
A Simple Algorithm for Computing the Zone of a Line in an Arrangement of
Lines∗

Haitao Wang†

Abstract

Let L be a set of n lines in the plane. The zone Z(`) of a line ` in the arrangement A(L) of L is the set of
faces of A(L) whose closure intersects `. It is known that the combinatorial size of Z(`) is O(n). Given L and
`, computing Z(`) is a fundamental problem. Linear-time algorithms exist for computing Z(`) if A(L) has
already been built, but building A(L) takes O(n2) time. On the other hand, O(n logn)-time algorithms are
also known for computing Z(`) without relying on A(L), but these algorithms are relatively complicated. In
this paper, we present a simple algorithm that can compute Z(`) in O(n logn) time. More specifically, once
the sorted list of the intersections between ` and the lines of L is known, the algorithm runs in O(n) time. A
big advantage of our algorithm, which mainly involves a Graham’s scan style procedure, is its simplicity.

1 Introduction.

Given a set L of n lines in the plane, let A(L) denote the arrangement of the lines of L, i.e., the subdivision of
the plane induced by L. For a line `, the zone of ` in the arrangement A(L) is the set of faces of A(L) whose
closure intersects ` (see Fig. 1); we use Z(`) to denote the zone of `. Given L and `, we consider the problem of
constructing Z(`).

It has been proved that the combinatorial size of the zone Z(`) is bounded by O(n) [5–7, 10, 12, 13]. The
problem of computing Z(`) is a fundamental problem in computational geometry. If the arrangement A(L)
has already been explicitly constructed, then Z(`) can be computed in O(n) time [6, 12]. Indeed, this leads
to an incremental algorithm for constructing the arrangement A(L) in O(n2) time [6, 12]. Without having the
arrangement A(L), computing Z(`) can be done in O(n log n) time. For example, Alevizos, Boissonnat, and
Preparata [4] proved that the size of any cell in an arrangement of a set of n rays in the plane is O(n) and gave an
O(n log n) time algorithm to construct any cell. Their algorithm can be used to compute Z(`) in O(n log n) time.
Indeed, we can cut each line of L into two rays at its intersection with `. Then, for each side of `, we compute
the cell containing ` in the arrangement of the rays on that side of `. The zone Z(`) can be obtained from the
two cells computed above.

In this paper, we present a new algorithm for computing the zone Z(`) in O(n log n) time. More specifically,
once the sorted list of all intersections between ` and the lines of L is known, the algorithm runs in O(n) time. In
contrast, even if the above sorted list is known, applying the algorithm of [4] to compute Z(`) still takes O(n log n)
time because the algorithm involves sweeping line procedures that are modifications of the classical algorithm for
computing the intersections of line segments. A big advantage of our algorithm is that it is quite simple. Indeed,
a main process of our algorithm is a Graham’s scan style procedure, which is a textbook level algorithm. As
computing Z(`) is a fundamental problem and many algorithms use it as a subroutine (e.g., [1, 2, 9]), it is worth
pursuing a simple algorithm.

Many other problems in arrangements of lines or other curves are also fundamental and have been extensively
studied. We refer the reader to [3, 7, 14,15] for some excellent books and surveys.

2 The algorithm.

Without loss of generality, we assume that ` is the x-axis. To simplify the discussion, we make a general position
assumption that no line of L is horizontal and no two lines of L have an intersection on `. We will discuss at
the end of this section that degenerate cases can be easily handled, although standard techniques [8,11] could be
applied too.

∗This research was supported in part by NSF under Grant CCF-2005323.
†Department of Computer Science, Utah State University, Logan, UT 84322, USA. Email: haitao.wang@usu.edu

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited79

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

Figure 1: The shaded region is the zone Z(`).

`p1

p2 p3

p4C3

l1
l2

l3

l4

Figure 2: Illustrating the points pi and a cell C3.

A curve γ in the plane is y-monotone if any horizontal line either does not intersect γ or it intersects γ at a
single point. We say that a y-monotone convex curve γ is rightward (resp. leftward) if γ always makes right turns
from its lower endpoint to its upper endpoint.

Due to the general position assumption, every line of L intersects ` at a point. We start by computing the
intersections between ` and all lines of L, and then sort them. This takes O(n log n) time. The rest of the
algorithm runs in O(n) time. Let Z+(`) denote the portion of the zone Z(`) above ` and Z−(`) the portion of
Z(`) below `. In the following, we describe an algorithm to compute Z+(`) in O(n) time; Z−(`) can be computed
in O(n) time analogously.

Let l1, l2, . . . , ln be the sorted list of the lines of L from left to right by their intersections with `. Due to our
general position assumption, this order is unique. For each 1 ≤ i ≤ n, define pi as the intersection of li and ` (see
Fig. 2). The point pi divides li into two half-lines, and we use l+i to refer to the one above `. Hence, pi is the
lower endpoint of l+i ; for reference purpose, we also assume that l+i has an upper endpoint at infinity and use p′i
to denote it. For convenience, let p0 represent the left endpoint of ` at −∞ and pn+1 the right endpoint of ` at
∞.

It is easy to see that for each 0 ≤ i ≤ n, the segment pipi+1 is contained in a single cell of A(L), denoted by
Ci, which is also a cell in Z(`) (see Fig. 2). Denote by C+

i the portion of Ci above `. Observe that Z+(`) is the
disjoint union of cells C+

i for all i = 0, 1, . . . , n. Hence, it suffices to compute the cells C+
i for all i = 0, 1, . . . , n.

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 3: The forward forest F is colored red.

Forward and backward forests. With respect to the index order 1, 2, . . . , n, we define a forward forest F
as follows (see Fig. 3). Let F1 = `. For each 2 ≤ i ≤ n, Fi is obtained from Fi−1 by adding to Fi−1 the segment
of l+i from pi to its first intersection with Fi−1 (if li does not intersect Fi−1, then the entire l+i is included in Fi).
Let F = Fn. It is not difficult to see that F has at most 2n − 1 edges because Fi has at most two more edges

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited80

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 4: The backward forest F ′ is colored blue.

than Fi−1. We can view F as a forest in which the leaves are the points pi for all 1 ≤ i ≤ n and the roots are
upper endpoints of some half-lines l+i (e.g., in Fig. 3, F consists of only one tree, whose root is the upper endpoint
of l+1). That is why we call F a forest. Notice that if we move from a point pi along F until the root of the
tree containing pi, we always turn rightward, i.e., the path from pi to the root is a y-monotone rightward convex
chain.

Similarly, we define a backward forest F ′ with respect to the inverse index order n, n − 1, . . . , 1 (see Fig. 4,
where F ′ consists of two trees with roots at the upper endpoints of l+8 and l+6 , respectively). The path from each
leaf pi to its root in F ′ is a y-monotone leftward convex chain

We remark that the forward/backward forest is very similar to the leftist/rightist skeleton in [4] as well as
the upper/lower horizon tree in [8]. Note that it might also be possible to use the topologically sweeping method
of [8] to construct Z+(`). However, the algorithm needs to dynamically update the upper/lower horizon trees
after processing each event. In contrast, as will be seen later, our algorithm does not need to update the forests,
which is not only simpler but also simple.

Forest decomposition and a Graham’s scan style algorithm. We will use both forests F and F ′ to
construct the cells C+

i for all 1 ≤ i ≤ n. To this end, we describe a Graham’s scan style algorithm to compute
F (the other forest F ′ can be computed analogously). As will be seen, the algorithm also naturally decomposes
F into n y-monotone rightward convex chains α1, α2, . . . , αn, such that F is the edge-disjoint union of all these
chains (i.e., each edge of F belongs to one and only one chain; see Fig. 5). For each i, the lower endpoint of αi

is pi, and αi is a sub-path of the path from pi to the root of the tree containing pi. Specifically, αn is the path
from pn to its root in F . For each 1 ≤ i ≤ n− 1, αi is the sub-path from pi to its tree root until the first vertex
in the union of the chains αi+1, αi+2, . . . , αn.

Our algorithm will maintain a y-monotone rightward convex chain, denoted by α. Initially, we set α = l+1 .
We process l+i iteratively following the order i = 2, 3, . . . , n. For i = 2, we first check whether l+2 intersects α. If

yes (let q be the intersection of l+2 and α), then α1 is defined as p1q and α is updated to the union of p2q and qp′1
(recall that p′1 denotes the upper endpoint of l+1 at infinity); otherwise, α1 is defined as l+1 and α is updated to
l+2 . In general, right before the i-th iteration (i.e., right before l+i is processed), a y-monotone rightward convex
chain α is maintained and the lower endpoint of α is pi−1 (see Fig. 6). The general algorithm for the i-th iteration
works as follows. By traversing on α from its lower endpoint pi−1, we find the intersection q between α and l+i
(see Fig. 6). If q exists, then αi−1 is defined as the portion of α between pi−1 and q, and α is updated to the union
of piq and α \ αi−1. If q does not exist, then αi−1 = α and α = l+i . In either case, the new α is a y-monotone
rightward convex chain with lower endpoint at pi. We then proceed on the next iteration. The algorithm stops
once l+n is processed, after which F and all chains α1, α2, . . . , αn are obtained.

For the time analysis, observe that each i-th iteration takes time proportional to the number of edges of the
chain αi−1 because we traverse α starting from pi−1. As F is the edge-disjoint union of all chains αi, 1 ≤ i ≤ n,
the total number of edges of all chains is equal to the number of edges of F , which is at most 2n− 1. Hence, the

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited81

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 5: Illustrating the decomposition of F into y-monotone rightward convex chains αi, 1 ≤ i ≤ n: Each chain αi is distinguished
with the same color starting from the point pi. For example, the blue chain starting from p6 is α6, which has three segments.

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

q

Figure 6: Illustrating the chain α (colored green) right before l+7 is processed. After l+7 is processed, α6 becomes the portion of α

between p6 and q, and α is updated to p7q ∪ qp′1, where p′1 is the upper endpoint of l+1 at infinity.

time of the algorithm is O(n).
Analogously, we can decompose the backward forest F ′ into n y-monotone leftward convex chains

β1, β2, . . . , βn, such that F ′ is the edge-disjoint union of all these chains (see Fig. 7). For each i, the lower
endpoint of βi is pi. Specifically, β1 is the path from p1 to its root in F ′. For each 2 ≤ i ≤ n, βi is the sub-path
from pi to its tree root until the first vertex in the union of the chains β1, β2, . . . , βi−1. The forest F ′, along with
the chains βi, 1 ≤ i ≤ n, can be computed in O(n) time by an algorithm similar to the above for F .

Computing the cells C+
i . We are now ready to compute the cells C+

i , 1 ≤ i ≤ n, using the convex chains
of F and F ′ computed above. To this end, the following lemma is critical. Let ∂C+

i denote the boundary of C+
i .

Lemma 2.1. For each 1 ≤ i ≤ n, the boundary ∂C+
i can be identified as follows.

• For 1 ≤ i ≤ n − 1, if αi and βi+1 intersect, say, at a point q, then ∂C+
i consists of the following three

parts: pipi+1, the portion of αi between pi and q, and the portion of βi+1 between pi+1 and q (see Fig. 8);
otherwise, ∂C+

i = pipi+1 ∪ αi ∪ βi+1.

• For i = n, ∂C+
i = pnpn+1 ∪ αn (see Fig. 5).

• For i = 0, ∂C+
i = p0p1 ∪ β1 (see Fig. 7).

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited82

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 7: Illustrating the decomposition of F ′ into y-monotone leftward convex chains βi, 1 ≤ i ≤ n: Each chain βi is distinguished
with the same color starting from the point pi. For example, the blue chain starting from p7 is β7, which has two segments.

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

q

C+
3

Figure 8: The blue chain is α3 and the red chain is β4, and they intersect at q. The grey region is C+
3 , whose boundary consists of

p3p4, the portion of α3 between p3 and q, and the portion of β4 between p4 and q, with q = α3 ∩ β4.

Proof. We only prove the general case 1 ≤ i ≤ n− 1, since the other two special cases can be proved analogously
(and in an easier way).

In the following, unless otherwise stated, all points in question are above `. Also, when we say a point p is to
the right (resp., left) of a half-line l+i , it includes the case p ∈ l+i , i.e., the x-coordinate of p is larger than (resp.,
smaller than) or equal to that of p′, where p′ is the intersection between l+i and the horizontal line through p.

We first have the following observation about C+
i : a point p is in C+

i if and only if p is to the right of l+j for

all j ≤ i and is also to the left of l+j for all j ≥ i+ 1.
Recall that both αi and βi+1 are y-monotone convex chains with their lower endpoints at `. Let Ai refer to

the region of the plane bounded by pipi+1, αi, and the segment of l+i+1 on F (see Fig. 9). Note that if l+i+1 does

not intersect αi, then the upper endpoint of αi is at infinity and the entire l+i+1 is on F , and thus Ai is unbounded.

Since αi is y-monotone, a point p is in Ai if and only if p is to the left of l+i+1 and also to the right of αi (i.e.,
the horizontal line through p intersects αi and p is to the right of the intersection). Further, by the definition of
αi, Ai consists of all points to the left of l+i+1 and to the right of the right envelope of the lines {l+1 , l

+
2 , . . . , l

+
i }.

Therefore, by the property of the right envelope, we obtain that a point p is in Ai if and only if p is to the left of
l+i+1 and to the right of l+j for all j ≤ i. Due to the above observation on C+

i , we obtain that C+
i ⊆ Ai.

Similarly, define Bi+1 as the region of the plane bounded by pipi+1, βi+1, and the segment of l+i on F ′ (see

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited83

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

l+1

l+2

l+3
l+4

l+6
l+5

l+7l+8

p1 p2 p3 p4 p5 p6 p7 p8

Figure 9: Illustrating the regions A3 (green backslash region) and B4 (orange slash region). The gray region, which is A3 ∩ B4, is
C+

3 . The blue chain is α3 and the red chain is β4.

Fig. 9). By an argument similar to the above, we have C+
i ⊆ Bi+1. Therefore, it follows that C+

i = Ai ∩ Bi+1

(see Fig. 9).
Recall that the boundary ∂Ai consists of pipi+1, αi, and the segment of l+i+1 on F . We call αi and the segment

of l+i+1 on F the left and right boundaries of Ai, respectively. Similarly, we call βi+1 and the segment of l+i on

F ′ the right and left boundaries of Bi+1, respectively. For C+
i , recall that it is convex and has pipi+1 as an edge.

We define its left and right boundaries similarly. Specifically, if C+
i is bounded, then the highest vertex of C+

i

partitions ∂C+
i \ pipi+1 into two y-monotone convex chains, and the left one is called the left boundary of C+

i

and the right one is called the right boundary. If C+
i is unbounded, then ∂Ci \ pipi+1 consists of two y-monotone

convex chains going upwards to infinity, and the left one is called the left boundary of C+
i and the right one is

called the right boundary. In either case, the left boundary of C+
i is y-monotone rightward convex and the right

boundary of C+
i is y-monotone leftward convex.

Because C+
i = Ai ∩ Bi+1, and Ai, Bi+1, and C+

i are all bounded by pipi+1 from below, the left boundary
of C+

i belongs to the right envelope of the left boundary of Ai and the left boundary of Bi+1. Recall that if we
move on the left boundary of Ai from pi, then we first move on l+i and then always turn rightwards. On the other
hand, the left boundary of Bi+1 is a segment of l+i with pi as an endpoint. This implies that the left boundary
of C+

i must be a subset of the left boundary of Ai, i.e., αi, because the left boundaries of Ai, Bi+1, and C+
i

are all rightward convex. A symmetric argument shows that the right boundary of C+
i must be a subset of the

right boundary of Bi+1, i.e., βi+1. Therefore, if C+
i is closed, then the left boundary of ∂C+

i is the portion of
αi between pi and q, and the right boundary of ∂C+

i is the portion of βi+1 between pi+1 and q, where q is the
intersection of αi and βi+1. If C+

i is open, then the left boundary of C+
i is αi and the right boundary of C+

i is
βi+1. This proves the lemma.

Based on Lemma 2.1, the cells C+
i , 1 ≤ i ≤ n, can be easily computed. First of all, the two cells C+

0 and C+
n

are already available because both αn and β1 have been computed. For each 1 ≤ i ≤ n− 1, we can compute C+
i

using the two convex chains αi and βi+1 as follows. By Lemma 2.1, it suffices to find the intersection q between
αi and βi+1, or determine that such an intersection does not exist. This can be done in O(|αi| + |βi+1|) time
by a straightforward sweeping algorithm similar to that for merging two sorted lists. Indeed, starting from `, we
sweep a horizontal line h upwards. During the sweeping, we maintain the edges of αi and βi+1 intersecting h.
An event happens if h encounters a vertex of αi or βi+1. Consider an event at a vertex a ∈ αi, i.e., a ∈ h. Let a′

be the next vertex of αi after a, i.e., aa′ is the edge of αi right above h (see Fig. 10). Let bb′ be the edge of βi+1

currently intersecting h such that b′ is the upper vertex of the edge. To process the event, we first check whether
aa′ and bb′ intersect. If yes, then their intersection is q and we stop the algorithm. Otherwise, we proceed on the
next event, which is the lower point of a′ and b′. If q is not found after all events are processed, then αi and βi+1

do not intersect and we stop the algorithm. It is easy to see that the algorithm runs in O(|αi|+ |βi+1|) time.
Therefore, computing all cells C+

i for all i = 0, 1, . . . , n takes time proportional to
∑n

i=1 |αi| +
∑n

i=1 |βi|,

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited84

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

`

αi
βi+1

ha

a′ b′

b

q

Figure 10: Processing an event at a.

which is O(n). Consequently, Z+(`), which is the disjoint union of all cells C+
i , for all i = 0, 1, . . . , n, is obtained.

Note that since we already have the sorted list p1, p2, . . . , pn, we could also easily connect cells C+
i together from

left to right on `.
Again, we can use a similar algorithm to compute Z−(`) in O(n) time. Finally, the zone Z(`) is simply the

disjoint union of Z+(`) and Z−(`). The following theorem summarizes our result.

Theorem 2.1. Given a set L of n lines in the plane and another line `, the zone Z(`) in the arrangement of L
can be computed in O(n log n) time. If the sorted list of the intersections between ` and all lines of L is known,
then Z(`) can be computed in O(n) time.

Dealing with degeneracies. There are two degenerate cases: (1) L has horizontal lines; (2) ` contains
intersections of lines of L.

To handle the first case, without loss of generality, we assume that L has horizontal lines above `, and among
those, let `′ be the lowest one. We first compute the “upper zone” Z+(`) as usual without considering the
horizontal lines of L. Then, for each cell C+

i of Z+(`), we simply cut it along `′ (alternatively, we could easily
incorporate this cut operation into our sweeping algorithm for computing C+

i). The union of all cells C+
i after the

cut is the upper zone Z+(`) of L including all horizontal lines. The total time of the algorithm does not change
asymptotically.

To handle the second case, what really matters is the sorted list l1, l2, . . . , of L, which is used in our forest
decomposition algorithm. If two or more lines of L have a common intersection on `, then we break the tie by
further comparing their slopes: a line l is placed in the sorted list in the front of another line l′ if the half-line of
l above ` is left of that of l′. After having the sorted list of L, we can run exactly the same algorithm as before.

Remark. Our algorithm also provides a simple proof for the combinatorial size of the zone Z(`). If L has a
horizontal line, a slight rotation of it only increases the complexity of Z(`). Hence, it suffices to assume that L
does not have any horizontal line. According to our algorithm, each edge of Z+(`) lies on an edge of one of the
two forests F and F ′. As discussed before, each forest has at most 2n − 1 edges (even in the second degenerate
case). Hence, the total number of edges of Z+(`) is at most 4n− 2. Therefore, the total number of edges of the
zone Z(`) is at most 8n− 4, which matches the bounds obtained in [6, 10,12].

References

[1] P.K. Agarwal. Partitioning arrangements of lines II: Applications. Discrete and Computational Geometry, 5:533–573,
1990.

[2] P.K. Agarwal, J. Matoušek, and O. Schwarzkopf. Computing many faces in arrangements of lines and segments.
SIAM Journal on Computing, 27:491–505, 1998.

[3] P.K. Agarwal and M. Sharir. Arrangements and their applications, in Handbook of Computational Geometry, J. Sack
and J. Urrutia (eds.), pages 49–119. Elsevier, Amsterdam, The Netherlands, 2000.

[4] P. Alevizos, J.-D. Boissonnat, and F.P. Preparata. An optimal algorithm for the boundary of a cell in a union of
rays. Algorithmica, 5:573–590, 1990.

[5] M.W. Bern, D. Eppstein, P.E. Plassmann, and F.F. Yao. Horizon theorems for lines and polygons. Discrete and
Computational Geometry: Papers from the DIMACS Special Year, 6:45–66, 1991.

[6] B. Chazelle, L.J. Guibas, and D.T. Lee. The power of geometric duality. BIT, 25:76–90, 1985.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited85

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

[7] H. Edelsbrunner. Algorithmis in Combinatorial Geometry. Springer-Verlag, Heidelberg, Germany, 1987.
[8] H. Edelsbrunner and L. Guibas. Topologically sweeping an arrangement. Journal of Computer and System Sciences,

38(1):165–194, 1989.
[9] H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink, and E. Welzl. Implicitly representing

arrangements of lines or segments. Discrete and Computational Geometry, 4:433–466, 1989.
[10] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel, and M. Sharir. Arrangements of curves in the plane

topology, combinatorics, and algorithms. Theoretical Computer Science, 92(2):319–336, 1992.
[11] H. Edelsbrunner and E.P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric

algorithms. ACM Transactions on Graphics, 9:66–104, 1990.
[12] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications.

SIAM Journal on Computing, 15:341–363, 1986.
[13] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for hyperplane arrangements. SIAM Journal on

Computing, 22:418–429, 1993.
[14] D. Halperin and M. Sharir. Arrangements, in Handbook of Discrete and Computational Geometry, C.D. Tóth, J.

O’Rourke, and J.E. Goodman (eds.), pages 723–762. CRC Press, 3rd edition, 2017.
[15] M. Sharir and P.K. Agarwal. Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University

Press, 1995.

Copyright c© 2022 by SIAM
Unauthorized reproduction of this article is prohibited86

D
ow

nl
oa

de
d

01
/1

0/
22

 to
 7

3.
65

.1
91

.2
16

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

	Introduction.
	The algorithm.

