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Abstract

We present new algorithms for computing many faces in arrangements of lines and segments. Given a set
S of n lines (resp., segments) and a set P of m points in the plane, the problem is to compute the faces of the
arrangements of S that contain at least one point of P . For the line case, we give a deterministic algorithm of
O(m2/3n2/3 log2/3(n/

√
m) + (m + n) logn) time. This improves the previously best deterministic algorithm

[Agarwal, 1990] by a factor of log2.22 n and improves the previously best randomized algorithm [Agarwal,

Matoušek, and Schwarzkopf, 1998] by a factor of log1/3 n in certain cases (e.g., when m = Θ(n)). For the

segment case, we present a deterministic algorithm of O(n2/3m2/3 logn + τ(nα2(n) + n logm + m) logn)
time, where τ = min{logm, log(n/

√
m)} and α(n) is the inverse Ackermann function. This improves the

previously best deterministic algorithm [Agarwal, 1990] by a factor of log2.11 n and improves the previously
best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of logn in certain cases

(e.g., when m = Θ(n)). We also give a randomized algorithm of O(m2/3K1/3 logn + τ(nα(n) + n logm +
m) logn logK) expected time, where K is the number of intersections of all segments of S. In addition, we
consider the query version of the problem, that is, preprocess S to compute the face of the arrangement of S
that contains any query point. We present new results that improve the previous work for both the line and
the segment cases.

1 Introduction.

We consider the problem of computing many faces in arrangements of lines and segments. Given a set S of n lines
(resp., segments) and a set P of m points in the plane, the problem is to compute the faces of the arrangement
of S that contain at least one point of P . Note that faces in an arrangement of lines are convex, but they may
not even be simply connected in an arrangement of segments. These are classical problems in computational
geometry and have been studied in the literature. There has been no progress on these problems for more than
two decades. In this paper, we present new algorithms that improve the previous work.

The line case. For the line case where S consists of n lines, it has been proved that the combinatorial
complexity of all faces of the arrangement that contain at least one point of P is bounded by O(m2/3n2/3 +n) [14]
(which matches the Ω(m2/3n2/3 +n) lower bound [22]), as well as bounded by O(n

√
m) and O(n+m

√
n) [22]. To

compute these faces, a straightforward approach is to first construct the arrangement of S and then find the faces
using point locations [19, 26]. This takes O(n2 + m log n) time in total. Edelsbrunner, Guibas, and Sharir [20]
gave a randomized algorithm of O(m2/3−δn2/3+2δ log n + n log n logm) expected time for any δ > 0. Later

Agarwal [1] presented an improved deterministic algorithm of O(m2/3n2/3 log5/3 n log1.11(m/
√
n) + (m+n) log n)

time; Agarwal, Matoušek, and Schwarzkopf [2] proposed a randomized algorithm of O(m2/3n2/3 log(n/
√
m) +

(m + n) log n) expected time. On the other hand, the problem has a lower bound of Ω(m2/3n2/3 + n log n + m)
time due to the above Ω(m2/3n2/3 + n) lower bound [22] on the combinatorial complexity of all these faces and
also because computing a single face in line arrangements requires Ω(n log n) time.

We propose a new deterministic algorithm of O(m2/3n2/3 log2/3(n/
√
m) + (m + n) log n) time. In certain

cases (e.g., when m = Θ(n)), our result improves the deterministic algorithm of [1] by a factor of log2.22 n and

improves the randomized algorithm of [2] by a factor of log1/3 n.
Our algorithm follows the framework of Agarwal [1], which uses a cutting of S to divide the problem

into a collection of subproblems. To solve each subproblem, Agarwal [1] derived another algorithm of
O(n log n + m

√
n log2 n) time. Our main contribution is a more efficient algorithm of O(n log n + m

√
n log n)

time. Using our new algorithm to solve the subproblems induced by the cutting, the asserted result can be
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achieved. The algorithm of [2] also follows a similar framework, but it uses the random sampling technique [15]
instead of the cutting to divide the problem, and a randomized algorithm of O(n log n + m

√
n log n) expected

time was proposed in [2] to solve each subproblem. In particular, our algorithm runs in O(n log n) time for
m = O(

√
n log n), which matches the Ω(n log n) lower bound for computing a single face (for comparison, the

randomized algorithm of [2] runs in O(n log n) expected time for m = O(
√
n)).

The segment case. For the segment case where S consists of n line segments, it is known that the
combinatorial complexity of all faces of the arrangement that contain at least one point of P is upper bounded by
O(m2/3n2/3 +nα(n) +n logm) [5] and O(

√
mnα(n)) [18], as well as lower bounded by Ω(m2/3n2/3 +nα(n)) [20],

where α(n) is the inverse Ackermann function. To compute these faces, as in the line case, a straightforward
approach is to first construct the arrangement of S and then find the faces using point locations [19, 26]. This
takes O(n2 +m log n) time in the worst case (more precisely, the arrangement can be constructed in O(n log n+K)
time [11, 6] or by simpler randomized algorithms of the same expected time [15, 12, 29]; throughout the paper,
we use K to denote the number of intersections of all segments of S).

Edelsbrunner, Guibas, and Sharir [20] gave a randomized algorithm of O(m2/3−δn2/3+2δ log n +
nα(n) log2 n logm) expected time for any δ > 0. Agarwal [1] presented an improved deterministic algorithm
of O(m2/3n2/3 log n log2.11(n/

√
m) + n log3 n + m log n) time. Agarwal, Matoušek, and Schwarzkopf [2] derived

a randomized algorithm of O(n2/3m2/3 log2(K/m) + (nα(n) + n logm + m) log n) expected time and another
algorithm of O(m2/3K1/3 log2(K/m)+(nα(n)+n logm+m) log n) expected time1. On the other hand, the lower
bound Ω(m2/3n2/3 + n log n + m) for the line case is also applicable here (and we are not aware of any better
lower bound). Note that computing a single face in an arrangement of segments can be done in O(nα(n) log n)
expected time by a randomized algorithm [12] or in O(nα2(n) log n) time by a deterministic algorithm [4] (which
improve the previous O(n log2 n) time algorithm [28] and O(nα(n) log2 n) time algorithm [20]; but computing the
upper envelope can be done faster in O(n log n) time [25]).

We propose a new deterministic algorithm of O(n2/3m2/3 log n+ τ(nα2(n) + n logm+m) log n) time, where
τ = min{logm, log(n/

√
m)}. In certain cases (e.g., when m = Θ(n) and K = Θ(n2)), our result improves the

deterministic algorithm of [1] by a factor of log2.11 n and improves the randomized algorithm of [2] by a factor
of log n. In particular, the algorithm runs in O(nα2(n) log n) time for m = O(1), which matches the time for
computing a single face [4], and runs in O(m log n) time for m = Θ(n2), which matches the performance of
the above straightforward approach. Our algorithm uses a different approach than the previous work [1, 2]. In
particular, our above algorithm for the line case is utilized as a subroutine.

If K = o(n2), we further obtain a faster randomized algorithm of O(m2/3K1/3 log n + τ(nα(n) + n logm +
m) log n logK) expected time, where τ = min{logm, log(n/

√
m)}. This improves the result of [2] by a factor

of log n for relative large values of K, e.g., when m = Θ(n) and K = Ω(n1+ε) for any constant ε ∈ (0, 1]. Our
above deterministic algorithm (with one component replaced by a faster randomized counterpart) is utilized as a
subroutine.

The face query problem. We also consider a face query problem in which we wish to preprocess S so that
given a query point p, the face of the arrangement containing p can be computed efficiently.

For the line case, inspired by our techniques for computing many faces and utilizing the randomized partition
tree of Chan [9], we construct a data structure of O(n log n) space in O(n log n) randomized time, so that the face
Fp(S) of the arrangement of S that contains a query point p can be computed and the query time is bounded by
O(
√
n log n) with high probability. More specifically, the query algorithm returns a binary search tree representing

the face Fp(S) so that standard binary-search-based queries on Fp(S) can be handled in O(log n) time each, and
Fp(S) can be output explicitly in O(|Fp(S)|) time. Previously, Edelsbrunner, Guibas, Hershberger, Seidel, Sharir,
Snoeyink, and Welzl [17] built a data structure of O(n log n) space in O(n3/2 log2 n) randomized time, and the
query time is bounded by O(

√
n log5 n) with high probability, which is reduced to O(

√
n log2 n) in [23] using

compact interval trees. Thus, our result improves their preprocessing time by a factor of
√
n log n and improves

their query time by a factor of log n. We further obtain a tradeoff between the storage and the query time. For
any value r < n/ logω(1) n, we construct a data structure of O(n log n+ nr) space in O(n log n+ nr) randomized
time, and the query time is bounded by O(

√
n/r log n) with high probability.

1It appears that their time analysis [2] is based on the assumption that K is known. If K is not known, their algorithm could

achieve O(m2/3K1/3 log2(K/m) + (m+n logm+nα(n)) logn logK) expected time by the standard trick of “guessing”, which is also
used in this paper.
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For the segment case, the authors [17] also gave a data structure for the face query problem with the following

performance: the preprocessing takes Õ(n5/3) randomized time, the space is Õ(n4/3), and the query time is

bounded by Õ(n1/3) +O(κ) with high probability, where the notation Õ hides a polylogarithmic factor and κ is
the size of the query face (note that κ can be Θ(nα(n)) in the worst case [20] and the face may not be simply
connected). Their preprocessing algorithm uses the query algorithm for the line case as a subroutine. If we follow
their algorithmic scheme but instead use our new query algorithm for the line case as the subroutine, then the
preprocessing time can be reduced to Õ(n4/3), while the space is still Õ(n4/3) and the query time is still bounded

by Õ(n1/3) +O(κ) with high probability.
Outline. The rest of the paper is organized as follows. We define notation and introduce some concepts in

Section 2. Our algorithms for computing many faces are described in Sections 3 and 4. The query problem is
discussed in Section 5. Many proofs and details are omitted but can be found in the full version.

2 Preliminaries.

We define some notation that is applicable to both the line and segment cases. Let S be a set of n line segments
(a line is considered a special line segment) and let P be a set of m points in the plane. For a subset S′ ⊆ S, we
use A(S′) to denote the arrangement of S′. For any point p ∈ P , we use Fp(S

′) to denote the face of A(S′) that
contains p. A face of A(S′) is nonempty if it contains a point of P . Hence, the problem of computing many faces
is to compute all nonempty cells of A(S). Note that if a nonempty face contains more than one point of P , then
we need to output the face only once.

For any compact region A and a set Q of points in the plane, we often use Q(A) to denote the subset of Q
in A, i.e., Q(A) = Q ∩A.

Cuttings. Let H be a set of n lines in the plane. For a compact region A in the plane, we use HA to denote
the subset of lines of H that intersect the interior of A (we also say that these lines cross A). A cutting for H is
a collection Ξ of closed cells (each of which is a triangle) with disjoint interiors, which together cover the entire
plane [10, 27]. The size of Ξ is the number of cells in Ξ. For a parameter r with 1 ≤ r ≤ n, a (1/r)-cutting for H
is a cutting Ξ satisfying |Hσ| ≤ n/r for every cell σ ∈ Ξ.

A cutting Ξ′ c-refines another cutting Ξ if every cell of Ξ′ is contained in a single cell of Ξ and every cell of Ξ
contains at most c cells of Ξ′. A hierarchical (1/r)-cutting (with two constants c and ρ) is a sequence of cuttings
Ξ0,Ξ1, . . . ,Ξk with the following properties. Ξ0 is the entire plane. For each 1 ≤ i ≤ k, Ξi is a (1/ρi)-cutting of
size O(ρ2i) which c-refines Ξi−1. In order to make Ξk a (1/r)-cutting, we set k = Θ(log r) so that ρk−1 < r ≤ ρk.
Hence, the size of Ξk is O(r2). If a cell σ ∈ Ξi−1 contains a cell σ′ ∈ Ξi, we say that σ is the parent of σ′ and σ′

is a child of σ. As such, one could view Ξ as a tree structure in which each node corresponds to a cell σ ∈ Ξi,
0 ≤ i ≤ k.

For any 1 ≤ r ≤ n, a hierarchical (1/r)-cutting of size O(r2) for H (together with the sets Hσ for every cell
σ of Ξi for all i = 0, 1, . . . , k) can be computed in O(nr) time by Chazelle’s algorithm [10].

3 Computing many cells in arrangements of lines.

In this section, we consider the line case for computing many cells. Let S be a set of n lines and P be a set of m
points in the plane. Our goal is to compute the nonempty cells of the arrangement A(S). For ease of exposition,
we make a general position assumption that no line of S is vertical, no three lines of S are concurrent, and no point
of P lies on a line of S. Degenerate cases can be handled by standard techniques [21]. Under the assumption,
each point of P is in the interior of a face of A(S).

First of all, if m ≥ n2/2, then the problem can be solved in O(m log n) time using the straightforward
algorithm mentioned in Section 1 (i.e., first compute A(S) and then find the nonempty cells using point location).
In what follows, we assume that m < n2/2. Our algorithm follows the high-level scheme of Agarwal [1] by using
a cutting of S to divide the problem into many subproblems. The difference is that we develop an improved
algorithm for solving each subproblem. In the following, we first present an algorithm of O(n log n+m

√
n log n)

time in Section 3.1, and then use it to solve each subproblem and thus obtain our main algorithm with the asserted
time in Section 3.2.
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p∗

S∗
+(p

∗)

S∗
−(p

∗)

H+(p
∗)

H−(p
∗)

Figure 1: Illustrating the dual plane: The (red) thick edges between the two inner common tangents (the dotted segments) are dual

to Fp(S).

3.1 The first algorithm. We say that S and P are in the primal plane and we consider the problem in the
dual plane. Let S∗ be the set of dual points of S and let P ∗ be the set of dual lines of P .2 Consider a point
p ∈ P and the face Fp(S) of A(S) that contains p. In the dual plane, the dual line p∗ of p partitions S∗ into two
subsets and the portions of the convex hulls of the two subsets between their inner common tangents are dual to
the face Fp(S) [1, 17]; see Fig 1.

Let S∗+(p∗) denote the subset of S∗ above p∗ and S∗−(p∗) the subset of S∗ below p∗ (note that p∗ is not
vertical). We use H+(p∗) to denote the half hull of the convex hull of S∗+(p∗) facing p∗ (e.g., if p∗ is horizontal,
then H+(p∗) is the lower hull; for this reason, we call H+(p∗) the lower hull; see Fig 1); similarly, we use H−(p∗)
to denote the half hull of the convex hull of S∗−(p∗) facing p∗ and we call it the upper hull. According to the
above discussion, Fp(S) is dual to the portions of H+(p∗) and H−(p∗) between their inner common tangents,
and we use F ∗p (S) to denote the dual of Fp(S). Our algorithm to be presented below will implicitly determine
H+(p∗) and H−(p∗) (more precisely, each of them is maintained in a binary search tree of height O(log n) that
can support standard binary search in O(log n) time), after which their inner common tangents can be computed
in O(log n) time [23] and then F ∗p (S) can be output in additional O(|F ∗p (S)|) time. Again, if F ∗p (S) is the same for
multiple points p ∈ P , then F ∗p (S) will be output only once. In the following, depending on the context, a convex
hull (resp., upper hull, lower hull) may refer to a binary search tree that represents it. For example, “computing
H+(p∗)” means “computing a binary search tree that represents H+(p∗)”.

We compute a hierarchical (1/r)-cutting Ξ0,Ξ1, . . . ,Ξk for the lines of P ∗ with k and a constant ρ as defined
in Section 2, and with r to be determined later, along with the subsets P ∗σ of lines of P ∗ crossing σ for all cells σ of
Ξi for all i = 0, 1, . . . , k. This can be done in O(mr) time [10]. Recall that k = O(log r). For each point l∗ ∈ S∗,
we find the cell σ ∈ Ξi containing l∗ for all i = 0, 1, . . . , k and store l∗ in the set S∗(σ), i.e., S∗(σ) = S∗ ∩ σ.
Computing the sets S∗(σ) for all cells σ ∈ Ξi, i = 0, 1, . . . , k, takes O(n log r) time [10]. As each point of S∗ is
stored in a single cell of Ξi, for each 0 ≤ i ≤ k, the total size of S∗(σ) for all cells σ of the cutting is O(n log r). If
initially we sort all points of S∗ by x-coordinate, then we can obtain the sorted lists of all sets S∗(σ) of all cells in
O(n log r) time in total. Using the sorted lists, for each cell σ ∈ Ξi, i = 0, 1, . . . , k, we compute the convex hull of
S∗(σ) in O(|S∗(σ)|) time (and store it in a balanced binary search tree). All above takes O(mr+n log r+n log n)
time in total.

Next, for each cell σ of the last cutting Ξk, if |S∗(σ)| > n/r2, then we further triangulate σ (which itself is a
triangle) into Θ(|S∗(σ)| · r2/n) triangles each of which contains at most n/r2 points of S∗. As points of S∗(σ) are
already sorted by x-coordinate, the triangulation can be easily done in O(|S∗(σ)|) time, as follows. By sweeping
the points of S∗(σ) from left to right, we can partition σ in to d|S∗(σ)| ·r2/ne trapezoids each of which contains no
more than n/r2 points of S∗. Then, we partition each trapezoid into two triangles. In this way, σ is triangulated
into at most 2d|S∗(σ)| · r2/ne triangles each containing at most n/r2 points of S∗. Processing all cells of Ξk as
above takes O(n) time in total. For convenience, we use Ξk+1 to refer to the set of all new triangles obtained
above. Since Ξk has O(r2) cells, by our way of computing the triangles of Ξk+1, the size of Ξk+1 is bounded by
O(r2). For each triangle σ′ ∈ Ξk+1, if σ′ is in the cell σ of Ξk, then we also say that σ is the parent of σ′ and σ′

is a child of σ (note that the number of children of σ may not be O(1)). We also define S∗(σ′) = S∗ ∩ σ′, and

2We use the following duality [7]: A point (a, b) in the primal plane is dual to the line y = ax−b in the dual plane; a line y = cx+d
in the primal plane is dual to the point (c,−d) in the dual plane.
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p∗

H+(p
∗)

Figure 2: Illustrating the lower envelope L(H+(p∗)) (the thick red edges) of the convex hulls of H+(p∗). The dashed segment inside

each convex hull is the representative segment.

compute and store the convex hull of S∗(σ′). This takes O(n) time for all triangles σ′ of Ξk+1, thanks to the
presorting of S∗.

For reference purpose, we consider the above the preprocessing step of our algorithm.
For each line p∗ ∈ P ∗, we process it as follows. Without loss of generality, we assume that p∗ is horizontal.

Let Ψ(p∗) denote the set of all cells σ of Ξi crossed by p∗, for all i = 0, 1, . . . , k. Let Ψk+1(p∗) denote the set of
all cells σ of Ξk+1 crossed by p∗. For each cell σ ∈ Ψk+1(p∗), we use σ+(p∗) to denote the portion of σ above p∗,
and let S∗(σ+(p∗)) = S∗ ∩ σ+(p∗). Next we define a set Ψ+(p∗) of cells of Ξi, i = 0, 1, . . . , k + 1. For each cell
σ′ ∈ Ψ(p∗), suppose σ′ is in Ξi for some i ∈ [0, k]. For each child σ of σ′ (thus σ ∈ Ξi+1), if σ is completely above
the line p∗, then σ is in Ψ+(p∗). We have the following lemma, whose proof is omitted.

Lemma 3.1. S∗+(p∗) is the union of
⋃
σ∈Ψ+(p∗) S

∗(σ) and
⋃
σ∈Ψk+1(p∗) S

∗(σ+(p∗)).

Lemma 3.1 implies that if we have convex hulls of S∗(σ) for all cells σ ∈ Ψ+(p∗) and convex hulls of S∗(σ+(p∗))
for all cells σ ∈ Ψk+1(p∗), then H+(p∗) is the lower hull of all these convex hulls. Define H+(p∗) as the set of
convex hulls mentioned above. Thanks to our preprocessing step, we have the following lemma, whose proof is
omitted.

Lemma 3.2. We can obtain (binary search trees representing) the convex hulls of H+(p∗) for all lines p∗ ∈ P ∗ in
O(mr +mn/r) time.

With the preceding lemma, our next goal is to compute the lower hull of all convex hulls of H+(p∗). To this
end, the observation in the following lemma is critical, with proof omitted.

Lemma 3.3. For each p∗ ∈ P ∗, the convex hulls of H+(p∗) are pairwise disjoint.

With the convex hulls computed in Lemma 3.2 and the property in Lemma 3.3, the next lemma computes
the lower hull H+(p∗) for all p∗ ∈ P ∗.

Lemma 3.4. For each p∗ ∈ P ∗, suppose the convex hulls of H+(p∗) are available; then we can compute (a binary
search tree representing) the lower hull H+(p∗) in O(|H+(p∗)| log n) time.

Proof. Without loss of generality, we assume that p∗ is horizontal. Let t = |H+(p∗)|. Note that the size of each
convex hull of H+(p∗) is at most n. Also, since convex hulls of H+(p∗) are pairwise disjoint by Lemma 3.3, it
holds that t ≤ n. Because we are to compute the lower hull of the convex hulls of H+(p∗), it suffices to only
consider the lower hull of each convex hull of H+(p∗). Note that since binary search trees for all convex hulls of
H+(p∗) are available, we can obtain binary search trees representing their lower hulls in O(t log n) time by first
finding the leftmost and rightmost vertices of the convex hulls and then performing split/merge operations on the
trees.

The first step is to compute the portions of each lower hull H of H+(p∗) that is vertically visible to p∗ (we
say that a point q ∈ H is vertically visible to p∗ if the vertical segment connecting q to p∗ does not cross any
other lower hull of H+(p∗)). In fact, the visible portions constitute exactly the lower envelope of the lower hulls of
H+(p∗), denoted by L(H+(p∗)) (see Fig. 2). Below we describe an algorithm to compute L(H+(p∗)) in O(t log n)
time.
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As convex hulls of H+(p∗) are pairwise disjoint by Lemma 3.3, the number of (maximal) visible portions of
all lower hulls of H+(p∗) is at most 2t − 1. For each convex hull H of H+(p∗), consider the segment connecting
the leftmost and rightmost endpoints of H, and call it the representative segment of H (see Fig. 2). Let Q be
the set of representative segments of all convex hulls of H+(p∗). Because convex hulls of H+(p∗) are pairwise
disjoint, an easy but crucial observation is that segments of Q are pairwise disjoint and the lower envelope L(Q)
of the segments of Q corresponds to L(H+(p∗)) in the following sense: if ab is a maximal segment of L(Q) that
lies on a representative segment of a convex hull H of H+(p∗), then the vertical projection of ab onto the lower
hull of H is a maximal portion of the lower hull of H on L(H+(p∗)), and that portion can be obtained in O(log n)
time by splitting the binary search tree for the lower hull of H at the x-coordinates of a and b, respectively. As
such, once L(Q) is computed, L(H+(p∗)) in which each maximal portion is represented by a binary search tree
can be obtained in additional O(t log n) time. As |Q| = t and segments of Q are pairwise disjoint, L(Q) can
be constructed in O(t log t) time by an easy plane sweeping algorithm. Hence, L(H+(p∗)) can be computed in
O(t log n) time in total.

With L(H+(p∗)) in hand, we can now compute the lower hull H+(p∗) in additional O(t log n) time, as follows.
As discussed above, L(H+(p∗)) consists of at most 2t−1 pieces sorted from left to right, each of which is a portion
of a lower hull of H+(p∗) and is represented by a binary search tree. We merge the first two pieces by computing
their common tangent, which can be done in O(log n) time [30] as the two pieces are separated by a vertical line.
After the merge, we obtain a binary search tree that represents the lower hull of the first two pieces of L(H+(p∗)).
Next, we merge this lower hull with the third piece of L(H+(p∗)) in the same way. We repeat this process until all
pieces of L(H+(p∗)) are merged, after which a binary search tree representing H+(p∗) is obtained. The runtime
is bounded by O(t log n) as each merge takes O(log n) time and L(H+(p∗)) has at most 2t− 1 pieces.

In summary, once the convex hulls of H+(p∗) are available, we can compute the lower hull H+(p∗) in
O(|H+(p∗)| log n) time.

Applying Lemma 3.4 to all lines of P ∗ will compute the lower hulls H+(p∗) for all p∗ ∈ P ∗. One issue is
that after we apply the algorithm for one line p∗ ∈ P ∗, convex hulls of H+(p∗) may have been destroyed due
to the split and merge operations during the algorithm. The destroyed convex hulls may be used later when
we apply the algorithm for other lines of P ∗. The remedy is to use fully persistent binary search trees with
path-copying [16, 31] to represent convex hulls so that standard operations on the trees (e.g., merge, split) can
be performed in O(log n) time each and after each operation the original trees are still kept intact (so that future
operations can still be performed on the original trees as usual). In this way, whenever we apply the algorithm
for a line of P ∗, we always have the original trees representing the convex hulls available, and thus the runtime of
the algorithm in Lemma 3.4 is not affected (although O(log n) extra space will be incurred after each operation
on the trees).

For the time analysis, by Lemma 3.2, computing convex hulls of H+(p∗) for all lines p∗ ∈ P ∗ takes
O(mr + mn/r) time. Then, applying Lemma 3.4 to all lines of P ∗ takes O(

∑
p∗∈P∗ |H+(p∗)| · log n) time in

total, which is bounded by O(mr log n) due to the following Lemma 3.5, with proof omitted.

Lemma 3.5.
∑
p∗∈P∗ |H+(p∗)| = O(mr).

In summary, computing lower hulls H+(p∗) for all p∗ ∈ P ∗ can be done in a total of O(n log n + n log r +
mr log n+mn/r) time. Analogously, we can also compute the upper hulls H−(p∗) for all p∗ ∈ P ∗. Then, for each
line p∗ ∈ P ∗, we compute the two inner common tangents of H+(p∗) and H−(p∗), which can be done in O(log n)
time [23]. With the two inner common tangents as well as the two hulls H+(p∗) and H−(p∗), the dual face F ∗p (S),
or the face Fp(S) in the primal plane, can be implicitly determined. More precisely, given H+(p∗) and H−(p∗),
we can obtain a binary search tree representing Fp(S) in O(log n) time. The tree can be used to support standard
binary search on Fp(S), which is a convex polygon. Outputting Fp(S) explicitly takes O(|Fp(S)|) additional time.

To avoid reporting a face more than once, we can remove duplication in the following way. Due to the
general position assumption, an easy observation is that Fp1(S) = Fp2(S) for two points p1 and p2 of P if and
only if the leftmost vertex of Fp1(S) is the same as that of Fp2(S). Also note that the leftmost and rightmost
vertices of Fp(S) are dual to the two inner common tangents of H+(p∗) and H−(p∗), respectively. Hence, for any
two points p1 and p2 of P , we can determine whether they are from the same face of A(S) by comparing the
corresponding inner common tangents. In this way, the duplication can be removed in O(m logm) time, which
is O(m log n) as m < n2/2. After that, we can report all distinct faces. Note that outputting all distinct faces
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explicitly takes O(n + m
√
n) time as the total combinatorial complexity of m distinct faces in A(S) is bounded

by O(n+m
√
n) [22].

To recapitulate, computing the distinct faces Fp(S) implicitly for all p ∈ P takes O(n log n+n log r+mr log n+

mn/r) time and reporting them explicitly takes additional O(n + m
√
n) time. Setting r = min{m,

√
n/ log n}

leads to the total time bounded by O(n log n+m
√
n log n).

Theorem 3.1. Given a set S of n lines and a set P of m points in the plane, the faces of the arrangement of
the lines containing at least one point of P can be computed in O(n log n+m

√
n log n) time.

Remark. The algorithm runs in O(n log n) for m = O(
√
n log n), which matches the Ω(n log n) lower bound

for computing a single face. For comparison, an algorithm of O(n log n + m
√
n log2 n) time is given in [1] and a

randomized algorithm of O(n log n+m
√
n log n) expected time is proposed in [2].

3.2 The second algorithm. We now present our main algorithm, which follows the scheme of Agarwal [1],
but replaces a key subroutine by Theorem 3.1.

We first compute a (1/r)-cutting Ξ for the lines of S in O(nr) time [10], with the parameter r to be determined
later. We then locate the cell of Ξ containing each point of P ; this can be done in O(m log r) time for all points
of P [10]. Consider a cell σ of Ξ. Recall that σ is a triangle. Let P (σ) = P ∩ σ. Let Sσ be the subset of lines
of S crossing σ. Consider a point p ∈ P (σ). Recall the definition in Section 2 that Fp(Sσ) denotes the face
of the arrangement A(Sσ) that contains p. Observe that the face Fp(S) is Fp(Sσ) if and only Fp(Sσ) does not
intersect the boundary of σ. The zone of σ in A(Sσ) is defined as the collection of face portions F ∩σ for all faces
F ∈ A(Sσ) that intersect the boundary of σ. If Fp(S) 6= Fp(Sσ), then Fp(S) is divided into multiple portions each
of which is a face in the zone of some cell of Ξ (and Fp(Sσ) is one of these portions). Hence, to find all nonempty
faces of A(S), it suffices to compute, for every cell σ ∈ Ξ, the faces of A(Sσ) containing the points of P (σ) and
the zone of σ. The nonempty faces of A(S) that are split among the zones can be obtained by merging the zones
along the edges of cells of Ξ.

To compute the faces of A(Sσ) containing the points of P (σ), we apply Theorem 3.1, which takes
O(nσ log nσ + mσ

√
nσ log nσ) time, with nσ = |Sσ| and mσ = |Pσ|. Computing the zone for σ can be done

in O(nσ log nσ) time, e.g., by the algorithm of [3] or a recent simple algorithm [32]. After all cells of Ξ are
processed as above, we merge the zones of all cells. Since nσ = O(n/r),

∑
σ∈Ξmσ = m, and Ξ has O(r2) cells,

by setting r = max{m2/3/(n1/3 · log1/3(n/
√
m)), 1}, we can obtain the asserted time complexity of the entire

algorithm. The detailed time analysis is omitted.

Theorem 3.2. Given a set S of n lines and a set P of m points in the plane, the faces of the arrangement of S
containing at least one point of P can be computed in O(n2/3m2/3 log2/3 n√

m
+ (n+m) log n) time.

4 Computing many cells in arrangements of segments.

In this section, we consider the segment case for computing many faces. Let S be a set of n line segments and P
be a set of n points in the plane. The problem is to compute all distinct non-empty faces of A(S). Note that these
faces will be output explicitly. For ease of exposition, we make a general position assumption that no segment
of S is vertical, no three segments of S are concurrent, no two segments of S share a common endpoint, and no
point of P lies on a segment of S. Degenerate cases can be handled by standard techniques [21].

In the following, we first present our deterministic algorithm and then give the randomized result, which uses
the deterministic algorithm as a subroutine.

4.1 The deterministic algorithm. If m ≥ n2/2, then the problem can be solved in O(m log n) time using
the straightforward algorithm mentioned in Section 2. In what follows, we assume that m < n2/2. Let E denote
the set of the endpoints of all segments of S. Let L denote the set of supporting lines of all segments of S.

Initially, we sort the points of E (resp., P ) by x-coordinate. We compute a (1/r)-cutting Ξ for L in O(nr)
time [10], for a sufficiently large constant r. We then locate the cell of Ξ containing each point of P ; this can
be done in O(m log r) time for all points of P [10]. Consider a cell σ of Ξ. Recall that σ is a triangle. Let
P (σ) = P ∩ σ and E(σ) = E ∩ σ. Let Sσ be the subset of segments of S intersecting σ. Note that |Sσ| = O(n/r)
and Ξ has O(r2) cells. If |E(σ)| > n/r2, then we triangulate σ into at most 2d|E(σ)| · r2/ne triangles each of
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which contains at most n/r2 points of E. This can be done by first sorting all points of E(σ) and then using a
sweeping algorithm as described in Section 3.1. Due to the presorting of E, the sorting of E(σ) for all cells σ
of Ξ can be done in O(n) time and thus the triangulation takes O(n) time in total for all cells of Ξ. By slightly
abusing notation, we still use Ξ to denote the set of all new triangles for all original cells (if an original cell was
not triangulated, then we also include it in the new Ξ). The new Ξ now has the following properties: each cell of
Ξ is intersected by O(n/r) segments of S, Ξ has O(r2) cells, and each cell of Ξ contains at most n/r2 points of E.

For each cell σ ∈ Ξ, if |P (σ)| > m/r2, then we further triangulate σ into at most 2d|P (σ)| · r2/me triangles
each of which contains at most m/r2 points of P . Due to the presorting of P , the triangulation can be done in
O(m) time in total for all cells of Ξ, in the same way as above for E(σ). By slightly abusing notation, we still use
Ξ to denote the set of all new triangles. The new Ξ now has the following properties: each cell of Ξ is intersected
by O(n/r) segments of S, Ξ has O(r2) cells, each cell of Ξ contains at most n/r2 points of E, and each cell of Ξ
contains at most m/r2 points of P .

For each cell σ ∈ Ξ, we define Sσ, E(σ), and P (σ) in the same way as before. We say that a segment of Sσ is
a short segment of σ if it has an endpoint in the interior of σ and is a long segment otherwise. Let S1(σ) denote
the set of long segments of σ and S2(σ) the set of short segments of σ. Since S1(σ) ⊆ Sσ and |Sσ| = O(n/r), we
have |S1(σ)| = O(n/r). Also note that |S2(σ)| ≤ |E(σ)|. As |E(σ)| ≤ n/r2, it holds that |S2(σ)| ≤ n/r2.

For each cell edge e of Ξ, we define its zone as the set of faces of A(S) intersected by e, which can be
computed in O(nα2(n) log n) time [4] (note that computing the zone in an arrangement of segments can be
reduced to computing a single face and the size of the zone is O(nα(n)) [18]). Consider a point p ∈ P (σ) for any
cell σ ∈ Ξ. Recall the definition in Section 2 that Fp(Sσ) denotes the face of the arrangement A(Sσ) that contains
p. If Fp(Sσ) does not intersect any edge of σ, then Fp(S) is Fp(Sσ); otherwise, Fp(S) is a face of the zone of an
edge of σ (and that face contains p).

In light of the above discussion, our algorithm works as follows. We first compute the zones for all cell edges
of Ξ and explicitly store them in a point location data structure [19, 26]. This takes O(nr2α2(n) log n) time in
total. Next, for each cell σ ∈ Ξ, for each point p ∈ P (σ), using the point location data structure, we determine
in O(log n) time whether p is in a face of the zone of any edge of σ. If yes, we explicitly output the face, which
is Fp(S). Otherwise, the face Fp(Sσ) is Fp(S). Let P ′(σ) denote the subset of points p of P (σ) in the above
second case (i.e., Fp(Sσ) is Fp(S)). The remaining problem is to compute the faces of A(Sσ) containing at least
one point of P ′(σ). To solve this subproblem, observe that the face Fp(Sσ) is in the intersection of Fp(S1(σ)) and
Fp(S2(σ)), which may contain multiple connected components. Hence, more precisely, Fp(Sσ) is the connected
component of Fp(S1(σ))∩Fp(S2(σ)) that contains p. Let L1(σ) be the set of the supporting lines of all segments
of S1(σ). Because all segments of S1(σ) are long segments, we have the following lemma.

Lemma 4.1. For any point p ∈ P ′(σ), Fp(Sσ) is the connected component of Fp(L1(σ))∩Fp(S2(σ)) that contains
p.

Proof. Recall that Fp(Sσ) is the connected component of Fp(S1(σ)) ∩ Fp(S2(σ)) that contains p. As p ∈ P ′(σ),
we know that Fp(Sσ) is in the interior of σ. For any segment s ∈ S1(σ), suppose that we extend s to a full line.
As s is a long segment, the extension of s does not intersect the interior of σ and thus does not intersect Fp(Sσ).
This implies the lemma.

Due to the above lemma, to compute the faces of A(Sσ) containing the points of P ′(σ), we do the following:
(1) compute the faces of A(L1(σ)) containing the points of P ′(σ); (2) compute the faces of A(S2(σ)) containing
the points of P ′(σ); (3) compute the faces Fp(Sσ) for all points p ∈ P ′(σ) by intersecting the faces obtained in
the first two steps and computing the connected components containing the points of P ′(σ).

We implement the above three steps as follows. For the first step, we apply our algorithm for the line case
in Theorem 3.2, because L1(σ) is a set of lines. For the second step, we apply our algorithm recursively on S2(σ)
and P ′(σ), so the problem size becomes (n/r2,m/r2) as |S2(σ)| ≤ n/r2 and |P ′(σ)| ≤ m/r2. The third step can
be done by applying the blue-red merge algorithm in [20]. The detailed time analysis is omitted.

Theorem 4.1. Given a set S of n line segments and a set P of m points in the plane, the faces of the arrangement
of the segments containing at least one point of P can be computed in O(n2/3m2/3 log n + τ(nα2(n) + n logm +
m) log n) time, where τ = min{logm, log(n/

√
m)}.
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Remark. The algorithm runs in O(nα2(n) log n) time for m = O(1), which matches the time for computing a
single face [4], and runs in O(m log n) time for m = Ω(n2), which matches the performance of the straightforward
approach.

4.2 The randomized algorithm. In this section, we present a randomized algorithm, whose running time is
a function of K, the number of intersections of all segments of S.

We again assume that m < n2/2 since otherwise the problem can be solved in O(m log n) by the
straightforward approach. We resort to a result of de Berg and Schwarzkopf [8]. Given any r ≤ n and K, de Berg
and Schwarzkopf [8] gave a randomized algorithm that can construct a (1/r)-cutting Ξ for S in O(n log r+Kr/n)
expected time and the size of Ξ is O(r +Kr2/n2). For each cell σ ∈ Ξ (which is a triangle3), σ is intersected by
O(n/r) segments of S.

We set r = n2/(n+K), and thus 1 < r ≤ n and the size of Ξ is bounded by O(r). By building a point location
data structure on Ξ [19, 26], we find, for each point of P , the cell of Ξ containing it. This takes O(r + m log r)
time in total. For each cell σ ∈ Ξ, define P (σ) = P ∩ σ. If |P (σ)| > m/r, then in the same way as in Section 3.1,
we further triangulate σ into 2 · d|P (σ)| · r/me triangles each of which contains at most m/r points of P ; we now
consider these triangles as cells of Ξ but σ is not a cell of Ξ anymore. As before, if we presort P in O(n log n)
time, then the triangulation for all cells of Ξ can be done in O(n) time in total.

The high-level algorithm scheme is similar to that in Section 3.2 for the line case. For each cell σ ∈ Ξ, let
Sσ denote the subset of segments of S intersecting σ. Define the zone of σ as the collection of face portions of
F ∩ σ for all faces F ∈ A(Sσ) that intersect the boundary of σ. As in the line case in Section 3.2, to compute all
nonempty faces of A(S), it suffices to compute, for every cell σ ∈ Ξ, the faces of A(Sσ) containing the points of
P (σ) and the zone of σ. The nonempty faces of A(S) that are split among the zones can be obtained by merging
the zones along the edges of the cells of Ξ.

Computing the zone for σ can be done in O(nσα(nσ) log nσ) randomized time [12], where nσ = |Sσ|. For the
subproblem of computing the faces of A(Sσ) containing the points of P (σ), we apply Theorem 4.1 (but replace
the O(nα2(n) log n) time algorithm [4] by a slightly faster O(nα(n) log n) time randomized algorithm [12], as we
are satisfied with a randomized procedure). The detailed time analysis is omitted.

Theorem 4.2. Given a set S of n line segments and a set P of m points in the plane, the faces of the arrangement
of the segments containing at least one point of P can be computed in O(m2/3K1/3 log n + τ(nα(n) + n logm +
m) log n logK) expected time, where τ = min{logm, log(n/

√
m)} and K is the number of intersections of all

segments of S.

5 The face query problem.

In this section, we consider the face query problem. Let S be a set of lines in the plane. The problem is to build
a data structure on S so that given a query point p, the face Fp(S) of the arrangement A(S) that contains p can
be computed efficiently. Since Fp(S) is convex, our query algorithm will return the root of a binary search tree
storing Fp(S) so that binary-search-based queries on Fp(S) can be performed in O(log n) time each (e.g., given
a query point q, decide whether q ∈ Fp(S); given a line `, compute its intersection with Fp(S)). Fp(S) can be
output explicitly in O(|Fp(S)|) additional time using the tree.

We work in the dual plane as in Section 3.1 and also follow the notation there. Let S∗ denote the set of dual
points of S. For a query point p in the primal plane, let p∗ denote its dual line. Define S∗+(p∗), S∗−(p∗), H+(p∗),
H−(p∗), and F ∗p (S) in the same way as in Section 3.1.

Inspired by the algorithm of Lemma 3.4, we resort to the randomized optimal partition tree of Chan [9], which
is originally for simplex range counting queries in d-dimensional space for any constant d ≥ 2. We briefly review
the partition tree in the planar case. Let P be a set of n points in the plane. Chan’s partition tree recursively
subdivides the plane into triangles (also referred to as cells). Each node v of T corresponds to a triangle 4v
and a subset Pv of P such that Pv = P ∩4v. If v is an internal node, then v has O(1) children whose triangles
form a disjoint partition of 4v. Hence, each point of P appears in Pv for only one node v in each level of T .
4v and the cardinality |Pv| are stored at v. But Pv is not explicitly stored at v unless v is a leaf, in which case

3In the algorithm description [8], each cell of the cutting is a constant-sized convex polygon, but we can further triangulate it
without increasing the complexity asymptotically.
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|Pv| = O(1).4 The space of T is O(n) and its height is O(log n). T can be built by a randomized algorithm of
O(n log n) expected time. Given a query half-plane h, the range query algorithm [9] finds a set Vh of nodes of T
such that P ∩h is exactly the union of Pv for all nodes v ∈ Vh, the triangles 4v for all v ∈ Vh are pairwise disjoint
(and thus the subsets Pv for all v ∈ Vh are also pairwise disjoint), and |Vh| = O(

√
n) holds with high probability.

The query algorithm runs in O(
√
n) time with high probability.

Preprocessing. To solve our problem, in the preprocessing, we build Chan’s partition tree T on the points
of S∗, which takes O(n) space and O(n log n) expected time. Let S∗v = S∗ ∩4v for each node v ∈ T . We further
enhance T as follows. For each node v ∈ T , we compute the convex hull Hv of S∗v and store Hv at v by a binary
search tree. To this end, we can presort all points of S∗ by x-coordinate. Then, we sort S∗v for all nodes v ∈ T ,
which can be done in O(n log n) time in total due to the presorting of S∗. Consequently, computing the convex
hull Hv can be done in O(|S∗v |) time. As such, computing convex hulls for all nodes of T takes O(n log n) time in
total. With these convex hulls, the space of T increases to O(n log n), because the height of T is O(log n) and the
subsets S∗v for all nodes v in the same level of T form a partition of S∗. This finishes our preprocessing, which
takes O(n log n) space and O(n log n) expected time.

Queries. Consider a query point p. Without loss of generality, we assume that p∗ is horizontal. Using the
partition tree T , we compute the lower hull H+(p∗) as follows.

Let h be the upper half-plane bounded by the line p∗. We apply the range query algorithm [9] on h and find
a set Vh of nodes of T , as discussed above. According to the properties of Vh, S∗+(p∗) is the union of S∗v for all
nodes v ∈ Vh and the triangles 4v for all v ∈ Vh are pairwise disjoint. Therefore, H+(p∗) is the lower hull of
the convex hulls Hv of all v ∈ Vh. As the triangles of 4v for all v ∈ Vh are pairwise disjoint, the convex hulls
Hv of all v ∈ Vh are also pairwise disjoint. Consequently, we can apply the algorithm of Lemma 3.4 to compute
H+(p∗) from convex hulls Hv of all v ∈ Vh, which takes O(|Vh| log n) time because convex hulls Hv are already
available due to the preprocessing. As |Vh| = O(

√
n) holds with high probability, the time for computing H+(p∗)

is bounded by O(
√
n log n) with high probability.

Analogously, we can compute the upper hull H−(p∗). Afterwards, Fp(S) can be obtained as a binary search
tree in O(log n) time by computing the inner common tangents of H+(p∗) and H−(p∗), as explained in Section 3.1.
The total query time is bounded by O(

√
n log n) with high probability. Further, Fp(S) can be output explicitly

in additional |Fp(S)| time.
As discussed in Section 3.1, once the binary search tree for Fp(S) is constructed, binary search trees

representing convex hulls of some nodes of T may be destroyed unless fully persistent trees are used. To handle
future queries, we need to restore those convex hulls. Different from the algorithm in Section 3.1, depending on
applications, persistent trees may not be necessary here. For example, if Fp(S) needs to be output explicitly,
then after Fp(S) is output, we can restore those destroyed convex hulls by “reversing” the operations that are
performed during the algorithm of Lemma 3.4. The time is still bounded by O(

√
n log n) with high probability.

Hence in this case persistent trees are not necessary. Also, if Fp(S) only needs to be implicitly represented but
Fp(S) will not be needed anymore before the next query is performed, then we can also restore the convex hulls
as above without using persistent trees. However, if Fp(S) only needs to be implicitly represented and Fp(S) still
needs to be kept even after the next query is performed, then we have to use persistent trees.

We summarize our result in the following theorem.

Theorem 5.1. Given a set S of n lines in the plane, we can preprocess it in O(n log n) randomized time and
O(n log n) space so that for any query point p, we can produce a binary search tree representing the face of A(S)
that contains p and the query time is bounded by O(

√
n log n) with high probability. Using the binary search tree,

standard binary-search-based queries on the face can be performed in O(log n) time each, and outputting the face
explicitly can be done in additional time linear in the number of edges of the face.

As discussed in Section 1, using our result in Theorem 5.1, the algorithm in [17] for the face query problem
in the segment case can also be improved accordingly.

5.1 Tradeoff between storage and query time. We further obtain a tradeoff between the preprocessing
and the query time. To this end, we make use of Chan’s r-partial partition tree [9]. Let P be a set of n point

4To simplify the discussion for solving our problem, if v is a leaf and |Pv | > 1, then we further triangulate 4v into O(1) triangles
each of which contains at most one point of P . This adds one more level to T but has the property that each leaf triangle contains
at most one point of P . This change does not affect the performance of the tree asymptotically.
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in the plane. For any value r < n/ logω(1) n, an r-partial partition tree T (r) for P is the same as a partition tree
discussed before, except that a leaf now may contain up to r points. The number of nodes of T is O(n/r). T (r)
can be built in O(n log n) randomized time. Given a query half-plane h, the range query algorithm [9] finds two
sets V 1

h and V 2
h of nodes of T (r) with the following property: (1) for each node v ∈ V 1

h , the triangle 4v is inside
h; (2) for each node v ∈ V 2

h , v is a leaf and 4v is crossed by the bounding line of h; (3) P ∩ h is the union
of Pv for all nodes v ∈ V 1

h as well as the intersection Pv ∩ h for all nodes v ∈ V 2
h ; (4) the triangles 4v for all

v ∈ V1(h) ∪ V2(h) are pairwise disjoint; (5) |V1(h)|+ |V2(h)| = O(
√
n/r) holds with high probability. The query

algorithm finds V1(h) and V2(h) in O(
√
n/r) time with high probability.

Preprocessing. To solve our problem, in the preprocessing we build an r-partial partition tree T (r) on the
points of S∗. For each node v ∈ T (r), we still compute and store the convex hull Hv of Pv. This still takes
O(n log n) space and O(n log n) expected time as before. Next, we perform additional preprocessing for each leaf
v of T (r). Note that |S∗v | ≤ r. Let Sv denote the subset of the lines of S in the primal plane dual to the points of
S∗v . We compute explicitly the arrangement A(Sv). For each face F ∈ A(Sv), its leftmost and rightmost vertices
divide the boundary of F into an upper portion and a lower portion; for each portion, we use a binary search tree
to store it. We also build a point location data structure on A(Sv) [19, 26]. This finishes the preprocessing for v,
which takes O(r2) time and space. As T (r) has O(n/r) leaves, the preprocessing for all leaves takes O(nr) time
and space. Overall, the preprocessing takes O(n log n+ nr) expected time and O(n log n+ nr) space.

Queries. Consider a query point p. Again, we assume that its dual line p∗ is horizontal. We compute the
lower hull H+(p∗) as follows.

Let h be the upper half-plane bounded by the line p∗. We apply the range query algorithm [9] on h and find
two sets V 1

h and V 2
h of nodes of T (r), as discussed above. Due to the property (3) of V 1

h and V 2
h discussed above,

H+(p∗) is the lower hull of the convex hulls Hv of all v ∈ V 1
h and the convex hulls H ′v of the subset of points of

S∗v above the line p∗ for all v ∈ V 2
h . For each v ∈ V 1

h , the convex hull Hv is available due to the preprocessing.
For each v ∈ V 2

h , H ′v can be obtained in O(log n) time as follows. Using the point location data structure on
A(Sv), we find the face Fp(Sv) of A(Sv) containing p, and then H ′v is dual to the lower portion of the boundary
of Fp(Sv)

5, whose binary search tree is computed in the preprocessing. Due to the property (4) of V 1
h and V 2

h ,
all convex hulls Hv, v ∈ V 1

h , and H ′v, v ∈ V 2
h , are pairwise disjoint. Thus, we can again apply the algorithm of

Lemma 3.4 to compute H+(p∗) from these convex hulls in O((|V 1
h |+ |V 2

h |) log n) time. As |V 1
h |+ |V 2

h | = O(
√
n/r)

holds with high probability, the time for computing H+(p∗) is bounded by O(
√
n/r log n) with high probability.

Analogously, we can compute upper hull H−(p∗). Afterwards, Fp(S) can be obtained as a binary search tree
in O(log n) time by computing the inner common tangents of H+(p∗) and H−(p∗), as explained in Section 3.1.
The total query time is bounded by O(

√
n/r log n) with high probability. Further, Fp(S) can be output explicitly

in additional |Fp(S)| time.
As before, depending on applications, one can decide whether persistent trees are needed for representing

convex hulls of the nodes of T (r) as well as the boundary portions of the faces of the arrangements A(Sv) of the
leaves v of T (r).

We summarize our result in the following theorem.

Theorem 5.2. Given a set S of n lines in the plane, for any value r < n/ logω(1) n, we can preprocess it in
O(n log n+nr) randomized time and O(n log n+nr) space so that for any query point p, we can produce a binary
search tree representing the face of A(S) that contains p and the query time is bounded by O(

√
n/r log n) with

high probability. Using the binary search tree, standard binary-search-based queries can be performed on the face
in O(log n) time each, and outputting the face explicitly can be done in time linear in the number of edges of the
face.

Remark. Using the random sampling techniques [13, 24], a tradeoff between the preprocessing and
the query time was also provided in [17] roughly with the following performance: the preprocessing takes

O(n3/2r1/2 log3/2 r log2 n) randomized time, the space is O(nr log r log n), and the query time is bounded by
O(

√
n/r log2 n) with high probability (combining with the compact interval trees [23]). Hence, our result improves

on all three aspects, albeit on a smaller range of r.

5In fact, the lower portion of the boundary of Fp(Sv) may be only part of the dual of H′v . However, since Fp(S) ⊆ Fp(Sv), using
the lower portion of Fp(Sv) as the dual of H′v to compute H+(p∗) and then compute Fp(S) will give the correct answer.
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