig. 2. In this example, P (l) = {pi1 , pi2 , pi3 , pi4}. Each horizontal segment represents
the upper edge of a disk. H(i1) consists of two blue disks and H(i4) consists of two red
disks. H0 consists of three black disks. After processing the event at ph, i2, i3, and i4
will be removed from P (l) and ph will be inserted, so after the event P (l) = {pi1 , ph}.
(i2, h), (i3, h), (i4, h) will be reported as middle bounding couples. (Color figure online)

1. A sequence P (l) = {pi1 , pi2 , . . . , pit
} of t points of P , which are to the left of l

and ordered from northwest to southeast. P (l) is stored in a balanced binary
search tree T (P (l)).

2. A collection H of t + 1 subsets of H: H(ij) for j = 0, 1, . . . , t, which form a
partition of H, defined as follows.
H(it) is the subset of disks of H that are vertically below pit

. For each j =
t − 1, t − 2, . . . , 1, H(ij) is the subset of disks of H \ ⋃t

k=j+1 H(ik) that are
vertically below pij

. H(i0) = H \ ⋃t
j=1 H(ij). While H(i0) may be empty,

none of H(ij) for 1 ≤ j ≤ t is empty.
Each H(ij) is maintained by a balanced binary search tree T (H(ij)) ordered
by the y-coordinates of the upper edges of the disks. We have all disks stored
in leaves of T (H(ij)), and each internal node v of the tree also stores a weight
equal to the minimum weight of all disks in the leaves of the subtree at v.

3. For each point pij
∈ P (l), among all points of P strictly between pij

and l,
no point is vertically above any disk of H(ij).

4. Among all points of P strictly to the left of l, no point is vertically above any
disk of H(i0).

In summary, our algorithm maintains the following trees: T (P (l)), T (H(ij))
for all j ∈ [0, t]. Initially when l is to the left of all disks and points of P , we
have H = ∅ and P (l) = ∅. We next describe how to process events.

If l encounters the left endpoint lk of a disk sk, we insert sk to H(i0). The
time for processing this event is O(log m) since |H(i0)| ≤ m.

If l encounters the right endpoint rk of a disk sk, we need to determine which
set H(ij) of H contains sk. For this, we associate each right endpoint with its
disk in the preprocessing so that it can keep track of which set of H contains the
disk. Using this mechanism, we can determine the set H(ij) that contains sk in
constant time. We then remove sk from T (H(ij)). If H(ij) becomes empty and
j �= 0, then we remove pij

from P (l). One can verify that all algorithm invariants
still hold. The time for processing this event is O(log(m + n)).

Algorithms for the Line-Constrained Disk Coverage and Related Problems 593

If l encounters a point ph of P , which is a major event we need to handle, we
process it as follows. We search T (P (l)) to find the first point pij

of P (l) below
ph (e.g., j = 3 in Fig. 2). We remove the points pik

for all k ∈ [j, t] from P (l).

Lemma 10. For each point pik
with k ∈ [j, t], (ik, h) is a middle bounding

couple defined by and only by the disks of H(ik) (i.e., H(ik) consists of all disks
of S that define (ik, h) as a middle bounding couple).

By Lemma 10, for each k ∈ [j, t], we report (ik, h) as a middle bounding couple
with weight equal to the minimum weight of all disks of H(ik), which is stored
at the root of T (H(ik)).

Next, we process the point pij−1 , for which we have the following lemma. The
proof technique is similar to that for Lemma 10, so we omit it.

Lemma 11. If ph is vertically below the lowest disk of H(ij−1), then (ij−1, h)
is not a middle bounding couple; otherwise, (ij−1, h) is a middle bounding couple
defined by and only by disks of Hj−1 that are vertically below ph.

By Lemma 11, we first check whether ph is vertically below the lowest disk
of H(ij−1). If yes, we do nothing. Otherwise, we report (ij−1, h) as a middle
bounding couple with weight equal to the minimum weight of all disks of H(ij−1)
vertically below ph, which can be computed in O(log m) time by using weights
at the internal nodes of T (H(ij−1)). We further have the following lemma.

Lemma 12. If all disks of H(ij−1) are vertically below ph, then there does not
exist a middle bounding couple (ij−1, b) with b > h.

We check whether ph is above the highest disk of H(ij−1) using the tree
T (H(ij−1)). If yes, then the above lemma tells that there will be no more middle
bounding couples involving ij−1 any more, and thus we remove pij−1 from P (l).

The following lemma implies that all middle bounding couples with ph as the
right end have been computed.

Lemma 13. For any middle bounding couple (b, h), b must be in
{ij−1, ij , . . . , it}.

Next, we add ph to the end of the current sequence P (l) (note that the points
pik

for all k ∈ [j, t] and possibly pij−1 have been removed from P (l); e.g., see
Fig. 2). Finally, we need to compute the tree T (H(h)) for the set H(h), which
is comprised of all disks of H vertically below ph since ph is the lowest point of
P (l). We compute T (H(h)) as follows.

First, starting from an empty tree, for each k = t, t − 1, . . . , j in this order,
we merge T (H(h)) with the tree T (H(ik)). Notice that the upper edge of each
disk in T (H(ik)) is higher than the upper edges of all disks of T (H(h)). There-
fore, each such merge operation can be done in O(log m) time. Second, for the
tree T (H(ij−1)), we perform a split operation to split the disks into those with
upper edges above ph and those below ph, and then merge those below ph with
T (H(h)) while keeping those above ph in T (H(ij−1)). The above split and merge

594 L. Pedersen and H. Wang

operations can be done in O(log m) time. Third, we remove those disks below ph

from H(i0) and insert them to T (H(h)). This is done by repeatedly removing
the lowest disk s from H(i0) and inserting it to T (H(h)) until the upper edge
of s is higher than ph. This completes our construction of the tree T (H(h)).

The above describes our algorithm for processing the event at ph. One can
verify that all algorithm invariants still hold. The runtime of this step is O((1 +
k1+k2) log m), where k1 is the number of points removed from P (l) (the number
of merge operations is at most k1) and k2 is the number of disks of H(i0) got
removed for constructing T (H(h)). As we sweep the line l from left to right,
once a point is removed from P (l), it will not be inserted again, and thus the
total sum of k1 in the entire algorithm is at most n. Also, once a disk is removed
from H(i0), it will never be inserted again, and thus the total sum of k2 in
the entire algorithm is at most m. Hence, the overall time of the algorithm is
O((n + m) log(n + m)). This proves Lemma 6.

3.3 The L2 Metric

In this section we prove Lemma 7. Recall our general position assumption that
no point of P is on the boundary of a disk of S. Also recall that all points of P
are above L. In the L2 metric, the two extreme points lk and rk of a disk sk are
unique. For a point pi ∈ P and a disk sk ∈ S, we say that pi is vertically above
sk if pi is outside sk and x(lk) ≤ x(pi) ≤ x(rk), and pi is vertically below sk if
pi is inside sk. We also say that sk is vertically below pi if pi is vertically above
sk. Lemma 14 gives an upper bound for |C|.
Lemma 14. |C| ≤ 2(n + m) + κ.

We next describe our algorithm for computing the set C. For each disk sk, we
refer to the half-circle of the boundary of sk above L as the arc of sk. Note that
every two arcs of S intersect at most once. Below, depending on the context,
sk may also refer to its arc. Lemma 15 computes the left and right bounding
couples.

Lemma 15. All left and right bounding couples of C can be computed in O((n+
m) log(n + m) + κ log m) time.

To compute the middle bounding pairs of C, the algorithm is similar in spirit
to that for the L∞ case. However, it is more involved and requires new techniques
due to the nature of the L2 metric as well as the intersections of the disks of S.
We sweep a vertical line l from left to right; an event happens if l encounters a
point in P ∪ {lk, rk| 1 ≤ k ≤ m} or an intersection of two disk arcs. Let H be
the set of arcs that intersect l. During the sweeping, we maintain the following
information and invariants (e.g., see Fig. 3).

1. A sequence P (l) = {pi1 , pi2 , . . . , pit
} of t points to the left of l that are sorted

from left to right. P (l) is maintained by a balanced binary search tree T (P (l)).

Algorithms for the Line-Constrained Disk Coverage and Related Problems 595

Fig. 3. In this example, P (l) = {pi1 , pi2 , pi3 , pi4}. H(i1) consists of the two blue arcs
and H(i4) consists of the two red arcs. H(i0) consists of the only black arc. After
processing the event at ph ∈ P , (i2, h) and (i4, h) will be reported as middle bounding
couples, point i2 will be removed from P (l), and ph will be inserted to P (l). (Color
figure online)

2. A collection H of t + 1 subsets of H: H(ij) for j = 0, 1, . . . , t, which form a
partition of H, defined as follows. H(it) is the set of disks of H vertically below
pit

. For each j = t − 1, t − 2, . . . , 1, H(ij) is the set of disks of H\⋃t
k=j+1 H(ik)

vertically below pij
. H(i0) = H \ ⋃t

j=1 H(ij). While H(i0) may be empty,
none of H(ij) for j ≥ 1 is empty.
Each H(ij) for 0 ≤ j ≤ t is maintained by a balanced binary search tree
T (H(ij)) ordered by the y-coordinates of the intersections of l with the arcs
of the disks. We have all disks stored in the leaves of the tree, and each internal
node v of the tree stores a weight that is equal to the minimum weight of all
disks in the leaves of the subtree rooted at v.
For each subset H ′ ⊆ H, the arc of H ′ whose intersection with l is the lowest
is called the lowest arc of H ′. We maintain a set H∗ consisting of the lowest
arcs of all sets H(ik) for 1 ≤ k ≤ t. So |H∗| = t. We use a binary search tree
T (H∗) to store disks of H∗, ordered by the y-coordinates of their intersections
with l.

3. For each point pij
∈ P (l), among all points of P strictly between pij

and l,
no point is vertically above any disk of H(ij).

4. Among all points of P strictly to the left of l, no point is vertically above any
disk of H(i0).

Remark. Our algorithm invariants are essentially the same as those in the L∞
case. One difference is that the points of P (l) are not sorted simultaneously
by y-coordinates, which is due to that the arcs of S may cross each other (in
contrast, in the L∞ case the upper edges of the squares are parallel). For the
same reason, for two sets H(ik) and H(ij) with 1 ≤ k < j ≤ t, it may not be the
case that all arcs of H(ik) are above all arcs of H(ij) at l. Therefore, we need
an additional set H∗ to guide our algorithm, as will be clear later.

In our sweeping algorithm, we use similar techniques as the line segment
intersection algorithm [3,4,7] to determine and handle arc intersections of S (we

596 L. Pedersen and H. Wang

are able to do so because every two arcs of S intersect at most once), and the
time on handling them is O((m + κ) log m). Below we will not explicitly explain
how to handle arc intersections.

Initially H = ∅ and l is to the left of all arcs of S and all points of P .
If l encounters the left endpoint of an arc sk, we insert sk to H(i0).
If l encounters the right endpoint rk of an arc sk, then we need to determine

which set of H contains sk. For this, as in the L∞ case, we associate each right
endpoint with the arc. Using this mechanism, we can find the set H(ij) of H
that contains sk in constant time. Then, we remove sk from H(ij). If j = 0, we
are done for this event. Otherwise, if sk was the lowest arc of H(ij) before the
above remove operation, then sk is also in H∗ and we remove it from H∗. If the
new set H(ij) becomes empty, then we remove pij

from P (l). Otherwise, we find
the new lowest arc from H(ij) and insert it to H∗. Processing this event takes
O(log(n + m)) time using the trees T (H∗), T (P (l)), and T (H(ij)).

If l encounters an intersection q of two arcs sa and sb, in addition to the
processing work for computing the arc intersections, we do the following. Using
the right endpoints, we find the two sets of H that contain sa and sb, respectively.
If sa and sb are from the same set H(ij) ∈ H, then we switch their order in the
tree T (H(ij)). Otherwise, if sa is the lowest arc in its set and sb is also the lowest
arc in its set, then both sa and sb are in H∗, so we switch their order in T (H∗).
The time for processing this event is O(log m).

If l encounters a point ph of P , which is a major event to handle, we process
it as follows. As in the L∞ case, our goal is to determine the middle bounding
couples (i, h) with pi ∈ P (l).

Using T (H∗), we find the lowest arc sk of H∗. Let H(ij) for some j ∈ [1, t] be
the set that contains sk, i.e., sk is the lowest arc of H(ij). If ph is above sk, then
we can show that (ij , h) is a middle bounding couple defined by and only by the
arcs of H(ij) below ph (e.g., see Fig. 3). The proof is similar to Lemma 10, so
we omit the details. Hence, we report (ij , h) as a middle bounding couple with
weight equal to the minimum weight of all arcs of H(ij) below ph, which can
be found in O(log m) time using T (H(ij)). Then, we split T (H(ij)) into two
trees by ph such that the arcs above ph are still in T (H(ij)) and those below ph

are stored in another tree (we will discuss later how to use this tree). Next we
remove sk from H∗. If the new set H(ij) after the split operation is not empty,
then we find its lowest arc and insert it into H∗; otherwise, we remove pij

from
P (l). We then continue the same algorithm on the next lowest arc of H∗.

The above discusses the case where ph is above sk. If ph is not above sk, we
are done with processing the arcs of H∗. We can show that all middle bounding
couples (b, h) with h as the right end have been computed. The proof is similar
to Lemma 13, and we omit it.

Finally, we add ph to the rear of P (l). As in the L∞ case, we need to compute
the tree T (H(h)) for the set H(h), which is comprised of all arcs of H below ph,
as follows.

Initially we have an empty tree T (H(h)). Let H ′ be the subset of the arcs
of H∗ vertically below ph; here H∗ refers to the original set at the beginning of
the event for ph. The set H ′ has already been computed above. Let H′ be the

Algorithms for the Line-Constrained Disk Coverage and Related Problems 597

subcollection of H whose lowest arcs are in H ′. We process the subsets H(ij)
of H′ in the inverse order of their indices (for this, after identifying H′, we can
sort the subsets H(ij) of H′ by their indices in O(|H ′| log m) time; note that
|H ′| = |H′|), i.e., the subset of H′ with the largest index is processed first.

Suppose we are processing a subset H(ij) of H′. Let s be the lowest arc of
H(ij). Recall that we have performed a split operation on the tree T (H(ij)) to
obtain another tree consisting of all arcs of H(ij) below ph, and we use H ′(ij) to
denote the set of those arcs and use T (H ′(ij)) to denote the tree. If T (H(h)) is
empty, then we simply set T (H(h)) = T (H ′(ij)). Otherwise, we find the highest
arc s′ of T (H(h)) at l. If s is above s′ at l, then every arc of T (H ′(ij)) is
above all arcs of T (H(h)) at l and thus we simply perform a merge operation to
merge T (H ′(ij)) with T (H(h)) (and we use T (H(h)) to refer to the new merged
tree). Otherwise, we call (s, s′) an order-violation pair. In this case, we do the
following. We remove s from T (H ′(ij)) and insert it to T (H(h)). If T (H ′(ij))
becomes empty, then we finish processing H(ij). Otherwise, we find the new
lowest arc of T (H ′(ij)), still denoted by s, and then process s in the same way
as above.

The above describes our algorithm for processing a subset H(ij) of H′. Once
all subsets of H′ are processed, the tree T (H(h)) for the set H(h) is obtained.

After processing the arcs of H∗ as above, we also need to consider the arcs
of H(i0). For this, we scan the arcs from low to high using T (H(i0)), and for
each arc s, if s is above ph, then we stop the procedure; otherwise, we remove s
from T (H(i0)) and insert it to T (H(h)).

This finishes our algorithm for processing the event at ph. One can verify
that the time complexity of this step is O((1 + k1 + k2 + k3) · log m) time, where
k1 is the number of middle bounding couples reported (the number of merge and
split operations is at most k1; also, |H ′| = k1), k2 is the number of arcs of H(i0)
got removed for constructing T (H(h)), and k3 is the number of order-violation
pairs. By Lemma 14, the total sum of k1 is at most 2(n + m) + κ in the entire
algorithm. As in the L∞ case, the total sum of k2 is at most m in the entire
algorithm. The following lemma proves that the total sum of k3 is at most κ.
Therefore, the overall time of the algorithm is O((n + m) log(n + m) + κ log m).

Lemma 16. The total number of order-violation pairs in the entire algorithm
is at most κ.

References

1. Alt, H., et al.: Minimum-cost coverage of point sets by disks. In: Proceedings of
the 22nd Annual Symposium on Computational Geometry (SoCG), pp. 449–458
(2006)

2. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approxi-
mation for minimum-weight (connected) dominating sets in unit disk graphs. In:
Proceedings of the 9th International Conference on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), and the 10th International
Conference on Randomization and Computation (RANDOM), pp. 3–14 (2006)

598 L. Pedersen and H. Wang

3. Bentley, J., Ottmann, T.: Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. 28(9), 643–647 (1979)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
– Algorithms and Applications, 3rd edn. Springer-Verlag, Berlin (2008)

5. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric cluster-
ing to minimize the sum of cluster sizes. In: Proceedings of the 13th European
Symposium on Algorithms, pp. 460–471 (2005)

6. Biniaz, A., Bose, P., Carmi, P., Maheshwari, A., Munro, I., Smid, M.: Faster
algorithms for some optimization problems on collinear points. In: Proceedings
of the 34th International Symposium on Computational Geometry (SoCG), pp.
1–14 (2018)

7. Brown, K.: Comments on Algorithms for reporting and counting geometric inter-
sections. IEEE Trans. Comput. 30, 147–148 (1981)

8. Chan, T., Grant, E.: Exact algorithms and APX-hardness results for geometric
packing and covering problems. Comput. Geom. Theory Appl. 47, 112–124 (2014)

9. Claude, F., et al.: An improved line-separable algorithm for discrete unit disk cover.
Discrete Math. Algorithms Appl. 2, 77–88 (2010)

10. Claude, F., Dorrigiv, R., Durocher, S., Fraser, R., López-Ortiz, A., Salinger, A.:
Practical discrete unit disk cover using an exact line-separable algorithm. In: Pro-
ceedings of the 20th International Symposium on Algorithm and Computation
(ISAAC), pp. 45–54 (2009)

11. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pp.
434–444 (1988)

12. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

13. Har-Peled, S., Lee, M.: Weighted geometric set cover problems revisited. J. Com-
put. Geom. 3, 65–85 (2012)

14. Hochbaum, D., Maass, W.: Fast approximation algorithms for a nonconvex covering
problem. J. Algorithms 3, 305–323 (1987)

15. Karmakar, A., Das, S., Nandy, S., Bhattacharya, B.: Some variations on con-
strained minimum enclosing circle problem. J. Comb. Optim. 25(2), 176–190 (2013)

16. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station
coverage with minimum total radii. Comput. Netw. 47, 489–501 (2005)

17. Li, J., Jin, Y.: A PTAS for the weighted unit disk cover problem. In: Proceedings
of the 42nd International Colloquium on Automata, Languages and Programming
(ICALP), pp. 898–909 (2015)

18. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41, 960–981 (1994)

19. Mustafa, N., Ray, S.: PTAS for geometric hitting set problems via local search. In:
Proceedings of the 25th Annual Symposium on Computational Geometry (SoCG),
pp. 17–22 (2009)

20. Pedersen, L., Wang, H.: On the coverage of points in the plane by disks centered
at a line. In: Proceedings of the 30th Canadian Conference on Computational
Geometry (CCCG), pp. 158–164 (2018)

21. Wang, H., Zhang, J.: Line-constrained k-median, k-means, and k-center problems
in the plane. Int. J. Comput. Geom. Appl. 26, 185–210 (2016)

