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ABSTRACT

The Hamiltonian structure of a set of gauge-free gyrokinetic Vlasov–Maxwell equations is presented in terms of a Hamiltonian functional
and a gyrokinetic Vlasov–Maxwell bracket. The bracket is used to show that the gyrokinetic angular momentum conservation law can be
expressed in Hamiltonian form. The Jacobi property of the gyrokinetic Vlasov–Maxwell bracket is also demonstrated explicitly.
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I. INTRODUCTION

The Hamiltonian structure of several plasma physics models has
been a topic of constant interest since the discovery of the
Hamiltonian structures for the ideal magnetohydrodynamics1 and the
Vlasov–Maxwell equations.2–5 The numerical algorithms derived from
the Vlasov–Maxwell Hamiltonian structure were explored in several
recent papers.6–12 The generic guiding-center Vlasov–Maxwell bracket
was presented by Morrison,13 while the generic gyrokinetic
Vlasov–Maxwell bracket was presented by Burby et al.14–17 The gen-
eral Hamiltonian formulation for the reduced Vlasov–Maxwell equa-
tions was also derived by Lie-transform methods by Brizard et al.18

The guiding-center Vlasov–Maxwell equations suitable for
Hamiltonian formulation were initially presented by Pfirsch and
Morrison19 and recently presented in simplified form (without guiding-
center polarization) by Brizard and Tronci,20 while two gauge-free gyro-
kinetic Vlasov–Maxwell models suitable for Hamiltonian formulation
were presented by Burby and Brizard21 and Brizard.22,23

After having asymptotically eliminated the gyroangle f and con-
structed the gyroaction J � ðmc=qÞl as an adiabatic invariant (l
denotes the magnetic moment of a particle of massm and charge q), a
reduced Lagrangian Lg is expressed in general, form as

Lg ¼
q
c
AþPg

� �
� dX
dt

þ J
df
dt

� qUþ�Kg
� �

; (1)

where the reduced phase-space coordinates Za ¼ ðX; pjj; J; fÞ include
the reduced particle position X and the parallel kinetic momentum pjj,
the reduced symplectic momentum and kinetic energy are denotedPg

and Kg, respectively. We note that, because of the “minimal-coupling”

potential terms ðq=cÞA � dX=dt � qU, the reduced Lagrangian (1)
is invariant under an electromagnetic gauge transformation ðU;AÞ
! ðU� c�1@v=@t;AþrvÞ since the reduced dynamics is invariant
under the Lagrangian gauge transformation24 Lg ! Lg þðq=cÞ dv=dt,
i.e., this transformation does not change the reduced equations of
motion obtained from Eq. (1). Hence, a gauge-free reduced
Lagrangian formulation is obtained when the reduced symplectic
momentum Pg and the reduced kinetic energy Kg in Eq. (1) depend
on the electric and magnetic fields ðE � �rU� c�1@A=@t;B � r
�AÞ only. For example, in guiding-center Vlasov–Maxwell theory,
Pfirsch and Morrison19 used Pgc ¼ pjj bb þ E� qbb=X and
Kgc ¼ lBþ jPgcj2=2m, while Brizard and Tronci20 considered the
simpler guiding-center Lagrangian with Pgc ¼ pjjbb and Kgc ¼ lB
þp2jj=2m. The Hamiltonian structure for the Brizard–Tronci version
of the guiding-center Vlasov–Maxwell equations was recently pre-
sented elsewhere,25 with an extensive proof of the Jacobi property for
the guiding-center Vlasov–Maxwell bracket.26

In gyrokinetic Vlasov–Maxwell theory, on the other hand, the elec-
tromagnetic potentials in Eq. (1) are decomposed in terms of back-
ground and perturbed components: ðU;AÞ ¼ ð�U1;A0 þ �A1Þ, where
B0 ¼ r� A0 is the time-independent background (unperturbed) mag-
netic field, and the dimensionless parameter � � 1 orders the perturba-
tion amplitudes in a manner consistent with standard gyrokinetic
theory.27 We note that, unless a gyrokinetic Vlasov–Maxwell model is
formulated exclusively in terms of the perturbed electric and magnetic
fields (with or without the minimal-coupling potential terms), the
appearance of potentials in the gyrocenter kinetic energy Kgy prevents a
Hamiltonian formulation. Hence, standard gyrokinetic Vlasov–Maxwell
models27 are not suitable for a Hamiltonian formulation.
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The recent work of Burby and Brizard21 is suitable for a
Hamiltonian formulation, however, since the gyrocenter symplectic
momentumPgy ¼ pjjbb0 is expressed only in terms of the unperturbed
magnetic field, while the gyrocenter kinetic energy Kgy is a function of
ðE1;B1Þ up to second order in � [see Eq. (3) below]. The purpose of
the present paper is, therefore, to derive the explicit Hamiltonian
structure for the gauge-free gyrokinetic Vlasov–Maxwell equations
presented by Burby and Brizard.21 This direct approach is in contrast
to the formal derivation presented by Burby.15 The case of the gauge-
free gyrokinetic equations derived by Brizard,22,23 in which the gyro-
center symplectic momentum Pgy ¼ pjj bb0 þ �P1gyðE1;B1Þ includes
first-order electromagnetic corrections, will be considered in future
work.

The remainder of this paper is organized as follows. In Sec. II, we
present the gauge-free gyrokinetic Vlasov–Maxwell equations derived
by Burby and Brizard,21 which are presented here in the drift-kinetic
limit in order to simplify our presentation. In Sec. III, the gyrokinetic
Vlasov–Maxwell bracket is explicitly constructed from the
Hamiltonian formulation of the gyrokinetic Vlasov–Maxwell equa-
tions. This gyrokinetic bracket structure is immediately applied to the
proofs that the gyrokinetic entropy functional is a Casimir of the gyro-
kinetic Vlasov–Maxwell bracket and the gyrokinetic Vlasov–Maxwell
toroidal angular momentum conservation law, first derived in varia-
tional (Lagrangian) form in Refs. 23 and 28 can be expressed in
Hamiltonian form. In Sec. IV, the explicit proof of the Jacobi property
of the gyrokinetic Vlasov–Maxwell bracket derived in Sec. III is given,
and a summary of our work is presented in Sec. V.

II. GAUGE-FREE GYROKINETIC VLASOV–MAXWELL
EQUATIONS

We begin with the gauge-free gyrocenter single-particle
Lagrangian,

Lgy ¼
q
c
A0 þ �� A1ð Þ þ pjj bb0 � J R�

0

� �
� dX
dt

þ J
df
dt

� q �U1 þ�Kgy
� �

� Pa
dZa

dt
� Hgy; (2)

where the higher-order guiding-center corrections R�
0 � R0 þ 1

2r
�bb0 include the background gyrogauge vector field R0 (which ensures
that the guiding-center equations of motion are independent of the
gyroangle as well as how the gyroangle is measured29) and the
guiding-center polarization correction 1

2r� bb0.
30 Next, the gyrocen-

ter kinetic energy is expanded up to second order in � � 1,21

Kgy ¼
p2jj
2m

þ l B0 þ �B1jj þ
�2

2B0
jB1j2

� �

�� pgc � E1 þ
pjjbb0

mc
� B1

 !

��2
mc2

2B2
0
jE1 þ ðpjjbb0=mcÞ � B1j2; (3)

where pgc denotes the guiding-center electric-dipole moment.30 For
the sake of clarity, the gyrokinetic Vlasov–Maxwell model considered
here is presented in its drift-kinetic limit, where finite-Larmor-radius
(FLR) corrections are retained only through the guiding-center
electric-dipole moment pgc.

A. Gyrocenter equations of motion

The gyrocenter equations of motion are first derived from the
gyrocenter Lagrangian (2) as Euler–Lagrange equations xab dZb=dt
�@Hgy=@Za,

0 ¼ � qE1 �rKgy þ
q
c
dX
dt

� B� �
dpjj
dt
bb0; (4)

0 ¼ bb0 �
dX
dt

� @Kgy

@pjj
; (5)

0 ¼ � dJ
dt

�
@Kgy

@f
� � dJ

dt
; (6)

0 ¼ df
dt

�
@Kgy

@J
� R�

0 �
dX
dt

; (7)

where xabðX; pjj;lÞ � @Pb=@Za � @Pa=@Zb. Equation (6) implies
that the gyroaction J (and the gyrocenter magnetic moment l) is a
gyrocenter invariant as a result of the gyroangle-independence of the
gyrocenter kinetic energy (3), and the gyroangle f is an ignorable coor-
dinate since Eq. (7) is decoupled from the reduced gyrocenter equa-
tions of motion (4) and (5), which are expressed in Hamiltonian form
as

dX
dt

¼ X; Kgyf ggy þ q �E1 � fX;Xggy; (8)

dpjj
dt

¼ pjj; Kgy
� 	

gy
þ q �E1 � fX; pjjggy: (9)

Here, the gyrocenter Poisson bracket,

ff ; gggy �
B�

B�
jj
� rf

@g
@pjj

� @f
@pjj

rg

 !
� cbb0

qB�
jj
� rf �rg; (10)

is used without the ignorable gyromotion canonical pair ðJ; fÞ, with

B� � B�
0 þ �B1;

B�
jj � bb0 � B� ¼ B�

jj0 þ � B1jj;
(11)

where B�
0 ¼ B0 þ ðpjjc=qÞr� bb0 � ðlmc2=q2Þr � R�

0, which is
gyrogauge invariant, and B�

jj0 � bb0 � B�
0. We note that the gyrocenter

equations of motion (8) and (9) are gauge independent since they only
involve the perturbed electromagnetic fields ðE1;B1Þ.

Next, we note that the gyrocenter Poisson bracket (10) satisfies
the Jacobi property for arbitrary functions (f, g, h),

ff ; gggy; h
n o

gy
þ fg; hggy; f
n o

gy
þ fh; f ggy; g
n o

gy
¼ 0; (12)

subject to the condition,

r � B� ¼ 0; (13)

which is satisfied by the definition (11). We note that the gyrocenter
Poisson bracket can be expressed in divergence form,

ff ; gggy ¼
1
B�
jj

@

@Za
B�
jj f Za; gf ggy


 �
; (14)

while the gyrocenter equations of motion (8) and (9) satisfy the gyro-
center Liouville equation,
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@B�
jj

@t
¼ bb0 � �

@B1

@t
¼ �c bb0 � r � �E1

¼ �r � B�
jj
dX
dt

� �
� @

@pjj
B�
jj
dpjj
dt

� �
: (15)

B. Gyrokinetic Vlasov–Maxwell equations

With the help of the reduced gyrocenter equations of motion
(8) and (9), we now introduce the gyrokinetic Vlasov–Maxwell
equations,

@Fgy
@t

¼ �r � Fgy
dX
dt

� �
� @

@pjj
Fgy

dpjj
dt

� �
; (16)

@Dgy

@t
¼ cr�Hgy � 4pq

ð
P
Fgy

dX
dt

; (17)

@B1

@t
¼ �cr� E1; (18)

where the gyrocenter phase-space density Fgy � F B�
jj is defined in

terms of the gyrocenter Jacobian B�
jj, so that the gyrokinetic Vlasov

equation (16) is expressed in divergence form, the symbol
Ð
P denotes

an integration over ðpjj; lÞ in Eq. (17), and summation over particle
species is implied throughout the work.

The macroscopic gyrokinetic fields ðDgy;HgyÞ in Eq. (17) are
defined as

Dgy

Hgy

 !
¼

�E1 þ 4pPgy

B0 þ �B1 � 4pMgy

 !
; (19)

where the gyrocenter polarization and magnetization are defined in
terms of the gyrocenter kinetic energy (3) as

Pgy ¼ ���1
ð
P
Fgy

@Kgy

@E1
�
ð
P
Fgy pgy

¼
ð
P
Fgy pgc þ �

mc2

B2
0

E1 þ
pjjbb0

mc
� B1

 !" #
; (20)

Mgy ¼ ���1
ð
P
Fgy

@Kgy

@B1

¼
ð
P
Fgy �l bb0 þ �

B1

B0

� �
þ pgy �

pjjbb0

mc

" #
; (21)

which are expressed in their drift-kinetic dipole-moment form,
whereas FLR corrections would involve higher-order multipole
moments.

The remaining Maxwell equations,

r �Dgy ¼ 4pq
ð
P
Fgy;

r � B1 ¼ 0;
(22)

may be viewed as initial conditions for ðDgy;B1Þ, since
r � ð@Dgy=@tÞ ¼ 4p @.gy=@t ¼ �4pr � Jgy follows from Eq. (17),
which is a statement of the gyrokinetic charge conservation law, while
r � ð@B1=@tÞ ¼ 0 follows from Eq. (18).

C. Hamiltonian gyrokinetic Vlasov–Maxwell equations

In the Hamiltonian formulation of the gyrokinetic
Vlasov–Maxwell equations (16)–(18), we begin with the gyrokinetic
Hamiltonian functional,23

Hgy ¼
ð
Z
Fgy KgyðE1;B1Þ þ

ð
X

�E1

4p
�Dgy

� 1
8p

ð
X
�2 jE1j2 � jB0 þ �B1j2
� �

; (23)

which is derived by Noether method from a Lagrangian formulation
of the gyrokinetic Vlasov–Maxwell equations (16)–(18). If we assume
thatDgy and E1 are functionally independent, we then find

dHgy

dDgy
¼ � E1=4p;

��1 dHgy

dE1
¼ Dgy=4p� �E1=4p�Pgy ¼ 0;

(24)

where we used the definition (20) for the gyrocenter polarization.
As can be seen from the definitions (20)–(21) of the gyrocenter
polarization and magnetization, we might conclude that
Dgy ¼ Dgy½Fgy;E1;B1� and Hgy ¼ Hgy½Fgy;E1;B1� might be func-
tionals of ðFgy;E1;B1Þ. The gyrokinetic Vlasov–Maxwell equations
(16)–(18), however, clearly imply that the correct gyrokinetic
fields are ðFgy;Dgy;B1Þ, with E1½Fgy;Dgy;B1� treated as functional
in Eq. (23). The reader is invited to consult Morrison’s work13 and
its application in gyrokinetic theory14 to learn how partial func-
tional derivatives can be handled in terms of constitutive
relations.

In what follows, we will formulate a Hamiltonian representation
of the gyrokinetic Vlasov–Maxwell equations in terms of the gyroki-
netic fields W ¼ ðFgy;Dgy;B1Þ. Hence, we shall also make use of the
functional derivatives (24) and

dHgy

dFgy
¼ Kgy; (25)

��1 dHgy

dB1
¼
ð
P
Fgy �

�1 @Kgy

@B1
þ 1
4p

B0 þ �B1ð Þ ¼ Hgy=4p; (26)

and we express the gyrokinetic Vlasov–Maxwell equations (16)–(18)
in Hamiltonian form,

@Wa

@t
� JabgyðWÞ �

dHgy

dWb ; (27)

where the gyrokinetic Vlasov–Maxwell Poisson operator JabgyðWÞ �

acts on functional derivatives of the gyrokinetic Hamiltonian func-
tional (23),

@Fgy
@t

¼ � @

@Za
Fgy Za;

dHgy

dFgy

( )
gy

0@ 1A
� @

@Za
Fgy 4pq

dHgy

dDgy
� fX; Zaggy

 !

� JFbgyðWÞ �

dHgy

dWb ; (28)
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@Dgy

@t
¼ 4pcr� ��1 dHgy

dB1

� �
� 4pq

ð
P
Fgy

dX
dt

� JDb
gy ðWÞ �

dHgy

dWb ; (29)

@B1

@t
¼ �4pcr� ��1 dHgy

dDgy

 !
� JBbgy ðWÞ �

dHgy

dWb : (30)

The gyrokinetic Vlasov–Maxwell bracket will be constructed in Sec. III
from the gyrokinetic Vlasov–Maxwell equations (28)–(30) used in
evaluating the time evolution of an arbitrary gyrokinetic functional
F½Fgy;Dgy;B1�,

@F
@t

¼
ð
Z

@Fgy
@t

dF
dFgy

þ
ð
X

@Dgy

@t
� dF
dDgy

þ @B1

@t
� dF
dB1

 !

� dF
dWa

�����JabgyðWÞ �

dHgy

dWb


 �
¼ F ;Hgy
� �

gy
; (31)

where the gyrokinetic Vlasov–Maxwell bracket is applied to function-
als of the gyrokinetic fields W ¼ ðFgy;Dgy;B1Þ and integrations by
parts may be performed.

III. GYROKINETIC VLASOV–MAXWELL BRACKET

In Eq. (31), the antisymmetric gyrokinetic Poisson operator
JabgyðWÞ � guarantees the antisymmetry property: ½F ;G�gy
¼ �½G;F�gy; and the bilinearity of Eq. (31) guarantees the Leibniz
(product-rule) property: ½F ;GK�gy ¼ ½F ;G�gy Kþ G ½F ;K�gy. The
Jacobi property of the gyrokinetic Vlasov–Maxwell bracket is
expressed as the requirement that the Jacobiator,

J ac F ;G;K½ � � F ;G½ �gy;K
h i

gy
þ G;K½ �gy;F
h i

gy

þ K;F½ �gy;G
h i

gy
¼ 0; (32)

must vanish for arbitrary functionals ðF ;G;KÞ, which imposes con-
straints on the Poisson operator JabgyðWÞ.

From the gyrokinetic Vlasov–Maxwell equations (28)–(30), we
can now extract the gyrokinetic Vlasov–Maxwell bracket from Eq.
(31), which is expressed in terms of two arbitrary gyrocenter function-
als ðF ;GÞ as

F ;�G½ �gy

¼
ð
Z
Fgy

dF
dFgy

;
dG
dFgy

( )
gy

þ 4pq
ð
Z
Fgy

dG
dDgy

� X;
dF
dFgy

( )
gy

0@
� dF
dDgy

� X;
dG
dFgy

( )
gy

1Aþð4pqÞ2
ð
Z
Fgy

dF
dDgy

� X;Xf ggy �
dG
dDgy

 !

þ 4pc
ð
X

dF
dDgy

�r� ��1 dG
dB1

� �
� dG
dDgy

�r� ��1 dF
dB1

� �" #
:

(33)

Here, the first term is the Vlasov sub-bracket, the next three terms
(multiplied by first and second powers of 4pq) represent the
Interaction sub-bracket, and the last two terms (multiplied by 4pc)

represent the Maxwell sub-bracket. We note that the Interaction sub-
bracket term proportional to ð4pqÞ2 does not appear in the standard
Vlasov–Maxwell bracket,2–5 since the Poisson bracket fx; xg � 0 van-
ishes in particle phase space. The generic form of the gyrokinetic
Vlasov–Maxwell bracket was first presented by Burby et al.14 In the
electrostatic limit, where E1 ¼ �rU1 and B1 ¼ 0, the gyrokinetic
Vlasov–Poisson bracket retains only the contributions from the
Vlasov and Interaction sub-brackets.

We postpone the proof of the Jacobi property (32) until Sec. IV
and, instead, we now look at two applications of the gyrokinetic
Vlasov–Maxwell bracket (33): first, we present the proof that the
gyrokinetic entropy functional is a Casimir of the gyrokinetic
bracket (33); and, second, we present the proof that the gyrokinetic
toroidal angular momentum conservation law can be expressed in
Hamiltonian form.

A. Gyrokinetic entropy functional

A Casimir functional C associated with the gyrokinetic bracket
(33) satisfies the equation ½C;K�gy ¼ 0, which holds for an arbitrary
functionalK. It is well known that the gyrokinetic entropy functional,

Sgy Fgy;B1½ � � �
ð
Z
Fgy ln ðFgy=B�

jjÞ; (34)

is a Casimir for the gyrokinetic bracket (33), which is one example of
the generic form C½Fgy;B1� ¼

Ð
ZB

�
jj CðFgy=B�

jjÞ
14 for an arbitrary func-

tion C(F), where F ¼ Fgy=B�
jj.

From Eq. (34), using dSgy=dFgy ¼ �1� lnF and ��1dSgy=dB1

¼ intP F bb0, we find

Sgy;�K
� �

gy
¼ �

ð
Z
B�
jj F;

dK
dFgy

( )
gy

�4pq
ð
Z

dK
dDgy

� B� @F
@pjj

þ cbb0

q
�rF

 !

�4pc
ð
Z

dK
dDgy

� r � F bb0

� �
¼ 4pc

ð
Z
F

dK
dDgy

� q
c
@B�

@pjj
� r � bb0

 !
¼ 0; (35)

where the first term vanishes since, according to Eq. (14), it is an exact
phase-space divergence, while the remaining terms cancel out.

The concept of gyrokinetic entropy can play an important role in
the investigation of magnetized plasma turbulence (see Ref. 31, for
example). The gyrokinetic entropy functional (34) can also be used to
formulate the gyrokinetic metriplectic evolution of an arbitrary gyroki-
netic functional F ,32–34

@F
@t

¼ F ;Hgy
� �

gy
þ F ;Sgy
� �

gy
; (36)

in terms of a self-adjoint collisional bracket ð ; Þgy that conserves
energy and momentum, i.e., ðF ;HgyÞgy ¼ 0, and satisfies the second
law of thermodynamics: @Sgy=@t ¼ ðSgy;SgyÞgy 	 0. This metriplec-
tic formulation35,36 can assist in the investigation of dissipative turbu-
lent transport in magnetized plasmas based on structure-preserving
algorithms.
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B. Gyrokinetic Vlasov–Maxwell angular momentum
conservation law

The conservation laws of energy-momentum and angular
momentum for the gyrokinetic Vlasov–Maxwell (28)–(30) were
recently derived by Brizard23 and Hirvijoki et al.28 As an application of
the gyrocenter Vlasov–Maxwell bracket (33), we explore the time evo-
lution of the gyrokinetic Vlasov–Maxwell angular momentum
functional,23

Pgyu Fgy;Dgy;B1½ � �
ð
Z
Fgy Pu þ

ð
X
Dgy �

�B1

4p c
� @X
@u

; (37)

where the gyrocenter toroidal angular momentum,

Pu ¼ q
c
A0 þ pjj bb0 � ðmc=qÞ lR�

0

� �
� @X
@u

� q
c
A�
0 �

@X
@u

; (38)

includes higher-order guiding-center corrections.30

We now evaluate the Hamiltonian evolution of the gyrokinetic
functional (37),

@Pgyu

@t
¼ Pgyu;Hgy
� �

gy

¼
ð
Z
Fgy

dPu
dt

� q
c
dX
dt

� �B1 �
@X
@u

� �
þ
ð
X

�B1

4p
� @X

@u

� �
� r �Hgy

�
ð
X

�E1

4p
� r � @X

@u
�Dgy

� �
; (39)

where the functional derivatives of the gyrocenter Hamiltonian func-
tional (23) are given in Eqs. (24)–(26), and the functional derivatives
of the gyrocenter Vlasov–Maxwell angular momentum (37) are

dPgyu=dFgy
4pc dPgyu=dDgy

4pc dPgyu=dð�B1Þ

0B@
1CA ¼

Pu
�B1 � @X=@u

ð@X=@uÞ �Dgy

0B@
1CA: (40)

If we ignore exact spatial derivatives (which vanish when integrated
over space), the second term in Eq. (39) yields the non-vanishing
terms,

�B1

4p
� @X

@u

� �
� r �Hgy ¼ Hgy �

�

4p
@B1

@u
� �B1

4p
� r @X

@u

� �
�Hgy

¼ � �B1

4p
� @B0

@u
� bz � B0

� �
�Mgy � �

@B1

@u
� bz � B1

� �
¼
ð
P
Fgy

@Kgy

@B1
� @B1

@u
þ bz � �B1 �Mgy

� �
;

(41)

where we used the definitions (19) and (21) for the gyrokinetic H-field
and the gyrocenter magnetization, respectively, and we used the axi-
symmetric vector identity,

@B0=@u ¼ bz � B0; (42)

and the vector identity,

VW : rð@X=@uÞ ¼ bz � ðW� VÞ; (43)

which holds for arbitrary vectors fields ðV;WÞ. Next, the third term in
Eq. (39) yields the non-vanishing terms,

� �E1

4p
� r � @X

@u
�Dgy

� �
¼ � �E1

4p
� @X
@u

ðr �DgyÞ �Dgy �
�

4p
@E1

@u

�Dgy � r
@X
@u

� �
� �E1

4p

¼
ð
P
Fgy

@Kgy

@E1
� @E1

@u
� � qE1 �

@X
@u

� �
þbz � � E1 �Pgy

� �
; (44)

where we used the vector identity (43) and the definition (20) for the
gyrocenter polarization, as well as the gyrokinetic Poisson equation in
Eq. (22). Hence, by combining Eqs. (41) and (44), Eq. (39) becomes

@Pgyu

@t
¼
ð
Z
Fgy

dPu
dt

� � q E1 þ
1
c
dX
dt

� B1

� �
� @X
@u

" #

þ
ð
Z
Fgy

@Kgy

@E1
� @E1

@u
þ
@Kgy

@B1
� @B1

@u

� �
þ
ð
X

bz � �E1 �Pgy þ �B1 �Mgy
� �

: (45)

Next, using the explicit expressions for the gyrocenter polarization and
magnetization (20) and (21), the last terms in Eq. (45) become the
polarization and magnetization torquesð

X

bz � �E1 �Pgy þ �B1 �Mgy
� �

¼
ð
Z
Fgy bz � l bb0 � �B1 þ �E1 � pgy


 �
þ
ð
Z
Fgy bz � �B1 � pgy �

pjjbb0

mc

 !" #
: (46)

We now write the full expression for @Kgy=@u,

@Kgy

@u
¼

@0Kgy

@u
þ

@Kgy

@E1
� @E1

@u
þ
@Kgy

@B1
� @B1

@u

� �
; (47)

where @0Kgy=@u denotes the derivative of the gyrocenter kinetic
energy (3) at constant perturbed fields ðE1;B1Þ,

@0Kgy

@u
¼ bz � l bb0 � �B1 þ �E1 � pgy


 �
�bz �

pjjbb0

mc
� �B1 � pgyð Þ

" #

�bz � pgy �
pjjbb0

mc
� �B1

 !" #
; (48)

where we used Eq. (42). If we now combine these expressions in Eq.
(45), we find
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@Pgyu

@t
¼
ð
Z
Fgy

dPu
dt

� @Kgy

@u
�� q E1 þ

1
c
dX
dt

� B1

� �
� @X
@u

" #
; (49)

after using the vector identity,

U� ðV�WÞ þ V� ðW� UÞ þW� ðU� VÞ ¼ 0;

with U ¼ �B1; V ¼ pgy, and W ¼ pjjbb0=mc. Finally, using the equa-
tion of motion (A3) for the gyrocenter azimuthal angular momentum,
we arrive at the conservation law,

@Pgyu

@t
¼ Pgyu;Hgy
� �

gy
¼ 0: (50)

This conservation law was derived by the Noether method23 in the
variational (Lagrangian) formulation of the gyrokinetic
Vlasov–Maxwell equations (16)–(18). Here, we have shown that this
conservation law can also be expressed in Hamiltonian form with the
help of the gyrokinetic Vlasov–Maxwell bracket (33).

IV. JACOBI PROPERTY OF THE GYROKINETIC
VLASOV–MAXWELL BRACKET

We now verify that the gyrokinetic bracket (33) satisfies the
Jacobi property (32). The proof will rely on several Poisson-bracket
identities derived from the gyrocenter Poisson bracket (10).

According to the Bracket theorem,3,13 the proof of the Jacobi
property involves only the explicit dependence of the gyrocenter
Vlasov–Maxwell bracket (33), where the gyrokinetic Vlasov–Maxwell
Poisson operator JabgyðFgy;B1Þ � is independent of the gyrokinetic dis-
placement field Dgy, where we note that the dependence on the mag-
netic field B1 enters through Eq. (11) appearing in the gyrocenter
Poisson bracket (10). Hence, we can write the double-bracket involv-
ing three arbitrary gyrocenter functionals ðF ;G;KÞ,

F ;G½ �gy;K
h iP

gy
¼
ð
Z
Fgy

dP F ;G½ �gy
dFgy

;
dK
dFgy

( )
gy

þ4pq
ð
Z
Fgy

dK
dDgy

� X;
dP F ;G½ �gy

dFgy

( )
gy

�4pc
ð
X

dP F ;G½ �gy
�dB1

� r � dK
dDgy

; (51)

where the terms involving dP½F ;G�gy=dDgy vanish on the basis of the
Bracket theorem.

Here, the Poisson variation dP of the bracket (33) only involves
variations with respect to ðFgy;B1Þ,

dP F ;G½ �gy ¼
ð
Z

dFgy �
Fgy
B�
jj

bb0 � � dB1

 !
� ff ; gggy þ 4pq G � fX; f ggy � F � fX; gggy


 �h
þð4pqÞ2F � fX;Xggy � G

i
þ
ð
Z
Fgy

� dB1

B�
jj

� rf � 4pq Fð Þ @g
@pjj

� rg � 4pqGð Þ
@f
@pjj

" #
;

(52)

where we use the notation ðf ; g; kÞ � ðdF=dFgy; dG=dFgy; dK=dFgyÞ
and ðF;G;KÞ � ðdF=dDgy; dG=dDgy; dK=dDgyÞ. In addition,
dB�

jj ¼ bb0 � �dB1 represents the variation of the Jacobian, which
appears in the denominator of the gyrocenter Poisson bracket (10),
while dB� ¼ � dB1 appears only in the first term of Eq. (10). In the
first two terms of Eq. (51), we therefore have the Vlasov sub-bracket,

dP F ;G½ �gy
dFgy

;
dK
dFgy

( )
gy

¼ ff ; gggy;k
n o

gy
þ 4pq G � fX; f ggy � F � fX; gggy


 �
;k

n o
gy

þð4pqÞ2 F � fX;Xggy �G;k
n o

gy
; (53)

and the Interaction sub-bracket,

4pq
dK
dDgy

� X;
dP F ;G½ �gy

dFgy

( )
gy

¼ 4pqK � X; ff ; gggy
n o

gy
þ ð4pqÞ2 K

� X; G � fX; f ggy � F � fX; gggy

 �n o

gy

þð4pqÞ3 K � X;F � fX;Xggy � G
n o

gy
; (54)

while the third term in Eq. (51) is the Maxwell sub-bracket,

�4pc
ð
X

dP F ;G½ �gy
� dB1

� r � dK
dDgy

¼ �4pq
ð
Z

cFgy
qB�

jj
r � K

� rf � 4pqFð Þ @g
@pjj

� rg � 4pqGð Þ
@f
@pjj

" #

þ4pq
ð
Z
Fgy

cbb0

qB�
jj
� r � K ff ; gggy þ 4pq

h
� G � fX; f ggy � F � fX; gggy

 �i

þð4pqÞ3
ð
Z
Fgy

cbb0

qB�
jj
� r � K F � fX;Xggy � G


 �
: (55)

From these terms, it is clear that the proof of the Jacobi property (32)
must hold separately for each power of 4pq,

J ac F ;G;K½ � �
X3
n¼0

ð4pqÞn
ð
Z
Fgy Jacn F ;G;K½ �; (56)

where each Jacobiator term Jacn½F ;G;K� involves the gyrocenter
Poisson bracket (10). At zeroth order, for example, the Vlasov sub-
bracket (53) yields

Jac0 F ;G;K½ � ¼ ff ; gggy; k
n o

gy
þ fg; kggy; f
n o

gy

þ fk; f ggy; g
n o

gy
¼ 0; (57)
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which vanishes because of the Jacobi property (12) of the gyrocenter
Poisson bracket (10). In what follows, we will use cyclic permutations
(denoted by“) of the functionals ðF ;G;KÞ in order to combine simi-
lar terms from the sub-brackets (53)–(55) at the next three orders in
4pq.

A. First-order Jacobi property

By using the Leibniz property of the gyrocenter Poisson bracket
(10), the cyclic permutations of the Vlasov sub-bracket (53) include
the first-order terms,

fK; f ggy � fX; gggy � fK; gggy � fX; f ggy

þK � fX; gggy; f
n o

gy
þ ff ;Xggy; g
n o

gy

� �
; (58)

while the cyclic permutations of the Interaction sub-bracket (54)
include

K � X; ff ; gggy
n o

gy
¼ K � fg; f ggy;X

n o
gy
; (59)

where we used the antisymmetry of the gyrocenter Poisson bracket.
Finally, the first-order terms in cyclic permutations of the Maxwell
sub-bracket (55) are

cbb0

qB�
jj
� r � K ff ; gggy �

c
qB�

jj
r � K � rf

@g
@pjj

� rg
@f
@pjj

 !
: (60)

Using the gyrocenter Poisson bracket identity

c
qB�

jj
rf

@g
@pjj

� rg
@f
@pjj

 !
¼ cbb0

qB�
jj
ff ; gggy þ fX; f ggy � fX; gggy:

Equation (60) becomes

r� K � fX; gggy � fX; f ggy
¼ fK; gggy � fX; f ggy � fK; f ggy � fX; gggy; (61)

where we used the identity

fU; vggy � fX; vggy � rU; (62)

for a vector field U assumed to be independent of pjj, while vðX; pjjÞ is
an arbitrary gyrocenter function.

By combining Eqs. (58), (59), and (61), we obtain the first-order
term in the Jacobiator (56),

Jac1 F ;G;K½ � ¼ Ki fXi; gggy; f
n o

gy
þ ff ;Xiggy; g
n o

gy

�
þ fg; f ggy;Xi
n o

gy

�
þ“ ¼ 0; (63)

which vanishes because of the Jacobi property (12) of the gyrocenter
Poisson bracket (10).

B. Second-order Jacobi property

Cyclic permutations of the Vlasov sub-bracket (53) include the
second-order terms,

K � fX;Xggy � F; g
n o

gy
¼ Fi Kj fXj;Xiggy; g

n o
gy

þfK; gggy � fX;Xggy � F
þK � fX;Xggy � fF; gggy; (64)

where summation over repeated indices is implied in the first term.
Next, using the identity (62), the second and third terms become

fX; gggy � rK � c
bb0

qB�
jj
� F�rF � c

bb0

qB�
jj
� K

 !
; (65)

where we used the Poisson-bracket identity

U � fX;Xggy � V ¼ � cbb0

qB�
jj
� U� V; (66)

for any two vector fields ðU;VÞ.
Cyclic permutations of the Interaction sub-bracket (54) include

the second-order terms,

F � X;K � fX; gggy
n o

gy
� K � X; F � fX; gggy

n o
gy

¼ Fi Kj fg;Xjggy;Xi
n o

gy
þ fXi; gggy;Xj
n o

gy

� �
þ F � fX;Kggy � K � fX;Fggy

 �

� fX; gggy; (67)

where the last two terms can be expressed as

cbb0

qB�
jj
� K � rF� cbb0

qB�
jj
� F � rK

 !
� fX; gggy: (68)

Hence, by combining Eqs. (65) and (68), we obtain

fX; gggy �
cbb0

qB�
jj
� F

 !
�r� K� cbb0

qB�
jj
� K

 !
�r� F

" #

¼ cbb0

qB�
jj
� r � K ðF � fX; gggyÞ � ðF � r � KÞ B

�

B�
jj

@g
@pjj

" #

� cbb0

qB�
jj
� r � F ðK � fX; gggyÞ � ðK � r � FÞ B

�

B�
jj

@g
@pjj

" #
;

(69)

where we used the Poisson-bracket identity ðcbb0=qB�
jjÞ � fX; gggy

¼ ðc=qB�
jjÞ @g=@pjj.

Cyclic permutations of the Maxwell sub-bracket (55) include the
second-order terms,

� cbb0

qB�
jj
� r � K ðF � fX; gggyÞ � ðF � r � KÞ B

�

B�
jj

@g
@pjj

" #
þ cbb0

qB�
jj

� r � F ðK � fX; gggyÞ � ðK � r � FÞ B
�

B�
jj

@g
@pjj

" #
: (70)

which exactly cancels the terms in Eq. (69), so that the second-order
Jacobi term in Eq. (56) is obtained by adding Eqs. (64), (67), and (70),
which yields the second-order term in the Jacobiator (56),
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Jac2 F ;G;K½ � ¼ Fi Kj fXi; gggy;Xj
n o

gy
þ fXj;Xiggy; g
n o

gy

�
þ fg; Xjggy;Xi
n o

gy

�
þ“ ¼ 0; (71)

which vanishes because of the Jacobi property (12) of the gyrocenter
Poisson bracket (10).

C. Third-order Jacobi property

At the third order in 4pq, we note that only the Interaction and
Maxwell sub-brackets (54) and (55) contribute terms in
Jac3½F ;G;K�. First, the third-order terms in cyclic permutations of
Eqs. (54) and (55) are

K � X;F � fX;Xggy �G
n o

gy
þ“

¼ Jac3 F ;G;K½ �þ K � fX;Xggy �G
cbb0

qB�
jj
�r�F

 !
þ“

" #
(72)

and

G � fX;Xggy � K
cbb0

qB�
jj
� r � F

 !
þ K � fX;Xggy

� F cbb0

qB�
jj
� r � G

 !
þ F � fX;Xggy � G

cbb0

qB�
jj
� r � K

 !
; (73)

which when combined, using the antisymmetry property of Eq. (66),
introduces simple cancelations and yields the result

K � X; F � fX;Xggy � G
n o

gy
þ“ ¼ Jac3 F ;G;K½ �;

where the third-order term in the Jacobiator (56),

Jac3 F ;G;K½ �¼FiGjK‘ fXi;Xjggy;X‘
n o

gy
þ fXj;X‘ggy;Xi
n o

gy

�
þ fX‘;Xiggy;Xj
n o

gy

�
¼0; (74)

vanishes because of the Jacobi property (12) of the gyrocenter Poisson
bracket (10).

V. SUMMARY

The explicit Hamiltonian structure of the gauge-free gyroki-
netic Vlasov–Maxwell equations was constructed directly from Eqs.
(28)–(30) in terms of a gyrokinetic Hamiltonian functional (23)
and the gyrocenter Poisson bracket (10), which resulted in the gyro-
kinetic Vlasov–Maxwell bracket (33). The gauge-free gyrokinetic
equations were presented here in their drift-kinetic limit, which
simplified the expressions for the gyrocenter polarization and mag-
netization (20) and (21). Future work will consider extensions of
our gyrokinetic Hamiltonian formulation to include higher-order
FLR effects.

As simple applications of our gauge-free gyrokinetic
Hamiltonian formulation, we demonstrated in Sec. III that the

gyrokinetic entropy function (34) is a Casimir functional for the gyro-
kinetic Vlasov–Maxwell bracket (33), and that the gyrokinetic toroidal
angular momentum conservation law can be expressed in
Hamiltonian form (50).

In Sec. IV, we presented an explicit proof that the gyrokinetic
Vlasov–Maxwell bracket (33) satisfies the Jacobi property (32).
While this may seem to be an academic exercise, our proof follows
similar proofs for several Vlasov–Maxwell models presented in
the Appendix of Ref. 13, for example. In analogy to the recent
more extensive proof26 of the Jacobi property of the guiding-
center Vlasov–Maxwell bracket, the proof of the Jacobi property
(32) relies on identities derived from the gyrocenter Poisson
bracket (10) and the vanishing gyrokinetic Jacobiator (32) is
inherited from the Jacobi property (12) of the gyrocenter Poisson
bracket.

Future work will consider an alternate gauge-free gyrokinetic
Vlasov–Maxwell model23 in which the gyrocenter polarization drift
�P1 � dX=dt is added to the symplectic part of the gyrocenter

Lagrangian (2), where P1 � ½E1 þ ðpjjbb0=mcÞ � B1� � qbb0=X0.
This extension will explicitly introduce electric-field terms in the gyro-
center Poisson bracket (10) and introduce new terms in the Poisson
variation (52).
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APPENDIX: GYROCENTER ANGULAR MOMENTUM
EQUATION OF MOTION

In this Appendix, we derive the equation of motion for the
gyrocenter angular momentum (38) in an axisymmetric back-
ground magnetic field.

We begin with the covariant azimuthal (toroidal) component
of the Euler–Lagrange equation (4),

�q E1 þ
1
c
dX
dt

� B1

� �
� @X
@u

�
@Kgy

@u

¼
dpjj
dt

bb0 �
@X
@u

� �
þ q

c
B�
0 �

dX
dt

� @X
@u

; (A1)

where the toroidal derivative of the gyrocenter kinetic energy
@Kgy=@u ¼ ð@X=@uÞ � rKgy is given in Eq. (47).

Next, we explicitly evaluate the gyrocenter time derivative of
Pu,

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 122107 (2021); doi: 10.1063/5.0068519 28, 122107-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/php


dPu
dt

¼
dpjj
dt

bb0 �
@X
@u

� �
þ q

c
dX
dt

� rA�
0 �

@X
@u

þr @X
@u

� �
� A�

0

� �
¼

dpjj
dt

bb0 �
@X
@u

� �
þ q

c
B�
0 �

dX
dt

� @X
@u

� �
þbz � A�

0 �
q
c
dX
dt

þ bz � dX
dt

� q
c
A�
0

� �
¼

dpjj
dt

bb0 �
@X
@u

� �
þ q

c
B�
0 �

dX
dt

� @X
@u

; (A2)

where we used the gyrocenter invariance of the magnetic moment l
and we used @A�

0=@u � bz � A�
0 under the assumption of axisym-

metry of the background magnetic field, while we used the identity
W � rð@X=@uÞ � V � bz � ðW� VÞ, which holds for arbitrary vec-
tors ðV;WÞ. Hence, Eq. (A1) yields the gyrocenter angular momen-
tum equation of motion,

dPu
dt

¼ �q E1 þ
1
c
dX
dt

� B1

� �
� @X
@u

�
@Kgy

@u
: (A3)

We note that in the electrostatic limit, where E1 ¼ �rU1 and
B1 ¼ 0, Eq. (A3) yields the standard equation dPu=dt ¼ �@Hgy=
@u, where Hgy ¼ �qU1 þ Kgy.
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