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Abstract—In this paper, we propose a leader-follower hier-
archical strategy for two robots collaboratively transporting
an object in a partially known environment with obstacles.
Both robots sense the local surrounding environment and
react to obstacles in their proximity. We consider no explicit
communication, so the local environment information and the
control actions are not shared between the robots. At any given
time step, the leader solves a model predictive control (MPC)
problem with its known set of obstacles and plans a feasible
trajectory to complete the task. The follower estimates the
inputs of the leader and uses a policy to assist the leader while
reacting to obstacles in its proximity. The leader infers obstacles
in the follower’s vicinity by using the difference between the
predicted and the real-time estimated follower control action.
A method to switch the leader-follower roles is used to improve
the control performance in tight environments. The efficacy of
our approach is demonstrated with detailed comparisons to two
alternative strategies, where it achieves the highest success rate,
while completing the task fastest.

I. INTRODUCTION

Multi-robot systems have a high potential to collabo-
ratively accomplish complex tasks, such as, for example
transporting large or heavy work pieces [1]-[7]. For known
repetitive tasks in structured environments, collaborative
manipulation problems in industrial applications are mainly
solved in a centralized way, relying on precise feedforward
computations. As solving a centralized control synthesis
problem for such tasks can become computationally cumber-
some, distributed and decentralized control strategies have
been proposed [8]-[14]. However, communication delays
remain as a bottleneck, i.e., iterative communication, such
as the ones required for consensus type algorithms, might
converge too slowly for such robotics applications. To resolve
this, the use of implicit communication, such as force and
torque measurements or estimates on rigid bodies, has been
proposed in the literature, e.g., in [15]-[24].

Obstacle avoidance in collaborative robotics has primar-
ily considered known obstacles and solving a centralized
problem with explicit communication [25]-[28]. Issues arise
when the robots rely only on local controllers in unstructured
and unknown or partially known environments, primarily
because of the tight dynamical couplings. A particular chal-
lenge is associated with inferring unknown obstacles using
implicit communications when the robots have only partial
knowledge of their environment, i.e. they use local sensors
with limited field of view.
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We consider the task of two robots collaboratively trans-
porting an object, constraining the robots’ inputs to comply
with the object’s physical constraints. We consider no explicit
communication, so the local environment information and
the control actions are not shared between the robots. We
solve the control design problem by using a leader-follower
strategy with the leader using a predictive control and the
follower using a simple controller, known to the leader. With
this schema, the leader can solve the collaborative trans-
portation task, with the help of the follower, while building
a map of its unknown obstacles. Such a map is obtained
by estimating the follower’s inputs to infer missing local
information about the environment sensed by the follower.
This extends the work of [29], [30] to two-robot problems.
Our key contributions can be summarized as follows:

1) We propose a leader-follower strategy for two robots
collaboratively transporting an object in a partially
known environment with obstacles. The leader solves
an MPC problem based on its known set of obstacles
and plans a trajectory to reach the target position, while
avoiding collisions for the whole system (i.e., the two
robots combined with the object to be transported).

2) We present a simple control policy for the follower that
is reactive to obstacles detected by the follower (and
possibly undetected by the leader). This follower control
policy is designed so that it allows the leader to infer
the position of obstacles not directly sensed.

3) Motivated by [15], we introduce a strategy for al-
lowing leader-follower role switches during the task.
We present a detailed numerical example of two point
robots transporting a rigid rod in an initially unknown
environment. On this example our proposed approach
allows the leader’s MPC controller to learn the unde-
tected obstacles and successfully complete the task, with
the leader-follower roles appropriately switched.

Control design with three or more robots is not addressed in
this work. In order to estimate the inputs of the other robot,
we assume each robot can estimate the states of the joint
system, i.e., the two robots with the object to be transported.
For the considered example of two point robots transporting
a rigid rod, this estimation is done with measurements of
robots’ own positions and the rod orientation. For more
complicated systems, similar estimates may be obtained
using additional sensors. We do not present this in this paper.

II. PROBLEM FORMULATION

In this section, we formulate the collaborative obstacle
avoidance problem with the leader-follower control architec-
ture. Such a leader-follower hierarchy is common in control
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design [15], [16], [31], [32]. We limit ourselves to the case
of only one follower. We refer to the two robots with the
object to be transported as the joint system.

A. Environment Constraints

Let the environment be defined by the set X'. We assume
obstacles are static, although the proposed framework can be
extended to dynamic obstacles. Let the set of obstacles be
denoted by O. Therefore, the safe set for the joint system
is given by S = X \ O. At the beginning of the task, we
assume that the robots do not have any prior information
about the environment. During the control task, the robots
detect obstacles and store their positions. At any time step
t, let the set of obstacle constraints known to the leader and
the follower (detected at ¢ and stored until t) be denoted by
C1+ and Cy 4, respectively. We denote:

Clﬂg U Cf’t = Ot, with Ot—TS Q Ot, Vit § T,

where T is the sampling time of both the leader and the
follower robot controllers (defined next in Section II-B), and
T > T is the task duration.

B. System Modeling

We consider that the leader and the follower robots trans-
port the same object as they move. The state space equation
of the joint system is of the form:

St"l‘Ts = f(Sta Ut,Ut), (1)

where S; € R? is the joint system state, u; € R™ is the
input of the leader and v; € RP? is the input of the follower
at time step ¢, and f(-,-,-) is any nonlinear map.

Remark 1: In general the states S; contain the positions
and velocities of the center of masses of the leader, the
follower and the object being transported.

A block diagram of the joint system is shown in Fig. 1, where
the red and the blue parts indicate the operations carried out
by the leader and the follower, respectively. We consider

Leader’s
Detected
Environment,
Inference of
Follower’s
Environment

Ut—T, Joint System

(o )
Follower’s
Detected

Environment

Fig. 1: Block diagram of the joint system with leader
follower controllers.

the case where the leader does not have full information of
all the detected obstacles in Oy, i.e., C;y C O;. We further
consider that no explicit communication between the leader
and the follower is available. Similar to [15]-[23], we enable

both the agents to infer each other’s inputs as “implicit”
communication. We first make the following assumption.

Assumption 1: The leader and the follower can estimate
the joint system states .S; at all time steps.

We introduce the following notation: let ()EJ ) denote the
value of the quantity (-); as inferred by robot j € {I, f}. The
leader and the follower’s estimates of .S; are thus denoted by
S't(l) and S't(f ), respectively. We denote the coordinates of the
center of mass of the follower by R, = [X,Y;,] ", and the

leader/follower estimates R,El/ D= [X;l{f )7?;2/ ! )]T. Often

such states are already included in S’fl/ ! ), as pointed out in

Remark 1. If they are not a part of St(l/ f ), they need to be
estimated as well in our control approach.

Method Outline: At time step ¢, the leader uses S’t(l) to
compute the control action u; for the joint system to avoid
its known set of obstacles C;;. As there is no explicit
communication, the follower infers the leader’s inputs uy
via its state estimates, inducing a delay in the application
of its inputs. That is, at time step ¢ + § (with a § < Ty),

the follower uses S’t(_{)é and RE?& to infer 4; . The follower
(f)

also uses Rt s to build a map of its detected obstacles,
and computes v, as a function of u; and these obstacles.
During the inference time between ¢ and t + § the follower
keeps applying the previous input v(;_r,)4s. The leader then
infers the follower’s inputs vyys via its state estimates to
learn additional obstacles. That is, at time step (¢ + 20),
the leader uses 5‘&225 to estimate ©;15, based on which
it learns the position of any additional obstacles in the
follower’s proximity at ¢ + & using Rﬁg s- The leader then
computes updated C; ;17,. In the next sections, we present
the controller synthesis. We discuss the effect of the time
delay ¢ in details in Section III-C-III-D, when we distinguish
between the leader and the follower applied inputs.

Remark 2: We consider that the leader and follower robots
have synchronized clocks. A short discussion of non synchro-
nized clocks is presented in [33].

For clarity of presentation in this paper, we present a
specific case of model (1). Specifically, we model both
the leader and the follower as point robots m; and my,
with global coordinates X;,Y; and Xy, Yy, respectively,
transporting a rigid rod, as shown in Fig. 2. The connecting

Fy \

71

Fig. 2: Model of the joint system. The leader and the follower
are point masses connected by the rigid rod. The follower
reacts to a critical obstacle C.,, as defined in Section III-A.
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rod of length (I; + [;) has a mass m,. Assuming the
rod is of uniform density, the rod has an inertia, J,, of
1—12mr (li+15)?. The total mass of the joint system is therefore
m = m, +m;+my. The total moment of inertia of the joint
system is J = J. +m, (U51)2 myl? + myl}. The leader’s
inputs on the rod are the axial force Fy;, perpendicular force

F;, and the torque 7;. The corresponding follower’s inputs
are Fafv pr and Tf Denoting T o (_prlf'f'F:;lll“FTL"FTf)

and define:
. 1
q1 = —(;sin 0T + 1, cos 06%) + E(cos O(For+ Fop) +---
—sin0(Fp + Fpy)),
g2 = (ljcos 0T — 1, sin992) + l(sin@(Faz + Fof)) +---
m

+ cosO(Fy + Fpy)).
2
Due to the rigid coupling with the rod, the leader’s position,
and translational and angular velocity states are sufficient to
define the evolution of the joint system. Accordingly, using
(2), the state-space equation for the joint system is:

S(t) = fC(S(t)7u<t)7 v(t)),
. . R T
=X @ Yi @ 0 7], (3)
with S(t) = [s1, 52,53, 84,85, 86] > u(t) = [Far, Fpi, )"
and v(t) = [F.s, F,s,7¢]" at time ¢, where the states are
representative of variables given by:

>

S1 :Xlas2:Xlas3:)/l7$4:}/l7$5:0a36:9'

We discretize (3) with the sampling time of T; for both the
leader and the follower to obtain its discrete time version
similar to (1). Furthermore, for this specific model (3),
Assumption 1 can be stated as: both the leader and the
follower can estimate the leader’s position, velocity, as well
as the angular speed and orientation of the rod at all times.
For simplicity of presentation, we consider that the robots
measure their positions, velocities, and the rod’s angle and
angular speed. Accordingly, estimators S't(l) and 5;“ ) are:

. . ) -
St(l) =X Xix Yie Yip 00 6] (4a)
_X(f)_
bt Xgo+ (L +1f)costy
Xl(({)) Xpt— (I +1f)sin 6,6,
N o-(f .
St(f) _ }_/l,t .Yf,t + (i +1f)sin 9,5. (4b)
v Yio+ (I +1f) cos 0,0,
l,t et
) 9-
L O ¢

In the absence of perfect position, velocity and rod ori-
entation measurements, one can design appropriate state
observers, such as a particle filter or an extended Kalman
filter to obtain their estimates, if Assumption 1 holds.

C. Input Constraints

We consider constraints on the inputs of both the leader
and the follower, which are given by u; € U and vy € V

for all ¢ > 0. For our specific example in this paper, with
F,, I, 7 € Ry, we consider the same box constraints:

U=V:={w:-[F, F, 7| <w<[F, F, 7]}
5

III. CONTROL SYNTHESIS

We enumerate the steps involved in our leader-follower
control synthesis briefly next, which constitute our collabora-
tive obstacle avoidance with environment learning algorithm.

(I At any time step ¢, the leader designs an MPC con-
troller with horizon of N steps with N7 < T for the
joint system to reach a specified target position Siay,
while avoiding all the stored obstacles in C; +. This is
shown in Section III-B.

(II) If there are no obstacles in its proximity, the follower
uses a control strategy to support the actions of the
leader. The inference of the leader actions by the
follower is described in Section III-C.

(IIT) In the case where critical obstacles (as defined later
in Definition 1) are detected by the follower, the
follower applies an additional input contribution in
order to avoid these critical obstacles, as we show in
Section III-A.

(IV) The leader estimates the follower’s applied inputs and
uses this as an “implicit” communication to build
a map of its possibly unseen obstacles lying in the
follower’s proximity. The leader then updates its set of
known obstacles C; ., as we show in Section III-D.
The leader MPC problem is solved again at the next
time step with the updated environment information.

We will now elaborate the above steps (I)-(IV) in the
following sections.

A. Follower Policy Parameterization

In the set of all obstacles seen by the follower, we define
a critical obstacle point, due to which the follower chooses
to apply a reactive input.

Definition 1 (Critical Obstacle Points): We define a crit-
ical obstacle point at time step ¢ as a point in the set of
obstacles C;, which is within a radius of d.. from the
follower’s center of mass. Thus, the follower computes:

Cor = arg min || R ]
C fit

st |RY) — ¢|| < der, (6)

where || - || denotes the Euclidean norm.
In case of multiple critical obstacle points satisfying (6), we
pick the critical obstacle point as the one that maximizes

o e )
e - B

that is, the one having the maximum relative velocity com-
ponent towards the follower’s center of mass. The inputs
applied by the follower are then given by:

if itical obstacle point at ¢
; :{fl(ut), if no critical obstacle point at ¢, o

fa(us, der, de, ¢¢) otherwise,
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where f1(-) and fa(:,-,-,+) can be any function chosen such
that v; € V, u, is the input of the leader, d; = ||R§f) —Certll,
¢ is the angle between the vector connecting the follower
center of mass to critical obstacle point and the follower
center of mass to that of the leader, respectively. For our
considered specific example, this is shown in Fig. 2.

We now make the following assumption ensuring when a
critical obstacle point is seen, the follower applies a separate
input, as opposed to what it would have applied otherwise.

Assumption 2: We assume in (7):

VE >0, Bug,dp, ¢ dp < der, fr(ur) = fo(ug, dox, di, 1)
We also make the following assumption that will be used
for the leader’s control synthesis in Section III-B and for
learning critical obstacle points in Section III-D.
Assumption 3: We assume that the functions f;(-) and
fa(+,+,+, ) are known to the leader.
Assumption 3 holds true, since such basic information can
be shared offline before the task begins. Otherwise, these
functions can be learned offline from data.
Our specific choice of (7) in this paper is given by:

Ksuy, if no critical obstacle point at ¢, else
vy = T

Koup + Ky (der — dy) [cos gy —sing, 0
(8)

where in d; we directly measure Ry, i.e., Rﬁf ) — R; (see
(4b)), and the gains K; and K5 known to the leader, chosen
to satisfy (5). WLOG in (8), we have not included a reactive
torque upon seeing critical obstacle points. Hence, only the
first 2 x 2 sub-matrix of K need to be invertible. We choose
K, €10,1), and

Fa(l—KQ) Fp(l—KQ) O)
der dee )7

ensuring the follower’s inputs are saturated only at d; = 0.

K, = diag(

B. MPC Controller of the Leader

Using Assumption 1 and Assumption 3, the constrained
finite time optimal control problem that the leader has to
solve for its MPC controller synthesis at time step ¢ is:

N

[(Sirar.t — Star) " Qs (Saara)s — Star) +
k=1

min
U

et u;—(k—l)TS\tQiutJr(k*l)Tslt]

s.t., StJrkTs\t = f(St+(k71)T5|taut+(k71)TS\taUt+(lcfl)T5\t)7
B(Styrr.it) € X\ Ciye,

Uy (k—1)To|t €Uy Vipe—1)Tu)t = F1(Uep(k—1)T0)0)5

Vk e {1,2,...,N}, Sy =S,

©))
where B(-) is a set of position coordinates defining the
joint leader-follower system, Uy = {uy|¢, . . ., U (N—1)T, |t }»
Star 18 the target state, and @, Q; = 0 are the weight
matrices. Note, in order to avoid a mixed integer formulation
arising due to all possible combinations of follower’s critical
obstacle points in C;; along the prediction horizon, in (9)
the leader computes the predicted vy, using only fi(-).

For model (3) with follower policy (8), the leader uses
(4a) to estimate:

_|81trrye — (b + 1) cOS 55 44kt

Riiwr e = . , (10a

tHR T |t S344kT, |t — (Lp + 1) sinss 4 pr e (102)

B(Spikr,e) ={z:Ja €[0,1], z =« {Sl’HkT‘lt} +
S3,t+kTs |t

+ (L = a)Ryypr, e}, (10b)

Vit (h—1)T, |t = KUy (o—1y1, )0 €U, Sppp = St(l)v (10c)

in (9), for all k € {1,2,..., N}, with &/ from (5). Solving
(9)-(10) is difficult, mostly due to the non-convexity of
the imposed state constraints X' \ C;;, and that too for all
values of parameter « € [0,1]. Therefore, we solve an
approximation to (9)-(10), as shown in [33]. After finding
a solution to (9), the leader applies input

Y

to joint system (1) in closed-loop. Since the follower has no
direct access to (11) to apply its own inputs according to (7),
it estimates the leader’s inputs. This is elaborated next.

*
Uy = ut\t

C. Applying the Follower’s Inputs

The follower uses S‘t(f ) to construct an estimate U of the
leader’s inputs u;. This inference is done in a time duration
of § « T, after time step ¢, as introduced in Fig. 1 and
Section II-B. For this inference to beAfeasible, we make the
following sufficient assumption. Let St(f ) e Vi, Vt > 0.

Assumption 4: We assume that the map from the set I/ to
the set Vs is invertible.

Assumption 4 ensures that by using its set of estimates for
the leader’s states, the follower has the ability to uniquely
infer the input u, applied by the leader.

Between the time steps ¢ and ¢+ 9 the follower applies its
previous inputs v;_7, 4. Afterwards, the follower applies

fi(tg), if no critical obstacle point at ¢t + 0,
Vs =

faltig, der, dits, dras) otherwise,
(12)

where the computation of u; uses Assumptions 1 and 4.

For our considered system model (3), the follower’s es-
timates of the joint system states (i.e., the leader’s states)
are given in (4b). This satisfies Assumption 4. The construc-
tion of the estimate 4, and the corresponding form of the
follower’s applied inputs

Koy, if no critical obstacle point at ¢ 4§, else

Vi46 = R . T
Kg’ut + Kl (dcr — dt+6) |:COS ¢t+5 — Sin ¢t+6 0

(13)

where diys = ||Rits — Certsl|, are derived in detail in

[33]. Here we directly measure Ry, s, i.e., }A%gfé = Riys (see
(4b)). Similar derivations can be conducted for variations of
(3), e.g., the rigid connections in the system replaced by
elastic spring contacts, if Assumption 4 holds.
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D. Learning Critical Obstacle Points via Input Inference

The leader infers the reactive feedback of the follower in
vts in (7) at time step £+24. Using this, the leader’s estimate
of the critical obstacle point seen by the follower at time step
t+4 is denoted as CC]r ‘+45- For obtaining this estimate we first
need the following assumptlon along with Assumptions 1-3
stated in Section III-A. Let S ey, Vit > 0.

Assumption 5: We assume that the map from the set V
to the set ) is invertible and fo(-, dc;,-,-) is an invertible
function for any chosen value of the critical distance d_,.
We choose function f5(-,der, -, ) satisfying Assumption 5.
Assumption 5 ensures the leader is able to uniquely infer the
critical obstacle points using its estimated follower’s inputs.

Satisfying Assumptions 1-3 and Assumption 5, the con-
struction of C )t 6 for model (3) and follower policy (8) is
shown in detall in [33]. For this estimation the leader uses
(4a) and computes estimates of the follower states as:

o (1
X‘](cﬂ)f«l»ts = X145 — (L1 +1y) cos 05,

(1) . (14)
Yf,t+5 =Y 45 — (L +1f)sinbys,
and then obtains:
30 XJ(‘ 1+6 + diy5co8(0r 15 — Pris) |
erets = |y g . as)
Fivs + dirosin(0i s — diis)

where cit+5 and ét+5 are the leader’s estlmate of di4s and
@145, respectively. With the inferred ¢V, the leader then
updates and uses:

cr,t?

531
Crivr, = CieUdCLesm, UCY, 5, (16)
where 0C; 47, denotes the new obstacle constraints detected
by the leader at the next time step. The process is then
repeated from time step (¢+7) onward.

E. Leader-Follower Role Switching

Although the leader learns CC]r i1 and updates its con-
troller, this can still lead to failure in avoiding obstacles in
tight environments. For example, if the follower approaches a
tight corner with multiple obstacles, the leader may not have
sufficient time to generate a feasible trajectory for the joint
system, as it does not directly detect the whole obstacle map
from the follower and infers only the critical obstacle points
detected by the follower. Therefore, switching the roles of
the leader and the follower in these scenarios can be useful,
enabling the leader to directly see all the obstacles in the
tight corner. Such a role switching strategy of the leader
and the follower is motivated by [15], where the roles are
switched with a fixed frequency. In general, we define a time
dependent role switching function for an agent as:

fswt :

where = and C denote the switching deciding states and ob-
stacles of the agent, respectively, and 0 denotes no switching
and 1 denotes a switch trigger.

(x,C,t) — {0,1}, (17)

As a specific choice for (17), we pick:

1, if [|Rets — Ct+5” < dthr,
0, otherwise,

fswt(Rt+57 Ct+5) = {
(18)

where dy, is a chosen distance threshold value, and the
follower and the leader use Cyys

and Riy5 = RE{{; and Riy5 = Rﬁgé obtained from (4),
respectively. Having evaluated (18) at time step ¢ + J, the
agents decide the role switch trigger accordln%ly for control
design at ¢ + T. Since the error between Rt s and Rt FPRE
zero (see (4)), the switch happens simultaneously at ¢ + T
without any explicit communication, if the leader has an
accurate estimate (15).

Remark 3 (Imperfect Estimation): If the estimate C(Er)t 45
has large errors, one may alternatively decide role switches
with a fixed time period, similar to [15]. In such a case, the
leader may not include Cg?t ) in (16), and instead include

a time varying penalty in (9) based on its inferred obstacles.

A l)
= Ccr,t+<§7 Ct+6 = Ccr,t+6’

IV. NUMERICAL EXPERIMENTS

We present our numerical simulations in this section. The
setup is in [33], with T = 0.03s and § ~ 0. The source codes
are available on: github.com/monimoyb/LeadFollowRobots.
We compare the results of two alternative strategies with the
one from our approach. The strategies considered are namely:

1) Strategy 1: No Environment Learning: The first strategy
is an MPC based standard leader-follower obstacle
avoidance strategy motivated by [16], [26]-[28], where
the leader applies the MPC controller (9)-(11), the
follower applies (8), and the leader does not infer any
obstacle information from the follower’s inputs. So the
obstacles used by the leader for MPC is updated as:

Cl7t+T§ = Cl,t U 5Cl,t+Tsa vt > 0.

2) Strategy 2: No Role Switching: The second strategy is
similar to our proposed approach, with the exception
that there is no switching of the leader-follower roles.
Such a fixed role assignment is a standard practice in
the literature, e.g., [16]-[19]. As opposed to Strategy 1,
here we update the leader’s known set of obstacles as
(16), having inferred critical obstacle points (15) using
the follower’s estimated inputs.

3) Strategy 3: Environment Learning with Role Switch:
The third strategy is our proposed algorithm [33, Al-
gorithm 1], where we learn obstacles and switch the
roles of the leader and the follower using (18) and a
threshold distance of dy,, = 0.8 meters.

We conduct 100 trials with each of the above three
strategies, with varying obstacle positions. The variations
are contained in the purple regions shown on the left in
Fig. 3. The shape and the size of the obstacles are unchanged,
and one of their vertices is chosen uniformly in the shown
regions. Successful trials are only recorded if the joint system
avoids all the obstacles and the initially chosen leader robot
reaches a neighborhood of radius 0.5 meters around S,
within T" = 2.7s, i.e., 90 steps. Table I summarizing the
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4 6 8 4 6

Fig. 3: Left: Zones containing varying obstacle positions
with the given joint system’s initial configuration. Red dot:
leader, blue dot: follower, red star: St,, position. Right: One
example successful trajectory with the proposed approach.

TABLE I: Strategy comparison across 100 trials. CFT de-
notes: Collision Free Trials.

Feature Strategy 1 | Strategy 2 | Strategy 3

Avg. # of Steps in a CFT

Successful Trials (%) 0
Collision Failures (%) 100
Timed-Out Failures (%) 0
N/A

86
14
20 0
49

results shows that our proposed algorithm outperforms the
rest with the highest success rate, while reaching the target
neighborhood fastest. An example of a successful trajectory
with our approach is shown on the right in Fig. 3.

V. CONCLUSION

We proposed a leader-follower strategy for a two-robots
collaborative transportation task in a partially known envi-
ronment with obstacles. The leader solves an MPC problem
at any given time with its known set of obstacles to plan
a feasible trajectory and complete the task. The follower’s
policy is designed to assist the leader, but also react to
additional obstacles in proximity which might be unseen
to the leader. The difference between the predicted and the
actual follower inputs is used by the leader to infer additional
unseen environment constraints. We also propose a switching
strategy for the leader-follower roles, improving the control
performance in tight environments.
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