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ABSTRACT

This Letter reports on a metriplectic formulation of a collisional, nonlinear full-f electromagnetic gyrokinetic theory compliant with energy
conservation and monotonic entropy production. In an axisymmetric background magnetic field, the toroidal angular momentum is also
conserved. Notably, a new collisional current, contributing to the gyrokinetic Maxwell–Ampère equation and the gyrokinetic charge
conservation law, is discovered.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091727

The theoretical foundations of plasma physics are based on two
sets of complementary formulations that are either kinetic or fluid and
can represent either collisionless or collisional (dissipative) systems.
When the formulations are collisionless, the associated Lagrangian
and Hamiltonian structures (see a review by Morrison1) play a role in
extracting conservation laws and guide, e.g., the development of mod-
ern numerical simulation methods.2–13 When the formulations
include collisional effects, the properties of the collision operator ought
to guarantee that the irreversible plasma evolution satisfies the laws of
thermodynamics.14

The modern theory of gyrokinetics,15 which is used in the chal-
lenging task of investigating the turbulent dynamics of a magnetically
confined plasma in a realistic geometry, has a solid foundation in the
collisionless regime. The Lagrangian (variational) structure of the the-
ory16,17 enables deriving conservation laws18–20 that provide useful
verification tests for numerical algorithms. The accompanying, rather
recently developed Hamiltonian structure,21,22 on the contrary, estab-
lishes a transparent formulation of the full-f electromagnetic gyroki-
netics in terms of genuine dynamical variables that are the gyrocenter
phase-space density distributions Fs of species s, the electromagnetic
displacement fieldD, and the perturbation magnetic field B1. The exis-
tence of these formalisms owes to the dynamical reduction of the origi-
nal Vlasov–Maxwell theory with the Lie-transform perturbation
method23–30 at the level of the action integral.

Currently, no similar systematic treatment exists for a gyrokinetic
version of the nonlinear Landau collision operator compatible with

the gyrokinetic Vlasov–Maxwell system. Despite several attempts at
constructing collision operators for gyrokinetic applications,31–36 no
full-f gyrokinetic Vlasov–Maxwell–Landau field theory has yet been
presented that would conserve energy, produce entropy monotoni-
cally, and conserve the toroidal angular momentum functional in an
axially symmetric background magnetic field B0. Only the full-f elec-
trostatic model has been expressed as a collisional field theory,37,38

despite there being successful df-formulations39–42 that rely on various
model linearized collision operators and even a Vlasov–Poisson–
Ampère–Landau model43,44 with explicit collisional conservation laws
and transport fluxes. Exploiting the general framework of metriplectic
dynamics,45–52 this Letter proposes a theory for the full-f
Vlasov–Maxwell–Landau case, securing also the as-of-yet-missing
closed form expression for the associated gyrokinetic Landau collision
operator. A notable outcome of the new theory is the appearance of a
collisional current in the Maxwell–Ampère equation and the gyroki-
netic charge conservation law. This new current is shown to be man-
datory for the Gauss’s law for D and the charge conservation to
remain valid. It arises due to the non-zero spatial components of colli-
sional flux in gyrocenter coordinates.31 Next, the details, leading to
these realizations, will be presented.

Following Ref. 21, we assume that (without loss of generality)
gyrocenter coordinates have been found such that the single-
gyrocenter Hamiltonian is given by Hs ¼ Ks½E1;B1� þ qs U, where
U ¼ UðXÞ denotes the electrostatic potential evaluated at the gyrocen-
ter position, and the gyrocenter kinetic energy Ks½E1;B1� is a
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functional of the electromagnetic field. (We refer readers to Ref. 53 for
details on how explicit dependence of Ks on the electromagnetic
potentials can be avoided.) We then use the gyrocenter kinetic energy
K½E1;B1� ¼

P
s

Ð
Ks½E1;B1� Fs to define the gyrokinetic constitutive

law,

D ¼ E1 � 4p
dK
dE1

; (1)

which relates the electric field E1 and the displacement field D in a
manner first described in Ref. 54. Going forward, we will always
assume E1 is a definite functional of D, B1, and Fs, implicitly defined
by (1). While no specific expression for the gyrocenter kinetic energy
function K is chosen here, it is noted that an explicit expression for
E1½F;D;B1� is available at the drift-kinetic limit (see, e.g., Ref. 55) The
Hamiltonian functional for the gyrokinetic Vlasov–Maxwell system is

H F;D;B1½ � ¼
X
s

ð
Z
FsKs E1;B1½ � þ 1

4p

ð
X
E1 � D

� 1
8p

ð
X
jE1j2 � jB0 þ B1j2
� �

; (2)

and the associated functional Poisson bracket is21,22

A;B½ � ¼
X
s

ð
Z
Fs

dA
dFs

;
dB
dFs

� �
s

þ
X
s

4pqs

ð
Z
Fs

dB
dD

� X;
dA
dFs

� �
s
� dA

dD
� X;

dB
dFs

� �
s

 !

þ
X
s

16p2q2s

ð
Z
Fs
dA
dD

� fX;Xgs �
dB
dD

þ 4pc
ð
X

dA
dD

� r � dB
dB1

� dB
dD

� r � dA
dB1

� �
: (3)

The notation
Ð
Z refers to integration over the phase-space coordinates

ðX; pk;l; hÞ while
Ð
X and

Ð
P refer to integration only over the spatial

and velocity extent, respectively. Notably, the distributional densities
Fs contain the phase-space Jacobians:

Ð
PFsðZÞ is the number of gyro-

centers within a volume element dX. The single-particle Poisson
bracket f�; �g in (3) can be evaluated with respect to any two phase-
space functions according to

f ; gf g ¼ q
mc

@f
@h

@g
@l

� @f
@l

@g
@h

� �
� cb̂0
qB�

k
� r�f �r�g

þB�

B�
k
� r�f

@g
@pk

� @f
@pk

r�g

 !
: (4)

The terms B� ¼ r� A� and B�
k ¼ B� � b̂0 are constructed from the

so-called modified vector potential

A� ¼ A0 þ ðpkc=qÞb̂0 � ðmc2=q2ÞlR�
0 þ A1 � A�

0 þ A1 (5)

in the usual way with b̂0 ¼ B0=jB0j the background magnetic field
unit vector. The modified gradient operator is r� ¼ rþ R�

0 @=@h,
where R�

0 ¼ R0 þ 1
2r� b̂0, and Littlejohn’s gyrogauge vector R0 is

constructed from the background magnetic field. The label s is needed
to remain mindful of the species-dependent particle mass and charge.

In the absence of collisions, the Hamiltonian functional (2) and
the functional Poisson bracket (3) determine the temporal evolution of
any functionalW½F;D;B1� via the differential equation

dW
dt

¼ W;H½ �: (6)

Because the bracket (3) is antisymmetric, the Hamiltonian H is trivi-
ally conserved dH=dt ¼ ½H;H� ¼ 0. As demonstrated explicitly in
Ref. 22, the toroidal angular momentum functional

Pu ¼
X
s

ð
Z
Fspu0;s þ

1
4pc

ð
X
D� B1 � ðẑ � XÞ; (7)

where pu0 ¼ ðq=cÞA�
0 � ðẑ � XÞ is the guiding-center single-particle

angular momentum, is also conserved, i.e., dPu=dt ¼ ½Pu;H� ¼ 0,
on the condition that the background magnetic field B0 is axially sym-
metric. Finally, the entropy functional

S F;B1½ � ¼ �
X
s

ð
Z
Fs ln Fs=B

�
ks

� 	
(8)

is a Casimir of the functional Poisson bracket, i.e., ½S;A� ¼ 0 with
respect to any arbitrary functional A. For details regarding the deriva-
tion of momentum and entropy conservation, see Refs. 21 and 22.

Previously in Ref. 38, a symmetric, so-called metric bracket repre-
sentative of collisions was found for electrostatic gyrokinetic theory,
completing the dissipationless Hamiltonian formulation into a metri-
plectic formulation consistent with thermodynamics. Just like Poisson
brackets, metric brackets are bilinear maps from the space of function-
als to real numbers but, unlike Poisson brackets, describe dissipation.
Examples are found in dissipative extended magnetohydrodynamics,56

in simple ideal gas thermodynamics,57 in port-Hamiltonian formalism
describing district-heating networks,58 and in the numerous applica-
tions of open nonequilibrium thermodynamic systems.59 No further
introduction to the concept is given here, and the reader is referred
specifically to Ref. 52 for an excellent introduction and examples. To
construct a metric bracket representative of Coulomb collisions for
electromagnetic gyrokinetics, the previous works in electrostatic the-
ory37,38 are closely followed: we seek a symmetric positive semidefinite
functional bracket with the structure

ðA;BÞ ¼ 1
2

X
s�s

ð
Z

ð
�Z
FsðZÞF�sð�ZÞCs�sðA;Z; �ZÞ �Qs�sðZ; �ZÞ

� Cs�sðB;Z; �ZÞ; (9)

where the 3-by-3 matrixQs�sðZ; �ZÞ is defined as

Qs�sðZ; �ZÞ ¼ �s�s ds�sðZ; �ZÞQðCs�sðH;Z; �ZÞÞ: (10)

The delta-function ds�sðZ; �ZÞ ¼ d3ðysðZÞ � y�sð�ZÞÞ in the matrix (10)
enforces the collisions to be local in spatial coordinates via the position
ysðZÞ ¼ X þ q0s of a particle of species s, where q0 is the lowest-order
Larmor radius evaluated in terms of the background magnetic field.
The Landau matrix QðnÞ ¼ jnj�1ðI� nn=jnj2Þ is a scaled projection
matrix and the coefficient �s�s ¼ 2pq2s q

2
�s lnKs�s contains the Coulomb

logarithm Ks�s , both familiar from the Landau collision operator. The
bracket structure (9) supplemented with (10), regardless of the expres-
sion for Cs�sðA;Z; �ZÞ, guarantees that the Hamiltonian functional H
is an annihilator element of the metric bracket: ðH;AÞ ¼ 0, with
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respect to any functional A, credited to the projection property
Cs�sðH;Z; �ZÞ �QðCs�sðH;Z; �ZÞÞ ¼ 0. While the bracket (9) and the
expression (10) appear the same as in the electrostatic theory,38 the
detailed expression for the vector-valued operator Cs�sðA;Z; �ZÞ differs.
In the following paragraphs, an effort is made to justify our choice.

In the electrostatic case,38 one starts from the particle phase-
space collision operator, exploits the single-particle Poisson brackets to
transform the velocity derivatives in the collision operator to gyrocen-
ter phase-space31 obtaining a collision operator for electrostatic gyro-
kinetics,37 and, finally, symmetrizes the result utilizing partial
integration and the general properties of the single-particle Poisson
bracket in a similar manners as one does in deriving the particle
phase-space metric bracket from the particle phase-space collision
operator.60 In the end, this process results in an expression
Cs�sðA;Z; �ZÞ ¼ fys; dA=dFsgsðZÞ � fy�s ; dA=dF�sg�sð�ZÞ, where the
bracket is the guiding-center Poisson bracket and does not contain the
magnetic field perturbation B1. As the particle velocity in terms of the
gyrocenter coordinates in electrostatic theory can be expressed as
_y s ¼ fys; dH=dFsgs, evaluating the vector-valued operator with
respect to the Hamiltonian of the electrostatic system results in
Cs�sðH;Z; �ZÞ ¼ _y s � _y�s and describes the difference of velocities of
two colliding particles, an expression that is needed in the matrixQ in
the Landau operator. There is no B1 in the electrostatic case, and,
therefore, in the case of an axially symmetric B0, one has the identity
fys; dPu=dFsgs ¼ ẑ � ys, with ẑ the unit vector for the axis of rota-
tional symmetry in B0, and consequently Cs�sðPu;Z; �ZÞ ¼ ẑ
�ðysðZÞ � y�sð�ZÞÞ. Together with the localizing ds�sðZ; �ZÞ, this then
guarantees that the toroidal momentum functional is conserved in axi-
ally symmetric B0 in collisional electrostatic gyrokinetics and that it is
an annihilator element of the associated metric bracket in the sense of
ðPu;AÞ ¼ 0 with respect to an arbitraryA.37,38

In the electromagnetic case, trying to proceed as in the electro-
static case leads to a dead end. First of all, the single-particle velocity,
expressed in the gyrocenter coordinates, no longer has the same
expression as in the electrostatic case. Second, because the single-
gyrocenter Poisson bracket now contains also the time-dependent
magnetic perturbation B1, the identity relied upon for toroidal
momentum conservation in the electrostatic case with an axially sym-
metric B0 no longer holds up. These issues were further discussed also
in Ref. 61, unfortunately to no avail. The puzzle begins to unravel
upon using a definition for the particle velocity that is compatible with
the Hamiltonian formulation of the gyrokinetic Vlasov–Maxwell sys-
tem, namely

dys
dt

¼ ys;
dH
dFs

� �
s
þ 4pqs

dH
dD

� fX; ysgs; (11)

and simultaneously discovering an identity that holds in the case of an
axially symmetric B0, namely

dys
du

¼ ys;
dPu

dFs

� �
s
þ 4pqs

dPu

dD
� fX; ysgs ¼ ẑ � ys: (12)

We note that both identities hold even if the modified gyrogauge vec-
tor R�

0 is dropped from the modified vector potential (5), as is often
customary. Considering how the operator Cs�sðA;Z; �ZÞ is defined in
the electrostatic case, and that evaluating it with respect to the system’s
Hamiltonian should result in an expression that represents the

difference of the colliding particle velocities also in the electromagnetic
case, we, therefore, propose the following modified expression:

Cs�sðA;Z; �ZÞ ¼ ys;
dA
dFs

� �
s
ðZÞ þ 4pqs

dA
dDðXÞ � fX; ysgsðZÞ

� y�s ;
dA
dF�s

� �
�s
ð�ZÞ � 4pq�s

dA
dDð�XÞ � fX; y�sg�sð

�ZÞ:

(13)

One can confirm from Eq. (11) that Cs�sðH;Z; �ZÞ ¼ _y sðZÞ � _y�sð�ZÞ
becomes the desired difference in the particle velocities of species s and
�s required in the matrix Q of the Landau collision operator.
Furthermore, in an axially symmetric background field B0, one con-
firms Cs�sðPu;Z; �ZÞ ¼ ẑ � ðysðZÞ � y�sð�ZÞÞ which, together with
ds�sðZ; �ZÞ in the matrix (10), guarantees that the toroidal momentum
functional (7) is an annihilator element of the metric bracket (9) in the
sense of ðPu;AÞ ¼ 0, with respect to an arbitrary functional A, just
like in the electrostatic case.

The new metriplectic formulation for the gyrokinetic
Vlasov–Maxwell–Landau theory therefore evolves arbitrary function-
alsW½F;D;B1� according to the differential equation

dW
dt

¼ W;H½ � þ ðW;SÞ: (14)

This guarantees energy conservation dH=dt ¼ ½H;H� þ ðH;SÞ ¼ 0
and, in an axially symmetric magnetic background field, also toroidal
angular momentum conservation dPu=dt ¼ ½Pu;H� þ ðPu;SÞ ¼ 0
on the basis of bothH and Pu being annihilator elements of the met-
ric bracket. The formalism also guarantees monotonic entropy pro-
duction dS=dt ¼ ½S;H� þ ðS;SÞ ¼ ðS;SÞ � 0 on the basis of S
being a Casimir of the Poisson bracket and the metric-bracket being
positive semi-definite.

The kinetic equation for the test-particle phase-space density Fs is
found by choosing a functional WðZ; tÞ ¼

Ð
Z0d

6ðZ0 � ZÞFsðZ0; tÞ and
evaluating the equation @tW ¼ ½W;H� þ ðW;SÞ. This results in

@tFs þ @aðFsVa
s Þ ¼

X
s

Cs�s Fs; F�s½ �; (15)

where Va ¼ fZa;Kg þ qE1 � fX;Zag is the Hamiltonian phase-space
vector field and the nonlinear collision operator is given by

Cs�s Fs; F�s½ � ¼ �@aðcs�s � fys;ZagsÞ
¼ �@a Ka

s�s Fs � B�
ksD

ab
s�s @b Fs=B

�
ks

� 	� 	
: (16)

The collisional-flux-related term cs�s , a three-component vector

cs�sðZÞ ¼
ð
�Z
Qs�sðZ; �ZÞ FsðZÞF�sð�ZÞ � Cs�sðS;Z; �ZÞ

¼ FsKs�s � B�
jjsfys; Fs=B�

jjsgs � Ds�s ; (17)

and the phase-space diffusion and friction coefficients

Dab
s�s ðZÞ ¼ fys;Zags � Ds�sðZÞ � fys;Zbgs; (18)

Ka
s�sðZÞ ¼ fys;Zags � Ks�sðZÞ; (19)

are expressed in terms of the guiding-center and gyrocenter phase-
space transformations of the Fokker–Planck diffusion and friction
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coefficients that are functionals of the field-particle density F�s (and the
electromagnetic fields)

Ds�sðZÞ ¼
ð
�Z
Qs�sðZ; �ZÞF�sð�ZÞ; (20)

Ks�sðZÞ ¼
ð
�Z
Qs�sðZ; �ZÞ � B�

k;�sð�ZÞ y�s ; F�s=B
�
k;�s

n o
�s
ð�ZÞ: (21)

In the electrostatic limit, the result agrees with the gyrokinetic collision
operator summarized in Eqs. (22)–(25) in Ref. 37, evident from the
expressions (17), (20), and (21). In the absence of both electromagnetic
and electrostatic fluctuations ðE1 ¼ 0 ¼ B1), i.e., at the limit of only
guiding-center motion in a given magnetic background, expressions
for the phase-space diffusion and friction coefficients were given in
Ref. 31 for Maxwellian field-particle distributions in a nonuniform
background magnetic field. The spatial diffusion coefficient DXX

¼ ðDlB=mX2 þ D?=m2X2Þð1� b̂b̂Þ, where Dl ¼ lðDk � D?Þ=
ð2mEÞ and DE ¼ Dk=m represent classical transport in a magnetized
plasma,14 while the spatial components ðKX ;DXl;DXEÞ ¼ ð�;Dl;

DEÞ b̂ � vgc=X are orientated in the direction of the guiding-center

polarization shift b̂ � vgc=X involving magnetic gradient and curva-
ture in nonuniform magnetic field.31

As the metric bracket (9) operates on functionals depending on
D, it also contributes to the gyrokinetic Maxwell–Ampère equation.
Choosing a test functional WðX; tÞ ¼

Ð
X0d

3ðX � X0ÞDðX0; tÞ, and
evaluating @tW ¼ ½W;H� þ ðW;SÞ, we find the gyrokinetic
Maxwell–Ampère equation

1
c
@D
@t

þ 4p
c

X
s

ð
P
qsFsV

X
s þ 4p

c
jC ¼ r�H; (22)

whereH is defined in the standard manner

H ¼ B0 þ B1 þ 4p
dK
dB1

; (23)

and the collisional contribution to the current density, jC , is given by

jC ¼
X
s�s

ð
P
qscs�s � fys;Xgs

¼
X
s�s

ð
P
qs KX

s�s Fs � B�
ksD

Xb
s�s @b Fs=B

�
ks

� 	� 	
: (24)

Notably, the new collisional term is mandatory to guarantee that the
kinetic equation and the Maxwell–Ampère equation remain consistent
with the Gauss’s law for the displacement field. The consistency can be
verified by taking spatial divergence of the new Maxwell–Ampère
equation (22), and using the kinetic equation (15) and the collision
operator (16), providing that the time derivative of the familiar
Gauss’s law for the displacement field is exactly zero. The Gauss’s law
itself,

r � D ¼ 4p
X
s

ð
P
qsFs; (25)

therefore serves as an initial condition for the displacement field, just
like in the particle phase-space Vlasov–Maxwell–Landau system and,
if it holds initially, it holds at later times as well. Consequently, the

gyrokinetic charge conservation law also has the same new collisional
contribution. Indeed, by considering the gyrocenter charge-density
functional .ðX; tÞ ¼

P
s

Ð
Z0d

3ðX � X0Þ qs FsðZ0Þ, evaluating @t.
¼ ½.;H� þ ð.;SÞ results in

@.
@t

þr �
X
s

ð
P
qsFsV

X
s þ jC

 !
¼ 0: (26)

Finally, the Maxwell–Faraday equation is derived by choosing a func-
tionalWðX; tÞ ¼

Ð
X0d

3ðX � X0ÞB1ðX0; tÞ which provides the standard
expression

1
c
@B1

@t
þr� E1 ¼ 0: (27)

Treating inconsistently either the collisional current jC in the new
Maxwell–Ampère equation or the collision operator in the kinetic
equation cannot be done in the present theory without breaking the
metriplectic structure. Although jC is formally small, scaling effectively
as the collision frequency over the cyclotron frequency, it does not
vanish exactly and neglecting it would lead to trouble. Trying to
remove the spatial contribution of the collision operator, the source of
the current density jC , would, e.g., immediately break the identity
needed in guaranteeing the toroidal momentum conservation in an
axially symmetric background field. To get rid of such limiting details
and enable, e.g., straightforward transport analyses, it would be ideal
to find a systematic way for deriving reduced collision operators, order
by order, with the metriplectic structure remaining intact.
Unfortunately, no such method exists yet.

The new formulation presented in this Letter nevertheless estab-
lishes a theoretical foundation for gyrokinetic Vlasov–Maxwell–
Landau theory. Exploiting the metriplectic formalism enables not only
derivation of the gyrokinetic Landau operator but also retaining the
energy and toroidal canonical angular momentum conservation
accompanied by monotonic entropy production. While it has long
been understood that collisions in the gyrocenter coordinates affect
also the spatial X coordinates,31,62 the new metriplectic formalism
uncovers the resulting implications also for the Maxwell-Ampère
equation and the charge conservation law in a straightforward man-
ner. It is expected that the new theory could be useful also in finding
structure-preserving discretizations, similarly as in Ref. 63. Finally, the
reader ought to keep in mind that the theory presented here does con-
tain the displacement current and, therefore, also the accompanying
fast transverse electromagnetic waves. In contrast to the standard gyro-
kinetic approach, where the vacuum permittivity is formally set to
zero, such assumption is not taken here. Doing so in the action integral
would leave the parallel electric field undetermined from the action
principle. For gyrokinetics to become a genuine field theory based on
an action principle or a metricplectic formulation, with no fast waves,
something akin to the Hamiltonian reduction of the Vlasov–Maxwell
system to a dark slow manifold described in Ref. 64 is needed on top
of the standard Lie-transform theory used to remove the fast
gyromotion.

The supplementary material contains further details regarding
derivations of the equations of motion (15) and (22) as well as the
identity (12) that guarantees toroidal momentum conservation in axi-
ally symmetric B0.
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