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Abstract. Given a set P of n points in the plane, a unit-disk graph
G (P) with respect to a parameter r is an undirected graph whose vertex
set is P such that an edge connects two points p, ¢ € P if the (Euclidean)
distance between p and ¢ is at most r (the weight of the edge is 1 in the
unweighted case and is the distance between p and ¢ in the weighted
case). Given a value A > 0 and two points s and ¢ of P, we consider the
following reverse shortest path problem: Compute the smallest r such
that the shortest path length between s and ¢ in G,(P) is at most A. In
this paper, we study the weighted case and present an O(n°/*log®/?n)
time algorithm. We also consider the L; version of the problem where
the distance of two points is measured by the L; metric; we solve the
problem in O(n log® n) time for both the unweighted and weighted cases.

1 Introduction

Given a set P of n points in the plane and a parameter r, the unit-disk graph
G, (P) is an undirected graph whose vertex set is P such that an edge connects
two points p, ¢ € P if the (Euclidean) distance between p and ¢ is at most r. The
weight of each edge of G,.(P) is defined to be one in the unweighted case and
is defined to the distance between the two vertices of the edge in the weighted
case. Alternatively, G,.(P) can be viewed as the intersection graph of the set of
congruous disks centered at the points of P with radii equal to r/2, i.e., two
vertices are connected if their disks intersect. The length of a path in G, (P) is
the sum of the weights of the edges of the path.

Computing shortest paths in unit-disk graphs with different distance metrics
and different weights assigning methods has been extensively studied, e.g., [5—
7,12,13,17,19,20]. Although a unit-disk graph may have £2(n?) edges, geometric
properties allow to solve the single-source-shortest-path problem (SSSP) in sub-
quadratic time. Roditty and Segal [17] first proposed an algorithm of O(n*/3+¢)
time for unit-disk graphs for both unweighted and weighted cases, for any € > 0.
Cabello and Jejéi¢ [5] gave an algorithm of O(nlogn) time for the unweighted
case. Using a dynamic data structure for bichromatic closest pairs [1], they also
solved the weighted case in O(n!*€) time [5]. Chan and Skrepetos [6] gave an
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O(n) time algorithm for the unweighted case, assuming that all points of P
are presorted. Kaplan et al. [13] developed a new randomized result for the
dynamic bichromatic closest pair problem; applying the new result to the algo-
rithm of [5] leads to an O(nlog'>t°™® n) expected time randomized algorithm
for the weighted case. Recently, Wang and Xue [19] proposed a new algorithm
that solves the weighted case in O(nlog?n) time.

The L1 version of the SSSP problem has also been studied, where the distance
of two points in the plane is measured under the Ly metric when defining G,.(P).
Note that in the Ly version a “disk” is a diamond. The SSSP algorithms of [5, 6]
for the Lo unweighted version can be easily adapted to the L; unweighted version.
Wang and Zhao [20] recently solved the L; weighted case in O(nlogn) time. It is
known that 2(nlogn) is a lower bound for the SSSP problem in both Ly and Lo
versions [5,20]. Hence, the SSSP problem in the L; weighted/unweighted case
as well as in the Lo unweighted case has been solved optimally.

In this paper, we consider the following reverse shortest path (RSP) problem.
In addition to P, given a value A > 0 and two points s,t € P, the problem is
to find the smallest value r such that the distance between s and ¢ in G,.(P) is
at most A. Throughout the paper, we let * denote the optimal value r for the
problem. The goal is therefore to compute r*.

Observe that r* must be equal to the distance of two points in P in any case
(i.e., L1, Lo, weighted, unweighted). For the Ly unweighted case, Cabello and
Jejcic [5] mentioned a straightforward solution that can solve it in O(n*/3 log® n)
time, by using the distance selection algorithm of Katz and Sharir [14] to perform
binary search on all interpoint distances of P; Wang and Zhao [21] later gave two
algorithms with time complexities O(|A] - nlogn) and O(n/*1log™* n),! respec-
tively, using the parametric search technique. The first algorithm is interesting
for small A and the second algorithm uses the first one as a subroutine.

In this paper, we study the Lo weighted case of the RSP problem and present
an algorithm of O(n5/41og®/? n) time. We also consider the L; version of the RSP
problem and solve it in O(n log® n) time for both unweighted and weighted cases.

Recently, Katz and Sharir [15] proposed randomized algorithms of O(n5/5+¢)
expected time for the Lo RSP problem for both the unweighted and weighted
cases, for arbitrary small € > 0.2

The RSP problem has been studied in the literature under various prob-
lem settings. Intuitively, the problem is to modify the graph (e.g., modify edge
weights) so that certain desired constraints related to shortest paths can be satis-
fied, e.g., [4,22]. As a motivation of our problem, consider the following scenario.
Suppose G,.(P) represents a wireless sensor network in which each sensor is rep-
resented by a disk centered at a point in P and two sensors can communicate

! The time complexity given in [21] is O(n®/*log?n), but can be easily improved
to O(n5/4 log™/* n) by changing the threshold for defining large cells from n®* to
(n/logn)®* in Sect. 4 [21].

2 It is not explicitly stated in [15] that the algorithm is randomized. A key subroutine
used in the algorithm is Theorem 1 [15], which is from [2] and is a randomized
algorithm (see Sect. 4 in [2]).
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with each other (e.g., directly transmit a message) if they are connected by an
edge in G,.(P). The disk radius is proportional to the energy of the sensor. The
latency of transmitting a message between two neighboring sensors is propor-
tional to their distance. For two sensors s and ¢, we want to know the minimum
energy for all sensors so that the total latency of transmitting messages between
s and t is no more than a target value \. It is not difficult to see that this is
equivalent to our RSP problem.

1.1 Our Approach

Our algorithm for the Lo weighted RSP problem follows the parametric search
scheme. Let d,(s,t) denote the distance from s to ¢t in G, (P). Given any r, the
decision problem is to decide whether r* < r. Observe that r* < r holds if and
only if d,(s,t) < A\. Hence, the shortest path algorithm of Wang and Xue [19]
(referred to the WX algorithm) can be used to solve the decision problem in
O(n log? n) time. To compute 7*, since r* is equal to the distance of two points
of P, one could first compute all interpoint distances of points of P and then use
the WX algorithm to perform binary search among these distances to compute
r*. Clearly, the algorithm takes £2(n?) time. Alternatively, as mentioned in [5],
one can perform binary search by using the distance selection algorithm of Katz
and Sharir [14] (i.e., given any k with 1 < k < (g), the algorithm finds the
k-th smallest distance among all interpoint distances of P) without explicitly
computing all these £2(n?) distances. As the algorithm of Katz and Sharir [14]
runs in O(n*/3log?n), this approach can compute 7* in O(n*3log®n) time.
We propose a more efficient parametric search algorithm, by “parameter-
izing” the decision algorithm, i.e., the WX algorithm. Like typical parametric
search, we run the decision algorithm with a parameter r € (r1,r2] by simulat-
ing the decision algorithm on the unknown r*. At each step, we call the decision
algorithm on certain “critical values” r to compare r and r*, and the algorithm
will proceed accordingly based on the result of the comparison. The interval
(r1,72] will also be shrunk after these comparisons but is guaranteed to contain
r* throughout the algorithm. The algorithm terminates once t is reached, at
which moment we can prove that 7* is equal to r9 of the current interval (rq, ro].
For the L1 RSP problem, we use an approach similar to the distance selection
algorithm in [14]. As in the Ly case, the decision problem can be solved in
O(nlogn) time by applying the SSSP algorithms for both the unweighted case
and the weighted case [5,6,20,21] (more precisely, for the unweighted case, the
decision problem can be solved in O(n) time after O(nlogn) time preprocessing
for sorting the points of P [6]). Let IT denote the set of all pairwise distances of
all points of P. In light of the observation that r* is in II, each iteration of our
algorithm computes an interval (a;,b;] (initially, ap = —oo and by = o0) such
that r* € (a;, b;] and the number of values of IT in (a;, b;] is a constant fraction
of the number of values of IT in (a;_1,bj_1]. In this way, 7* can be found within
O(logn) iterations. Each iteration will call the decision algorithm to perform
binary search on certain values. The total time of the algorithm is O(n log® n).



138 H. Wang and Y. Zhao

A by-product of our technique is an O(n log? n) time algorithm that can
compute the k-th smallest L, distance among all pairs of points of P, for any
given k with 1 < k < (g) As mentioned before, the Lo version of the problem

can be solved in O(n*/?log®n) time [14].

Outline. In the following, we tackle the Ly problem in Sects. 2. Due to the space
limit, many proofs and the discussion about the L; problem are omitted but can
be found in the full paper of [21] (the two papers are merged).

2 The L, RSP Problem

We follow the notation introduced in Sect. 1, e.g., P, G,.(P), d,-(s,t), r*. Our goal
is to compute 7*. As we will parameterize the WX algorithm, we first review the
WX algorithm. For any two points p and ¢ in the plane, let ||[p — ¢|| denote the
Fuclidean distance between them.

2.1 A Review of the WX Algorithm

Given P, r, and a source point s € P, we consider the SSSP problem to compute
shortest paths from s to all points of P in the unit-disk graph G,.(P). The WX
algorithm can solve the problem in O(nlog®n) time.

For any point p, denote by Qp the disk centered at p with radius r.

The first step is to implicitly build a grid ¥, (P) of square cells whose side
lengths are r/2. For simplicity of discussion, we assume that every point of P
lies in the interior of a cell of ¥,.(P). A patch of ¥,.(P) refers to a square area
consisting of 5 x 5 cells. For a point p € P, we use [, to denote the cell of
¥, (P) containing p and use B, to denote the patch whose central cell is [,
(e.g., see Fig. 1). We refer to cells of B, \ O, as the neighboring cells of O,,. As
the side length of each cell of ¥,.(P) is r/2, any two points of P in a single cell
of ¥,.(P) must be connected by an edge in G,.(P). Moreover, if an edge connects
two points p and ¢ in G,(P), then ¢ must lie in B, and vice versa. For any
subset @ C P and a cell O (resp.,a patch B) of &,.(P), define Qo = @NO (resp.,
Qm = @ NH). The step of implicitly building the grid actually computes the
subset P for each cell O of ¥,.(P) that contains at least one point of P as well as
associate pointers to each point p € P so that given any p € P, the list of points
of Pg, (resp., Pg,) can be accessed immediately. Building ¥, (P) implicitly as
above can be done in O(nlogn) time and O(n) space [19].

The WX algorithm follows the basic idea of Dijkstra’s algorithm and com-
putes an array dist[-] for each point p € P, where dist[p] will be equal to d,(s,p)
when the algorithm terminates. Different from Dijkstra’s shortest path algo-
rithm, which picks a single vertex in each iteration to update the shortest path
information of other adjacent vertices, the WX algorithm aims to update in
each iteration the shortest path information for all points within one single cell
of ¥,.(P) and pass on the shortest path information to vertices lying in the
neighboring cells.
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A key subroutine used in the WX algorithm is UPDATE(U, V'), which updates
the shortest path information for a subset V' C P of points by using the shortest
path information of another subset U C P of points. Specifically, the subroutine
finds, for each v € V, ¢, = argmin,cyng, {dist[u] + [[u — v[|} and update
dist[v] = min{dist|[v], dist[q,] + ||qu — v||}-

With the subroutine UPDATE(U, V'), the WX algorithm works as follows.

Initially, we set dist[s] = 0, dist[p] = oo for all other points p € P\ {s}, and
@ = P. Then we enter the main (while) loop. In each iteration, we find a point
z with minimum dist-value from @, and then execute two update subroutines
UPDATE(Qm. , Q0. ) and UPDATE(QQ., Qm. ). Next, points of Qp_ are removed
from @, because it can be shown that dist[p] for all points p € Qn, have been
correctly computed [19]. The algorithm stops once @ becomes (). The efficiency
of the algorithm hinges on the implementation of the two update subroutines.
We give some details below, which are needed in our RSP algorithm as well.

The First Update. For the first update UPDATE(Qm_, Q0. ), the crucial step is
finding a point ¢, € Qm. N, for each point v € Qn_ such that dist]g,]+| g, —v||
is minimized. If we assign dist[q] as a weight to each point ¢ € Qm,, then the
problem is equivalent to finding the additively-weighted nearest neighbor ¢,
from Qm. N, for each v € Q.. To this end, Wang and Xue [19] proved a key
observation that any point ¢ € Qm_ that minimizes dist[q] + ||¢ — v| must lie in
(®,- This implies that for each point v € Q_, its additively-weighted nearest
neighbor in Qg is also its additively-weighted nearest neighbor in Qm, N ©),.
As such, g, for all v € @, can be found by first building an additively-weighted
Voronoi Diagram on points of Qg_ [9] and then performing point locations for all
v € Qo. [8,16,18]. In this way, since > |Pg. | = O(n), where 2; refers to the
point z in the i-th iteration of the main loop, the first updates for all iterations
of the main loop can be done in O(nlogn) time in total [19].

The Second Update. The second update UPDATE(QQ,, @m,) is more chal-
lenging because the above key observation no longer holds. Since Qg_ has O(1)
cells of ¥, (P), it suffices to perform UPDATE(Qn., Qo) for all cells O € H,.

If Ois O, then Q. = @o. Since the distance between any two points in [,
is at most r, we can easily implement UPDATE(Qn,, Qo) in O(|Qn, | log |Qn. )
time, by first building a additively-weighted Voronoi diagram on points of Qo
(each point g € Q. is assigned a weight equal to dist[g]), and then using it to
find the additively-weighted nearest neighbor g, for each point v € Q..

If O is not O,, a useful property is that [0 and O, are separated by an
axis-parallel line. The WX algorithm implements UPDATE(QQ., Q) with the
following three steps. Let U = Qn, and V = Qn.

1. Sort points of U as {u1,us,...,ujy} such that distlu;] < distlus] < ... <
dist[u)].
2. Compute |U| disjoint subsets {V1, ..., iy} with Vi = {v € V |[v € O, and v ¢

@uj for all 1 < j < i}. Equivalently, for each point v € V, v is in V;,, where

iy is the smallest index i (if exists) such that (O, contains v.
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3. Initialize U" = (). Proceed with |U| iterations for i = |U|, |U| —1, ..., 1 sequen-
tially and do the following in each iteration for é: (1) Add u; to U’; (2) for
each point v € V;, compute ¢, = argmin, ey {dist[u] + ||[u — v||}; (3) update
dist[v] = min{dist[v], dist[q,] + ||qu — ||}

By the definition of V;, UN O, € U" = {uy|, uy|-1, .., ui} for each v €
V; in the iteration for i of Step 3. Wang and Xue [19] proved that ¢, found
for each v € V; in Step 3 must lie in (,. They gave a method to implement
Step 2 in O(klogk) time by making use of the property that U and V are
separated by an axis-parallel line, where k = |U|+|V|. Step 3 can be considered as
an offline insertion-only additively-weighted nearest neighbor searching problem
and the WX algorithm solves the problem in O(k log? k) time using the standard
logarithmic method [3], with k = |U| + |V].

As such, the second updates for all iterations in the WX algorithm takes
O(nlog?n) time in total [19], which dominates the entire algorithm (other parts
of the algorithm together takes O(nlogn) time).

2.2 The RSP Algorithm

We now tackle the RSP problem, i.e., computing r* for two points s,t € P and
a value A, by “parameterizing” the WX algorithm.

Recall that the decision problem is to decide whether r* < r for a given r.
Notice that r* < r holds if and only if d,(s,t) < A. The decision problem can be
solved in O(nlog?n) time by running the WX algorithm on 7. In the following,
we refer to the WX algorithm as the decision algorithm. We say that r is a
feasible value if r* < r and an infeasible value otherwise.

As discussed in Sect.1, to find r*, we run the decision algorithm with a
parameter 7 in an interval (r1,r2] by simulating the algorithm on the unknown
r*. The interval always contains r* but will be shrunk during course of the
algorithm (for simplicity, when we say (r1,72] is shrunk, this also include the
case that (r1,72] does not change). Initially, we set 71 = 0 and ry = oco.

The first step is to build a grid for P. The goal is to shrink (ry, 73] so that
it contains r* and if r* # 7y (and thus r* € (r1,r2)), for any r € (r1,r2),
the grid ¥,.(P) has the same combinatorial structure as ¥,.« (P) in the following
sense: (1) Both grids have the same number of rows and columus; (2) for any
point p € P, p lies in the i-th row and j-th column of ¥, (P) if and only if p
lies in the i-th row and j-th column of ¥, (P). This step is also needed in the
algorithm of [21] for solving the unweighted case of the RSP problem and an
O(nlogn) time algorithm was given in [21] to achieve this by using the sorted
matrix searching technique [10,11] along with the linear-time decision algorithm
for the unweighted case [6] (more specifically, the decision algorithm is called
O(logn) times). Here in our weighted problem, we can apply exactly the same
algorithm except that we use our O(n log2 n) time decision algorithm instead
and the total time thus becomes O(nlog®n).
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Let (71, 72] denote the interval after building the grid. We pick any r € (r1,72)
and call the WX algorithm on r to compute a grid &, (P). Recall from Sect. 2.1
that by “computing ¥, (P)”, we mean to compute the following grid information:
P for each cell O of ¥,.(P) that contains at least one point of P as well as the
associated information (e.g., for finding cells of Pg, ). These information is the
same as that of W« (P) if r* # ry. Below, we will simply use ¥ (P) to refer to the
grid information computed above, meaning that it does not change with respect
to r € (ri,ra).

We use dist,[-], Q(r), z(r) respectively to refer to dist[-], @, z in the WX
algorithm running on a parameter r. We start with setting dist,.[s] = 0, dist,[p] =
oo for all p € P\ {s}, and Q(r) = P.

Next we enter the main loop. As long as Q(r) # 0, each iteration finds a
point z(r) with the minimum dist,-value from @Q(r) and update dist,.-values for
points in Q(r)o,,, UQ(r)m,,,,- Points in Q(r)g,,, are then removed from Q(r).
Each iteration will shrink (rq,r2] such that the following algorithm invariant
is maintained: (rq,r2] contains r* and if r* # rg, the following holds for all
r € (r1,r2): 2(r) = z(r*), Q(r) = Q(r*), and dist,[p] = dist«[p] for all p € P.

Consider an iteration of the main loop. We assume that the invariant holds
before the iteration on the interval (r1, 2], which is true before the first iteration.
In the following, we describe our algorithm for the iteration and we will show
that the invariant holds after the iteration. We assume that r* # r5. According
to our invariant, for any r € (ri,72), we have z(r) = z(r*), Q(r) = Q(r*), and
dist,[p] = dist,-[p] for all p € P.

We first find a point z(r) € Q(r) with the minimum dist,-value. Since the
invariant holds before the iteration, we have z(r) = argming,cq( dist,[p] =
arg ming,eq(,+) dist,« [p] = z(r*). If ties happen, we follow the same way as the
WX algorithm to break ties and ensure z(r) = z(r*). Hence, no “parameteriza-
tion” is needed in this step, i.e., all involved values in the computation of this
step are independent of r.

Next, we perform the first update UPDATE(Q(r)m,,,, Q(r)o,,,,)- This step
also does not need parameterization. Indeed, for each point p € Q(r)agzm, we
assign dist,[p] to p as a weight, and then construct the additively-weighted
Voronoi diagram on Q(r)m,,,. For each point v € Q(r)n we use the dia-

gram to find its additively-weighted nearest neighbor qv(vi)) € Q(r)m,, and
update dist,[v] = min{dist,[v],dist,[g,(r)] + ||¢u(r) — v||}. Since z(r) = z(r*),
and Q(r) = Q(r*), we have Q(r)m, ., = Q(r)m.,... and Q(r).,., = Q).
Further, since dist,[p| = dist,«[p] for all p € P, for each point v € Q(r)o,,,,
qv(r) = g (r*) and each updated dist,[v] in our algorithm is equal to the corre-
sponding updated dist,[v] in the same iteration of the WX algorithm running
on r*. As such, the invariant still holds after the first update.

Implementing the second update UPDATE(Q(r)o, ,,, Q(r)m,,,,) is more chal-
lenging and parameterization is necessary. It suffices to implement the updates
UPDATE(Q(T)DZ(T), Q(r)o) for all cells O € B, ;.

IfOis 0, (), then Q(’I“)Dz(r) = Q(r)g. In this case, again no parameterization is
needed. Since the distance between any two points in [, is at most r, we can eas-

ily implement UPDATE(Q(r)n,,,,, @(r)o) in O(|Q(r)o. (| log |Q(r)o. ()]) time,
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by first building an additively-weighted Voronoi diagram on points of Q(r)m, -
(each point p € Q(r)o,,, is assigned a weight equal to dist, [p]), and then using it
to find the additively-weighted nearest neighbor g, (r) for each point v € Q(r)g. .
By an analysis similar to the above first update, the invariant still holds.

We now consider the case where [ is not [, (). In this case, J and [,
are separated by an axis-parallel line ¢. Without loss of generality, we assume
that ¢ is horizontal and O, is below £. Since z(r) = 2(r*) and Q(r) = Q(r*)
for all 7 € (r1,12), we let U = Q(r)o,,, and V = Q(r)g, meaning that both U
and V are independent of r € (r1,r2). Recall that there are three steps in the
second update of the decision algorithm. Our algorithm needs to simulate all
three steps. As will be seen later, only the second step needs parameterization.

The first step is to sort points in U by their dist,-values. Since dist,[p] =
dist.«[p] for all p € P, the sorted list {uy,us,...,ujy} of U obtained in our
algorithm is the same as that obtained in the decision algorithm running on 7*.

For any r, denote by @p(r) the disk centered at a point p with radius r.

The second step is to compute |U] disjoint subsets {Vi(r), Va(r), ..., Viy(r)}
of V such that V;(r) = {v | i,(r) = i,v € V}, where i,(r) is the smallest index
such that Quim) (r) contains point v. This step needs parameterization. We will
shrink the interval (rq, 7] so that it still contains 7* and if r* # 7o, then for
any r € (ri,72), Vi(r) = Vi(r*) holds for all 1 < i < |U] (it suffices to ensure
iy (1) = iy (r*) for all v € V). Our algorithm relies on the following observation,
which is based on the definition of i, (r).

Observation 1. For any point v € V, if @uj (r) contains v with 1 < j < |U],
then i,(r) < j.

For a subset P’ C P, let F,.(P’) denote the union of the disks centered at
points of P’ with radius r. We first solve a subproblem in the following lemma.

Lemma 1. Suppose (r1,r2] contains r* such that if v* # ro, then for all r €
(r1,7r2), dist,[p] = dist,-[p] for all points p € P. For a subset U' C U and a
subset V! C V, in O(nlog® n-log(|U'| +|V'|)) time we can shrink (r1,r2] so that
it still contains r* and if v* # ro, then for all v € (r1,7r2), for any v € V', v is
contained in Fr(U") if and only if v is contained in Fp-(U’).

Recall that we have an interval (ry, r3]. Our goal is to shrink it so that it still
contains r* and if r* # rq, then for any r € (r1,72), Vi(r) = V;(r*) holds for all
1 < i <|U|. With Observation 1 and Lemma 1, we have the following lemma.

Lemma 2. We can shrink the interval (r1, 73] in O(nlog*n) time so that it still
contains r* and if r* # rq, then for any r € (r1,r2), Vi(r) = Vi(r*) holds for all
1< <|U|.

Proof. To have V;(r) = V;(r*) for all 1 < ¢ < |U|, it suffices to ensure i,(r) =
i, (r*) for all points v € V. Let M = |U| and N = |V|. Note that M < n and
N <n.

As defined in the proof of Lemma 1, for any subset U’ C U and any r, denote
by U,.(U’) the upper envelope of the portions of (O, (r) above ¢ for all u € U".
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Fig.1. The red cell that contains Fig. 2. Illustrating U; and Vi, where U; =
the point p is O, and the square {u1,u2,us} and Vi = {wva,vs,vr}. The solid
area bounded by blue segments is the arcs are on U= (Uy).

patch H,. All adjacent vertices of p

in G,(P) must lie in the grey region.

(Color figure online)

In light of Observation 1, we use the divide and conquer approach. Recall
that U = {u1, us,...,up}. Consider the following subproblem on (U, V): shrink
(r1,72] so that it still contains r* and if r* # ro, then for any r € (rq,r2), for
any v € V, v is below U, (Uy) if and only if v is below U, (U;1), where U; is
the first half of U, i.e., Uy = {uq,uq, ""uL%J}' The subproblem can be solved
in O(nlog®n) time by applying Lemma 1. Next, we pick any r € (r,r2) and
compute U,-(Uy) and find the subset V; of the points of V' that are below U,.(Uy)
(e.g., see Fig. 2). By Observation 1, for each point v € V, i,(r) < [ ] if v € }
and i,(r) > L%j otherwise. By the above property of (rq,rs], for each point
v €V, we also have i, (r*) < | %] if v € V; and i,(r*) > [ % | otherwise.

Next, we solve two subproblems recursively: one on (Uy, V1) and the other
on (U \ U,V \ V7). Both subproblems use (r1,72] as their “input intervals”
and solving each subproblem will produce a shrunk “output interval” (rq,rs].
Consider a subproblem on (U’, V') with U’ C U and V' C V. If |U’| = 1, then we
solve the problem “directly” (i.e., this is the base case) as follows. Assume that
r* # ro and let r be any value in (71, 72). Let u; be the only point of U’. If j < M,
according to our algorithm and based on Observation 1, i,(r) = i,(r*) = j holds
for all points v € V'. If j = M, however, for each point v € V', it is possible that
v is not contained in (), (r*) for any point u € U, in which case v is not below
U,~(U) and thus is not below U« (U"). On the other hand, if v is below U,.« (U’),
then 7, (r*) = M. To solve the problem, we can simply apply Lemma 1 on U’
and V| after which we obtain an interval (r1,r]. Then, we pick any r € (r1,72)
and for any v € V' with v contained in (9, (7), iv(r) = i,(r*) = M holds if
r* £ ro.

The above divide-and-conquer algorithm can be viewed as a binary tree struc-
ture 7' in which each node represents a subproblem. Clearly, the height of T is
O(log M) and T has ©@(M) nodes. If we solve each subproblem individually
by Lemma 1 as described above, then the algorithm would take 2(Mn) time
because there are {2(M) subproblems and solving each subproblem by Lemma 1



144 H. Wang and Y. Zhao

takes £2(n) time, which would result in an 2(n?) time algorithm in the worst
case. To reduce the runtime, instead, we solve subproblems at the same level
of T simultaneously (or “in parallel”) by applying the algorithm of Lemma 1.
We can show that solving all subproblems in the same level of T' can be done
in O(nlog®n) time. The details are given in our full paper. As T has O(log M)
levels, the total time of the overall algorithm is O(nlog* n). O

With Lemma 2, we obtain subsets {Vi(r), Va(r), ..., Vjy|(r)} and an interval
(r1,72] containing r* such that if r* # ry, for any r € (ry,72), Vi(r) = Vi(r*)
holds for all 1 <4 < |U|. Note that neither the array dist,[-] nor Q(r) is modified
during the algorithm of Lemma 2. Hence, if r* # ry, for all r € (rq,rs], we
still have Q(r) = Q(r*) and dist,.[p] = dist.-[p] for all points p € P. Thus,
our algorithm invariant still holds. This finishes the second step of the second
update.

The third step of the second update is to solve the offline insertion-only
additively-weighted nearest neighbor searching problem. This step does not
need parameterization. Similar to the first update, we pick any r € (ry,r2)
and apply the WX algorithm directly. Indeed, the algorithm on 7* only relies
on the following information: U and its sorted list by dist,«[-] values and the
subsets Vi(r*),...,Vjy|(r*). Recall that if 7* # 7y, then for all » € (rq,72),
dist,[p] = dist,[p] for allp € P, and V;(r) = V;(r*) for all 1 <4 < |U|. As such, if
we pick any r € (r1,r2) and apply the WX algorithm directly, dist,.[v] = dist,. [v]
holds for all points v € V after this step. Therefore, as in the WX algorithm,
this step can be done in O(klog? k) time, where k = |U| + |V].

This finishes the second update of the algorithm. As discussed above, the
algorithm invariant holds for the interval (ry,ro].

The final step of the iteration is to remove points in Q(r)o,,, from Q(r).
Since if r* # ro, for all » € (r1,7m2), Q(r) = Q(r*), z(r) = z(r*), and
Q(?“)DZ(T) = Q(r*)gzw), Q(r) = Q(r*) still holds after this point removal oper-
ation. Therefore, our algorithm invariant holds after the iteration.

In summary, each iteration of our algorithm takes O(n log? n) time. If the
point ¢ is contained in [, (i.e., ¢ is reached) in the current iteration, then we
terminate the algorithm. The following lemma shows that we can simply return
ro as r*.

Lemma 3. Suppose thatt is contained in Uy in an iteration of our algorithm
and (r1,73] is the interval after the iteration. Then r* = ry.

The algorithm may take £2(n?) time because t may be reached in £2(n) iter-
ations. A further improvement is discussed in the next subsection.

2.3 A Further Improvement

To further reduce the runtime of the algorithm, we borrow a technique from [21]
to partition the cells of the grid into large and small cells.

As before, we first compute the grid information ¥(P) and obtain an interval
(r1,72]. Let C denote the set of all non-empty cells of (P) (i.e., cells that contain
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at least one point of P). For each cell C' € C, let N(C') denote the set of non-
empty neighboring cells of C' in C and P(C') the set of points of P contained in
cell C. We have [N(C)| = O(1) and |C| = O(n). A cell C of C is a large cell if
it contains at least n®/4log®?n points of P, i.e., |[P(C)| > n3/4log??n, and a
small cell otherwise. Clearly, C has at most n1/4/ logg/2 n large cells. For all pairs
of non-empty neighboring cells (C,C"), with C' € C and C' € N(C), (C,C") is a
small-cell pair if both C' and C” are small cells, and a large-cell pair otherwise,
i.e., at least one cell is a large cell. Since N(C') = O(1) for each cell C' € C, there
are O(n'/*/1log/? n) large-cell pairs.

We first provide some intuition about our approach and then fresh out the
details. Notice that in each iteration of the main loop in our previous algorithm,
only the second step of the second update parameterizes the WX algorithm (i.e.,
the decision algorithm is called on certain critical values); in that step, we need
to process O(1) pairs of cells (C,C’) with C € C and C’" € N(C'). No matter how
many points of P contained in the two cells, we need O(n log* n) time to perform
the parametric search due to Lemma 2. To reduce the time, we preprocess all
small-cell pairs so that the algorithm only needs to perform the parametric search
for large-cell pairs. Since there are only O(n/4/log®?n) large-cell pairs, the
total time we spend on parametric search can be reduced to O(n%/4log®?n).
For those small-cell pairs, the preprocessing provides sufficient information to
allow us to simply run the original WX algorithm without resorting to parametric
search. Specifically, before we enter the main loop of the algorithm (and after the
grid information ¥ (P) is computed, along with an interval (rq, r3]), we preprocess
all small-cell pairs using the following lemma which is similar to [21].

Lemma 4. In O(n%/*1og®?n) time we can shrink the interval (r1,73)] so that
it still contains r* and if v* # ro, then for any r € (r1,72), for any small-cell
pair (C,C") with C € C and C' € N(C), an edge connects a point p € P(C) and
a point p' € P(C") in G,(P) if and only if an edge connects p and p' in G« (P).

Let (r1,72] denote the interval obtained after the preprocessing for all small-
cell pairs in Lemma 4. Lemma 4 essentially guarantees that if 7* # ry, then for
any r € (r1,72), the adjacency relation of points in any small-cell pair in G,.(P)
is the same as that in G,«(P). Note that if (r1,72] is shrunk so that it still
contains r*, then the above property still holds for the shrunk interval. Based
on this property, combining with our previous algorithm, we have the following
theorem.

Theorem 1. The reverse shortest path problem for unit-disk graphs in the Lo
weighted case can be solved in O(n%/*log®*n) time.
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