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SUMMARY
Neurons in the hippocampus exhibit a striking selectivity for specific combinations of sensory features, form-
ing representations that are thought to subserve episodic memory. Even during completely novel experi-
ences, hippocampal ‘‘place cells’’ are rapidly configured such that the population sparsely encodes visited
locations, stabilizingwithinminutes of the first exposure to a new environment.Whatmechanisms enable this
fast encoding of experience? Using virtual reality and neural population recordings in mice, we dissected the
effects of novelty and experience on the dynamics of place field formation. During place field formation, many
CA1 neurons immediatelymodulated the amplitude of their activity and shifted the location of their field, rapid
changes in tuning predicted by behavioral timescale synaptic plasticity (BTSP). Signatures of BTSP were
particularly enriched during the exploration of a novel context and decayed with experience. Our data sug-
gest that novelty modulates the effective learning rate in CA1, favoring rapidmechanisms of field formation to
encode a new experience.
INTRODUCTION

Learning in neuronal systems is complicated by a fundamental

tension between stability and plasticity (Carpenter and Gross-

berg, 1991). Networks with fast learning rates encode new

information with high fidelity at the expense of overwriting older

patterns, whereas a slow learning rate can preserve existing

structure yet stymie the encoding of novel information. Theoret-

ical studies of neuronal memory capacity suggest that optimal

solutions involve concerted processes operating on a spectrum

of timescales (Roxin and Fusi, 2013; Benna and Fusi, 2016).

These ideas harmonize with models of multistage memory sys-

tems in the brain (McClelland et al., 1995): fast-learning circuits

can quickly capture detailed memories of new episodes, which

are progressively transferred and integrated into slower systems

downstream.

The mammalian hippocampus is intimately involved in the for-

mation of episodicmemories and likelymediates an intermediate

stage of processing and storage of experiential information prior

to long-term storage in the cortex (McClelland et al., 1995).

Although generally viewed as a short-term memory system, hip-

pocampal dynamics exhibit a diversity of time constants, both at

the level of its subnetworks (Mankin et al., 2015; Ziv et al., 2013)

and cellular plasticity mechanisms (Bittner et al., 2015; Mehta
1978 Neuron 110, 1978–1992, June 15, 2022 ª 2022 Elsevier Inc.
et al., 1997; Magee and Grienberger, 2020). These results are

most often derived from the study of ‘‘place cells,’’ excitatory

neurons in the hippocampus that are active in specific locations

in an environment during exploration (O’Keefe and Dostrovsky,

1971; Moser et al., 2008). Spatial behaviors provide a convenient

model for studying memory, as the various sensory settings that

animals encounter in the environment are organized into rela-

tional neural representations in the hippocampus (Eichenbaum,

2017). Novel population codes develop with remarkable speed,

requiring only a few exposures to an environment before a new

set of place fields is learned that spans the available space (Wil-

son and McNaughton, 1993; Frank et al., 2004).

A unique synaptic learning rule was recently discovered in the

CA1 subregion of the hippocampus, bywhich pyramidal neurons

formed stable place fields within just a few trials after burst firing

was recorded from the neuron at a particular location in the envi-

ronment (Bittner et al., 2015, 2017). The sudden emergence of

tuning in previously silent neurons marks a rapid reconfiguration

of the weights of synapses that were active around the time of

the burst event (Bittner et al., 2017; Milstein et al., 2021), with

an asymmetric envelope that extends to inputs active several

seconds before the event occurred. This behavioral timescale

synaptic plasticity (BTSP) is a notable departure from conven-

tional plasticity schemes. Its expression depends on the
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presence of somatic burst firing driven by plateau potentials,

which reflect nonlinear input integration in the dendritic arbor

of pyramidal cells (Epsztein et al., 2011). These events could

be gated by the presence of other factors such as inhibition,

neuromodulation, or ‘‘instructive’’ inputs signaling reinforcement

or novelty (Gerstner et al., 2018;Milstein et al., 2021; Grienberger

and Magee, 2021; Rolotti et al., 2022), which could enable

the circuit to rapidly construct new representations during

salient experiences. It remains unknown what connection this

plasticity mechanism has to the reorganization of hippocampal

responses that occurs when animals are exposed to different en-

vironments (‘‘global remapping,’’ Muller and Kubie, 1987) or in

response to salient cues or reinforcement (Hollup et al., 2001;

Zaremba et al., 2017; Dupret et al., 2010). The presence of

plateau potentials or associated somatic burst spiking reliably

leads to the formation of place fields de novo (Bittner et al.,

2015; Diamantaki et al., 2018), but other experiments have re-

ported that new place fields can appear in the absence of these

signatures in both familiar and novel environments (Cohen

et al., 2017).

Clearly, the network’s synaptic matrix does not start from a

blank slate, when learning from each new episode; prior experi-

ence in other environments may already provide a weight distri-

bution that produces location-specific, suprathreshold spiking

for some neurons or subthreshold tuning that could be amplified

to unmask new receptive fields through other plasticity mecha-

nisms (Lee et al., 2012; McKenzie et al., 2021). There is also ev-

idence that CA1 ensembles may arise to some degree from pre-

configured network structures (Druckmann et al., 2014;

Grosmark and Buzsáki, 2016; Bocchio et al., 2020; Geiller

et al., 2022), compatible with observations of hippocampal ‘‘pre-

play’’ of future experiences (Farooq and Dragoi, 2019), although

these findings remain controversial (Silva et al., 2015; Muessig

et al., 2019). Other work has implicated local dendritic spikes

in plasticity-driven place field formation (Sheffield et al., 2017),

which could involve anatomical clustering of similarly tuned input

(Sheffield and Dombeck, 2019; Adoff et al., 2021). However,

more global mechanisms such as BTSP could be valuable for

rapidlymodifying the synaptic landscape to accommodate novel

learning (Milstein et al., 2021), and its skewed, seconds-long

timescale can endow place fields with predictive information

(Zhao et al., 2022). We lack clarity on the extent to which BTSP

contributes to learning hippocampal representations in these

different scenarios, which could provide insight on how the

network learning rate may change in response to factors such

as novelty or salience.

In this work, we conducted a longitudinal analysis of place field

formation during familiar and novel experiences in order to

search for correlates of BTSP and how they may change as a

function of experience. Using 2-photon functional calcium imag-

ing, we surveyed thousands of place fields and identified an

enrichment of BTSP-like dynamics during the initial exposures

to a new environment, which then decayed over the course of

several days. Our findings are compatible with widespread

BTSP in CA1 and illustrate an experience-dependent regulation

of plasticity that could be controlled by internal or external fac-

tors to dynamically tune the learning rate of hippocampal

representations.
RESULTS

Novel CA1 representations develop rapidly in virtual
reality
We constructed a virtual reality (VR) system for head-restrained

mice, comprising 5 liquid crystal displays (LCD) surrounding a

running wheel; movement through the virtual environments

was yoked to a rotary encoder on the wheel axle. We combined

this apparatus with 2-photon functional calcium imaging in order

to record CA1 neural populations as mice explored the virtual

contexts (Figures 1A and S1; see STAR Methods for details).

Micewere stereotactically injectedwith an rAAV vector encoding

the calcium sensor GCaMP6f under the control of the synapsin

promoter, targeted to the CA1 pyramidal layer. We then im-

planted a chronic window above the hippocampus to provide

optical access for imaging experiments (Lovett-Barron et al.,

2014). All imaging data were postprocessed in Suite2p (Pachi-

tariu et al., 2017) for motion correction, cell detection, and

extraction of raw fluorescence traces (Figure 1B). Signals were

neuropil corrected and detrended for baseline drift and were de-

convolved (Friedrich et al., 2017) to reduce the impact of calcium

autocorrelation on our analysis. As described previously (Ahmed

et al., 2020), we referred to the resulting signals as events, given

the limited ability to resolve precise spike times from calcium dy-

namics. Imaging data were collected from approximately the

same area of CA1 for each 3-day experiment sequence,

although we did not attempt to track the identity of individual

neurons across sessions. The resulting dataset consisted of an

average of 391 ± 39 CA1 neurons per session (35 sessions

from 12 experiments, comprising two 3-day experiment se-

quences each from 6 mice).

We first trained mice to run for sucrose rewards in a 3 m

virtual environment. All virtual environments began and ended

in a darkened tunnel; entering the exit tunnel triggered a 2 s

intertrial interval (ITI) during which the screens would remain

dark, and after which, the animal was teleported back to the

start of the track. After 1–2 weeks of training, most mice reliably

ran over 100 trials in under an hour. To study the dynamics of

place field formation during novel experience, we used the VR

system to rapidly alternate between familiar and novel environ-

ments multiple times during a single recording (Figure 1C). In

each recording session, mice ran trials through alternating

blocks in either a familiar (the training environment) or novel

context. Context switches were uncued; the mouse was simply

teleported to the other environment at the end of the last ITI of a

given block. We repeated the context alternation procedure

across 3 consecutive days using the same familiar/novel con-

texts to examine the effects of increasing familiarity on CA1

coding. The complete 3-day experiment was repeated twice

per mouse using two different novel contexts (the familiar

context remained the same).

Pyramidal cells’ activity tiled the virtual track (Sheffield et al.,

2017; Zhao et al., 2020), forming a reliable sequence of spatial

responses on each trial (Figure 1D). Switching the virtual context

during the session recruited an approximately orthogonal

ensemble of place cells, indicating our apparatus could trigger

robust global remapping across VR scenes (Figures S1G and

S1H). Correspondingly, we could reliably decode the position
Neuron 110, 1978–1992, June 15, 2022 1979
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Figure 1. Formation of CA1 representations in novel virtual environments

(A) Schematic of integrated 2-photon microscope and virtual reality system.

(B) Left: example 2-photon field of view (FOV) of CA1 pyramidal neurons expressing GCaMP6f. Right: spatial masks of ROIs from the same FOV.

(C) Each session consisted of 130 trials, alternating in blocks between a familiar (gray) or novel (orange) context (40 trials for the first block, then 30 trials per block).

Both environments were 3 m in length. Sucrose rewards were delivered at �1.2 and 2.7 m on each trial; the distance to rewards was the same in both contexts.

Each experiment comprised 3 consecutive days of recordings during the context switch paradigm, using the same familiar/novel contexts.

(D) Position of the animal in the environment (top) and ensemble neural activity from an example day 1 session (bottom), shown for ±5 trials around the very first

exposure to the novel context (transition marked in red). Neurons are sorted by their peak firing location on the track in either familiar (top) or novel (bottom) trials.

A new sequence of place fields rapidly organizes within the first few trials in the novel context.

(E) On each day, we trained a decoder on the neural data from each context trial block separately and used it to predict position in all other trial blocks. Left:

average absolute position error for each pair of training/testing blocks on day 1. Right: summary of decoding performance for different comparison types (n = 12

experiments).

(F) Place field accumulation in the first trial blocks of the familiar and novel contexts on day 1, shown as a histogram of the formation trials (the first trial that a cell

fired within its place field).

(G) Performance of spatial decoding tested on the initial 10 trials in a block, after training on the remaining trials from the same block, shown for the first pre-

sentation of each context for an example session on day 1.

(H) Left: trial number-matched comparison of initial decoding performance between the two contexts for the first context switch on day 1. Data pooled from all

experiments. Initial errors are consistently greater in the novel context (Wilcoxon signed-rank test). Right: p values for this comparison computed for each context

switch for all days. The difference in decoding error is eliminated with experience..

ll
Article
of the animal with a classifier trained and tested on trial blocks

sharing the same VR context but achieved only chance-level

performance when tested on the opposite context (Figure 1E).

Only a very small fraction of neurons exhibited similar place tun-

ing in at least one trial block of both environments (<4% of all

place cells). Similar to prior work, we measured an increased
1980 Neuron 110, 1978–1992, June 15, 2022
density of place fields near the reward locations (Hollup et al.,

2001; Dupret et al., 2010; Zaremba et al., 2017) and also the

end of the track (Figures S1D–S1F). Some of these cells showed

evidence of context-invariant coding of the reward zones

(Gauthier and Tank, 2018) and the VR track end tunnel (which

is visually similar between contexts), but they represented a
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minute fraction of the total place cells across the dataset (Fig-

ure S1H, �1%).

Examining the very first exposure to the novel context on day

1, a sequence of place fields was already visible in the first few

trials following the context switch; new place fields in the novel

environment continued to appeared over time, with field accu-

mulation decaying roughly exponentially over trials (Figure 1F)

similar to prior reports (Sheffield et al., 2017; Grienberger and

Magee, 2021). Gross place field accumulation in the familiar

context was 2-fold greater in the initial trials and decayed faster

compared with the novel context (t = 3:9 in familiar and t = 6:4

in novel for exponential decay fit to Figure 1E). Trial-by-trial de-

coding similarly showed that it took more time to reduce position

errors from the start of the novel context block compared with

the familiar context, but only on day 1, mainly the very first

context switch in the experiment (Figures 1G and 1H). We

noticed an overall smaller place coding fraction in the novel

context, particularly on the first exposures to the environment

(Figure S1B), which could reflect a slower accumulation of fields

during novel experience (Sheffield et al., 2017; Dong et al., 2021;

Grienberger and Magee, 2021). Given that place field firing rate,

precision, and stability also increase with experience (Frank

et al., 2004; Chen et al., 2013), it is possible that we undercount

some nascent fields due to the sensitivity of calcium imaging.

Overall though, these findings agree with our intuition that

many place fields in the familiar environment are due to prior

learning (and so they immediately and robustly appear within

the first trials in the session), although the novel representation

may continue to grow through ongoing plasticity over a longer

time period.

CA1 population activity shifts transiently in the novel
context
We analyzed the dynamics of place coding across trials in each

context block in order to identify activity signatures that may be

consistent with different underlying plasticity mechanisms. One

hallmark of plateau-induced field formation in CA1 is the back-

ward shift of spatial tuning, relative to the location of burst firing

during the formation trial (i.e., the trial when the cell first fires near

its place field). This transient shift is a consequence of the asym-

metric BTSP kernel that produces a large ramping membrane

depolarization leading up to the plateau location (Bittner et al.,

2017). This has been shown to drive somatic activity prior to

the plateau location (Zhao et al., 2020, 2022; Rolotti et al.,

2022). If new place fields in the novel context form predominantly

through BTSP, then this should induce a transient backward drift

that is measurable in the population tuning of space during the

first few trials in the environment. Since this is the time period

during which the majority of place fields form (Figure 1F), the

population drift could arise from the cumulative effect of many

fields shifting on the same trial, an effect that can notably be

measured without first identifying specific place fields or their

formation trial.

To quantify any spatial shift between population representa-

tions on different trials, we estimated the population spatial

cross-correlation between pairs of trials (±75 cm, Figure 2A).

In Figure 2B, we summarized the resulting spatial shifts be-

tween all trial pairs as a matrix, shown for day 1 sessions
(when the animal is exposed to the novel context for the very

first time) separately for each context trial block. Since the

sign of the spatial shift between two trials is reversed when

the order of comparison is reversed (i.e., trial a is after trial b,

so b is before a), these matrices are antisymmetric. In general,

the upper triangle of the shift matrices was slightly positive,

indicating that the population tuning tended to drift backward

in space relative to earlier trials in each block. However, the

shift pattern during the first exposure to the novel context

(switch 1) was markedly different from other trial blocks: early

trials in the context showed a far more exaggerated shift for-

ward in space relative to later trials. This pattern was mirrored

by changes in the raw value of the peak cross-correlation

over those trial pairs (Figure S2), suggesting overall greater

coding stability between later trials. We summarized the shift

trend by computing the average pairwise shift for each trial

per block (Figures 2C and S2), which showed a large but tran-

sient forward shift of population spatial tuning during the early

trials of the first block in the novel context. This shift decayed

rapidly within the first 10 trials in the new context, notably over-

lapping with the period during which the majority of new place

fields appeared in the novel context (Figure 1E).

The representation in the novel context consistently showed a

transient, backward drift during the first exposure across mice

on day 1 (Figures 2D and S2), but this effect was highly experi-

ence dependent. We repeated the context switch protocol

over a 3-day period and found that the greatest drift was reliably

observed during day 1, when the animals were exposed to the

novel context for the very first time (Figures 2D and 2E). It is

possible that this transient drift is due to the rapid acquisition

of new place fields during the initial trials in the novel context.

If many neurons acquire their field through BTSP, the population

shift can arise as a consequence of averaging over many place

fields that shifted acutely after field formation. We simulated

this condition and found that it produced a qualitatively similar

pattern in the population shift matrices (Figure S3). Other recent

reports have suggested that many individual CA1 neurons drift

continuously over trials (Dong et al., 2021), but our simulations

of this alternative scenario produced population shift patterns

that were incongruous with the observed data (Figure S3). These

effects were also not explained by changes in animals’ velocity

(Figures S7A–S7C). Given these comparisons, we reasoned

that the population drift was most compatible with frequent

BTSP-mediated place field formation in the first exposure to

the novel context.

New place fields appear with characteristics of BTSP
We sought to connect this population-level observation with the

behavior of individual place fields (Figure 3A). Due to the asym-

metric plasticity kernel of BTSP, individual place fields should

acutely shift backward (relative to the direction of animals’ mo-

tion) between the formation trial and subsequent trials (Bittner

et al., 2017; Zhao et al., 2020, 2022; Rolotti et al., 2022). Simula-

tions of BTSP-mediated place field formation confirmed that this

shift in place field location could be robustly measured across a

wide range of animal velocities and noise levels using calcium

imaging (Figure S4). To examine this in the data, we detected

place fields in each context block separately for each recording
Neuron 110, 1978–1992, June 15, 2022 1981
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(C) Average shift for each trial in the session, mean and 95% confidence interval across day 1 recordings.

(D) Average representation shifts in the first 10 trials of each block, summarized over all 3 days of the experiment; linear mixed-effects model with main effects of

trial block (categorical) and day (continuous), significance shown in inset.
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effects of switch (categorical) and day (continuous), significance inset. * p < 0.05, ** p < 0.01, *** p < 0.001.

ll
Article
session and measured how displaced spatial activity on the for-

mation trial was from activity on remaining trials (Figures 3B and

3C). Note that we use ‘‘formation trial’’ to denote the trial where

we first detected stable firing within a place field in a given trial

block, but this is not meant to imply that all fields form through

ongoing plasticity (i.e., many likely appear simply due to prior

learning). On comparing formation trial shifts across different trial

blocks on day 1, we found a clear increase in the displacement of

the formation trial’s tuning curve specifically during the first

exposure to the novel context, relative to the other trial blocks

(Figure 3D). Similar to the population drift, the greatest field shifts

were observed during day 1 on the first context switch (Fig-

ure 3E). Examining trial-by-trial displacements of place field ac-

tivity, we also found that the shifting was most pronounced on
1982 Neuron 110, 1978–1992, June 15, 2022
the formation trial and that place fields did not generally continue

to drift after the first few trials following place field formation

(Figures S3E–S3G). These results align with the experience-

dependent drift in population tuning described in Figure 2, sug-

gesting that the latter arises due to the cumulative effect of

many individual cells undergoing acute tuning shifts as they

formed their place fields.

The long timescale of BTSP also induces a correlation be-

tween the width of place fields and the speed of the animal dur-

ing the plasticity event: if the animal runs faster, the potentiated

inputs will span a larger region on the track (Bittner et al., 2017).

For every identified place field, we measured the velocity of the

animal as it traversed the place field on the trial of field formation.

Examining the joint distribution of formation trial velocities and
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Figure 3. Place field dynamics are consistent with BTSP-mediated field formation in the novel context

(A) Example simultaneously recorded CA1 neurons with place fields during day 1 of the experiment (gray: familiar trials; orange: novel trials). Stable place fields

appeared in both the familiar and novel contexts.

(B) Distribution of spatial tuning scores for place and non-place cells.

(C) Characterizations of place field formation for an example neuron: field detection, field width, and formation trial shift.

(D) Distribution of place field shifts (distance between formation trial activity and the remaining in-field activity) during day 1 of the experiment. Place fields in the

first exposure to the novel context exhibit exaggerated spatial shifts on their formation trial. Inset: session-averaged place field shifts on day 1 (n = 11 day 1

recordings, Wilcoxon signed-rank test with Bonferroni correction).

(E) Difference in place field shifts between novel and familiar contexts, for each context switch and day. The greatest change is seen during the first context switch

on day 1 (n = 12 experiments; linear mixed-effects model with main effects of switch [categorical] and day [continuous], significance inset).

(F) Distribution of place field widths and the velocity of the animal as it traversed the place field during the formation trial on day 1, switch 1. The linear fit is shown in

red. The correlation between velocity and field width is stronger in the novel context.

(G) Significance of the difference in regression slopes between familiar and novel as shown in (F), for all days and switches. The D slope was compared with a null

distribution created by randomly permuting the context labels of place fields for each context switch before recomputing the within-context regressions and

between-context D slope (depicted in the inset for the day 1, switch 1 results shown in F). Plotted is the log10 p value derived from a Gaussian fitted to the null

distribution. The most significant difference is seen for day 1, switch 1. * p < 0.05, ** p < 0.01, *** p < 0.001.
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the width of the associated place fields, we found that these vari-

ables were correlated in both the familiar and novel contexts

(Figure 3F, data shown for day 1, switch 1). However, this corre-

lation was stronger in the novel context, and the linear fit pro-

duced a significantly greater slope compared with the familiar

context (Figure 3G). The difference between novel and familiar

slopes was also experience dependent; the first context switch

on day 1 exhibited the most significant slope difference by far

across the entire experiment sequence. These results are again
compatible with a greater fraction of place cells forming via

BTSP during the first exposure to the novel context.

Shared variability across place field formation events
Ideally, we would like to segregate individual place fields ac-

cording to their pattern of spatial drift over trials to potentially

identify a subgroup of place fields exhibiting BTSP-like charac-

teristics or other dynamics and study additional properties of

these classes. Toward this aim, we first took an unsupervised
Neuron 110, 1978–1992, June 15, 2022 1983
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Figure 4. Factorizing place field responses across trials reveals distinct dynamics during the trial of place field appearance

(A) Top: two example place fields, with data shown in a 150 cm window aligned to the place field center and truncated to the first 10 trials from the onset of place

field formation. Bottom: the same fields, ‘‘flattened’’ so that each trial’s spatial tuning curve is sequentially concatenated.

(B) Left: all identified place fields in the dataset with at least 10 trials of activity from onset, cropped and aligned as in (A). Right: schematic of non-negative matrix

factorization (NMF). Each place field’s activity over trials is modeled as a weighted sum (W) of a small set of shared spatiotemporal patterns, H.

(C) Reconstruction error of X for different choices of the number of shared patterns n in H. There is a clear ‘‘elbow’’ at n = 11, where model improvement slows.

In Figure S5A, we also show that this choice of n gives the most interpretable patterns.

(D) Spatiotemporal patterns learned by NMF in the n = 11 model. The model learns a separate pattern for each trial that produces the centered place field on that

trial, plus an additional pattern (in black) on the formation trial that is shifted forward in space relative to the place field center.

(E) Weights of the spatiotemporal patterns in (D) for the two example place fields shown in (A) (Field 1: magenta; Field 2: cyan). Trial-to-trial fluctuations in place

field amplitude are captured by modulating the weight of the corresponding spatiotemporal pattern. Note the weight differences for the two ‘‘formation trial’’

patterns (yellow shading), which reflect the forwarded shifted activity for the cyan field.

(F) Joint distribution of pattern weights across all place fields for the two ‘‘formation trial’’ components. Field weights for the two patterns are anticorrelated.
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approach to identify a set of spatial activity patterns across tri-

als that were shared between place fields (Figures 4A–4C). For

every place field in the dataset, we examined the first 10 trials

of spatial activity, starting from the formation trial. On each of

these trials, 150 cm of the spatial tuning curve was extracted,

centered around the place field (Figure 4A). We then concate-

nated all trials from the truncated spatial tuning matrices into

a vector for every place field. Consider the example place fields

in Figure 4A: since we have centered each field’s activity rela-

tive to its field center, the two ‘‘flattened’’ place fields appear as

a relatively well-aligned series of bumps. However, there is a

large deviation in the location of firing during the formation trial:

Field 2 exhibits forward-shifted activity relative to its place field

center, whereas Field 1 remains centered. We hypothesized
1984 Neuron 110, 1978–1992, June 15, 2022
that many place fields will exhibit similar or other stereotyped

patterns of spatial shifts on certain trials and used dimension-

ality reduction to attempt to discover these dynamics.

All place fields in the dataset were gathered into a matrix X,

where each row is the spatiotemporal pattern of a single field

during the first 10 trials from its formation trial (Figure 4B).

Each row was normalized by its mean to encourage the model

to focus on shared variability between place fields. We sought

a matrix decomposition X = WH, where each row of H would

describe a pattern of spatial activity over trials, and each col-

umn of W would describe how that pattern contributed to

individual place fields. Here, we use non-negative matrix factor-

ization (NMF), since its strict non-negativity aids in interpreting

the extracted components (activity described by different
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components cannot be ‘‘cancelled out’’ due to negative

values). In this setting, it is straightforward to interpret the

rows of H as a pattern of spatial activity over trials, where

each individual place field in X is modeled as a weighted sum

of those different patterns, with the weights given by the

rows of W. As with any dimensionality reduction, it is necessary

to choose the number of components n learned by the model.

We considered the quality of the reconstruction of X across a

range of different model complexities (Figure 4C) and identified

a clear ‘‘elbow’’ (Milligan and Cooper, 1985) between two linear

regimes of the reconstruction error at n = 11, where adding

additional patterns to the model yielded smaller improvements

in the fit quality.

Strikingly, the 11-component model results in a very clean and

interpretable partitioning of variance in the place field dataset

(Figure 4D). Ten of the 11 components encoded the presence

of a centered place field on each of the 10 trials included in the

data, whereas the 11th component encoded a forward-shifted

place field on the first trial (i.e., the trial of field formation). This

is a sensible way to decompose place fields: any individual field

can now be reconstructed by appropriately weighting each per-

trial component according to the place field’s amplitude on that

trial, and the shifted formation trial component can be used to

account for variability due to BTSP-like field formation (Fig-

ure 4E). Notably, it is not immediately obvious that NMF should

find this per-trial representation; themodel could instead identify

components that are active on several or all trials, representing

longer trends of place field amplitude and shifts that are shared

between many neurons. Instead, our model’s representation

suggests that the variability in place field activity in this dataset

is best captured independently trial-by-trial for each place field.

Other choices for n invariably harmed the interpretability of the

model components (Figure S5A) and in light of the clear inflection

point in the loss function at Figure 4C, we focused our remaining

analysis on this decomposition.

The representation of formation trial activity in the model il-

lustrates the additional variability present during the trial of

place field formation across the dataset. Inspecting the joint

distribution of fields’ weights on these two components, we

found a high concentration of place fields that exclusively

weighted one pattern or the other (Figure 4F, note the concen-

tration about the axes). In fact, the two formation trial compo-

nents had the most anticorrelated weight vectors out of any

pair in the model (Figure S5B). The shifted formation trial

component was also weakly anticorrelated with all remaining

trial patterns, which could reflect the tendency for plateau po-

tentials to evoke higher, burst firing rates on the formation trial

compared with later trials. Given these features, we clustered

place fields according to their weights on the 11 NMF compo-

nents to attempt to isolate a group of fields with BTSP-like

characteristics. We found that using two clusters was sufficient

to reliably segregate these place fields (Figures S5C–S5F). In

Figure 5A, we plotted the cluster centers for the two groups

in the NMF component space, i.e., the average weight placed

on each spatial pattern for the place fields within a given clus-

ters. The two groups are mainly distinguished by their strong,

opposing weights on the two formation trial components.

Notably, the cluster that highly weighted the shifted ‘‘plateau’’
component also showed lower weights on all subsequent trial

components compared with the other cluster. We labeled the

clusters as ‘‘BTSP-like’’ (cyan) and ‘‘Other’’ (magenta) based

on these features.
Place fields show experience-dependent expression of
BTSP characteristics
How do these two groups of place fields differ? We found that

the BTSP-like fields exhibited strongly forward shifted activity

on the formation trial and relatively reduced amplitude firing on

later trials (Figures 5B–5D). We quantified the amplitude change

by computing a formation trial gain for each place field and found

that the BTSP-like fields consistently exhibited higher gain (Fig-

ure 5C). The two clusters were distinguished by several other

features: BTSP-like fields generally exhibited greater place field

width on later trials and reduced trial-to-trial stability compared

with Other fields (Figures S5H and S5I). These post hoc charac-

teristics (formation trial gain and shift, field width, and stability)

could be used to decode the BTSP label of place fields with

high accuracy using a linear classifier (85% on average,

Figures S5I–S5K). One barrier to perfect classification is that

BTSP characteristics like first trial shift were present to some

extent on a continuum throughout the dataset, likely due in

part to the dependence of this effect on velocity and noise levels

(Figure S4), but our analysis identified a consistent group of

BTSP-like place fields that did not change with the total number

of clusters used (Figures S5D–F). We note that although we have

labeled the clusters by visual inspection of their properties, the

difference in first trial shift and other measures are not a precon-

figured requirement of the model but rather one of several distin-

guishing feature that are discovered in an unsupervised manner

directly from the data. Our model indicates that BTSP-like char-

acteristics are intrinsically strong sources of variance across

place fields.

Since we could reliably identify a subset of BTSP-like place

fields in the dataset, we asked how the fraction of place fields

forming with these dynamics changes as a function of experi-

ence (Figure 5E). On most days and trial blocks, the fraction of

BTSP-like fields was below 40% of all fields, but on the first

exposure to the novel context, this increased to nearly 60% on

average (Figure 5E). The enrichment of BTSP-like place field for-

mation was also experience dependent, decaying over the

course of the 3-day experiment sequence. The fraction of fields

classified as BTSP-like in each condition also correlated with the

strength of the correlation between velocity and field width (Fig-

ure 5F) and the distance of population tuning drift during the

initial trials in each context block (Figure 5G), suggesting that

these population-level measures are good proxies for the preva-

lence of BTSP. As noted earlier, we repeated all of these 3-day

experiment sequences in a second novel context for each

mouse, and we found similar experience-dependent trends for

each novel context for all main analyses (Figure S6). Overall,

our field classification analysis is in good agreement with the

population-level measures of BTSP prevalence and lends further

support to an increased rate of BTSP-mediated acquisition

of feature tuning during the initial encounters with novel

experiences.
Neuron 110, 1978–1992, June 15, 2022 1985
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Figure 5. BTSP-like field formation is enriched in the novel context and decays with experience
(A) Place fields were divided into two groups via K-means clustering in NMF space. Plotted is the average NMF pattern weights for place fields in the two groups,

labeled as BTSP-like andOther. BTSP-like fields have far greater weight on the shifted, plateau-like component on the formation trial, and generally less weight on

later trial components compared with the Other cluster. Components are sorted as in Figures 4D and 4E.

(B) Average spatial tuning over trials for place fields in each group. As suggested by the pattern weights in (A), the BTSP-like group exhibits forward-shifted activity

on the formation trial, and the formation trial amplitude is greater than later trials.

(C) Formation trial activity gain for each place field, calculated as the peak activity on the formation trial divided by the peak activity from the average of the

remaining trials. BTSP-like cells show higher formation trial gain (Kolmogorov-Smirnov test, p = 1.863 10�77). Inset: average gain for place fields in each group,

for each mouse (Wilcoxon signed-rank test).

(D) Formation trial shift for each place field, plotted as in (C) (Kolmogorov-Smirnov test, p = 0, inset: Wilcoxon signed-rank test).

(E) Fraction of place cells classified as BTSP-like throughout the experiment, shown separately for each trial block on each day. BTSP-like place field formation is

enriched during the first exposure to the novel context and decays with experience (linear mixed effect model with main effects of trial block [categorical] and day

[continuous], significance inset).

(F) Correlation between BTSP fractions and the slope of the velocity/field-width regression.

(G) Correlation between BTSP fraction and the population-level initial drift score. In (F) and (G), each point is a trial block from a single day and single

mouse. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Spatiotemporal dynamics of place field formation
Our data delineated a transient period of enriched, BTSP-like

place field formation during novel learning, but it is possible

that these dynamics do not affect all components of new expe-

riences homogeneously. Numerous prior works have detailed

how hippocampal representations are biased by the presence

of salient cues (Bourboulou et al., 2019) and reinforcement

(Hollup et al., 2001; Zaremba et al., 2017; Dupret et al., 2010);

these effects may be driven in part by the engagement of

different plasticity mechanisms. On examining the spatial distri-

bution of place field formation events, we found that BTSP-like

and Other fields tended to concentrate in opposing regions of

the virtual environments: BTSP-like fields accumulated in the re-

gions between reward zones, whereas Other fields were partic-

ularly enriched near the reward zones (Figure 6A). Notably both

of these distributions were correlated with the spatial distribution

of velocities (Figure 6B): animals tended to run quickly between

reward zones and reliably decelerated as they approached each
1986 Neuron 110, 1978–1992, June 15, 2022
reward. It is important to account for this correlation, as our clas-

sification of BTSP-like fields is determined principally from the

spatial shift in formation trial firing (Figures 4, 5, S5J, and S5K),

which will be more difficult to detect when the animal is running

at slower velocities (Figure S4). We addressed this confound us-

ing a linear model that related velocity to field formation density

across the environment.

Our model learned a spatial velocity filter for each animal and

each field type (Figure 6C; see STAR Methods). For Other cells,

the velocity at the current position consistently predicted a

strong negative effect on field density, whereas for BTSP-like

cells, field density was positively predicted by velocity across a

range of spatial lags. Overall, the velocity models explained a

majority of variance in the distribution of field formation events

for both field types (Figure 6D; see also Figure S7). In Figure 6E,

we plotted the field distributions for each mouse and field type.

Subtracting the model-predicted field distributions from these

curves, we found that the residual field counts were largely
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Figure 6. The spatial distribution of place field formation events

(A) Histogram of place field formation events over positions and trial number (from the start of the context block), with marginal distributions. Data are pooled from

all conditions. Dashed-blue lines indicate reward zones.

(B) Average velocity profile across the environment, for each mouse. The mice slow down considerably on approach to the reward zones.

(C) Spatial kernels fit to predict place field density from the average velocity profile from each mouse. These describe the weighted average of velocity over past

and present positions that best predicts the place field density at the present position. Velocity has a large negative effect on ‘‘Other’’ field density on a short

spatial scale. Conversely, BTSP-like field density is positively affected by velocity, on a longer spatial scale.

(D) Prediction quality of the velocity-to-field density model learned in (C).

(E) As in (A), the distribution of place field formation events for Other and BTSP-like fields, shown separately for each mouse.

(F) As in (E), but showing the residual field counts obtained after subtracting off the predictions of the model in (C and D). The residuals are largely spatially

homogeneous and centered at zero, reflecting that the majority of variance is explained by velocity.
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spatially homogenized and centered at zero, effectively

removing the effect of the reward zones (Figure 6F). The residual

increased frequency of Other cells near the very end of the track

is compatible with the slight enrichment of neurons that exhibit

place fields in both contexts at this location (Figure S1J). Since

this region of the track is highly visually similar between both

contexts, this may correspond to a reduction in plasticity-driven

field formation here in favor of recruiting the same familiar repre-

sentation in both contexts. In sum, given the current data and our

field classification methods, we were unable to determine

conclusively whether BTSP differentially contributed to the

spatial distribution of place fields.

The prior analysis focused on the spatial distribution of place

field formation events pooled over all trials. On any given trial
though, we hypothesized that the locations of new place fields

might be constrained by the representation assembled over prior

learning. This could arise from the recruitment of lateral inhibition

at locations with existing place fields (Rolotti et al., 2022; Milstein

et al., 2021; Robinson et al., 2020), promoting competitive inter-

actions that repel accumulating fields away from one another. To

test this idea, we examined the formation trial for every place

field and measured the average spatial distance between that

field and all fields of the same class that formed on the next trial

(Figures 7A and 7B). Since we were interested in the next-trial

field distance that was not explained by the overall distribution

of place field locations, we normalized this distance by a null

distribution that was constructed by randomly permuting the for-

mation trial between fields within a trial block (Figure 7B). In
Neuron 110, 1978–1992, June 15, 2022 1987
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Figure 7. Place field accumulation follows a nonstationary distribution over positions
(A) Scatter plot of place field formation event over trials and positions, for an example session (day 1, first novel context exposure).

(B) Top: for every place field, the distance was calculated between its location and the location of all place fields that appeared on the next trial (of the same BTSP

classification). Bottom: the average next-trial field distancewas comparedwith a null distribution built by randomly permuting the formation trials of all place fields

in the trial block. A normalized distance (s) was derived by standardizing the true distance relative to the null distribution.

(C) Cumulative distribution of normalized distances across the dataset for each place field formation type. The standard normal distribution (chance) is plotted in

black. Both BTSP and Other fields show greater next-trial field distances than expected by chance (inset: one-sample Kolmogorov-Smirnov [KS] test against the

standard normal distribution). Right: significance of KS test computed for each mouse separately. Place fields accumulated at farther distances compared with

prior trial fields than expected by random sampling in nearly all mice and conditions. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 7C, we plotted the distribution of normalized distances for

BTSP and Other fields. For both groups of fields, place fields

tended to form farther away from fields that formed on the previ-

ous trial than would be expected from random sampling of the

environment. This history dependence indicates the presence

of competitive interactions that act to disperse new place

fields, which could help to drive pattern separation of nearby

locations.

DISCUSSION

Hippocampal circuits are remarkably plastic, with the ability to

construct precise representations of novel experiences with

very few exposures (Wilson and McNaughton, 1993). This

feature is likely critical to the role of the hippocampus in mem-

ory storage: it can serve as a fast learning module that rapidly

encodes new information, where it is retained and refined for a

short period prior to its transfer to and long-term storage in

the cortex. (McClelland et al., 1995; Roxin and Fusi, 2013).

The recent discovery of BTSP is a striking demonstration of

the speed of synaptic learning in the hippocampus (Bittner

et al., 2015, 2017). In our work here, we have quantified the

potential impact of this novel plasticity rule at the scale of

large neuronal populations and tested a specific role in encod-

ing novel experiences. Considering multiple lines of analysis,

our results are consistent with the hypothesis that a sizable

fraction of de novo place fields form via BTSP and that the

probability of BTSP events is regulated by the novelty of

ongoing experience.

Other reports have questioned the ubiquity of plateau-depen-

dent plasticity events during place field formation (Cohen et al.,

2017; Dong et al., 2021). New place fields can appear in a familiar

or novel environment in the absence of plateau-associated com-

plex spiking (Cohen et al., 2017), and CA1 neurons can exhibit
1988 Neuron 110, 1978–1992, June 15, 2022
latent, subthreshold spatial tuning (Lee et al., 2012), which could

possibly be amplified to suprathreshold place fields through

other synaptic learning processes (McKenzie et al., 2021). In all

conditions during our experiments, we detected features of

place field formation that are correlated with BTSP, both at the

level of neural ensembles (Figures 2 and 3) and single neurons

(Figures 4 and 5). Although prior work on BTSP mainly used

whole-cell patch recordings to unambiguously identify plateau

potentials (Bittner et al., 2015, 2017; Zhao et al., 2020, 2022),

our population-scale approach necessitates that we identify

these events indirectly through changes in response amplitude

and spatial tuning shifts, derived, respectively, from the pro-

longed somatic depolarization induced by the putative plateau

potential (Epsztein et al., 2011; Bittner et al., 2015) and the asym-

metric plasticity kernel of BTSP (Bittner et al., 2017). Althoughwe

cannot detect the presence of burst firing directly, this firing

mode is ubiquitous among CA1 pyramidal neurons (Harvey

et al., 2009; Grienberger et al., 2014) and strongly implicated in

plateau-mediated plasticity (Bittner et al., 2015). Fluorescent cal-

cium reporters are biased toward detecting spike bursts at the

expense of isolated action potentials (Schoenfeld et al., 2021),

as fluorescence generally increases with the number of underly-

ing action potentials (Chen et al., 2013a). It is likely that location

shifts we calculate are derived mainly from high-frequency

spiking events near the center of the place field (Harvey et al.,

2009). Although indirect, our method allowed us to study place

field dynamics at scale and compare the relative frequency of

field formation events as animals became increasingly familiar

with new environments over days, questions that are impossible

to tackle with intracellular recordings limited to short recordings

in single neuron preparations (Bittner et al., 2015, 2017). Ulti-

mately though, our approach can only detect features correlated

with BTSP, with direct measurement of the membrane potential

required to unambiguously identify these plasticity events.
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All correlates of BTSP in the dataset exhibited strong experi-

ence-dependent effects, with an enrichment of BTSP-compat-

ible dynamics specifically during the first exposures to the novel

environment that decayed over subsequent days. Of course, it is

obvious that over multiple days of experience in the same envi-

ronment, we should expect progressively fewer place fields to

appear via ongoing plasticity, with much of the representation

simply recalled due to prior learning (although representations

continue to drift in familiar environments, see Mankin et al.,

2012; Ziv et al., 2013). However, our data indicate that correlates

of burst-dependent plasticity are particularly present during

early learning in a novel experience, where our classification es-

timates that the majority of place fields appear de novo with

BTSP-like characteristics (Figure 5). We also persistently identi-

fied a sizable fraction of BTSP-like fields in other conditions, sug-

gesting a continuous baseline level of place field turnover due to

BTSP that may contribute to representational drift (Mankin et al.,

2012; Ziv et al., 2013). Plateau potentials are generated through

the convergence of coincident presynaptic inputs that triggers

active dendritic conductances in the apical tuft (Takahashi and

Magee, 2009), but the dendritic arbor of CA1 pyramidal neurons

is also extensively regulated by local feedback inhibition (Royer

et al., 2012; Lovett-Barron et al., 2012). These circuits actively

limit dendritic electrogenesis and tightly restrict the number of

place fields that can be simultaneously induced via BTSP (Rolotti

et al., 2022). This result implies that other factorsmust be present

that transiently free the circuit of these constraints, in order to

rapidly build new representations during novel experience.

There is already evidence for a temporary reduction in den-

dritic inhibition during novel experience in the hippocampus

(Sheffield et al., 2017; Geiller et al., 2020). We hypothesize that

these inhibitory dynamics are at least partially regulated by

factors originating outside of the hippocampus, such as neuro-

modulatory inputs from the basal forebrain or brainstem (Pala-

cios-Filardo and Mellor, 2019) that could be involved in broader,

brain-wide signaling of novelty detection. In particular, the locus

coeruleus is highly sensitive to novelty and provides dense

dopaminergic and noradrenergic input to CA1 (Takeuchi et al.,

2016), and these projections have been optogenetically manipu-

lated to increase place field density during a reward learning

behavior in mice (Kaufman et al., 2020). Cholinergic neurons

are also known to respond to reinforcement and are sensitive

to stimulus uncertainty (Hangya et al., 2015), and cholinergic pro-

jections from the medial septum ramify extensively in CA1,

where they are thought to modulate network function and plas-

ticity in response to arousal (Teles-Grilo Ruivo and Mellor,

2013). Characterization of these inputs in vivo remains a rela-

tively nascent endeavor and, given the diversity of receptor

expression in the hippocampal circuit (Teles-Grilo Ruivo and

Mellor, 2013), it is likely that they affect both the dendritic excit-

ability of pyramidal neurons and also the recruitment of distinct

inhibitory microcircuits. Overall, we hypothesize that the inter-

play of external novelty signals and regulation of local inhibition

may provide a temporary window of hyper-excitability during

new experience, which may permit rapid assembly of represen-

tations through BTSP. Abstractly, the temporary shift to frequent

burst-mediated place field formation may contribute to an adap-

tive learning rate in the hippocampus, where the circuit responds
to a large change in its input statistics by scaling up the speed of

synaptic updates in order to encode new information.

We found that place fields putatively forming via BTSP were

generally less precise than the remaining fields (Figure S5).

Although many neurons may first reach threshold via BTSP, it

seems likely that this initial tuning is refined through secondary

mechanisms, such as conventional Hebbian rules and local

competitive interactions with other pyramidal neurons mediated

through lateral inhibition (Mehta et al., 2000; Cohen et al., 2017;

McKenzie et al., 2021; Robinson et al., 2020). Considering that

many of the non-BTSP fields are pre-existing place fields learned

during previous experience, this could explain why BTSP fields

were consistently wider, having not yet undergone further

refinement. This is also compatible with the theory that the

hippocampus is actively learning a compressed, decorrelated

representation of the environment (Gluck and Myers, 1993;

McClelland et al., 1995; Schapiro et al., 2017; Benna and Fusi,

2021), as narrower place fields will decrease the correlations be-

tween nearby, similar locations. In line with this argument, we

also found that the accumulation of place fields was history

dependent (Figure 7). New fields tended to appear at locations

farther away from those forming on the previous trial, suggesting

that local CA1 networks may facilitate competitive interactions

between pyramidal neurons (Rolotti et al., 2022) in order to

disperse the representation and minimize the neural correlation

between nearby locations.

Earlier studies reported that many CA1 place fields undergo a

transient period of backward, asymmetric expansion during

initial traversals of an environment (Mehta et al., 1997), an effect

that encoded the direction of travel and could be modeled by

plasticity at feedforward CA3-to-CA1 synapses (Mehta et al.,

2000). In our experiments, animals were constrained to run in a

single direction through the track, and hence, it is possible that

some component of field width and drift is due to these effects

as well, especially residual drift on the trials immediately after

place field formation (Figure S3). However, this mechanism

cannot explain our main field shift effect, as the finding in Mehta

et al. (1997) is produced by an increasing negative skew in the

place field that translates into a low firing rate tail along the region

of the track leading into the place field, although the location of

peak firing is mostly unchanged (Mehta et al., 2000). Due to

the sensitivity of fluorescence calcium indicators, we cannot reli-

ably detect very low firing rate activity, and hence, our ability to

resolve this asymmetric expansion is likely limited. Further, the

shift observed in the study of Mehta et al. (1997) is small (only

�2.5 cm even in a novel context) and occurs gradually over

many trials, whereas our effect is abrupt and much larger

(�15 cm for BTSP-like cells on average). However, this discus-

sion highlights a general caveat to the use of calcium indicators,

in that we underappreciate more subtle fluctuations in activity or

the dynamics of low firing rate neurons, due to our bias toward

detecting higher amplitude, burst-driven activity. Given that

low firing rate neurons have been linked to novelty-related plas-

ticity in CA1 (Grosmark and Buzsáki, 2016), it will be critical to

examine these changes as well using this longitudinal approach,

which may be facilitated by the development of next-generation

calcium and voltage imaging tools (Villette et al., 2019; Adam

et al., 2019).
Neuron 110, 1978–1992, June 15, 2022 1989
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In a similar vein, there is a large body of research that high-

lights the role of theta oscillations and sequential spike se-

quences for orchestrating synaptic plasticity in the hippocampus

(Buzsáki and Moser, 2013; Dragoi and Buzsáki, 2006), which

could contribute to backward expansion of spatial tuning via

Hebbian learning (Mehta et al., 2000). Notably, theta sequences

are organized within the first few trials in a novel environment

(Feng et al., 2015). Theta also appears to exert control over the

probability of dendritic plateau potentials (Bittner et al., 2015).

Future work will be required to study the interplay between these

mechanisms during theta states and their differential contribu-

tion to plasticity across contexts, but it is unlikely that they oper-

ate inmutually exclusive regimes. In amore recent study of place

field plasticity, Dong et al. (2021) reported pervasive and

continual backward drift of CA1 place fields in VR that they

suggested could arise from STDP (although they reported for-

ward-shifting in CA1 during initial trials). However, the shifts in

field locations in our data were overwhelmingly limited to the first

few trials following place field formation (Figures 3, 4, and S4),

which agrees with prior work in freely moving animals where in-

dividual place fields do not continuously drift (Frank et al., 2004;

Mehta et al., 2000).

Although here we focused on overall environmental novelty,

the hippocampal place code is also heavily influenced by the

density and salience of environmental cues (Manns and Eichen-

baum, 2009; Bourboulou et al., 2019) and the presence of rein-

forcement (Hollup et al., 2001; Zaremba et al., 2017; Dupret

et al., 2010), representations of which may actively shape

behavior (Robinson et al., 2020). We searched for evidence of

differential concentration of BTSP-like field formation along the

virtual track but found that the distribution was mainly uniform

over space after regressing out the component correlated with

velocity (Figure 6). In our experiment, the location of reward is

highly confounded with the velocity profile of the animal, and

hence, we cannot determine concretely which is the causal fac-

tor for the variability in field distributions. Since the field shift

associated with BTSP is most apparent at higher running speeds

and this is a critical component of our field classification method,

it is impossible for us to distinguish a reduction in BTSP events

from a failure to detect them at the lower running speeds typically

seen near the reward zones, and hence, our work does not

preclude a connection between burst-dependent plasticity

mechanisms and reinforcement (Grienberger and Magee,

2021; Milstein et al., 2021).

Our results are congruent with burst-dependent plasticity as

an important contributor to representation learning in hippocam-

pal area CA1. It remains unclear whether BTSP is also present in

pyramidal neurons in other hippocampal or neocortical networks

and what functional consequences this would have, given the

differing circuit architecture (Van Strien et al., 2009). In CA1, py-

ramidal neurons receive a convergence of inputs from intrahip-

pocampal recurrent networks in CA3, which are believed to store

memories through attractor dynamics (Rolls, 2007), and from the

superficial entorhinal cortex, which can directly relay sensory in-

formation about ongoing experience. Novelty detection may be

central to the function of CA1 within the broader hippocampal

circuit (McClelland et al., 1995; Lisman and Otmakhova, 2001).

We suggest that the regulation of burst-dependent plasticity in
1990 Neuron 110, 1978–1992, June 15, 2022
CA1 may selectively permit the integration of novel information

into the hippocampus, instigating a cascade of plasticity

throughout the hippocampal-cortical loop that could optimize in-

ternal representations to adapt to large changes in the statistics

of ongoing experience.
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact Attila Losonczy (al2856@

columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data generated in this study are available from the lead contact upon reasonable request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information is available from the lead contact upon reasonable request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were conducted in accordance with the NIH guidelines and with the approval of the Columbia University Institutional

Animal Care and Use Committee. Experiments were performed with adult (8-16 weeks) male C57Bl/6 mice (Jackson Laboratory).

METHOD DETAILS

Behavior and imaging
Viruses

Pyramidal cell imaging experiments were performed by injecting a recombinant adeno-associated virus (rAAV) encoding GCaMP6f

(rAAV1-Syn-GCaMP6f-WPRE-SV40, Addgene/Penn Vector Core) into male wild-type mice.

Surgical procedure

Methods for viral delivery and surgical implant of imaging window and headposts were largely identical to previous work (Lovett-Bar-

ron et al., 2014). Briefly, mice were anesthetized under isofluorane and the virus was injected in dorsal CA1 (-2 mm AP; -1.5 ML, -1.2

DV relative to bregma; 500 nL) using a Nanoject syringe. Mice recovered in their home cage for 3 days following viral infusions. We

then aspirated the cortex overlying the left dorsal hippocampus and implanted a 3 mm glass-bottomed stainless steel cannula for

imaging access, and cemented a titanium headpost to the skull for head- fixation. For all surgeries, monitoring and analgesia

(buprenorphine or meloxicam as needed) was continued for 3 days postoperatively.

Behavioral apparatus and virtual reality system

Micewere head-fixed above a low-friction, lightweight running wheel (Warren et al., 2021). The axle of the running wheel was coupled

to a rotary encoder, which connected to a circuit that decoded and buffered the quadrature data from the encoder and transmitted

these position updates to an Intel NUC i5 mini-PC that was used to control the behavior system. As described previously (Kaufman
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et al., 2020), the experiments were managed through custom software on the PC that would send and receive instructions from a

custom GPIO circuit on the behavior apparatus, which managed the water delivery system, lick port sensor and synchronization

with the imaging system, as well as from the position tracking circuit and from the virtual reality system. All system elements were

connected using high-speed Ethernet and communicated via UDP message passing.

The running wheel was surrounded by 5 LCD computer monitors (Acer SB230 23’’ IPS screens) arranged in a half-octagon,

covering approximately 220� of the visual field of the mouse. Each monitor was connected to an individual ODROID-C2 single board

computer running the Android operating system (version 6.0.1) which rendered a fraction of the VR scene on each display. Each

ODROID received continuous instructions over Ethernet from the behavior control computer to update the VR environment as the

position of the animal advanced. Virtual reality scenes were designed using the Unity game engine.

Behavior training

Starting 7 days after implant surgery, mice were habituated to handling and head fixation as previously described (Lovett-Barron

et al., 2014). After two days of acclimation and free running on the wheel, we began exposing the animal to the 3 m virtual environ-

ment. The environment used during this training period would later become the ‘‘Familiar’’ context for themain experiment. When the

mice reached the end of the virtual track, the screens were momentarily blanked for a 2 sec inter-trial interval, after which they were

instantly teleported back to the beginning of the track.

At this point, mice were water deprived to 85-90% of their starting weight. Over a period of 1-2 weeks, we trained mice to run for-

ward through the virtual environment and lick for small volume sucrose solution rewards (5% sucrose, � 4mm per reward). Rewards

were initially dispersed randomly throughout the environment to encourage running, and we slowly reduced the reward count to two

fixed reward zones (located at� 1.2 and 2.7m on the track) over the training period.We used two reward zones as this tended to lead

to faster training and more reliable running behavior during the recordings (i.e. animals would rarely pause/slow down outside of the

reward zones). Mice reached training criteria when they could consistently run > 130 trials using the two fixed reward zones in under

an hour. Mice were given additional water as needed daily to maintain weights.

Familiar-novel context switching paradigm

For context-switch experiments, mice ran through alternating blocks of trials in the Familiar (training) context and a Novel context that

was previously unseen prior to the start of the imaging experiments. Each recording session was organized into 4 blocks: 40 trials in

Familiar, 30 trials in Novel, 30 trials in Familiar, and 30 trials in Novel. We additionally repeated this experiment with the same contexts

across two additional days, and so a complete experiment sequence represented 3 days of recording. In all trials and contexts, the

distance to the sucrose rewards remained fixed at 1.2 and 2.7 m. For each mouse, we also repeated the entire experiment sequence

with a second Novel context (the familiar context remained the same for both sequences).

2-photon microscopy

Mice were habituated to the imaging apparatus (e.g. microscope/objective, laser, sounds of resonant scanner and shutters)

during the training period. All imaging was conducted using a 2-photon 8 kHz resonant scanner (Bruker) and 16x NIR water

immersion objective (Nikon, 0.8 NA, 3 mm working distance). For excitation, we used a 920 nm laser (50-100 mW at objective

back aperture, Coherent). Green (GcaMP6f) fluorescence was collected through an emission cube filter set (HQ525/70 m-2p) to

a GaAsP photomultiplier tube detector (Hamamatsu, 7422P-40). A custom dual stage preamp (1.4 3 105 dB, Bruker) was used

to amplify signals prior to digitization. All experiments were performed at 1.2-2x digital zoom, acquired as 5123512 pixels

images at 10 Hz.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image preprocessing
Imaging datawas organized using the SIMA software package (Kaifosh et al., 2014). Datawasmotion corrected in Suite2p (Pachitariu

et al., 2017) using the non-rigid registration mode. ROIs were also detected using Suite2p (using ‘‘sparse mode’’), followed by Sui-

te2p’s standard fluorescence extraction and neuropil correction. Identified ROIs were curated post-hoc using Suite2p’s graphical

interface to exclude non-somatic components.

Neural data analysis
Event detection

All fluorescence traces were deconvolved to detect putative spike events, using the OASIS implementation of the fast non-negative

deconvolution algorithm (Friedrich et al., 2017). As in Ahmed et al. (2020), we discarded any events whose amplitude was below

4 median absolute deviations of the raw trace, and binarized the resulting signal for all subsequent analysis to indicate whether

the neuron was active in a given frame. We note that we do not claim to uncover true underlying spike times, but rather use decon-

volution as a tool for denoising and reducing the impact of the calcium autocorrelation on our analysis.

Calculating spatial tuning curves

Spatial tuning curves were calculating for each neuron on each trial. The virtual track was discretized into 100 evenly spaced bins

(3 cm), which were used to compute a histogram of neural events. After normalizing for animal occupancy, the histogram was

convolved with a Gaussian kernel (s = 9 cm) to obtain a smooth activity rate estimate.
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Spatial decoding

In order to assess position coding and context discrimination, we trained a decoder to predict the spatial location of the animal from

neuronal population activity, using an ensemble of support vector machines (SVM, ‘‘one-vs-one’’ multi-class decoding [Ahmed et al.,

2020]). For each day in Figure 1E, we trained the decoder on each context block separately and then tested the decoder on all re-

maining context blocks to generate the error matrices. Performance was quantified as the absolute error in predicted position. In

Figure 1G, we tested decoding accuracy trial-by-trial for the first 10 trials in each context block, training the decoder on the remaining

trials in the block. For each context switch on each day, we compared trial-by-trial performance between the Familiar and Novel

context (Figures 1H and S1D).

Population cross-correlation analysis

We used a cross-correlation approach to identify spatial drift in neural tuning across trials at the level of the neural population. For

each pair of trials a and b in a context block, we can compute their population vector correlation by concatenating the spatial tuning

curves of all neurons in the population. Similarly, we obtained the spatial cross-correlation between the two trials across a range of

spatial lags by first shifting each neuron’s spatial tuning in trial b and then recomputing the population vector correlation with a. Here a

peak in the spatial cross-correlation at a positive lag indicates that the activity of a is ahead of b in space (since b must be shifted

forward to maximize the correlation), and conversely, a peak at a negative lag indicates that activity in a is generally at locations

behind b. We summarized the directionality and distance of the shift between trial pairs by the center-of-mass (COM) of the spatial

cross-correlation curve.

The pattern of spatial drift across trials can be visualized by plotting the spatial shifts for all pairs of trials as a matrix. The matrix is

necessarily antisymmetric (since the cross-correlation between a and b is the mirror image of that between b and a). Different neural

dynamics predict qualitatively different shift matrices: a population of continually drifting place cells would exhibit a diagonally-

banded shift matrix (since shift is then a monotonic function of the time between trials), while a more transient population shift (for

example, during a period with many place fields forming via BTSP) would appear as vertical/horizontal bands at the affected trials

(see Figure S3 for simulations).

The shifting tendency of each individual trial relative to the whole trial block can be determined by averaging the rows (or columns)

of the symmetrized shift matrix (i.e. by multiplying the matrix lower triangle by � 1). Symmetrizing is necessary so that all shift com-

parisons for a given trial consistently indicate the direction of movement. For example, if the neural population is consistently shifting

backward, trials before trial n will be ahead and trials after will be behind. Averaging the nth row of the symmetrized matrix is equiv-

alent to averaging all trial comparisons in the matrix upper triangle that include trial n. By our convention, a positive average shift for

trial n indicates it is part of a generally backward trend, while a negative average shift indicates a forward trend, relative to the sur-

rounding trials in the block. Occasionally activity on some trials correlated poorly with the rest of the block (possibly due to lapses in

attention or behavior), and so we excluded any trial pairs where the peak of the spatial cross-correlation was less than 0.1.

This method is used to calculate the average shifts in Figures 2C and S2, where we additionally omitted any trials in an experiment

where > 1=3 rd of trial pair comparisons were missing due to this exclusion criteria.

Simulations of place field accumulation

We validated the population cross-correlation on simulated datasets of accumulating place fields, where a sub-fraction of fields ex-

hibited BTSP-like characteristics (first-trial shift and gain), or that exhibited linear drifting over trials. Each simulated population

comprised 300 neurons, where each neuron had a 0.2 probability of acquiring a place field. Fields accumulated over 30 trials

according to a geometric process with mean 6, which is approximately the observed average first trial for place fields during the first

exposure to the novel context during Day 1 of the experiment. Place field centers were sampled uniformly over the environment, and

activity was modeled on each trial as a Gaussian bump (s = 5 bins) at the sampled location.

For simulations of BTSP, we fixed a probability of BTSP for place fields in each simulation. If a field was drawn as BTSP, we shifted

its first trial activity by a random distance sampled uniformly between 0 and 0.25 of the environment length and scaled its first trial

activity by a random gain sampled uniformly between 1 and 3. We then considered the analysis results for different BTSP

probabilities.

For simulation of continuously drifting place fields, we fixed a probability of drifting for place fields in each simulation. If a field was

drawn as drifting, we sampled a slope (distance-by-trial) for the drift uniformly from 0 to 3 cm/trial, and shifted each trial’s activity

according to that drift function. We then considered the analysis results for different drifting probabilities.

For all neurons, we additionally added out-of-field noise to individual trials with a probability of 0.2. This was simulated as additional

Gaussian bumps added to that trial’s activity, centered at a random location in the environment. We additionally applied random

scaling noise to each trial, with each trial’s gain drawn � Nð1;0:05Þ.
Place field detection

Wedetected place fields separately in each context trial block (4 per session). Our detection schemeworks by finding locations in the

virtual environment where a neuron was more active than expected by chance, given its average firing rate and the animal’s spatial

occupancy. We constructed a null distribution of spatial tuning curves for every neuron, by circularly shifting each trial’s activity inde-

pendently by a random distance, and recomputing the smoothed, trial-averaged tuning curve as described previously. This proced-

ure was repeated 1000 times, andwe determined the 95th percentile of null tuning values at every spatial bin (i.e. the threshold for p<

0:05 spatial tuning). Segments of space where the true spatial tuning curve exceeded this null threshold were marked as candidate

place fields, and the place field width was calculated as the distance between where the true tuning curve first exceeded and then
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again fell below the threshold curve. To restrict our analysis to neurons with unambiguous firing fields, we additionally required that

place fields have a width < 1 m (i.e. ð1 =3Þ of the track), and that the neuron is active within the bounds of the place field on at least 15

trials.

Ensemble overlap

For each day, we considered a binary vector for each context block with elements 1:::N where N is the number of neurons recorded

that day. The ith element was equal to 1 if that neuron had a significant place field at any location during that context block, and

0 otherwise. We calculated the ensemble overlap between each pair of context blocks on each day as the Jaccard similarity between

these vectors. Since the raw overlap can be influenced by differences in the number of place cells identified in each block, we

z-scored the overlap according to a shuffle distribution whose samples were drawn by randomly permuting each context block’s

place cell vector independently. This procedure was repeated 10000 times to produce the distributions in Figures S1E and S1F.

Spatial tuning score

We computed a pseudo-probability mass function pðxiÞ for each spatial tuning curve, where x1; x2;.xn are the discrete position bins,

by normalizing the tuning curve so that it sums to 1 over positions. We then compute the un-normalized tuning score bs as the KL-

divergence between p and the uniform distribution u:

bs = DKLðpkuÞ = log2n+
Xn

i = 1

pðxiÞlog2pðxiÞ

Intuitively, uniform activity over space will give the minimum score s = 0, while having all activity concentrated in a single position

bin will yield themaximum score of s = log2ðnÞ. Inhomogenous spatial tuning can also arise simply from very sparse, noisy activity, a

regime in which using raw information-theoretic metrics can give misleading results (Souza et al., 2018). To control for the effects of

firing rate and sampling, we used a normalized tuning score s by standardizing bs relative to a null distribution, formed by calculating

the tuning score on all null tuning curves (generated as described in the place field detection procedure):

s =
bs � mðbsnullÞ

sðbsnullÞ
Detecting the trial of place field formation

For our analysis of place field characteristics, it was necessary to determine the first trial that a neuron fired within its place field(s) in a

given trial block. Following Sheffield et al. (2017), we identified for each place field the first window of 5 trials where the neuron was

active within the place field boundaries on at least 3 of those trials, and called the first active trial within that window the place field

formation trial. A trial was considered active if there was activity within the place field boundary on that trial with amplitude of at least

5% of the neuron’s peak activity level across all trials. Our results however did not strongly depend on the particular choice of

thresholds.

Formation trial activity displacement

We estimated the spatial shift between activity on the trial of place field formation and activity on the remaining trials within the place

field. This was computed as the difference between the location of peak firing on the first trial, and the location of peak firing in the

average tuning of all subsequent trials (as in the population shift analysis, a positive shift indicates the formation trial’s activity was at

positions ahead of the later trial’s activity).

Formation trial gain

Evidence for elevated activity or burst-firing during the formation trial was assessed by computing the formation trial gain, defined as

the peak activity rate on the formation trial within the place field divided by the peak activity rate in the averaging tuning of all

subsequent trials that contained activity within the place field (i.e. excluding any silent trials, so that the gain does not simply reflect

unreliable place fields). A gain > 1 indicates elevated firing during the place field formation trial, relative to later traversals through the

place field.

Perifield formation velocity

For each place field, we computed the average velocity of the animal within the place field boundaries during the place field forma-

tion trial.

Velocity-field width correlation

For each trial block on each day, we fit a linear model to predict the width of place fields from the perifield formation velocity. We

compared the slope of the linear fits between Familiar and Novel contexts by calculating aD slope (Novel� Familiar) for each context

switch. We calculated the probability that thisDwould be observed under random permutations of the context labels for place fields,

recomputing D slope for 10000 shuffles in each condition. A p-val was obtained from the cumulative density of the Gaussian fit to the

resulting null distribution. We reported the significance relative to the null distribution as the negative log10 (p-val). In Figures 3F and

3G, we pooled place fields across all experiments from a given day and trial block.

Network model of BTSP-mediated place field formation

Our characterizations of BTSP at the level of the population and single neurons are largely premised on the shift in activity from the

first trial on which a place field appears relative to the remaining trials, which occurs due to the temporal asymmetry of the BTSP

plasticity rule (Bittner et al., 2017; Zhao et al., 2020, 2022; Rolotti et al., 2022). We used a simple model of BTSP-mediated place field
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formation to explore how detectable this shift could be under different recording conditions, since our recordings are relatively slow

(10 Hz) and indirect (somatic calcium vs spiking).

We simulated a CA1 neuron as a linear-nonlinear-Poisson cascademodel (LNP) (Gerstner et al., 2014). The input to the neuron was

the firing rate vector rðxÞCA3 of 300 CA3 place cells, with elements:

riðxðtÞÞCA3 = A � exp
"
� 1

2

�
xðtÞ � ci

s

�2
#

where the maximum firing rate A = 30 Hz, Gaussian place field width s = 10 cm, xðtÞ˛ ½0;3�m is the position of the animal at time t,

and ci is the place field center for the ith input neuron, whichwere distributed evenly across the environment. The total input current to

the CA1 neuron at time t was given by the scalar product:

hðtÞ = rðxðtÞÞCA3,w
where w is the vector of synaptic weights. This was used to calculate the instantaneous firing rate of the CA1 neuron:

rðtÞCA1 = exp½k �hðtÞ�
where k is a scale factor that enforced a maximum instantaneous firing rate of 30 Hz, computed post hoc from the maximum current

throughout the simulation. For simplicity, we assumed a constant velocity within each simulation. For each velocity we considered,

we simulated the instantaneous CA1 firing rate across 16 trials (1 preplasticity, 15 post-plasticity) in time steps of 1 msec (incorpo-

rating a 2 sec inter-trial interval between trials as in the experiment, during which the CA3 inputs were silent). We then used this firing

rate trace to simulate 200 unique ground-truth spike trains assuming Poisson spiking.

Spike trains were converted to fluorescence by convolution with an idealized calcium kernel (tD = 0:7 sec, tR = 0:07 sec) (Pachi-

tariu et al., 2018). Traces were then scaled to unit variance, sub-sampled to the same sampling rate as our experimental data (10 Hz),

and corrupted with different levels of additive Gaussian noiseNð0;s2Þ. We considered the signal-to-noise ratio as SNR = s� 1, and

calculated noisy fluorescence traces at SNR˛ f0:5; 1; 2;4;8;16g for each spike train. Finally, we passed these traces through the

spike deconvolution workflow used in the main paper. We analyzed and compared the simulation results on both the noisy calcium

and resulting inferred spikes.

For modeling BTSP, we fixed a plateau onset location at bx = 200 cm for all simulations. For all post-plasticity trials, we set the syn-

aptic weights fromCA3 place cells according to an asymmetric, double-exponential plasticity kernel as parameterized in Bittner et al.

(2017). For inputs active at time t:

wðbt � tÞfQðbt � tÞ � exp½ðt � btÞ � 0:69�+Qðt � btÞ � exp½ðbt � tÞ � 1:31�
whereQ is the Heaviside step function and bt is the plateau onset time. Since velocity is constant, we approximate the post-plasticity

weight vector by evaluating this equation at each CA3 place field center ci as wðbx � ci =vÞ where v is the simulation velocity (Fig-

ure S4A). The weight vector was z-scored to equalize the weight distribution across different simulation parameters. These updated

weights were then used to drive CA1 output on all post-plasticity trials (1-15). On trial 0 prior to learning, CA3 weights were homo-

geneously depressed. Spiking activity on trial 0 was instead driven by a 0.5 sec step function when the animal reached the plateau

onset location, to simulate plateau-mediated burst spiking.

In Figure S4, we surveyed the measured shift in activity from the plateau trial to the average of subsequent trials, calculated as the

center of mass of the neural tuning curve on each trial. This wasmeasured for the noisy fluorescence trace and inferred spike for each

choice of SNR, for each of n = 200 unique spike trains, for each choice of velocity v˛ f10;15; 20:::60g. We then compared these

shifts to the shift measured in the ground-truth spike train.

Non-negative matrix factorization

Weaimed to identify subsets of place fields in the dataset that exhibited different kinds of trial-to-trial dynamics (e.g. BTSP-like shift in

the formation trial activity, drifting responses, or amplitude modulation over trials). To this end, we first aligned all place field tuning

profiles by extracting a 150 cm (50 bins) window of activity from each trial around the place field center, and concatenating these

windows for the first 10 trials from the formation trial of the place field (e.g. Figure 4A). This yielded a 500 element vector x for every

place field, which we stacked into a matrix X so that each row was the spatiotemporal profile (trial3 position) of a single place field.

Our goal then was to cluster the rows ofX in order to identify groups of place fields with similar trial-to-trial dynamics, but clustering

samples directly in high-dimensional spaces is generally a poor strategy. Instead, we first reduced the dimensionality of X using non-

negative matrix factorization:

W;H = argmin
W;H

kX � WHk2Fro

WhereW and H are rank nmatrices, for some n � 500. H is an n3500 matrix, where each of the n rows is a spatiotemporal pattern.

NMF models each row (place field) in X as a weighted sum of the these n patterns, given byW. As with any dimensionality reduction

method, since n is much less than the number of place fields in the dataset, the model is forced to identify spatiotemporal patterns in

H that are shared between many place fields. The strict non-negativity of H and W in NMF however can often give particularly
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interpretable decompositions, due to its parts-based reconstruction of X (i.e., since all elements in the weighted sum for each place

field are non-negative, the different patterns in H cannot ‘‘cancel out’’). Each row of Xwas mean-normalized prior to decomposition,

so the optimization was not dominated by inhomogenous activity scales across neurons or experiments.

We inspected NMF decompositions of the data for a range of n, and found that n = 11 corresponded to a prominent ‘‘elbow’’ be-

tween two linear regimes in the loss function (i.e. the rate of improvement slows when adding any additional components > 11, Fig-

ure 4C). Additionally, n = 11 consistently gave the most interpretable spatiotemporal patterns in H (Figures 4D and S5). In particular,

this model produced components that separately represented the place field on each of the 10 trials, plus an additional forward-

shifted component on the first trial, reminiscent of plateau-driven place field formation. The weights of the two first-trial components

among place fields were strongly anti-correlated (Figure S5).

Clustering place fields in NMF space

We used K-means clustering with K = 2 to partition place fields into ‘‘BTSP-like’’ and ‘‘other’’ groups, using the 11 NMF patterns as

the feature space for clustering. We found that 2 clusters were sufficient to reliably segregate place fields with BTSP-like character-

istics. In particular, we found that increasing the number of clusters had negligible effects on the BTSP-like cluster; additional clusters

formed largely through additional subdivisions of the ‘‘other’’ group (Figure S5).

BTSP fraction

We computed the fraction of place fields in each experimental condition (day, trial block) that were assigned to the BTSP-like group.

In Figure 5E, we computed this per experimental session. In Figures 5F and 5G, this was computed by mouse (pooling eachmouse’s

data from the two repetitions of the experiment.

Decoding

We validated the NMF-clustering analysis by attempting to decode the BTSP/Other labels of place fields based on secondary char-

acteristics of their activity profiles. We computed 4 features for every place field in the dataset: the shift in its tuning from the first trial

to remaining trials, the width of the place field, the stability of its place field (correlation between even and odd trials), and its first trial

activity gain. We then trained a support vector machine with a linear kernel to classify place fields as BTSP or Other in this

4-dimensional feature space (Figure S5). We reported an averaged cross-validated decoding accuracy for eachmouse, by randomly

partitioning the data into 10 50/50% training/test splits, stratified by BTSP label. Samples were weighted during training to be

inversely proportional to label frequency to account for the greater number of Other cells. We additionally compared the cross-vali-

dated results to a null distribution constructed by rerunning the cross-validated decoding analysis on copies of the dataset where the

BTSP classifications of place fields were randomly permuted. This procedure was repeated 1000 times, and significance thresholds

were computed from a 95% interval on the resulting distribution of null accuracies.

Modeling the effects of velocity on place field density

We fit a linear model to predict place field density at each position as a function of the animal’s spatial velocity profile. The predictors

in the model were exponentially filtered versions of the spatial velocity profile (t˛ f0:01; 0:025; 0:05; 0:1; 0:25g spatial bins), to ac-

count for any short-term history effects, e.g. those induced by the calcium autocorrelation. The velocity filters plotted in Figure 6C

are obtained by a weighted sum of the exponential kernels, with the weights given by the regression coefficients.

Next-trial field distance

To test for history dependence in the locations of accumulated place fields, we computed for every place field n its average distance

to place fields that formed on trial t + 1, where t is the formation trial for field n. These distances were computed only between fields of

the same BTSP classification. We then standardized this distance according to a null distribution, obtained by randomly permuting

the trial of place field formation between all fields of a given BTSP classification within each trial block. In this way, we disrupt the

correlations between adjacent trials while maintaining the marginal distributions of place fields over positions and trials. This proced-

ure was repeated 200 times for each place field. The resulting s measures the next-trial field distance relative to the distance ex-

pected simply from random sampling according to the marginal distributions.
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