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Abstract
We construct a stable pair compactification of the moduli space of anti-canonically
polarized degree one del Pezzo surfaces and relate our constructions toMiranda’s GIT
quotient and the Hodge theoretic work of Heckman-Looijenga.

1 Introduction

Asmooth del Pezzo surface of degree d is a smooth projective surfacewith−K X ample
and K 2

X = d. These surfaces are at the heart of research in algebraic and arithmetic
geometry, and the goal of this paper is to construct amodular geometricallymeaningful
compactifiction in the degree one case. Celebrated work of Hacking-Keel-Tevelev
considered the degree d ≥ 2 case [12], and so this paper fills in the remaining case.

It is natural to study a del Pezzo surface via its anticanonical linear series. For d ≥ 3
this is a closed embedding and for d = 2 it is a double cover. However, for d = 1
the anticanonical pencil is not a morphism; it has a unique basepoint. The blowup of
X at this basepoint is a rational elliptic surface Y → P

1 with section given by the
exceptional divisor. Equivalently, X may be obtained as the blowup of P2 at 8 points
in general position, and the anticanonical pencil is the unique pencil of cubics passing
through these points. By the Cayley-Bacharach theorem, there is a unique 9th point in
the base locus of this pencilwhichbecomes the basepoint of |−K X |. The strategyof this
paper is to use the structure of the elliptic fibation Y → P

1 to construct a geometrically
meaningful compactification of the space of degree one del Pezzo surfaces.
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Constructing a compactification of their moduli space is a long standing prob-
lem, and has been studied previously using GIT [15], root lattices [26,27], pencils of
quadrics [13] (degree 4 case), stable pairs and tropical geometry [12] (d ≥ 2 case),
and Gromov-Hausdorff limits [24]. None of the aforementioned papers obtain a mod-
ular compactification when d = 1. In [5], Alexeev and Thompson construct a stable
pairs compactification for the related, but different, moduli problem of rational elliptic
surfaces with a chosen nodal fiber. We prove the following.

Theorem 1.1 There exists a proper Deligne-Mumford stack R parametrizing anti-
canonically polarized broken del Pezzo surfaces of degree one with the following
properties:

• The interior U ⊂ R parametrizes degree one del Pezzo surfaces with at worst
rational double point singularities.

• The complement R \ U consists of a unique boundary divisor parametrizing
2-Gorenstein slc surfaces with ample anticanonical divisor and exactly two irre-
ducible components.

• The locus R◦ ⊂ R parametrizing surfaces such that every irreducible component
is normal is a smooth Deligne-Mumford stack.

We provide an explicit description of the surfaces parametrized by R \U in Theorems
4.5 and 4.8.

While the MMP guarantees the existence of R, the surfaces parametrized by the
boundary may a priori have many irreducible components, and the moduli stack might
be quite singular with boundary of high codimension. In our case, the moduli stack
R enjoys the perhaps surprising property: the boundary is an irreducible divisor and
parametrizes surfaces with at most two irreducible components. It is now natural to
ask how R compares to previously existing compactifications which do not carry a
universal family.

1.1 Connnection to GIT

One may associate to any elliptic surface with section a Weierstrass equation y2 =
x3 + Ax + B where A and B are sections of line bundles on the base curve. This
is the equation cutting out the Weierstrass model obtained by contracting all fibral
components that do not meet the section. In the case of rational elliptic surfaces, A
and B are degree 4 and 6 homogeneous polynomials on P

1. Using this Weierstrass
data, Miranda [22] constructed a GIT compactification W of the moduli space of
rational elliptic surfaces (see Sect. 5). We show that our compactification is a certain
blowup of W along the strictly semi-stable locus:

Theorem 1.2 (see Theorem 5.3). Let R be the coarse moduli space of R and � ⊂ R
the boundary divisor parametrizing non-normal surfaces with U = R \ �. There
is a morphism R → W to Miranda’s GIT compactification such that the following
diagram commutes.
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j = ∞ 

Fig. 1 On the right is Miranda’s GIT compactification W , and on the left is R. Note that these spaces are
birational. The strictly semistable locus of W is a rational curve with a special point ( j = ∞). The “tube”
depicts the locus of R parametrizing non-normal surfaces, which is fibered over the strictly semistable
locus of W . The shaded in piece depicts the fiber over j = ∞. The surfaces parametrized by a generic point
of each stratum ofR are depicted

� R U

P
1 W W s

j ∼=

Here � → P
1 sends the surface X ∪ Y to the j-invariant of the double locus. Then

P
1 → W sss ⊂ W maps bijectively onto the strictly semistable locus, and U → W s

is an isomorphism of the interior of R with the GIT stable locus.

The space R is the last in a sequence of spaces R(a) for 1
12 < a ≤ 1 arising as

compactifications of the space of rational elliptic surfaces. Inspired byHassett’smoduli
spaces ofweighted stable curves,we construct properDeligne-Mumfordmoduli stacks
EA where A = (a1, . . . , an) is a vector of the weights of the marked fibers. As
one varies A, the moduli spaces and their universal families are related by divisorial
contractions and flips (see [3]). A generic rational elliptic surface has 12 nodal fibers
Fi , and so we consider a slice of the moduli space, denoted E s

A, which compactifies
the space of pairs ( f : X → C, S + F), where X is a rational elliptic surface with
section S and F = ∑

ai Fi . In this paper, we focus on the case whereA = (a, . . . , a),
and so we define the space R(a) = Es

A/S12.
When a ≤ 1

6 , the section of every surface parametrized byR(a)must be contracted
by the logMMP to form thepseudoelliptic surfaces ofLaNave [19] (see alsoDefinition
2.14) which in the case of rational elliptic surfaces are exactly the degree one del Pezzo
surfaces. In this paper, we explicitly study the moduli spacesR(a) as well as the wall
crossings induced by varying the coefficient a using the theory of twisted stable maps
(see [2,6]) combined with the log MMP. In this way, we classify the boundary of the
moduli spaces R(a) for a ≤ 1/6, which give several geometric compactifications of
the moduli space of degree one del Pezzo surfaces. The space denoted byR above is
R ( 1

12 + ε
)
and is, in a sense, the ideal choice for a modular compactification: it is the

“smallest compactification” with a universal family, does not depend on any auxiliary
choices, and has a particularly nice boundary description.
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For various values ofa ≤ 1/6,weare able to relate our compactifications to alternate
compactifications which a priori carry less geometric meaning. For example, abovewe
saw howR ( 1

12 + ε
)
compared toMiranda’sGIT quotient W . It turns out that the space

R ( 1
6

)
also is very much related to both W and two compactifications appearing in

the work of Heckman-Looijenga [14]. This reflects the general expectation that wall-
crossing morphisms for moduli of stable pairs as in [3] should interpolate between
various classical compactifications.

1.2 Connection to Hodge theoretic compactifications

LetD∗ denote the GIT compactification of the space of 12 points in P1 up to automor-
phism. To aWeierstrass equation y2 = x3+ Ax + B, one may associate a discriminant
D = 4A3 + 27B2. This gives a rational map W ��� D∗ and it is natural to ask how
close this map is to a morphism. Note that it cannot extend to all of W (for example
the Weierstrass equation of a surface with an I7 fiber is GIT stable but its discriminant
is not GIT semistable). We prove that this rational map can be understood via R(a) as
follows:

Theorem 1.3 (see Corollary 5.5) There is a morphism R
( 1
6

) → D∗ resolving
W ��� D∗.

In [14], Heckman-Looijenga study a period map for rational elliptic surfaces. They
show that the moduli space of 12I1 rational elliptic surfaces is locally a complex
hyperbolic variety and identify the rational map W ��� D∗ as induced by the period
mapping. They describe the normalization of the image in D∗ as the Satake-Baily-
Borel (BB) compactificationM ∗ of a ball quotient, and compare the boundary strata
of this compactification with the Miranda’s GIT quotient W by introducing a space
W ∗ which dominates both. Note that neither W ,M ∗, nor W ∗ carry universal families
of surfaces, i.e. they are not coarse moduli spaces of a proper Deligne-Mumford stack
with a universal elliptic surface, which is a source of great difficulty in studying their
boundary strata.

Theorem 1.4 (Theorem 6.3) There is a birational morphism R
( 1
6

) → W ∗ such that
R ( 1

6

)
is the minimal proper Deligne-Mumford stack above bothM ∗ and W extending

the universal family on M .

2 Elliptic surfaces

We begin with a review of the geometry of rational elliptic surfaces (see Miranda’s
[23]).

Definition 2.1 An irreducible elliptic surface with section ( f : X → C, S) is an
irreducible surface X together with a surjective proper flat morphism f : X → C to
a smooth curve C and a section S such that:

1. the generic fiber of f is a stable elliptic curve, and
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2. the generic point of the section is contained in the smooth locus of f .

We call the pair ( f : X → C, S) standard if all of S is contained in the smooth locus
of f .

Definition 2.2 A minimal Weierstrass fibration is an elliptic surface obtained from
a relatively minimal elliptic surface by contracting all fiber components not meeting
the section. We call the output of this process a Weierstrass model.

Definition 2.3 The fundamental line bundle of a standard elliptic surface ( f : X →
C, S) is L := ( f∗NS/X )−1, where NS/X denotes the normal bundle of S in X . For
an arbitrary elliptic surface we define L as the line bundle associated to its semi-
resolution.

The line bundleL is invariant under taking a semi-resolution orWeierstrass model
of a standard elliptic surface. Furthermore, L is independent of choice of section S,
determines the canonical bundle of X , and deg(L )|C ≥ 0.

If ( f : X → C, S) is a smooth relatively minimal elliptic surface, then f has
finitely many singular fibers which are each unions of rational curves with possibly
non-reduced components. Recall that the dual graphs are ADE Dynkin diagrams.
Furthermore, the possible singular fibers have been classified by Kodaira-Nerón. We
refer the reader to [1, Table 1] for the complete classification. However, we point out
the definition of the fiber types Nk for k = 0, 1, 2, which appear on elliptic surfaces
with nodal generic fiber and arise when studying slc surfaces (see [1, Section 5]).

Definition 2.4 Nk are the slc fiber types with Weierstrass equation y2 = x2(x − tk)

for k = 0, 1, 2.

2.1 Rational elliptic surfaces

We are now ready to define when an elliptic surface is rational.

Definition 2.5 We say that an irreducible elliptic surface with section ( f : X → C, S)

is rational if C ∼= P
1 and deg(L ) = 1.

The fact that this definition characterizes rational elliptic surfaces is the content of
[23, Lemma III.4.6]. All rational elliptic surfaces arise as the blow up of the base locus
of a pencil of cubic curves inside P2 (see [23, Lemma IV.1.2]).

Remark 2.6 Let C1 and C2 be two (distinct) smooth cubic curves in P
2. The pencil

generated by these curves has 9 base points, and blowing up these 9 points in P2 gives
a morphism π : X → P

1, where X is a relatively minimal (fibered) rational surface
with fibers elliptic curves. Moreover, the canonical class of X is −C1 and K 2

X = 0.
The section S ⊂ X is given by the last exceptional divisor. In this case, it is clear that
S2 = −1 and so deg(L ) = 1 (so that O(1) ∼= L ).

A rational elliptic surface is defined by a Weierstrass form: y2 = x3 + Ax + B,
where A and B are sections of O(4) and O(6) respectively, and the discriminant
D = 4A3 + 27B2 is a section of L ⊗12 ∼= O(12) which is not identically zero (see
[23, Section II.5]).
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Remark 2.7 In fact, since the number of singular fibers of a Weierstrass fibration over
a projective curve C is given by 12 deg(L ) = 12 deg(O(1)) = 12 counted properly
(see [23, Lemma II.5.7]), a rational elliptic surface has generically 12 (nodal) singular
fibers. In this context, counting properly means that the singular fiber is weighted by
the order of vanishing of the discriminant. Equivalently, the discriminant is a degree
12 divisor of the base rational curve.

2.2 Rational elliptic surfaces and degree one del Pezzo surfaces

Definition 2.8 Recall a degree n del Pezzo surface is a surface X with at worst canon-
ical singularities such that −K X is ample and K 2

X = n.

Remark 2.9 It follows byCastelnuovo’sTheorem that a del Pezzo surface is necessarily
rational.

Given a degree one del Pezzo surface, the anticanonical linear series | − K X | :
X ��� P

1 has a unique base point p. Blowing up along p resolves the basepoint
producing a morphism f : Y = Blp(X) → P

1 with section S the exceptional divisor.
The fibers of f are necessarily KY -trivial curves. It follows by the adjunction formula
that f is a genus one fibration with section S, i.e. ( f : Y → P

1, S) is a rational elliptic
surface. Conversely, given a rational elliptic surface ( f : Y → P

1, S) with at worst
rational double point singularities and all fibers being irreducible, e.g. having only
twisted or Weierstrass fibers (see Definition 2.12), we may blow down the section to
obtain a pseudoelliptic surface X . By Kodaira’s canonical bundle formula, one can
check that the pseudofiber class f is ample and linear equivalent to −K X so that X is
a degree one del Pezzo surface.

This relation between rational elliptic surfaces and degree one del Pezzo surfaces
is the main idea behind our construction of our compactification R ( 1

12 + ε
)
.

Remark 2.10 One can obtain a degree one del Pezzo surface X by blowing up P
2 in

8 (possibly infinitely near) points and then contracting (−2)-curves. By the Cayley-
Bacharach theorem, there exists a unique pencil of cubics in P2 through these 8 points
that passes through a unique 9th point p. This becomes the anticanonical pencil of X
with basepoint p.

2.3 Preliminaries on twisted stable maps

Twisted stable maps can be used to compute degenerations of fibered surface pairs
with all coefficients one (see e.g. [2,6]).

There is a proper moduli stack of twisted stable maps of fixed degree [6] and it can
be used to construct stacks of fibered surfaces in the case where the targetM = Mg,n

[2]. Relevant for us is the space of twisted stable maps toM1,1 inducing a degree 12
map on coarse spaces. Indeed given a rational elliptic surface ( f : X → P

1, S + F)

with only I1 singular fibers all of which are marked with coefficient one, there is
a morphism P

1 → M1,1 and we can understand degenerations of the surface by
degenerating in the space of twisted stable maps.
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2.3.1 Main relevant consequences of TSM

1. Any time two surfaces are attached along fibers, they must either be attached along
nodal fibers, or in pairs consisting of I∗n/I∗m/N1 fibers, or in pairs II/II∗, III/III∗
and IV/IV∗.

2. The total number of nodal marked fibers in the degeneration of a marked rational
elliptic surface must be 12 (counted with multiplicity).

2.4 Moduli spaces of weighted stable elliptic surface pairs

In [3], we define stable pair compactifications (c.f. [18] and [17]) EA compactifying the
moduli space of lc models ( f : X → C, S + FA) of A-weighted Weierstrass elliptic
surface pairs by allowing our surface pairs to degenerate to semi-log canonical (slc)
pairs following the log minimal model program. For each admissible weight vector
A, we obtain a compactification EA, which is representable by a proper Deligne-
Mumford stack of finite type [3, Theorem 1.1 & 1.2]. These spaces parameterize slc
pairs ( f : X → C, S + FA), where ( f : X → C, S) is an slc elliptic surface with
section, and FA = ∑

ai Fi is a weighted sum of marked fibers withA = (a1, . . . , an)

and 0 < ai ≤ 1.

Theorem 2.11 [3, Theorem 1.6] The boundary of the proper moduli space Ev,A
parametrizesA-broken stable elliptic surfaces, which are pairs ( f : X → C, S+ FA)

consisting of a stable pair (X , S + FA) with a map to a nodal curve C such that:

• X is an slc union of elliptic surfaces with section S and marked fibers, as well as
• chains of pseudoelliptic surfaces of type I and II (Definition 2.14) contracted by

f with marked pseudofibers.

Definition 2.12 Let (g : Y → C, S′ + aF ′) be a Weierstrass elliptic surface pair over
the spectrum of a DVR and let ( f : X → C, S + Fa) be its relative log canonical
model. We say that X has a(n):

1. twisted fiber if the special fiber f ∗(s) is irreducible and (X , S+ E) has (semi-)log
canonical singularities where E = f ∗(s)red ;

2. intermediate fiber if f ∗(s) is a nodal union of an arithmetic genus zero component
A, and a possibly non-reduced arithmetic genus one component supported on
a curve E such that S meets A along the smooth locus of f ∗(s) and the pair
(X , S + A + E) is slc.

Given an elliptic surface f : X → C over a DVR such that X has an intermediate
fiber, we obtain the Weierstrass model of X by contracting E , and we obtain the
twisted model by contracting A. As such, the intermediate fiber interpolates between
the Weierstrass and twisted models (see [1]). This is made precise via the following,
where we explicitly run the log MMP on elliptic fibrations.

Theorem 2.13 [3, Theorem 3.19] Notation as in Definition 2.12. Suppose the special
fiber F ′ of g is either either (a) one of the Kodaira singular fiber types, or (b) g is
isotrivial with constant j-invariant ∞ and F ′ is an N0 or N1 fiber (see Definition 2.4).
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1. If F is a type In or N0 fiber, then the relative log canonical model is the Weierstrass
model for all 0 ≤ a ≤ 1.

2. For any other fiber type, there is an a0 such that the relative log canonical model
is

(i) the Weierstrass model for any 0 ≤ a ≤ a0,
(ii) a twisted fiber consisting of a single non-reduced component supported on a

smooth rational curve when a = 1, and
(iii) an intermediate fiber with E a smooth rational curve for any a0 < a < 1.

The constant a0 is as follows for the other fiber types:

a0 =

⎧
⎪⎪⎨

⎪⎪⎩

5/6 II
3/4 III
2/3 IV
1/2 N1

a0 =

⎧
⎪⎪⎨

⎪⎪⎩

1/6 II∗
1/4 III∗
1/3 IV∗
1/2 I∗n

The MMP will contract the section of an elliptic surface if it has non-positive
intersection with the lc divisor of the surface to create a pseudoelliptic. There are two
types of pseudoelliptics which appear on the boundary. We refer to [3, Definition 4.6,
4.7] for the precise definitions of the two types of pseudoelliptic surfaces. We give
abridged versions of the two definitions for brevity.

Definition 2.14 A pseudoelliptic pair is a surface pair (Z , F) obtained by contracting
the section of an irreducible elliptic surface pair ( f : X → C, S + F ′). We call F the
marked pseudofibers of Z . We call ( f : X → C, S) the associated elliptic surface
to (Z , F). It is called:

1. Type II if it is formed by the log canonical contraction of a section of an elliptic
component attached along twisted or stable fibers.

2. Type I appear in pseudoelliptic trees attached by gluing an irreducible pseud-
ofiber G0 on the root component to an arithmetic genus one component E of an
intermediate (pseudo)fiber of an elliptic or pseudoelliptic component.

Remark 2.15 We recall the following from [3, Definition 4.6]. Let ( f : X ′ → C, S +
FA) be an A-broken elliptic surface where X ′ = X ∪E Y with a marked Type I
pseudoelliptic surface glued (Y , (FA)|Y ) glued to the arithmetic genus one component
E of an intermediate (pseudo)fiber E ∪ A with reduced component A on X . Then if
FA = ∑

ai Fi we have that

Coeff(A, FA) =
∑

Supp(FA|Y )

Coeff(Fi ) =
∑

Supp(FA|Y )

ai . (1)

is a sum of weights of marked fibers on Y .
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Remark 2.16 Contracting the section of a component to form a pseudoelliptic corre-
sponds to stabilizing the base curve as anA-stable curve in the sense of Hassett (see [1,
Corollaries 6.7 & 6.8]). This gives a forgetful morphism Ev,A → Mg,A [3, Theorem
1.4].

Remark 2.17 We recall that for an irreducible component with base curve P
1 and

degL = 1, contracting the section of an elliptic component might not be the final
step in the minimal model program. In particular, we might need to contract the entire
pseudoelliptic component to a curve or a point. This is the content of [1, Proposition
7.4].

2.5 Wall and chamber structure

We now want to understand how the moduli spaces EA change as we vary the weight
vector A.

Definition 2.18 There are three types of walls:

(I) A wall of TypeWI is a wall arising from the log canonical transformations seen
in Theorem 2.13, i.e. the walls where the fibers of the relative log canonical
model transition from twisted, to intermediate, to Weierstrass fibers.

(II) Awall of TypeWII is a wall at which themorphism induced by the log canonical
contracts the section of some components (i.e. the walls appearing in Hassett’s
space by Remark 2.16).

(III) A wall of TypeWIII is a wall where the morphism induced by the log canonical
contracts an entire rational pseudoelliptic component (Remark 2.17).

Note that there are also boundary walls given by ai = 0 and ai = 1 at the boundary,
and these can be any of the three types above. There are finitely many walls, and
location of the Type WI and WII walls have been calculated (see [3, Theorem 6.3]).
We summarize the results here:

• Type WI walls at ai = 1
6 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

5
6 (see Theorem 2.13;

• Type WII walls at
∑k

j=1 ai j = 1 for {i1, . . . , ik} ⊂ {1, . . . , n} as well as at
∑r

i=1 ai = 2.

To construct the desired compactification of degree one del Pezzo surfaces, wemust
classify the Type WIII walls, i.e. when the pseudoelliptic components contract. Note
that these components can contract to a point or a curve, and it is the latter case that
is more difficult. We will see

• WIII walls where a pseudoelliptic component contracts to a point at
∑k

j=1 ai = c
for {i1, . . . , ik} ⊂ {1, . . . , n} and c = a0 from Theorem 2.13;

• WIII walls when a pseudoelliptic component contracts onto a curve (see Theorem
3.19).

Finally, we recall one of the main result of [3], which states how EA changes as we
vary A.

Theorem 2.19 [3, Theorem 1.5] Let A,B ∈ Q
r be weight vectors with 0 < A ≤ B ≤

1. Then

123



K. Ascher, D. Bejleri

1. If A and B are in the same chamber, then the moduli spaces and universal families
are isomorphic.

2. If A ≤ B then there are reduction morphisms Ev,B → Ev,A on moduli spaces
which are compatible with the reduction morphisms on the Hassett spaces:

3. The universal families are related by a sequence of explicit divisorial contractions
and flips

More precisely, across WI and WIII walls there is a divisorial contraction of the
universal family and across a WII wall the universal family undergoes a log flip.

2.6 Moduli of pseudoelliptic surfaces

The relationship between a rational elliptic surface
(

f : X → P
1, S

)
and the corre-

sponding degree one del Pezzo surface Z may be rephrased as Z is the pseudoelliptic
surface associated to X . For this reason, it will be crucial for us to consider moduli
spaces whose generic member parametrizes pseudoelliptic surfaces. In this subsec-
tion, we show that the definitions and results of [3] apply to this degenerate case. This
is implicit in [3] but not considered directly.

Definition 2.20 An A-broken pseudoelliptic surface pair (X , F) is an slc pair
obtained by contracting the section of an A-broken elliptic surface pair to a point.
In particular, every component of (X , F) is a pseudoelliptic surface pair.

A-broken pseudoelliptic surfaces can be thought of as degenerate versions of A-
broken elliptic surfaces whenA leaves the admissible polytope for Hassett space. Note
that the polytope of admissible weights for elliptic surfaces is strictly larger than that
for Hassett space as K X + S + FA can remain big even when KC + ∑

ai pi is not.
Moreover, we specialize to g(C) = 0 as this is the case of interest.

Theorem 2.21 Fix d > 0. Then for any weight vector A satisfying

max{0, 2 − d} <
∑

ai ≤ 2 (2)

there exists an irreducible, proper, normal algebraic stack Ev,A and a universal family
of A-broken pseudoelliptic surfaces such that

• for any normal scheme T , Ev,A(T ) is the groupoid of stable families of A-broken
pseudoelliptic surfaces, and

• there exists a dense open substack of Ev,A parametrizing irreducible A-weighted
pseudoelliptic surface pairs (Z , FA) whose associated elliptic surface (X →
C, S+F ′

A) is a minimal Weierstrass surface fibered over C ∼= P
1 with degL = d.

Moreover, Ev,A fit into the same wall-crossing structure along with the moduli of
broken elliptic surfaces Ev,A for

∑
ai > 2 described in Sect. 2.5.

Remark 2.22 We use the same notation Ev,A for both the moduli of broken elliptic and
broken pseudoelliptic surfaces to emphasize that they all fit within the same framework
as compactifications of the moduli space of log canonical models of elliptic surfaces
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with marked section, A-weighted fibers, and fixed numerical invariants. The only
difference is that when g(C) = 0, d > 0 and

∑
ai ≤ 2, the generic member is

pseudoelliptic rather than elliptic, while when
∑

ai > 2 we have the same spaces
defined above as considered in [3]. Note moreover that v can be computed explicitly
as a function ofA and d (and using g(C) = 0) but we continue the practice of keeping
v implicit.

Remark 2.23 Note that in the region of weight vectors satisfying (2), there are no WII
walls as all components of the base curve have already been contracted to a point by
the MMP but there are further WIII walls as we determine below.

Proof of Theorem 2.21 Consider the family of minimal Weierstrass elliptic surfaces
(

f : X → P
1, S, F1, . . . , Fn

)

over P1 with d = degL and n distinct marked fibers. For any A satisfying (2), the
divisor K X + S+ FA is big but not nef and the log canonical model of (X , S+ FA) is a
pseudoelliptic surface [1, Corollary 7.2, Propositions 7.3 & 7.4]. Here FA = ∑

ai Fi .
There exists a smooth connected quasi-projective B and a locally stable family of pairs
π : (X → P

1
B, S, Fi ) → B such that every such elliptic surface pair appears as a fiber

of this family. Here we may take for example an open subset of the space of pairs of
sections of O(4d) and O(6d) respectively.

Now for each weight vector, we can run the π -MMP to obtain the relative log
canonical model of (X , S + FA) /B which we denote π ′ : (YA, F ′

A) → B. Up to
shrinking B, we can assume that π ′ is the family of fiberwise log canonical models of
π . Note that the section S must be contracted by the π -MMP by our condition on A.
Then π ′ is a stable family ofA-weighted pseudoelliptic surface pairs of fixed volume
and induces a morphism from B to the proper Deligne-Mumford stack parametrizing
KSBA stable pairs of fixed volume. Let Ev,A be the normalization of the scheme
theoretic image of this map. Then Ev,A is an irreducible proper normal Deligne-
Mumford stack with a universal family of stable pairs satisfying the second bullet
point by assumption. We need to check that it satisfies the first bullet point. In order
to do this, we run stable reduction to see that every point of Ev,A parametrizes an
A-broken pseudoelliptic surface.

Toward this end, let
(

Y 0, F ′
A
0
)

→ B0 be family ofA-stable pseudoelliptic surfaces

associated to a family ofminimalWeierstrass surfaces overP1 with d as above and sup-
pose B0 = B \0 and B is a smooth curve. We can blowup Y 0 along the intersection of
marked pseudofibers to reintroduce the section and obtain a family of minimal Weier-
strass elliptic surfaces

(
X0 → C, S0 + F0

A
)
over C0. We can add a generic marked

fiber G0 with coefficient 1 so that
(
X0, S0 + F0

A + G0
)
is stable. Then by properness

of the space Ev,A′ ofA′-broken elliptic surfaces whereA′ = (a1, . . . , an, 1), we have
a stable limit (X → C, S + FA + G) → B with central fiber an A′-broken elliptic
surface. Now we run an MMP with scaling as we decrease the coefficients of G from
1 to 0. Every flip and divisorial contraction of this MMP occurs within the central
fiber over 0 ∈ B except for the divisorial contraction of the section S. By [3, Theorem
A.10], the only steps in the MMP are those of Types WI,WII and WIII. The resulting
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stable family
(
Y , F ′

A
)
is the stable limit of

(
Y 0, F ′

A
0
)
and the central fiber is the

contraction of the section of an A-broken elliptic surface. Thus, every point in the
closure of the image of B is an A-broken pseudoelliptic surface.

Now the vanishing of Theorem [3, Theorem 5.1] holds forA-broken pseudoelliptic
surfaces. Indeed the proof proceeds by separating the components of a broken surface
proving the appropriate vanishing for each component including trees of pseudoelliptic
surfaces as a special case. Moreover, since there are no type WII walls in the region
(2), then we may apply the proofs of [3, Theorem 7.4 & Proposition 8.7] verbatim
to families of pseudoelliptic surfaces to obtain wall-crossing reduction morphisms
extending the wall-crossing structure for moduli of broken elliptic surfaces. ��
Remark 2.24 The fact that the wall-crossing for moduli of broken elliptic surfaces
extends to the case of broken pseudoelliptic surfaces is special cases of a more general
wall-crossing formalism of the present authors joint with Inchiostro and Patakfalvi in
the forthcoming paper [4] which shows that under mild assumptions, there are wall-
crossingmorphismsbetween stable pair compactifications of the space of log canonical
models of a given family as one varies the coefficients. In our case above, we have
the family of minimal Weierstrass elliptic surfaces over a genus 0 curve and with
fixed numerical invariants. As one varies coefficients, the log canonical model may
be either elliptic or pseudoelliptic and we obtain the family of compactifications Ev,A
which parametrize either broken elliptic or broken pseudoelliptic surfaces depending
on where the weight vector lies within the space of admissible weights.

3 Definition of themoduli space and Birational contractions across
walls

From now on we restrict to the case of rational elliptic surfaces. In particular, the base
curve is of genus zero and the degree ofL is one so thatC ∼= P

1 andL = OP1(1). Let
E1,A denote the stable pairs compactification of the stack of rational elliptic surfaces
with 12 marked fibers weighted by A = (a1, . . . , a12). Note here that the choice
of 12 marked divisors is part of the data. Thus generically E1,A is fibered over the
stack of rational elliptic surfaces with section and the fibers are open subvarieties of
P(| − K X |)12.
Definition 3.1 Let E s

1,A be the closure in E1,A of the locus of log canonical models
of pairs ( f : X → C, S + FA) where X is a rational elliptic surface and Supp(FA)

consists of 12 I1 singular fibers.

Equivalently, E s
1,A is the closure of the locus of rational elliptic surface pairs with

smooth log canonical model andwith divisor given by the discriminant of the fibration.
Note that when A = (a, . . . , a) is a constant weight vector, then S12 acts on E s

1,A by
permuting the marked fibers.

Definition 3.2 For A = (a, . . . , a) the constant weight vector, we define R(a) :=
E s

a,...,a/S12.

The following is clear from the analagous statement for E1,A:
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Proposition 3.3 R(a) is a proper Deligne-Mumford stack with coarse moduli space
R(a).

The stackR(a) and its coarse moduli space are the main subjects of this paper but
E s
1,A and E1,A will be used to understand the wall and chamber structure associated

toR(a).

Remark 3.4 Since E s
1,A is defined as the closure of the locus of log canonical models

of rational elliptic surface pairs with the 12 I1 fibers marked, then the marked fibers
always appear at the discriminant D of f : X → C over the smooth locus Csm . In
particular, when

∑
ai > 2, the map E s

1,A → M0,A sends ( f : X → C, S + FA) to
C marked by the A-weighted discriminant D of f .

As mentioned in Sect. 2.5, by [3, Theorem 6.3], we have an explicit description of
the location of the walls of Types WI and WII. One goal of this section is to determine
the location of walls of type WIII for the moduli spaces EA and then use this to study
the explicit birational contractions R(a) undergoes as one reduces a.

3.1 Pseudoelliptic contractions of EA

First, recall that walls of TypeWIII (see Definition 2.18) correspond to the contraction
of an entire pseudoelliptic component. From Definition 2.14, we noted that pseudoel-
liptic components of Type I are connected to the arithmetic genus one component E
of an intermediate (pseudo)fiber of another component.

Let ( f : X ∪ Z → C, S + FA) be anA-broken elliptic surface with pseudoelliptic
component Z attached to the arithmetic genus one component E of an intermediate
(pseudo)fiber A ∪ E on X . Suppose further that Z is rational, otherwise Z never
contracts with nonzero coefficients (see [1, Corollary 6.10]). Then the contraction of
Z to a point produces a minimal Weierstrass fiber at A ∪ E . Furthermore, Z contracts
if and only if E is contracted in the log canonical model of (X , (S + FA)|X ) (see [1,
Proposition 7.4]).

Definition 3.5 Let (X , D) be be a pair with (semi-)log canonical singularities and
A ⊂ X a divisor. The (semi-)log canonical threshold lct(X , D, A) is

lct(X , D, A) := max{a : (X , D + a A) has (semi-)log canonical singularities }.

Let ( f : X ∪ Z → C, S + FA) be as above and let p : X → X ′ be the contraction
of the A ∪ E intermediate fiber onto its Weierstrass (pseudo)fiber A′ ⊂ X ′. Let
D′ = f∗ D ⊂ X ′ where
D = (S + FA)|X − Coeff(FA, A)A the boundary divisor on X excluding the com-
ponent A.

Proposition 3.6 The component Z contracts to a point in the log canonical model of
( f : X ∪ Z → C, S + FA) if and only if
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∑

Supp(FA|Z )

ai ≤ lct(X ′, D′, A′)

where the left hand side is a sum over marked pseudofibers on Z.

Corollary 3.7 There are type WIII walls for EA corresponding to pseudoelliptic com-
ponents contracting to a point given by

∑
i∈I ai = c where I ⊂ {1, . . . , n} and c is

the log canonical threshold of a minimal Weierstrass cusp.

Remark 3.8 In the case of type II, III, IV and N1 Weierstrass cusps, the log canonical
threshold c is given by the numbers a0 in Theorem 2.13.

Remark 3.9 Note there are also typeWIII contractions of pseudoelliptics at the bound-
ary walls given by ai = 0.

Proof of Proposition 3.6 The component Z contracts to a point if and only if the curve
E it is attached to contracts to a point in the log canonical model of (X , (S + FA)|X ).
Note first that Coeff(E, (S + FA)|X ) = 1 since E is in the double locus of X ∪ Z and
by Equation 1,

∑

Supp(FA|Z )

ai = Coeff(A, (S + FA)|X ).

We need to compute at which coefficient of A the component E is contracted in
the lc model of (X , (S + FA)X ). Since this is a local question, we may assume X
is an elliptic surface with section S, intermediate fiber A ∪ E and Weierstrass model
p : X → X ′ with Weierstrass cusp p∗(A ∪ E) = A′. Suppose that a ≤ lct(X ′, S′, A′)
where S′ = p∗S. Consider the log resolution p : X → X ′ of the pair (X ′, S′ + a A′).
By definition of lc singularities, the log canonical model of (X , S + a A + E) relative
to p is X ′ since E = Exc(p). Conversely, it is easy to compute from the singularity
of X at A ∩ E that lct(X , S + E, A) = 1 (see the computations in [1]). If 1 > a >

lct(X ′, S′, A′), the pair (X , S + a A + E) is log canonical while the contraction of
E produces pair that has worse than log canonical singularities and so E cannot be
contracted in the lc model. ��

3.2 The birational contractions ofR(a)

Now we use the above discussion to determine the walls of R(a) as one decreases a
and what birational contractions the moduli space undergoes.

Lemma 3.10 There are Type WII walls where Type I pseudoelliptic surfaces of R(a)

form at a = 1
k for k = 1, . . . , 5.

Proof The flips forming Type I pseudoelliptic curves form when a component of the
underlying weighted curve is contracted. Since all weights are the same, this occurs
when ka = 1 as long as the total weight 12a > 2 so that the moduli space of weighted
stable curves is nontrivial. ��
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Lemma 3.11 Let a > 1
6 . Then any pseudoelliptic component on a surface parametrized

by R(a) must be a Type I pseudoelliptic glued along a type II, III, IV, or N1.

Proof Let Z be such a component. Then it is formed by a pseudoelliptic flip corre-
sponding to a type WII wall as in Lemma 3.10. In particular, the number of maked
points on the section component that contracted to form Z is at most 5. Since the
marked points occur at the discriminant of the elliptic fibration (counted with mul-
tiplicity) then Z must be a component with at most 5 singular fibers counted with
multiplicity away from the double locus.

Since Z is a rational pseudoelliptic surface the total multiplicity of the discriminant
of the corresponding elliptic surface is 12 (see Remark 2.7). Therefore the pseudofiber
of Z where it is attached must correspond to a fiber with at discriminant at least 7 so
it has to be an I∗n for n > 0, II∗, III∗ or IV∗. In the first case, it must be attached to
another I∗m or an N1 fiber by the balancing condition in 2.3.1. By degree considerations
it has to be attached to an N1 fiber. In the latter case, the balancing condition requires
it be attached to a type II, III or IV respectively. ��
Lemma 3.12 Let A = (a, . . . , a) for a = 1

6 + ε. Then curves C parametrized by
M0,A are either

1. a smooth P
1 with 12 marked points, or

2. the union of two rational curves, each with 6 marked points.

Proof It is clear thatC can be a smoothP1. IfC is the union of two rational components,
then since each point is weighted by 1

6+ε, and since each curve has to have total weight
> 2 including the node, each curve must have six points. Suppose C = ∪3

i=1Ci , and
label the two end components by C1 and C3, and the bridge by C2. Then at least one
of C1 and C3 will not be stable as 5 · ( 16 + ε) < 1. ��
Corollary 3.13 If X is parametrized by R ( 1

6 + ε
)
, then X has at most two elliptic

components.

Remark 3.14 X can have many Type I pseudoelliptics mapping onto marked points of
C .

Definition 3.15 If X parametrized byR( 16 + ε) has a single (resp. exactly two) fibered
component(s) X0 (resp. X0 ∪ X1), we call X0 (resp. X0 ∪ X1) the main component
of X .

Note in particular that every surface parametrized by R( 16 + ε) consist of a main
component with trees of pseudoelliptics attached along Type II, III, IV and N1 fibers.

Proposition 3.16 There is a wall at a = 1
6 where the entire section contracts and the

Hassett moduli space becomes a point. Furthermore:

1. If X has an irreducible main component X0 then X0 contracts to a degree one del
Pezzo surface with trees of pseudoelliptics branching off.

2. If X has main component X0 ∪ X1, then it either contracts to the above case or
it contracts to a union of Type I I pseudoelliptics Y0 ∪ Y1 glued along a twisted
pseudofibers with trees of pseudoelliptics branching off.
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In the latter case, Y0 ∪ Y1 are glued along twisted I∗0/I∗0, I∗0/N1 or N1/N1 pseud-
ofibers.

Proof If the main component is irreducible, then every other component lies on a
Type I pseudoelliptic tree glued along intermediate II, III, IV or N1 fibers of X0 by
Lemma 3.10. Otherwise the fibered components are of the form X0∪E X1 → C where
C = C0 ∪p C1 is the nodal union of two 6-pointed rational curves by Lemma 3.12 and
E is a twisted fiber of both X0 and X1. If Xi → Ci is a normal elliptic fibration, then
it must have 6 singular fibers counted with multiplicity other than the double locus E .
Thus E must contribute 6 to the discriminant and so is an I∗0. If Xi is a non-normal
component then it must be an isotrivial j-invariant ∞ component.

If it is trivial then it contracts onto a nodal fiber of the other component producing
a surface with a single main component. If it is nontrivial, then it must be unique 2N1
surface with deg(L ) = 1 with 6 marked fibers counted with multiplicity and glued
along a twisted fiber with Z/2Z stabilizer. This means the two main components are
attached along N1/I∗n or N1/N1. Again by examining degrees of the discriminant we
see in the former n = 0. ��
Corollary 3.17 Let 1

12 < a ≤ 1
6 . The surfaces parametrized by R(a) consist of the

following:

1. An irreducible pseudoelliptic main component with trees of Type I pseudoelliptics
attached to it along II, III, IV or N1 pseudofibers,

2. A main component consisting of two Type II pseudoelliptics glued along twisted
I∗0/I∗0 , N1/I∗0 or N1/N1 pseudofibers with Type I pseudoelliptic trees attached to it
along II, III, IV or N1 pseudofibers.

Theorem 3.18 The TypeWIII walls ofR(a) corresponding to the contraction of a Type
I pseudoelliptic component to a point occur at {a = a0

k } for 2 ≤ k ≤ 5 and a0 is one
of the four constants appearing in Theorem 2.13 for fibers of type II, III, IV, and N1.

Proof By Lemma 3.10 and Corollary 3.17, any Type I pseudoelliptic consists of a
surface with 2 ≤ k ≤ 5 marked fibers (counted with multiplicity) and a II∗, III∗, IV∗,
I∗n (n > 0), or N1 fiber attached to a type II, III, IV,N1 orN1 respectively. ByCorollary
3.7 these surfaces contract when ka = c for c the log canonical threshold of type
II, III, IV or N1 minimal Weierstrass cusp respectively. The log canonical thresholds
are the a0 in Theorem 2.13. ��
Theorem 3.19 (see Example 3.20) There are walls of type WIII at a = 1

k for 2 ≤
k ≤ 9. Where a trivial component of j -invariant infinity contracts onto its attaching
(pseudo)fiber.

Proof Trivial j-invariant infinity components appear when marked fibers collide and
carry the number of markings that collide to form the component. If such a component
Z ⊂ X has k ≤ 6 marked fibers, then it must contract onto the fiber direction at the
Type WII walls a = 1

k where the corresponding section contracts to a point.
Suppose X = Z ∪E Y with Z carrying k ≥ 7 marked fibers. Then at coefficients

a = 1
6 + ε, the surface Z is the main component and Y is a Type I pseudoelliptic
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tree. In particular the trivial component Z is blown up at the point where the fiber E
meets the section. Then at a = 1

6 the section contracts and so the main component Z
becomes a nontrivial P1 bundle over the nodal curve E and the marked pseudofibers
become sections of the projection Z → E and the flipped curve A in the intermediate
pseudofiber A ∪ E becomes a fiber of this projection. Then one may compute that
when a = 1

k the restriction of the log canonical divisor to Z is linearly equivalent
to A and so the component Z contracts along the projection Z → E . Finally k ≤ 9
because k ≥ 10 fibers on a rational elliptic surface cannot collide (see e.g. Persson’s
classification of singular fibers [25]). ��
Example 3.20 (see Fig. 2) Suppose Xη is a smooth rational elliptic surface with 12 (I1)
fibers appearing as the general fiber of a familyX → B. We will compute the stable
limit when 7 of the nodal fibers collide for all weights a. Let X0

a denote the special
fiber of X → B. We begin with the twisted stable maps limit at a = 1. The surface
X0
1 is the union of two surfaces, X0

1 = Z ∪I7 Y , where Z is a trivial nodal elliptic
surface P1 × E and seven marked fibers, glued to Y along an I7 fiber.

At a = 1
5 the section of Y contracts to obtain X0

1
5

= Z ∪I7 Ỹ , where Ỹ is the

pseudoelliptic surface corresponding to Y . Decreasing weights so that A = 1/5 − ε

we cross a wall of type WII and a flip occurs in the family to obtain X0
1
5−ε

= Ẑ ∪I′7 Ỹ ,

where we blow up a point on Z corresponding to the contraction of the section of Y .
We note that I′7 is an intermediate fiber on Ẑ and is the union of a genus one component
E with a genus zero component A.

At a = 1
6 the section of Ẑ contracts to form Z̃ . Since Z̃ is the blowdown of the

strict transform of the section of the blowup of a trivial surface P1 × E , then Z̃ is a
P
1 nontrivial P1-bundle over E . The component A becomes a fiber of the projection

Z̃ → E and the marked pseudofibers become sections. At a = 1/7, the surface Z̃
contracts onto the E component (i.e. I7 pseudofiber of Y ) and we are left with X0

1
7
, a

single pseudoelliptic component with an I7 pseudofiber and five I1 pseudofibers.

Remark 3.21 The above example occurs when 6 ≤ k ≤ 9 nodal fibers collide, and the
final wall is at 1

k . Note that for numerical reasons, we cannot have 10 ≤ n ≤ 12 nodal
fibers collide (see [25]).

Example 3.22 (see Fig. 3) Suppose X0
1 is the twisted stable maps limit of a family

X → B and X0
1 = Y ∪I∗0 Z , where there are six marked fibers on both irreducible

components, and there is a Z/2Z stabilizer at node of the stable base curve cor-
responding to the double locus of X0

1. Suppose further that j(I∗0) = ∞. Then the
marked j-invariant infinity fibers on Y or Z can collide into the double locus and we
obtain new isotrivial components of j-invariant infinity.

If 1 ≤ n ≤ 5 marked fibers on Y collide onto the double locus, the stable limit
will be a new surface Y ′ ∪ W ∪ Z , where each component has (6 − n), n and 6
marked fibers respectively, Y ′ now has an I∗n fiber where the markings collided, and
the component W is isotrivial of j-invariant infinity. By examining the stabilizer of the
twisted stable map at the nodes, we see that W has an N1 fiber glued to the I∗0 fiber of
Z and another N1 fiber glued to the I ∗

n fiber of Y ′. When the coefficients decrease past
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Fig. 2 Example 3.20 illustrating Theorem 3.19

Fig. 3 Example 3.22 with 3 I1 fibers colliding into the I∗0/I∗0 double locus

a Type WII wall a = 1
6−n , Y ′ undergoes a pseudoelliptic flip explaining how isotrivial

main components appear in Proposition 3.16.

Remark 3.23 In Example 3.22 there can be a chain of isotrivial j-invariant infinity
surfaces sandwiched between the two non-isotrivial surfaces if In type fibers collide
into the double locus from multiple sides. However, each end surface must have ≥ 2
singular marked fibers (counted with multiplicity) and each isotrivial surface must
have ≥ 1 and so the maximum length of a chain is 8.

4 Explicit moduli of del Pezzo surfaces of degree one

We begin by defining a compactificationDP1 following [9]. Later on, we will see that
the space R ( 1

12 + ε
)
is a slice inside DP1, allowing us to apply the methods of [9]

toR ( 1
12 + ε

)
.

Definition 4.1 (c.f. [9, Definition 2.8]). Let X be a surface and D a Q-Cartier divisor
on X . Then (X , D) is a Hacking stable, or H -stable for short, degree one del Pezzo
pair if:

1.
(
X ,

( 1
12 + ε

)
D

)
is slc and K X + ( 1

12 + ε
)

D is ample,
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2. the divisor 12K X + D is linearly equivalent to 0, and
3. (X , D) admits aQ-Gorenstein deformation to a smooth del Pezzo surface of degree

one

The stack of such objects we will denote by DP1 (see [9, Section 4]).

Remark 4.2 It follows that for an H -stable pair, −K X is ample (see [9, Proposition
2.13]). In particular, Definition 4.1 is an slc generalization of a degree one del Pezzo
surface X marked by D the discriminant (weightedwithmultiplicity) of the anticanon-
ical linear series | − K X |.

We now turn to R ( 1
12 + ε

)
, and show that pairs parametrized by R( 1

12 + ε) are
H -stable, so thatR( 1

12 + ε) embeds into DP1. First, we define a special locus inside
R(a).

Definition 4.3 LetR◦(a) denote the locus insideR(a) parametrizing surfaces without
isotrivial j-invariant infinity components.

4.1 Stable degree one del Pezzo surfaces andR( 1
12 + �)

In Section 3we computed the typeWIII walls forR(a) – these occur at 1k for 2 ≤ k ≤ 9
(see Theorem 3.19) and a0

k for 2 ≤ k ≤ 5 where a0 is a constant appearing in Theorem
2.13 depending on the Kodaira type of the fiber a Type I pseudoelliptic is attached
to (see Theorem 3.18). Furthermore, recall the type WI walls where fibers become
Weierstrass are at 5

6 ,
3
4 ,

2
3 , and

1
2 and type WII agree with those of Hassett space.

In particular, when a ≤ 1
6 , all sections are contracted so thatR(a) is a moduli space

of pseudoelliptic surfaces. Since the contraction of the section of a rational elliptic
surface yields a degree one del Pezzo surface whose pseudofibers are anticanonical
curves, we see the following:

Lemma 4.4 Let 1
12 < a ≤ 1

6 . Then R(a) is a compactification of a moduli space of
degree one del Pezzo surfaces with canonical singularities and marked anticanonical
curves.

We can be more precise about the marking on a del Pezzo surface on the interior of
R(a). If (X , Fa) is a normal surface parametrized by R(a), then it is the blowdown
of the section of a rational Weierstrass fibration. The boundary divisor consists of the
singular fibersweigthed by a countedwithmultiplicity.As eachfiber of theWeierstrass
fibration becomes an anticanonical curve upon blowing down the section, Fa ∼ 12a f
where f ∈ | − K X | is a pseudofiber class. We may conclude that Fa ∈ | − αK X |
with 1 < α ≤ 2. In particular, the necessarily ample log canonical divisor satisfies
K X + Fa ∼Q −δK X for 0 < δ ≤ 1. In particular (X , Fa) can be thought of as an
anticanonically polarized degree one del Pezzo surface with at worst rational double
point singularities.

We now characterize the two types of surfaces parametrized by the boundary of
R0(a).

Theorem 4.5 The surfaces parametrized by R◦(a) for 1
12 < a ≤ 1

6 are either:
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1. normal degree one del Pezzo surfaces with canonical Gorenstein singularities and
all singular pseudofibers being Weierstrass of type In, II, III or IV, or

2. the slc union of two degree one del Pezzo surfaces with canonical Gorenstein
singularities glued along twisted I∗0 pseudofibers such that 2K X is Cartier and all
other singular pseudofibers as above.

In both cases, K X + D ∼Q −δK X for 0 < δ ≤ 1 so that −K X is ample and (X , D)

is anticanonically polarized. We call case (1) surfaces Type A and case (2) surfaces
Type B.

Proof It follows from Corollary 3.13 that the surfaces parametrized by R ( 1
6 + e

)

have at most two elliptic components. Since a ≤ 1
6 the section of every component

contracts. Suppose an elliptic fibration (X → C, FA) in R0
( 1
6 + e

)
has only one

elliptic component, possibly with pseudoelliptic components of Type I attached to it.
The base rational curve marked by the

( 1
6 + ε

)
-weighted discriminant

( 1
6 + ε

)
D is

an irreducible Hassett stable curve. In particular, the order of vanishing vq(D) ≤ 5
for every q ∈ C . Any unstable fiber on the elliptic component is type II, III or IV. In
particular, any type I pseudoelliptic tree is attached along an intermediate II, III or IV
fiber.

By Theorem 3.18, any such pseudoelliptic surface is contracted to a point in the
log canonical model for a ≤ 1

6 so every surface in R0(a) arising from a surface
in R0

( 1
6 + ε

)
with a unique elliptic component is irreducible. The contraction of

the pseudoelliptic components yields ADE singularities by [1, Page 230] since such
contractions produce minimal Weierstrass models. The fact that they are del Pezzo
surfaces, in the sense that −K X is ample, follows from calculation preceding the
theorem as we saw that K X + Fa ∼Q −δK X , which is ample. This gives case (1).

Now we discuss Case (2). By Proposition 3.16, the only way to obtain multiple
elliptic components inR0( 16 + ε) is if there are two components each with six marked
fibers glued along I0∗ fibers. By considering stability of the base Hassett curve, we
see that vq(D) ≤ 5 so any type I pseudoelliptic trees attached to these components
contract to a point by a = 1

6 . Furthermore the section of each component contracts
so we obtain two pseudoelliptic surfaces of Type II glued along twisted I∗0 fibers but
with all other fibers Weierstrass. In particular each component again has only ADE
singularities, a single twisted I∗0 pseudofiber, and else all Weierstrass pseudofibers
of types In, II, III and IV. Let (X , Fa, E) be such a component with markings Fa

and double locus E marked by 1. Then Fa consists of 6 (counted with multiplicity)
pseudofibers weighted by a and E is a reduced pseudofiber underlying a twisted I∗0
pseudofiber. Thus as before we may compute Fa + E ∼Q −(6a + 1

2 )K X < −K X

with 1
12 < a ≤ 1

6 . Thus K X + Fa + E , the log canonical restricted to each component,
satisfies K X + Fa + E ∼Q −δK X for δ > 0. In particular −K X is ample and K 2

X = 1
since −K X is the class of a pseudofiber so each component is a degree one del Pezzo
surface. ��
Lemma 4.6 In the setting above, surfaces of Type A are Gorenstein and surfaces of
Type B are Q-Gorenstein of index 2.

123



Compact moduli of degree...

Proof Surfaces of Type A are Gorenstein since the singularities are of ADE type (
[1, Pg 230]). Surfaces of Type B are Gorenstein away from the double locus as well
where the double locus is double normal crossings. Thus we need only check around
the points of the double locus where the normalization is singular. There are four such
points where each component has an A1 singularity. Locally around each point the
surface is a quotient of a nodal surface by Z/2Z since the double locus is a twisted I∗0.
Thus each of these points is 2-Gorenstein so the surface has index 2. ��

We have seen already that the surfaces of Type A are anticanonically polarized so
it remains to see the same is true for 2-Gorenstein surfaces of Type B.

Lemma 4.7 Surfaces of Type B are anti-canonically polarized.

Proof Denote the surface by X = X1 ∪ X2. Let ν : X̃ → X denote the normalization,
and let νi denote the normalization restricted to the preimage of Xi . Then ν∗

i (K X +
Fa) = K X̃i

+ F̃a |Xi + E , where E is the preimage of the double locus. We calculate:

ν∗
i (K X + Fa) ∼Q − f +6a f +1/2 f = − f + 1/2 f + δ f + 1/2 f = δ f ∼Q −δK Xi

for some δ > 0. Here f is a pseudofiber class. On the other hand,

ν∗
i (−K X ) = −K Xi − E ∼Q −3/2K Xi .

So K X + Fa ∼Q −αK X for some α > 0, since ν∗ is injective on Pic⊗Q as ∩Xi is a
reduced P

1 (see [16]) so the pair (X , Fa) is anticanonically polarized. ��
For the final chamber a = 1

12 + ε such a description actually extends to all of
R( 1

12 + ε):

Theorem 4.8 The surfaces parametrized by R ( 1
12 + ε

) \ R0
( 1
12 + ε

)
are either the

union of

1. an isotrivial j -invariant infinity surface and a surface of Type A, glued along
twisted N1/I∗n pseudofibers,

2. or of two isotrivial j -invariant infinity surfaces glued along twisted N1 pseud-
ofibers,

In both cases the surfaces are anticanonically polarized with index two. We call the
surfaces in (1) Type C and in (2) Type D.

Proof By examining the twisted stable maps degenerations one sees that the only way
to obtain isotrivial components of j-invariant ∞ is by marked fibers colliding, or a
marked fiber colliding with the double locus as in Examples 3.20 & 3.22 respectively.
Any isotrivial components appearing as in Example 3.20 undergo a pseudoelliptic
contraction at 1

k for k = 3, . . . , 9 so such components do not appear in the surfaces
parametrized by R ( 1

12 + ε
)
.

Suppose we are in the case of Example 3.22. Then at a = 1
6 +ε as there are only two

fibered components X ∪ Y along with some trees of type I pseudoelliptics attached.
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The pseudoelliptics contract at walls a0
k for k = 2, . . . , 5 and 1

k for k = 3, . . . , 9. In
particular, all of these components have contracted at a = 1

12 + ε. Furthermore, the
section of main components X ∪ Y contract to type II pseudoelliptics. At least one or
both of X and Y are isotrivial j = ∞.

If only one is, suppose X , then X has a twisted N1 fiber attached to a twisted I∗n
fiber of Y for some n > 0. If both are isotrivial j = ∞, then they are attached along
twistedN1/N1 fibers. Then the corresponding pseudoelliptics are attached alongN1/I∗n
respectively N1/N1 pseudofibers. Furthermore, locally around a point of the attaching
fiber, by definition of N1/I∗n fibers, the surface looks like the quotient of a family of
nodal curves over a nodal curve modulo a Z/2Z action. As a family of nodal curves
over a nodal curve is Gorenstein, our surface must be 2-Gorenstein. ��
Theorem 4.9 There is an embedding of R ( 1

12 + ε
)

into DP1. Furthermore, the locus
R0( 1

12 + ε) is a section of its image in the stack of unmarked degree one del Pezzo
surfaces under the forgetful morphism (X , D) → X, where (X , D) is an H-stable
pair.

Proof Given (X , Fa) ∈ R ( 1
12 + ε

)
, let D = 1

a Fa where a = 1
12 + ε. Then D is a

sum of 12 pseudofibers counted with multiplicty. Let f be a pseudofiber class, then
f ∼Q −K X since X is a pseudoelliptic corresponding to a rational elliptic surface.
Thus 12K X + D ∼Q 0 verifying Definition 4.1 (2). Condition (1) is true since (X , Fa)

is a stable pair and (3) follows from the definition of R(a) as the closure of the
component parmetrizing smooth rational (pseudo)elliptic surfaces with only I1 fibers.
Over the locus R0( 1

12 + ε), the divisor D is the discriminant of the elliptic fibration
pushed forward along the pseudoelliptic contraction (excluding the fiber along which
two components are glued in the case that X is on the boundary). Thus sending X to
the discriminant of its anticanonical pencil gives a section of the projection map with
image R0

( 1
12 + ε

)
over the locus where X is normal. ��

4.2 Smoothness properties of themoduli spaceDP1

Ourproof followsHacking [9]. In particular, since−K X is ample, to show thatR0( 1
12+

ε) is smooth, it suffices to show that theQ-Gorenstein deformations of the surfaces of
Type A and B are unobstructed, and that H1(X ,OX (D)) = 0 (see [9, Theorem 3.12
& Lemma 3.14]).

Proposition 4.10 (See [9, Theorem 8.2]) Let X be a surface of Type A. Then X has
unobstructed Q-Gorenstein deformations.

Proof Following Hacking, the obstructions are contained in T 2
QG,X . Since there is a

spectral sequence E pq
2 = H p(T

q
QG,X ) �⇒ T p+q

QG,X , it is sufficient to show that

H p(T
q

QG,X ) = 0 for p + q = 2.

The sheaf T 1
QG,X is supported on a finite set (the singular locus of X ), so

H1(T 1
QG,X ) = 0. The surface X is lci since the singularities are ADE so T 2

QG,X = 0

and H0(T 2
QG,X ) = 0. Therefore, it suffices to show that H2(T 0

QG,X ) = H2(TX ) = 0.
This follows by combining the proof of [21, Theorem 21] and [28, Lemma 1.11].
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Namely, let σ : S → X be the minimal resolution of X . Then since the singularities
of X are quotient singularities, σ∗
1

S = (
1
X )∨∨ by [28, Lemma 1.11]. Therefore,

H0((
1
X )∨∨) = H0(
1

S) = 0, as S is a rational surface. Let s �= 0 be a section of
OX (−K X ). Then s yields a dual injective morphism sv : OX (K X ) → OX . Com-
posing with sv shows that Hom(TX ,OX (K X )) = 0 and so by Serre Duality (X is
Gorenstein!) H2(TX ) = 0. ��
Proposition 4.11 (see [9, Theorem 9.1]) Let X be the a surface of Type B. Then X has
unobstructed Q-Gorenstein deformations.

Proof Again, it suffices to show that H p(T
q

QG,X ) = 0 for p + q = 2. The surface
X has local canonical covering by a local complete intersection π : Z → X so
that T 2

Z = 0. If μn is the covering group of π , we have T 2
QG,Z = π∗(T 2

Z )μn = 0

so H0
(
T 2

QG,X

)
= 0. The sheaf T 1

QG,X is supported on the singular locus of X

which consists of the pseudofiber along which the surfaces are glued as well isolated
ADE singularities. We note that the (induced reduced structure of the) gluing fiber
is P

1, and we let i : P
1 ↪→ X denote the inclusion of this fiber in X . By [10,

Lemma 3.6],T 1
QG,X = i∗OP1(1)⊕Q whereQ is supported at isolated points, and so

H1(T 1
QG,X ) = 0.

Finally, wemust show that H2
(
T 0

QG,X

)
= H2(TX ) = 0. Let (Xi , Ei ) for i = 1, 2

denote the two components with Ei = E |Xi denoting the restriction of the double
locus. Following [9, Lemma 9.4], to show that H2(TX ) = 0, it suffices to show
that H2(TXi (−Ei )) = 0, which is equivalent to showing that OXi (−K Xi − Ei )

has a non-zero global section. Note that −K Xi ∼ 2Ei since Ei is the support of a
multiplicity 2 nonreduced pseudofiber, and so −K Xi − Ei ∼ Ei . Thus the reflexive
sheaf OXi (−K Xi − Ei ) = O(Ei ) has a section, namely the one cutting out Ei . ��
Lemma 4.12 If (X , D) is an H-stable pair parametrized by R( 1

12 + ε), then
H1(OX (D)) = 0.

Proof Either X or Xν has canonical singularities. Therefore, it suffices to show that
−(K X − D) is ample, as then the result follows from [9, Lemma 3.14]. Note we
have that 12K X + D ∼Q 0 since (X , D) is H -stable and so D ∼Q −12K X . Thus
−(K X − D) ∼Q −13K X is ample. ��
Theorem 4.13 Let (X , D) ∈ R0

( 1
12 + ε

) ⊂ DP1. Then the stack ofQ-Gorenstein del
Pezzo surfaces of degree one is smooth if a neighborhood of X and the projection from
DP1 given by (X , D) → X is smooth. In particular,DP1 is smooth in a neighborhood
of R0

( 1
12 + ε

)
, and the locus R0

( 1
12 + ε

)
is smooth.

Proof By Prop 4.10 and 4.11, the Q-Gorenstein deformations of X are unobstructed.
By Lemma 4.12 and [9, Theorem 3.12&Lemma 3.14], the projection fromDP1 given
by (X , D) → X is a smooth morphism since given aQ-Gorenstein deformation of X ,
deformations of D are unobstructed. This proves thatDP1 is smooth in a neighborhood
of (X , D) ∈ R0

( 1
12 + ε

) ⊂ DP1. Finally, R0
( 1
12 + ε

)
is a section of the projection

(X , D) → X over its image by Theorem 4.9 soR0
( 1
12 + ε

)
is smooth. ��
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Remark 4.14 We note that the above proof method will not work to show the entire
R ( 1

12 + ε
)
is smooth, as in the j-invariant ∞ locus, the divisor can move freely, and

we need to cut out only those deformations which do not smooth the divisor.

5 Miranda’s GIT construction of themoduli space of Weierstrass
fibrations

5.1 Overview of Miranda’s construction

In [22],Miranda uses GIT to construct a coarse moduli space ofWeierstrass fibrations.
These fibrations arise naturally as follows: let p̃ : X̃ → Y be aminimal elliptic surface
with section S. One obtains a normal surface called a Weierstrass fibration X → Y by
contracting each component of the fibers of p̃ which do not meet the section S. This
fibration has only rational double point singularities, and is uniquely determined by
X̃ . Let W denote the GIT quotient, and let W sss denote the strictly semistable locus.

Notation 5.1 Let �n = �(P1,OP1(n)). For the Weierstrass fibration of a rational
elliptic surface, we think of X as being the closed subscheme of P(OP1(2)⊕OP1(3)⊕
OP1) defined by the equation y2z = x3 + Axz2 + Bz3, where A ∈ �4, B ∈ �6, and

1. 4A(q)3 + 27B(q)2 = 0 precisely at the (finitely many) singular fibers Xq ,
2. and for each q ∈ P

1 we have vq(A) ≤ 3 or vq(B) ≤ 5.

Theorem 5.2 [22, Theorem 6.2, Proposition 8.2, Theorem 8.3]. Let X be a rational
Weierstrass fibration represented by W . Then X is stable if and only if X has smooth
generic fiber and the associated elliptic surface X̃ has only reduced fibers. Further-
more, X is strictly semistable if and only if the associated elliptic surface X̃ has a
fiber of type I∗N for some N ≥ 0. Moreover, two strictly semistable elliptic surfaces
correspond to the same point in W sss if and only if the j-invariant of the I∗N fibers are
the same.

In particular, there is a stratification W = W s � A
1 � ∞ where the strictly semi-

stable locus is the j-line A
1 � ∞, with A

1 the j-invariant of the I∗0 fibers and ∞
corresponding to I∗N for N ≥ 1.

5.2 Relation betweenW andR( 1
12 + �)

We now compare W toR( 1
12 + ε).

Theorem 5.3 Let R = R
( 1
12 + ε

)
be the coarse moduli space of R ( 1

12 + ε
)

and � ⊂
R the boundary divisor parametrizing non-normal surfaces with U = R \ �. There
is a morphism R → W to Miranda’s GIT compactification such that the following
diagram commutes.
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� R U

P
1 W W s

j ∼=

Here � → P
1 sends the surface X ∪ Y to the j-invariant of the double locus,

P
1 → W sss ⊂ W maps bijectively onto the strictly semistable locus, and U → W s

is an isomorphism.

Proof Let U ⊂ R( 1
12 + ε) be the open locus of normal surfaces, i.e. smooth surfaces

inR( 1
12 + ε) and surfaces of Type A. Consider the PGL2-torsor

F = {(X , s, t) | X ∈ U , (s, t) ∈ H0(−K X ) where s, t span H0(−K X )}/ ∼,

where we quotient by scaling. The image of | − K X | is a P1 with coordinates (s, t),
and the linear series |− K X | induces the elliptic fibration: the blowup of its base point
gives an elliptic fibration (with section), and thus aWeierstrass equation in coordinates
s and t . In particular, this Weierstrass coefficients (A, B) are unique up to the scaling
of the Gm action (A, B) �→ (λ4A, λ6B).

Furthermore by Theorem 5.2 and the characterization of surfaces of Type A (The-
orem 4.5), the forms (A, B) are contained in the stable locus V s ⊂ V . Therefore,
we obtain a PGL2-equivariant morphism F → V s which induces a morphism
φ : U → W . By comparing the characterization of the type A surfaces parametrizedU
and Miranda’s stable surfaces, we see that U → W must be an isomorphism onto the
stable locus. Suppose X is a surface parametrized by the boundary� andX → B is a
1-parameter family so thatX ∈ U for b �= 0 andX0 = X . Then by [8, Theorem 7.3],
to exhibit the existence of a morphism R → W , it suffices to show that limb→0(Xb)

depends only on X and not on the choice of family. However this follows by Theorem
5.2: the surface X contains a fiber of type I∗0, namely the gluing fiber, and so the family
of Weierstrass data (Ab, Bb) corresponding to X → B limits to the unique point
j(I ∗

0 ) ∈ W sss which is well defined since the j-invariant of the attaching fiber is the
same on each component of X . Therefore, the morphism φ extends to a morphism on
all of R and we obtain the desired morphism R → W . Commutativity of the diagram
above follows by construction. ��

Remark 5.4 GivenWeierstrass data (A, B), we can consider the discriminantD ∈ �12.
If D∗ is the GIT quotient of the space of degree 12 forms on P1 by automorphisms of
P
1, then it is natural to ask if (A, B) �→ D induces a morphism W → D∗. There is

clearly a rational map W ��� D∗ but this map cannot extend. Indeed W parametrizes
surfaces with In fibers for n > 6 which have discriminant vanishing to order n > 6.
Such a discriminant is GIT unstable. However, we will see below that the space R( 16 )

resolves this rational map.
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Corollary 5.5 There are morphisms R
( 1
6

) → W and R
( 1
6

) → D∗ where D∗ is the
GIT moduli space for 12 points in P

1. Furthermore, the diagram

R( 16 )

W D∗

commutes where W ��� D∗ is the rational map induced by (A, B) �→ D =
4A3 + 27B2

Proof There is a morphism R
( 1
6

) → W induced by composing the morphism in
Theorem 5.3 with the reduction morphism R

( 1
6

) → R
( 1
12 + ε

)
(Theorem 2.19).

By [3, Theorem 1.4], there is a morphism R ( 1
6 + ε

) → M 1
6+ε/S12 which sends

a
( 1
6 + ε

)
-weighted stable rational elliptic surface marked with its singular fibers

to the ( 16 + ε)-weighted 12-pointed stable curve marked by the discriminant of the
elliptic fibration. By [11, Section 8], there is a morphism M 1

6+ε/S12 → D∗ which

induces R( 16 + ε) → D∗ by composing and taking coarse moduli space. To obtain
the factorization R

( 1
6 + ε

) → R
( 1
6

) → D∗, it suffices by [8, Theorem 7.3] to show
that the image of a point under R

( 1
6 + ε

) → D∗ depends only on the image of that
point in R

( 1
6

)
. I.e, wemust show that given a

( 1
6 + ε

)
-weighted broken rational elliptic

surface, the equivalence class in the GITmoduli space of its discriminant only depends
on the 1

6 -weighted stable replacement of the surface.
This is clear on the locus where R

( 1
6 + ε

) → R
( 1
6

)
is an isomorphism. The

morphism R
( 1
6 + ε

) → R
( 1
6

)
causes the base curve to contract, and this is an iso-

morphism on moduli spaces away from the contraction of a trivial j-invariant ∞
component. By Theorem 3.19, the only WIII wall occurring at a = 1

6 comes from
contracting an isotrivial component glued along an I6 fiber. In this case the base curve
of the corresponding surface parametrized by R

( 1
6 + ε

)
had to have two compo-

nents, each with six marked points. Therefore any surface of this form gets mapped
to the unique minimal strictly semistable orbit of D∗, which arises precisely from
two points each of multiplicity six, and so does not depend on the choice of surface.
There also may be the contraction of pseudoelliptic trees of type I to points. However,
the discriminant depends only on the main component(s), and not on the pseudoel-
liptic trees. Indeed since the main components survive under the reduction morphism
R

( 1
6 + ε

) → R
( 1
6

)
, we see that the stable replacement inside D∗ only depends on

the image of the corresponding point in R( 16 ). Lastly, commutativity is immediate by
construction. ��

6 Heckman-Looijenga’s compactification

Recall that to a rational elliptic Weierstrass fibration we can associate its discriminant
divisor D which is described in the previous section in terms of Weierstrass equation.
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Equivalently, for a smooth minimal elliptic surface, D is given by assigning to any
point on the base curve the Euler characteristic of its fiber, and yields an effective
divisor of degree 12. When the discriminant is reduced, there are 12 singular fibers
of type I1 – in this case the projective equivalence class of the discriminant divisor
determines the surface up to isomorphism.

We can describe a compactification using the fact that the discriminant can be used
to classify generic elliptic surfaces. Using this approach, Heckman and Looijenga
showed that themoduli space of rational elliptic surfaces can be interpreted as a locally
complex hyperbolic variety, and studied its Satake-Baily-Borel compactification (see
[14] and [20, Section 7]).

Recall that for the GIT compactification D∗ of the space of 12 points in P
1 up to

automorphism, a collection of points is stable (resp. semistable) if there are no points
of multiplicity ≥ 6 (resp. ≥ 7). Let M denote the moduli space of rational elliptic
surfaces with reduced discriminant, and let D ⊂ D∗ denote the SL2 orbit space of 12
element subsets of P1. Taking the discriminant of a generic elliptic surface yields a
closed embeddingM ↪→ D (see [14, Proposition 2.1]).While rational elliptic surfaces
have 8 dimensionalmoduli, the dimension ofD is 9, and so the space of rational elliptic
surfaces defines an SL2-invariant hypersurface. This hypersurface corresponds to the
12 element subsets of P1 that admit an equation which is the sum of a cube and a
square.

They obtain a compactificationM ∗ ofM by taking the normalization of the closure
ofM insideD∗. Since they cannot compareM ∗ andW directly (seeRemark 6.1), they
also define two auxilliary compactifications: W ∗ – the normalization of the closure of
the diagonal embedding ofM ↪→ W ×D∗, andMK which is a compactification via
Kontsevich stable maps . The space MK is essentially the image in the Kontsevich
space of maps to P1 of the space of twisted stable maps toM1,1 given by composing
with the coarse space map M1,1 → P

1, see [2,6].
In [14], the authors compare these compactifications and show, using work of

Deligne-Mostow [7], that M ∗ can be interpreted as the BB compactification of a
complex hyperball quotient.

Remark 6.1 (1) The birational map between W and M ∗ does not extend to a mor-
phism

(2) M ∗ is not the coarse moduli space of some proper Deligne-Mumford stack of
elliptic surfaces.

(3) The various compactifications fit together into a diagram as follows:

MK

W ∗

W M ∗

(3)
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Table 1 Dimension of boundary
components

F dimM ∗(F) dim W (F) dim W∗(F)

I2 7 7 7

Ik 9 − k 9 − k 9 − k

I6 0 3 3

I7 5 2 7

I8 6 1 7

I9 7 0 7

II 7 7 7

III 6 6 6

IV 5 5 5

I∗0 0 1 1

I∗l,l′ l + l ′ − 1 0 l + l ′ − 1

The following theorem of [14] describes the boundary of M inside W , W ∗, and
M ∗.
Theorem 6.2 [14, Section 3.3]The boundary ofM inside W , W ∗, andM ∗ is the union
of irreducible components denoted by W (F) (resp. W ∗(F) and M ∗(F)), where F
runs over the various Kodaira symbols as in Table 1.

We have k ≤ 5, and l, l ′ ∈ {1, 2, 3, 4}. The dimension of these components inside
each space are in Table 1. We now briefly describe the type of surfaces corresponding
to the generic point of the boundary loci W ∗(F) labeled by Kodaira symbols F in the
above theorem (see [14, Section 3.3]).

6.0.1 Boundary loci

Ik≥2 The surface has two components, one isotrivial j-invariant ∞ component
with k marked fibers, glued to a non-isotrivial component along an Ik fiber. See
Example 3.20.
II The surface has two irreducible components, a 10I1 II component glued to a 2I1
II∗ component along a II/II∗ twisted fibers.
III Similar to above but with III/III∗ twisted fibers.
IV Similar to above but with IV/IV∗ twisted fibers.
I∗0 The surface has two irreducible components of type 6I1 I∗0 and the surfaces are
glued along I∗0/I∗0 twisted fibers. Compare with surfaces of Type A in Theorem
4.5.
I∗l,l ′ The surface has three components X ∪ Y ∪ Z . Y is isotrivial j-invariant ∞
with l + l ′ marked nodal fibers as well as two twisted N1 fibers. X has 6 − l type
I1 fibers and a twisted I∗l glued along one of the N1 fiber and Z is similar with l ′
instead of l. See Example 3.22.

Roughly speaking, the map W ∗ → W takes one of the above surfaces to the
equivalence class of semistable orbits inMiranda’s space associated to theWeierstrass
equation of the “main component” of the surface. Similarly, the map W ∗ → M∗
takes such a surface to the GIT semistable replacement of the base curve marked by
the discriminant divisor.
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Theorem 6.3 There is a projective birational morphism R
( 1
6

) → W ∗ from the coarse

moduli space of R ( 1
6

)
which is an isomorphism away from the W ∗(I∗0) and W ∗

(
I∗l,l ′

)

loci. The universal family of R ( 1
6

)
over these loci parametrizes surfaces of the type

described in Section 6.0.1. Furthermore, R ( 1
6

)
is the minimal space above both M ∗

and W extending the universal family on M .

Proof W ∗ is universal for dominant morphisms X → W and X → M ∗ from a normal
variety X that agree overM . By construction R

( 1
6

)
is normal and so the existence of

ϕ : R
( 1
6

) → W ∗ follows.
Next one can check by the explicit description of limits in R ( 1

6

)
given in Sects. 3

and 4.1 that ϕ is a bijection over strata W ∗(F) for F �= I∗0, Il,l ′ . Indeed for F = Ik ,
2 ≤ k ≤ 6, II, III and IV the stratum W ∗(F) is the coarse moduli space of Weierstrass
surfaces containing an F singular fiber since these correspond to irreducible surfaces
whose Weierstrass equation is GIT stable. Thus ϕ is a bijection over these strata as
R( 16 ) is a coarse moduli space of surfaces parametrized by R( 16 ).

The strata W ∗(Ik) for k = 7, 8, 9 parametrize surfaces X ∪Y where X is trivial with
k marked fibers and Y is an Ik Weierstrass surface. The configuration of marked fibers
on X is GIT stable inD∗ and Y is GIT stable in W . Therefore W ∗(Ik) is a coarsemoduli
space for such surfaces. Over this locusR ( 1

6

)
parametrizes pseudoelliptic models of

these same surfaces as in Example 3.20 and soϕ is bijective on this locus on the level of
coarse moduli spaces. By ZMT, ϕ is an isomorphism on this locus where it is bijective.
Over the W ∗(I∗0), the R

( 1
6

)
parametrizes pseudoelliptic surfaces X ∪ Y glued along

a twisted I∗0 pseudofiber and the map ϕ takes such a surface to the j-invariant of the
I ∗
0 fiber. In particular, this stratum in R

( 1
6

)
is the 7-dimensional coarse moduli space

for rational elliptic surfaces glued along an I∗0 fiber while W ∗(I∗0) is a 1-dimensional
stratum parametrizing only the j-invariant. Thus the universal family of M does not
extend over this locus. Over the W ∗(I∗l,l ′) locus, R

( 1
6

)
is the coarse moduli space for

surfaces X ∪ Y ∪ Z as in Example 3.22 and Remark 3.23 where X and Z are I∗l and
I∗l ′ pseudoelliptic surfaces and Z is a chain of isotrivial j-∞ pseudoelliptic surfaces
glued along twisted N1 fibers. The map ϕ takes such a surface to the GIT semistable
replacement of the configuration of marked fibers on the components Z . In particular,
it forgets the information of X and Y so again the locus W ∗(I∗l,l ′) is not a coarse moduli
space for the type of surfaces it corresponds to and the universal family overM does
not extend.

This exhausts the list of strata and shows that R
( 1
6

) → W ∗ is an isomorphism
away from the locus where W ∗ is not a coarse moduli space of surfaces. Furthermore,
over this locus R

( 1
6

)
is a coarse moduli space for precisely the surfaces the strata in

W ∗ correspond to and so R ( 1
6

)
is the minimal stack over which the universal family

of surfaces extends. ��
Remark 6.4 R

( 1
6

)
and W ∗ are isomorphic along the boundary component correspond-

ing to I∗4,4, but the universal families are different. In the universal family ofR ( 1
6 + ε

)

such surfaces have contracted to a point, but there is a unique rational elliptic surface
with an I∗4 fiber (see [25]).
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