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1. Introduction

The moduli space % of polarized K3 surfaces is often constructed as the arithmetic
quotient of an Hermitian symmetric domain, and comes with a natural Baily—Borel
compactification % C .Z#*. A long-standing problem has been to compare this compact-
ification with other compactifications which carry a more geometric meaning, such as
those coming from geometric invariant theory (GIT). In particular, if 9T denotes a GIT
compactification, there is often a birational period map p : MM --» F* thanks to the
global Torelli theorem for K3 surfaces, and a natural question is whether this map can
be resolved in a modular way.

The case of degree 2 K3 surfaces was worked out by Shah [69] and Looijenga [58]. In
particular, Shah constructs a space M as a partial Kirwan desingularization of the GIT
quotient 9%, which Looijenga shows is simultaneously a small partial resolution of .#*
(a semitoric compactification, in the language of [59]). In particular, there is one space
that interpolates between the GIT and Baily—Borel compacitfications. A far-reaching
conjectural generalization is proposed by Laza and O’Grady in [42]. When % is a type IV
locally symmetric variety associated to a lattice of the form U?@® Dy _» (e.g., hyperelliptic
quartic K3 surfaces when N = 18, quartic K3 surfaces when N = 19, or double EPW-
sextics when N = 20), they conjecture a systematic way to resolve the period map p via
a series of birational transformations governed by certain divisors present in .#*. They
confirm their conjectures in the case of hyperelliptic quartic K3 surfaces in [43] (i.e., when
N = 18); we briefly review some of their results (see §3.3 for a more detailed discussion).

Let C be a smooth curve in P! x P! of bidegree (4,4), and let m: X¢ — P! x P! be
the double cover of the quadric surface branched along C. The resulting surface X¢ is a
smooth hyperelliptic polarized K3 surface of degree 4, whose polarization is given by the
pullback 7* (Op1 (1) K Op1(1)). The corresponding period domain gives a moduli space
F CF* I M:=|Op1ypr (4,4)] J Aut (P! x P) denotes the GIT quotient of (4,4) curves
on P! x P!, then there is a birational period map p : 0 --» .Z*. In [43], Laza and O’Grady
described the birational map p as a series of explicit wall crossings. Let A denote the Hodge
line bundle on %, and let A = H/2, where H is the Heegner divisor parametrizing periods
of K3 surfaces which are double covers of a quadric cone. In this setting, Laza and O’Grady
show that one can interpolate between .%* and 9 by considering % (3) := ProjR(A+ SA)
and varying 0 < 8 < 1. One aspect of their proof is a variation-of-GIT (VGIT) study on
the moduli space of (2,4)-complete intersection curves in P3. Denoting this space by 9(t),
they show that each step .7 () can be realized as the VGIT moduli space 2(t) for some
specific t(8).

If ce (0,%) is a rational number, then (IP’l ><]P’1,cC) is a log Fano pair. Recently,
it has become apparent that K-stability provides a natural framework to construct
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compactifications of moduli spaces of log Fano pairs (see, e.g., [6] or §2.4). With this in
mind, our goal in this paper is to use this theory to construct alternative compactifications
of the moduli space of smooth (4,4) curves. The framework to study K-moduli of log
Fano pairs was established in [6], where we constructed proper good moduli spaces
parametrizing Q-Gorenstein smoothable K-polystable log Fano pairs (X,cD), where D
is a rational multiple of —Kx and c is a rational number. Furthermore, we showed that
the moduli spaces undergo wall crossings as the weight ¢ varies.

Let K. be the connected component of the moduli stack parametrizing K-semistable
log Fano pairs which admit Q-Gorenstein smoothings to (P* x P*,cC), where C' is a (4,4)
curve. By [6], the moduli stack K. admits a proper good moduli space K.. The goal of
this paper is to show that this K-moduli space K. and the wall crossings obtained by
varying the weight vector ¢ coincide with the wall crossings given by the VGIT 9t(¢) under
the correspondence t = 2c3fr2. In particular, varying the weight ¢ on the K-moduli space
K. interpolates between 9 and .Z*, and gives the intermediate spaces an alternative
modular meaning.

Theorem 1.1. Let K. be the moduli stack parametrizing K-semistable (resp. K.) log
Fano pairs (X,cD) admitting Q-Gorenstein smoothings to (Pl XPl,CC), where C is a
smooth (4,4) curve. Let .4 be the GIT quotient stack of (4,4) curves on P! x P. Let
M (t) be the VGIT quotient stack of (2,4)-complete intersection curves in P2 of slope t
(see Definition 3.2).

(1) Let ce€ (O,é) be a rational number. Then there is an isomorphism of Artin stacks
Ke2 4. In particular, a (4,4) curve C on P! x P! is GIT-(poly/semi)semistable if
and only if (IP’l X PI,CC) is K-(poly/semi)stable.

(2) Letce (0,1) be a rational number. Then there is an isomorphism of Artin stacks

Ke= (L) with t = 25’i2. Moreover, such isomorphisms commute with the wall-

crossing morphisms for K-moduli stacks K. and GIT moduli stacks . (t).

Moreover, all isomorphisms descend to the level of good moduli spaces.

We note here that the comparison between K-moduli spaces and (V)GIT moduli spaces
in various explicit settings has been studied before, such as [60, 65, 71, 56, 24, 28, 6] (see
also Remark 2.20).

Combining Theorem 1.1 with the main results in [43], we obtain the following
isomorphisms between moduli spaces and their natural polarizations. In particular, the
wall-crossing morphisms between our K-moduli spaces K, form a natural interpolation
of the period map p: 9 --» .F*. For an explicit description of K-moduli wall crossings,
see Remarks 5.13 and 5.14.

Theorem 1.2. Let K. be the good moduli space parametrizing K-polystable log Fano pairs
(X,cD) admitting Q-Gorenstein smoothings to (IP’1 X ]P’l,cC’), where C is a smooth (4,4)
curve. Let M(t) be the VGIT quotient space of (2,4)-complete intersection curves in P3
of slope t (see Definition 3.2). Then for any rational number c € (0,%), we have

andﬁ:min{l,1_2c}.
6c

1

K.2M(t) 2 F(B), wheret=

c
2c+2
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Moreover, the CM Q-line bundle on K .., the VGIT polarization on MM(t), and the Laza—
O’Grady polarization on F(B) (i.e., the push-forward of A+ BA under F --» F(B)) are
all proportional up to positive factors.

As a consequence of these theorems and [43, Theorem 1.1(iv)], we identify the final
K-moduli space F% _. with Looijenga’s semitoric compactification Z of F.In part (1)
of the following theorem, we give an alternative proof of [43, Second part of Theorem
1.1(iv)] using K-stability. Part (2) suggests that .#* can be viewed as a moduli space of
log Calabi—Yau pairs, as expected in [6, Conjecture 1.8].

Theorem 1.3. Let 0 < 6,6 <1 be two sufficiently small rational numbers. Then we have
isomorphisms K; =M (% — e’) =~ F. Moreover, we have the following:

5—€

(1) The moduli space sm(% —e’) parametrizes quartic hyperelliptic K3 surfaces with
semilog canonical singularities.

(2) The Hodge line bundle over F%7 is semiample with ample model .F*.

€

Finally, we discuss some partial generalizations of Theorem 1.1 to higher-degree curves
on P! x P! (see also Remark 6.10).

Theorem 1.4. Let d >3 be an integer. Let Kq. be the moduli stack parametrizing K-
semistable log Fano pairs (X,cD) admitting Q-Gorenstein smoothings to (]P’1 X ]P’l,cC),
where Cis a smooth (d,d) curve. Let My be the GIT quotient stack of (d,d) curves on
P! x PL. Let #4(t) be the VGIT quotient stack of (2,d) complete intersection curves in
P3 of slope t € (0,%) (see Definition 6.2).

(1) Letce (0,55) be a rational number. Then there is an isomorphism of Artin stacks
Ka,c & My. In particular, C is GIT-(poly/semi)semistable on P* x P! if and only if
(Pt xPY,cC) is K-(poly/semi)stable.

(2) Let c € (0,4;&/5) be a rational number. Then there is an isomorphism of Artin

stacks Kd@ > My(t) witht= dfil. Moreover, such isomorphisms commute with the

wall-crossing morphisms for K-moduli stacks Kq,. and GIT moduli stacks .#y(t).

Organization

For the remainder of this paper, ¢ (and thus ¢ and ) will always denote a rational number.
This paper is organized as follows. In §2 we recall the definitions of K-stability, normalized
volumes, and the CM-line bundle. We also recall the main results of [6] and define the
relevant moduli functor. In §3 we recall the background on K3 surfaces and review the
main results of [43]. In §4 we determine which surfaces can appear as degenerations of
P! x P! on the boundary of the K-moduli spaces. Key ingredients are Theorems 4.7 and
4.8, which bound the Gorenstein indices of singular surfaces using normalized volumes.
In §5 we compare the GIT compactification with the K-stability compactification, and
study the wall crossings that appear for K-moduli. In particular, we present the proofs of
Theorems 1.1, 1.2, and 1.3. These are achieved by the index estimates already mentioned,
computation of CM line bundles, and a modification of Paul and Tian’s criterion [67] (see
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also [65, 6]) to work over nonproper bases (see also [71]). Note that the VGIT of (2,4)-
complete intersections in P? for a general slope does not provide a Q-Gorenstein flat log
Fano family over a proper base, but only such a family over the complete intersection
locus as a quasi-projective variety. This creates an issue in that the usual Paul-Tian
criterion cannot be directly applied. In order to resolve this issue, we trace the change of
K/VGIT stability conditions along their wall crossings, and argue that their polystable
replacements indeed coincide. Finally, in §6 we discuss some generalizations for higher-
degree curves on P! x P! and prove Theorem 1.4.

2. Preliminaries

Throughout this paper, we work over the field of complex numbers C, and all schemes
are assumed to be of finite type over C. A variety is a separated integral scheme of finite
type over C.

2.1. K-stability of log Fano pairs
We first recall necessary background to define the K-stability of log Fano pairs:

Definition 2.1. Let X be a normal variety and let D be an effective Q-divisor on X. We
say such (X, D) is a log pair. If X is projective and —(Kx + D) is Q-Cartier ample, then
the log pair (X, D) is called a log Fano pair. The variety X is a Q-Fano variety if (X,0)
is a kIt log Fano pair.

Next we recall the definition of the K-stability of log Fano pairs:

Definition 2.2 ([74, 20, 46, 49, 66]). Let (X, D) be a log Fano pair and let L be an ample
line bundle on X such that L ~g —I(Kx + D) for some [ € Q.

(a) A normal test configuration (X,D;L)/A! of (X,D; L) consists of the following data:
(i) a normal variety X' together with a flat projective morphism 7 : X — Al;
(ii) a m-ample line bundle £ on X;

(iii)a Gp-action on (X;L) such that 7 is G,,-equivariant with respect to the
standard action of G,, on A! via multiplication;

(iv) (X \ Xo; L]\ x,) Gm-equivariantly isomorphic to (X;L) x (A'\ {0}); and

(v) an effective Q-divisor D on X such that D is the Zariski closure of D x (A'\ {0})

under the identification between X'\ Xy and X x (A*\ {0}).
A normal test configuration is called a product test configuration if

(X, D;L) = (X x A", Dx AL priL® Ox (kXy))

for some k € Z. A product test configuration is called a trivial test configuration
if this isomorphism is G,,-equivariant with respect to the trivial G,,-action on X
and the standard G,,-action on A' via multiplication.

(b) For a normal test configuration (X,D;L)/A! of (X,D), denote its natural compact-
ification over P! by (X,D;L). The generalized Futaki invariant of (X,D;L)/A! is
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defined by the following intersection formula due to [75, 64]:

e 1 n (L") (L™ (Kg/m +D))
Fut(X,D,L’) = (—(KX—|—D))n <n+1 =S + o .

(¢) The log Fano pair (X, D) is said to be:
(i) K-semistable if Fut(X,D; L) > 0 for any normal test configuration (X,D; L)/Al
and any [ € Qs such that L is Cartier;
(ii) K-stable if it is K-semistable and Fut(X,D; L) =0 for a normal test configura-
tion (X,D;L)/A% if and only if it is a trivial test configuration; or
(iii) K-polystable if it is K-semistable and Fut(X,D;L) = 0 for a normal test
configuration (X,D;L)/A! if and only if it is a product test configuration.

(d) Let (X,D) be a klt log Fano pair. Then a normal test configuration (X,D;£)/A! is
called a special test configuration if £ ~q —l (Kx s +D) and (X, D+ X&) is plt. In
this case, we say that (X, D) specially degenerates to (Xy,Dg), which is necessarily
a klt log Fano pair.

Remark 2.3. (1) The concept of K-(semi/poly)stability of log Fano pairs can also
be defined via test configurations that are possibly nonnormal. For the general
definitions we refer to [6, Section 2.1]. By [14, Proposition 3.15], we know
that generalized Futaki invariants will not increase under normalization of test
configurations.

(2) Odaka proved in [63] that any K-semistable log Fano pair is klt. By the work of Li
and Xu [49], to test the K-(poly/semi)stability of a klt log Fano pair it suffices to
test the sign of generalized Futaki invariants only on special test configurations.

The following lemma is very useful in the proof of Theorem 1.1:

Lemma 2.4. (1) [35] Let G be a reductive group acting on a polarized projective
scheme (Y,L). Let y €Y be a closed point. Let o :G,, — G be a 1-PS. Denote
y' =limy_,o0(t)-y. If y is GIT semistable and p*(y,0) =0, then y' is also GIT
semistable.
(2) [53, Lemma 3.1] Let (X,D) be a log Fano pair. Let (X,D;L)/A' be a normal
test configuration of (X,D). If (X,D) is K-semistable and Fut(X,D;L) =0, then
(X,D;L)/A is a special test configuration and (Xo,Dy) is also K-semistable.

2.2. Normalized volumes
In this section, we consider a klt singularity = € (X,D) — that is, a klt log pair (X,D)
with a closed point z € X. Recall that a valuation v on X centered at x is a real valuation
of C(X) such that the valuation ring O, dominates Ox , as local rings. The set of such
valuations is denoted by Valy .

We briefly review normalized volume of valuations as introduced by Chi Li [48]. See
[52] for a survey on recent developments.
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Definition 2.5. Let x € (X,D) be an n-dimensional kIt singularity.

(a) The volume is a function voly , : Valx, , — R>g, defined in [21] as

. dimCO , T fe@ , X U(f >k
volx (0) = Jim TREOXLE e V2D,

(b) The log discrepancy is a function Ax py: Valx, — RsoU {+00}, defined in
[34, 13]. If v = a-ordg, where a € Ry and F is a prime divisor over X centered
at x, then

A(X,D)(U) = a(l —|—Ol“dE(KY —W*(KX +D))),
where 7:Y — X provides a birational model Y of X containing E as a divisor. In
this paper, we deal only with divisorial valuations.

(¢) The normalized volume is a function \T&(X,D)’w : Valx , — RsgU {400}, defined in
[48] as

A(X,D) (U)n 'VOIX’m(’U) if A(X,D) (U) < 400,

@(X,D),x(”) = {

The local volume of a klt singularity = € (X, D) is defined as

\7(;1(93,X,D) = I\r/uln @(X,Dm(v).
veValx »

Note that the existence of a normalized volume minimizer is proven in [9]. From
[50] we know that vol(x,X,D) can be approximated by the normalized volume of
divisorial valuations.

The following theorem from [51], generalizing [25, Theorem 1.1] and [54, Theorem 1.2],
is crucial. Note that it also follows from the valuative criterion for K-semistability by
Fujita [26] and C. Li [47].

Theorem 2.6 ([51, Proposition 4.6]). Let (X,D) be a K-semistable log Fano pair of
dimension n. Then for any closed point x € X, we have

1 TLA
(-Kx-D)" < (1+n) vol(z, X, D).

2.3. CM line bundles

The Chow—Mumford (CM) line bundle of a flat family of polarized projective varieties
was introduced algebraically by Tian [74] as a functorial line bundle over the base. We
start with the definition of CM line bundles due to Paul and Tian [67, 68] using the
Knudsen—-Mumford expansion (see also [23, 22]). In order to define CM line bundles for
families of log Fano pairs over reduced bases, we need to use the concept of relative
Mumford divisors from [39, Definition 1] (see also [38]).

Definition 2.7 (Relative Mumford divisors). Let f: X — T be a morphism between
schemes. Assume that f has Sy fibers of pure dimension n. A closed subscheme D
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of X is a relative Mumford divisor over T if there is an open subset & C X such
that:

(1) codimy, (X \U;) > 2 for any t € T,

(2) D|y is a relative Cartier divisor,

(3) D is the scheme-theoretic closure of D|y, and

(4) X; is smooth at generic points of Supp(D;) for any t € T.

A relative Mumford Q-divisor is a formal Q-linear combination of relative Mumford
divisors.

Definition 2.8 (Log CM line bundle). Let f: X — T be a proper flat morphism of
connected schemes. Assume that f has Sy fibers of pure dimension n. Let £ be an f-
ample line bundle on X.

A result of Knudsen and Mumford [36] says that there exist line bundles \; = \; (X, L)
on T such that for all £,

k k
det f! (Lk) — )\5;_?11) ® /\gLn) Q- ®/\O-
By flatness, the Hilbert polynomial x (X;,£F) = aok™ +a1k™ ' +O (k"~2). Then the CM
line bundle of the data (f: X — T,L) is defined as

Aom g, = Ay @A,

where p = u(X,L) := 2(% The Chow line bundle is defined as
AChow, f,£ := Ant1-

Let D := Zle ¢;D; be a relative Mumford Q-divisor on X over T, where each D; is a
relative Mumford divisor and ¢; € [0,1]NQ. We also assume that each D; is flat over T.

The log CM Q-line bundle of the data (f X =>T,LD:= Zle cﬂ)i> is defined as

n(ﬁ?fl Dt)
ACM, ,D,L = ACM, f,L£ — — Achow, f,£ + (N +1)Achow, f|p, £]p
t

where

k k
(ﬁ?*l -Dt) = ZCZ' (5?71 'Di,t)a AChOW,f'ch"D = ®)\%ﬁgw>f|73w£|73i .
i=1 i=1

Note that if T" is not connected, then we define the log CM line bundle on each connected
component of T as in Definition 2.8.

Next, we recall the concept of Q-Gorenstein flat families of log Fano pairs over reduced
base schemes:

Definition 2.9. Let T be a reduced scheme. Let f: X — T be a proper flat morphism
with normal, geometrically connected fibers of pure dimension n. Let D be an effective
relative Mumford Q-divisor on X over T. We say that f: (X,D) — T is a Q-Gorenstein
flat family of log Fano pairs if — (KX/T —|—D) is Q-Cartier and f-ample.
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We consider the following class of log Fano pairs as objects of our moduli problems:

Definition 2.10. Let ¢,r be positive rational numbers such that ¢ < min{lﬂ"’l}. A log
Fano pair (X,cD) is Q-Gorenstein smoothable if there exists a Q-Gorenstein flat family
of log Fano pairs 7 : (X,cD) — B over a pointed smooth curve (0 € B) such that the
following hold:

D is a relative Mumford divisor over B;

both —Ky,p and D are Q-Cartier and m-ample, and D ~qg ~ —7Kx/B;
both 7 and 7|p are smooth morphisms over B\ {0}; and

(Xo,¢Do) = (X,cD), and X has kit singularities.

A Q-Gorenstein flat family of log Fano pairs f: (X,cD) — T over a reduced scheme T
is called a Q-Gorenstein smoothable log Fano family if D is a Q-Cartier relative Mumford
divisor over T, and all fibers of f are Q-Gorenstein smoothable log Fano pairs.

Lemma 2.11. For ¢,r € Qs with cr < 1, let (X,cD) — B be a Q-Gorenstein smoothable
log Fano family over a smooth curve B, where D ~q g —rKx,/p. Then the function B >
b hO (X, Ox, (mDy)) is constant for any m € Z.

Proof. By inversion of adjunction, we know that X has klt singularities. Since D and D,
are Q-Cartier Weil divisors on X and X}, respectively, we know that both Ox(mD)
and Oy, (mDy) are Cohen—Macaulay for any m € Z by [40, Corollary 5.25]. Hence
Ox, (mDy) 2 Ox(mD)® Oy, for any m € Z. By Kawamata—Viehweg vanishing, we know
that H' (X, Ox,(mDy)) =0 for any b € B and m,i > 1. Hence the statement for m > 0
follows from the semicontinuity theorem and flatness of Oy (mD) over B, and it is obvious
for m <0. ]

Proposition 2.12. Let f: (X,cD) = T be a Q-Gorenstein smoothable log Fano family
over a reduced scheme T. Then D is flat over T.

Proof. For simplicity, we assume that 7T is connected. By [37, Theorem 4.33], there
exists a locally closed decomposition T" — T such that for any morphism ¢ : W — T, the
divisorial pullback fw : (Xw,Dw) — W of f:(X,D) — T satisfies that Dy is flat over
W if and only if ¢ factors as ¢: W — T" — T Tt is clear that D is flat over T if and only
if T/ =T. Thus it suffices to show that for any morphism B — T from a smooth curve
B, the divisorial pullback fg:(Xg,Dg) — B of f satisfies the demand that Dp be flat
over B. It is clear that fp is also a Q-Gorenstein smoothable log Fano family. By the
proof of Lemma 2.11, we know that Oy, (—Dp) is flat over B, and its fiber over b € B
is isomorphic to Ox, , (—Dp,y), which is Sy. Hence [37, Definition-Lemma 4.19] implies
that Dg — B is flat. This finishes the proof. O
Definition 2.13. We define the CM Q-line bundle of a Q-Gorenstein smoothable log
Fano family f: (X,cD) — T over a reduced scheme T to be Acwm, f,ep := 17" Acm, £,eD, 2,
where L := —I (KX/T +cD) is an f-ample Cartier divisor on X for some [ € Z~(. Here D
is flat over T' by Proposition 2.12.

Note that the CM Q-line bundle of a Q-Gorenstein smoothable log Fano family is
functorial under reduced base change, by the functoriality of Chow line bundles and A,,,
according to [36, 17].
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We can now recall the definition of the Hodge line bundle for a smoothable log Calabi—
Yau fibration of Fano type. From the definition it is clear that the Hodge line bundle is
functorial under reduced base change.

Definition 2.14. For ¢,r € Qs with cr <1, let f: (X,cD) - T be a Q-Gorenstein
smoothable log Fano family over a reduced scheme T, where D ~q y —rKx ;7. The Hodge
Q-line bundle Agoqdge, f,r—1p is defined as the Q-linear equivalence class of Q-Cartier Q-
divisors on T such that

Kxyr+1r7'D ~g f*Aodge, f,r—1D-
The following proposition relates CM Q-line bundles and the Hodge Q-line bundle:

Proposition 2.15 ([6, Proposition 2.25]). With the notation of Definition 2.14, for any
rational number 0 < ¢ <r~1 we have

(I—er) ™™ Xem, f,ep = (1—cr)dem, s +er(n+1) (—Kx,)" Modge, f.r—1D- (2.1)

The next criterion is important when checking K-stability in explicit families. It is a
partial generalization of [67, Theorem 1] and [65, Theorem 3.4].

Theorem 2.16 ([6, Theorem 2.22]). Let f: (X,cD) — T be a Q-Gorenstein smoothable
log Fano family over a normal projective variety T. Let G be a reductive group acting on
X and T such that D is G-invariant and [ is G-equivariant. Assume in addition that:

(a) if Aut(X,,Dy) is finite for t € T, then the stabilizer subgroup Gy is also finite;

(b) if (X, D:) = (Xy,Dy) fort,t' €T, thent' € G-t; and

(€) Acm, f,ep s an ample Q-line bundle on T.

Then t € T is GIT-(poly/semi)stable with respect to the G-linearized Q-line bundle
Aeum, f,ep if (X, eDy) is o K-(poly/semi)stable log Fano pair.

The following proposition provides an intersection formula for log CM line bundles. For
the case without divisors this was proven by Paul and Tian [67]. The current statement
follows from [17, Proposition 3.7].

Proposition 2.17 ([6, Proposition 2.23]). Let f : (X,cD) - T be a Q-Gorenstein
smoothable log Fano family of relative dimension n over a normal proper variety T. Then

C1 ()\CM,f,cD) = 7f* ((7KX/T — CD)n+1) . (22)

2.4. K-moduli spaces of log Fano pairs

In this subsection, we gather recent results on the construction of K-moduli spaces of log
Fano pairs.

In [6], we construct K-moduli stacks (resp., proper good moduli spaces) of Q-Gorenstein
smoothable K-semistable (resp., K-polystable) log Fano pairs (X,cD), where D ~g —rKx
and c is a rational number.
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Theorem 2.18 ([6, Theorem 3.1 and Remark 3.25]). Let xo be the Hilbert polynomial
of an anticanonically polarized Fano manifold. Fix r € Q<o and a rational number c €
(0, min {1,7"*1}). Consider the following moduli pseudo-functor over reduced base S:

KMyo,r,e(S5)

(X,¢D)/S is a Q-Gorenstein smoothable log Fano family,
=4 (X,D)/S| D~sq—-1Kx/s, each fiber (Xs,cDs) is K-semistable,
and x (Xs,Ox, (—kKx.)) = xo(k) for k sufficiently divisible.

Then there exists a reduced Artin stack KMy r,c (called a K-moduli stack) of finite type
over C representing this moduli pseudo-functor. In particular, the C-points of KMy r.c
parametrize K-semistable Q-Gorenstein smoothable log Fano pairs (X,cD) with Hilbert
polynomial x(X,0x(—mKx)) = xo(m) for sufficiently divisible m and D ~g —rKx.

Moreover, the Artin stack KMy, r. admits a good moduli space KM, . (called a
K-moduli space) as a proper reduced scheme of finite type over C, whose closed points
parametrize K-polystable log Fano pairs.

By [6, Proposition 3.35], we know that the universal log Fano family over M, ;.
provides a CM Q-line bundle A, and a Hodge Q-line bundle A. Hodge Over KMy r.c
which descend to Q-line bundles A, and A Hodge Over the good moduli space KMy ..
Recently, it was shown by [76] on the positivity of the CM that these K-moduli spaces
are projective with ample CM Q-line bundles.

Theorem 2.19 ([76, Theorem 7.10]). The CM Q-line bundle A, over KM, r, . is ample.
Hence KM, r . is a projective scheme.

Remark 2.20. The explicit study of K-moduli originated in [60] with the case of degree
4 del Pezzo surfaces, and del Pezzo surfaces of other degree were later studied in [65].
Since then, this area has seen rapid growth (see, e.g., [71, 56, 24, 28, 6, 55]). In all of the
aforementioned cases, the smoothable condition was necessary.

If we drop the Q-Gorenstein smoothable condition, then K-moduli stacks and spaces of
log Fano pairs with fixed numerical conditions (such as volume and finite coefficient set)
exist as Artin stacks and projective schemes, respectively. For a precise statement, see,
for example, [76, Theorem 2.21] and [57, Theorem 1.3]. These follow from recent works
[33, 17, 10, 4, 12, 15, 76, 77, 11, 57]. Since the work establishing the properness of K-
moduli spaces [57] appeared after the first version of this article was posted on arXiv, we
restrict our discussion to the smoothable components of K-moduli spaces with reduced
structure.

The following result shows that any K-moduli stack KM, , . parametrizing 2-
dimensional Q-Gorenstein smoothable log Fano pairs is always smooth. For the special
case of plane curves on P2, see [6, Proposition 4.6].

Theorem 2.21. Let xo be the Hilbert polynomial of an anticanonically polarized smooth
del Pezzo surface. Fiz r € Qs¢ and a rational number c € (0, min{l,ril}). Then the
K-moduli stack KMy, . is isomorphic to the quotient stack of a smooth scheme by
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a projective general linear group. In particular, KMy, r . is smooth and KM, , . is
normal.

Proof. Fix a sufficiently divisible m € Z~. Denote
x(k) == xo(mk), x(k)=xo(mk)—xo(mk—r), and Ny, :=xo(m)-1.

Recall that in [6, Section 3.1], we construct a locally closed subscheme ZX! of the relative
Hilbert scheme Hilb, (IP’N m) x Hilbg (IP’N "L) which parametrizes Q-Gorenstein smoothable
log Fano pairs (X,cD) such that they are embedded into PN= by |[-mKx| and X is klt.
Denote by Z the dense open subscheme of ZX!* parametrizing (X, D), where both X and
D are smooth. Let Z° be the Zariski open subset of ZX!* parametrizing K-semistable log
Fano pairs (X,cD). Denote by Z°4 the reduced scheme supported on Z2. Then KM, ¢
is defined as the quotient stack [Z:°!/PGL(N,, +1)]. Hence it suffices to show that Z*" is
smooth, which would then imply that Z**? is smooth. The following argument is inspired
by [6, Lemma 9.7].

Denote by Z@ the locally closed subscheme of Hilb,, (IP’N’") parametrizing Q-
Gorenstein smoothable Q-Fano varieties X that are embedded into PV by |-mKx|.
Since we are in dimension 2, any point Hilb(X) € Z%F corresponds to a log del
Pezzo surface X with only T-singularities. Hence X has unobstructed Q-Gorenstein
deformations by [29, Theorem 8.2], [31, Proposition 3.1], and [1, Lemma 6]. Thus ZF is
a smooth scheme. Denote by Z*™ the Zariski open subset of Z%F parametrizing smooth
Fano manifolds X such that there exists a smooth divisor D ~g —rKx. The openness
of Z%™ follows from the openness of smoothness, H°(X,0x (D)) being constant since
HY(X,0x(D)) =0 for i > 1 by Kodaira vanishing, and the fact that smooth families of
Fano manifolds have locally constant Picard groups. Denote Z" := Zsmn Z@  Hence Z"
is the disjoint union of some connected components of Z%F. Denote the first projection
by pry : Z¥' — Hilb, (PN=). Clearly pry (ZX!') is contained in Z%F. We claim that
pry (Z klt) = 7Z%% and that the restriction morphism pr, : Z¥'* — Zbs is proper and smooth.

We first show that pr; (Zk“) = 7" and pr, : ZK'* — Zb5 is proper. Since Z is a dense
open subset of ZX!*, we know that

Z™ =pry(Z) Cpry (Z4) Cpry(Z2)N 2% = Zsmn Z9F = 2.

Hence the surjectivity of pry : ZX* — Zb$ would follow from its properness. We will verify
properness by checking the existence part of the valuative criterion. Let 0 € B be a pointed
curve with B° := B\ {0}. Consider two morphisms f°: B® — ZX* and ¢g: B — Z%F such
that g|go = pr; o f°. It suffices to show that f° extends to f: B — Z¥!* such that g =pr; o f.
We have a Q-Gorenstein smoothable family p: X — B induced by ¢, and a Q-Cartier Weil
divisor D° on X° :=p~1(B°) induced by f° whose support does not contain any fiber
Xy, and D° ~q po —1TKxo/po. We define D := De. Then, by taking Zariski closure, it is
clear that D ~q p —rKx,p, since Xp is a m-linearly trivial Cartier prime divisor on X.
Thus (X,D) — B is a Q-Gorenstein smoothable log Fano family. This finishes proving the
properness and surjectivity of pry : ZXIt — ZPs,

Finally, we will show that pr; : ZK* — ZP% is a smooth morphism. Indeed, we will
show that it is a smooth PNr-fibration, where N, := xo(r) — 1. If Hilb(X, D) € pr; *(Z5™),
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then we know that h?(X,0x (D)) = x(X,0x (D)) = xo(r), since H(X,0x (D)) =0 for
any ¢ > 1 by Kodaira vanishing. Hence the fiber over Hilb(X) € Z%™ is isomorphic to
P(H°(X,0x(D))) =2 PNr. Hence we may restrict to the case when Hilb(X) € Zbs\ Z5™.
Assume that (X,D) € ZX is Q-Gorenstein smoothable where 7 : (X,D) — B is a Q-
Gorenstein smoothing over a pointed curve 0 € B with (Xp,Dg) = (X,D). Then by
Lemma 2.11, we know that 7.Ox (D) is locally free with fiber over b € B isomorphic to
H° (X,,0x,(Dy)). Hence it is easy to conclude that for any effective Weil divisor D’ ~ D,
the pair (X, D’) is also Q-Gorenstein smoothable. Since the Weil divisor class group Cl(X)
of X is finitely generated, we know that there are only finitely many Weil divisor classes
[D] such that [D] = —r[Kx] in C1(X)®z Q. Hence the fiber pr;* (Hilb(X)) is isomorphic
to a disjoint union of finitely many copies of PN~. However, since pr; : Z¥* — Zb5 is
proper with connected fibers over a dense open subset Z5™ and Z"® is normal, taking Stein
factorization yields that pr; has connected fibers everywhere. Hence pry ! (Hilb(X)) = PN
for any Hilb(X) € Z"S. Therefore, pr; has smooth fibers and smooth base, which implies
that Z¥!* is Cohen-Macaulay. Hence, miracle flatness implies that pr; is flat and hence
smooth. The proof is finished. O

3. Overview of previous results, Laza—O’Grady, and VGIT

We refer the reader to [42, 44, 43] for more details.

3.1. Hyperelliptic K3 surfaces of degree 4

A K3 surface X is a connected projective surface with Du Val singularities such that
wx 20x and H'(X,0x)=0. A K3 surface X together with an ample line bundle L on
X is called a polarized K3 surface (X,L) of degree (L?). A polarized K3 surface (X, L) is
hyperelliptic if the map ¢, : X --» |L|V is regular, and is a double cover of its image. All
hyperelliptic quartic K3 surfaces are obtained by the following procedure (see [42, Remark
2.1.3]): Consider a normal quadric surface Q C P3, and B € ‘wéz‘ with ADE singularities
(in particular, GIT stable when @ = P! x P!). Then the double cover 7 : X — @ ramified
over B is a hyperelliptic quartic K3 with polarization L = 7*Og(1) and at worst ADE
singularities.

Given a smooth (4,4) curve C on P! x P!, the double cover m: X — P! x P! ramified
over C is a hyperelliptic polarized K3 surface of degree 4. The polarization is given by
Lo = m* Opiyp1(1,1). One can ask how the GIT moduli space of (4,4) curves on P! x P!
compares to the moduli space of hyperelliptic K3 surfaces of degree 4 constructed via
periods.

3.2. Moduli of K3 surfaces

Let A be the lattice U? @ Dyg, where U is the hyperbolic plane and D¢ is
the negative definite lattice corresponding to Dynkin diagram Dig. Let 2 =
{lo| e P(A®C) |62 =0,(c+5)*>>0}. The connected component Z* is a type IV
bounded symmetric domain. Let I'(A) = O"(A) < O(A) be the index 2 subgroup mapping
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97T to itself. We define the locally symmetric variety % =T\ 27, and we let .# C F*
be its Baily-Borel compactification (see [45, Section 3.1]).

It turns out that .# can be identified as the period space for hyperelliptic quartic K3
surfaces (see [42, Remark 2.2.4]). The rough idea is that .Z sits inside a larger period
domain %’ which serves as a moduli space for quartic K3 surfaces, and .% is naturally
isomorphic to a divisor in .#’ whose points correspond to the periods of the hyperelliptic
K3 surfaces.

Let 9 denote the GIT moduli space of (4,4) curves on P* x P1. Shah proved that (4,4)
curves with ADE singularities are GIT-stable, and by associating to C the corresponding
period point of the K3 surface, one obtains a rational period map p: 9t --» F* ([69,
Theorem 4.8]). By the global Torelli theorem, the period map p is actually birational.
Laza and O’Grady showed that the indeterminacy locus of p is a subset of 9t of dimension
7 (see, e.g., [43, Corollary 4.10]). The goal of their work is to describe this birational map
explicitly, as a series of flips and divisorial contractions.

The intersection of .# and the image of the regular locus of p is .# \ Hy, where Hy,
is a Heegner divisor. Geometrically, it parametrizes periods of hyperelliptic K3 surfaces
which are double covers of a quadric cone, and is defined as follows: The vector w € A is
hyperbolic if w? = —4 and the divisibility div(w) =2 (the positive generator of (w,A)).
The Heegner divisor Hy, C % is the locus of O (A)-equivalence classes of points [o] € 2T
such that o1 contains a hyperbolic vector.

3.3. Results of Laza and O’Grady and VGIT for (2,4)-complete intersections
in P3

As mentioned in the introduction, Laza and O’Grady propose a conjectural framework to

interpolate between GIT and Baily—Borel compactifications of moduli spaces which are

type IV locally symmetric domains .% (V) associated to lattices of the form U? @ Dy,

(see [42]). These include, for example, K3 surfaces of degree 4 (N =19) and EPW sextics

(N =20).

Let A(N) denote the Hodge line bundle on #(N) and let A(IN) denote a geometrically
meaningful (e.g., Noether—Lefschetz) divisor. By the work of Baily and Borel, the compact
space .#*(N) can always be identified with ProjR(.#(N),A(IN)). Moreover, Looijenga
showed that ProjR(%# (N),A(N)+ A(N)) can often be identified with 29t. The main
prediction of Laza and O’Grady is that the ring of sections R(Z (N),A(N)+ BA(N))
is finitely generated for 8 € [0,1] N Q. Moreover, they give a prediction for the ‘walls’
where the moduli spaces change, thus predicting a natural interpolation between
ZF* and M.

From now on, we restrict to the case where N = 18 — that is, the case of hyperelliptic
quartic K3 surfaces. In this case, if A = Hy, /2 (introduced in §3.2), then it was shown in
[42] that M = ProjR(.Z, A+ A). Let B € [0,1]NQ. In [43], Laza and O’Grady prove that the
ring of sections R(F,\+ BA) is finitely generated, and therefore #(3) = ProjR(F,\+
BA) can be viewed as a projective variety interpolating between the GIT and Baily—
Borel moduli spaces. Moreover, they calculate the set of critical values, and show that the
birational period map is the composition of explicitly understood divisorial contractions
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and flips. In fact, they show that the intermediate spaces arise from variation of GIT
(VGIT). They also show that the first step in their program produces .# = .%(¢) —
Z* as the Q-Cartierization of H, C #* for 0 < e < 1. In particular, this gives a small
partial resolution .# of .#* which parametrizes hyperelliptic quartic K3 surfaces with slc
singularities. In what follows, we review VGIT and their results in further detail.

We now introduce the VGIT .Z (¢), largely modeled on [43, Section 5]. A smooth (2,4)-
complete intersection inside P® determines X, a smooth hyperelliptic K3 of degree 4.
Let U be the parameter space for all (2,4)-complete intersection closed subschemes in
P3. Then U has a natural action of SL(4), though we note that U is not projective.
We let E be the vector bundle over |Ops(2)| whose fiber over Q € |Ops(2)| is given by
H°(Q,0q(4)). Then U C P(E) and codimpg)P(E)\U > 2.

There is a map chow : U — Chow to the Chow variety parametrizing 1-dimensional
cycles inside P3. We denote by Chow y 4) the closure of the image of chow. Note then
that there is a regular embedding

U~ P(E) X ChOW(2,4) .

Next we describe the the universal family of log Fano pairs over U. We need this to set
up the VGIT and in §5.2 to compute the CM line bundle. We begin by considering the
following diagram:

(

X,9) ——— P3xP(E)
-

u /
lw

P(HO(P?,0(2))) = P°.

We let p; (resp., p2) denote the first (resp., second) projection, and let f: (2,2) —
P(E) be the universal family over P(E), where we view (27,2) C P? x P(E). We let
Q C P2 x P? denote the universal family over P? with morphism ¢ : Q — P?, and let
E = ¢.0o(4,0). Pointwise, we have

H°(Q,0q(4)) — P(E)

| |

Q] ———— PY.

Using the notation of Laza and O’Grady (see [43, equation (5.2)]), we denote by 7 :=
m*Opo (1) and & := Op(g)(1). We recall the following result of Benoist.

Proposition 3.1 ([8, Theorem 2.7]). Ift € Q, then the Q-Cartier class n+t& on P(E)
is ample if and only if t € (0,%) NQ.
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We now set up the VGIT, following [43, Section 5.1]. Let &2 denote the closure of U
in P(E) x Chow y,4). Let p; and py be the first and second projections from & to P(E)
and Chow s 4), respectively. The action of SL(4) on P3 extends to an action on &. To
construct a GIT quotient, we thus need to specify an SL(4) linearized ample line bundle

on Z.
Fix a rational number 0 < ¢ < %. For t € (6,1/2)NQ, consider the Q-line bundle

1—-2¢ t—9
Ny:= —pj 1) —————ps Lo,
ti= s P1 (0 08) + 51—20)"”
where Lo, is the restriction of the natural polarization of the Chow variety to Chow g 4).
One can check that V; is ample for § < t < % and semiample for ¢t = %
Definition 3.2. Let 6 € Q satisfy 0 < § < %. For each t € (5,%} NQ, we define the VGIT
quotient stack . (t) of slope ¢ and the VGIT quotient space M(¢) of slope ¢:

AM(t) = [P(Ny) /[PGL(4)], IM(t) := 2 5, SL(4).

Remark 3.3. (1) Laza and O’Grady show that the VGIT quotients do not depend on
the choice of §, so the lack of § in the notation is justified (see also Theorem 6.6(1)).

SL(4)
(2) Since NV, is only semiample for t = 1, they define 9 (3) to be ProjR (@,N%)

and show that this is isomorphic to Chow s, 4y /SL(4).

The following two results from [43] will be required to relate the VGIT moduli spaces
and K-moduli spaces:

Proposition 3.4 ([43, Proposition 5.4]). Let chow : U — Chow s 4) be the Hilbert-Chow
morphism and let L, € Pic(P(E))q be the unique extension of chow™ Lo to P(E). Then

Lo, =4n+2¢.

Lemma 3.5 ([43, Proposition 5.11]). For each t € (6,3] NQ, the VGIT semistable locus
P5(Ny) of slope t is a Zariski open subset of U.

We now state the main VGIT result of [43], noting that their results also hold for the
VGIT quotient stacks. Let Hilb(y 4y denote the closure of U inside the relevant Hilbert
scheme, and let L,, denote the Pliicker line bundle corresponding to the mth Hilbert
point.

Theorem 3.6 ([43, Theorem 5.6]). Let § be as before. The following hold:
(1) Forte (6,%), the moduli space M(t) = P(E) 1 y41e SL(4).
(2) Forte (6,%), we have M(t) =M.

(m—3)?

(3) Form >4, we have Hilby 4y /; SL(4) = 9IM(t(m)), where t(m) = 2(m?—am+5)°

Before stating their main result, we review some results from VGIT.
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3.3.1. Variation of GIT. The general theory of VGIT quotients can be found in
[72, 19]. The goal here is to compare M(t) for ¢t € ((57 %) NQ, in particular how varying the
line bundle N; changes the GIT quotient. The main results of VGIT state that this interval
can be subdivided into finitely many open chambers, and on each open chamber the space
M (t) remains unchanged ([72, Theorem 2.4] and [19, Theorem 0.2.3]). The finitely many
values where the space M(t) does change are called walls. Here, there are birational
morphisms M (t —€) — M(t) « M(t+¢€), and there are additionally wall-crossing rational
maps M(t —e) --» M(t+¢€) ([72, Theorem 3.3]).

Later on, we will need the following foundational results in VGIT, and we refer the
reader to the survey [41, Sections 3 and 4] and the references therein:

Lemma 3.7. Let (X,Ly) be a polarized projective variety. Let G be a reductive group
acting on (X,Lo). Let L be a G-linearized line bundle on X. For a rational number
0 < e < 1, consider the G-linearized ample Q-line bundle Ly = Lo @ LOF)

(1) Let X ), G and X /. G denote the VGIT quotients. If X*°(0) and X**(+) denote
the respective VGIT semistable loci, then there are open inclusions X **(£) C X*°(0).

(2) For any closed point x € X**(0)\ X (L), there exists a 1-PS o in G such that

pco(z,0) =0 and p“*(z,0) <0.
Proof. (1) This is the well-known semicontinuity property of semistable loci from [72,
Theorem 4.1] and [19, §3.4] (see also [41, Lemma 3.10]).

(2) By symmetry we may assume that z is VGIT unstable with respect to £,. Hence
by the Hilbert-Mumford numerical criterion, there exists a 1-PS o¢ in G such that
pr+(2,00) < 0. Let T be a maximal torus of G containing oy. By [61, Chapter 2,
Proposition 2.14], we know that there exist two rational piecewise linear function hg
and h on Homg(G,,,,T') such that for any 1-PS A in T, we have

o (z,0) = ho(A) and  pF(x,\) = h(\).

Since z € X®°(0), we know that ho(A) > 0 for any A € Homg(G,,,,T'). On the other hand,
pE+ (,00) = ho(00) +€h(0g) < 0. Hence there exists o € Homg(G,y,,T) such that ho(c) =0
and h(o) < 0. The proof is finished. O

Finally, we state the main result from [43]:

1
BED)

Theorem 3.8 ([43, Theorem 1.1]). Let 8 €[0,1] and let t(53)

map

€ [%7%] The period

P F(1) - F(0) = F*

is the composition of elementary birational maps with eight critical values of 5. Moreover,
there is an isomorphism M(t(8)) = .F(B). In particular, the intermediate spaces are the
VGIT quotients already described, and are related by elementary birational maps. Finally,

the map F(1/8) — .7 (0) = .F* is the Q-Cartierization of Hy,.
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4. Degenerations of P! x P! in K-moduli spaces

4.1. K-moduli spaces of curves on P! x P!

In this section, we will define the K-moduli spaces which generically parametrize smooth
(d,d)-curves on P! x P!

Proposition 4.1. Let d > 3 be an integer. Let C be a (d,d)-curve on P! x PL. If
lct (Pl X ]P’l;C) > % (resp., > %), then the log Fano pair (]P’1 X Pl,CC’) is K-stable (resp.,
K-semistable) for any c € (0,%). In particular, (]P’1 X PI,CC) is K-stable for any c € (O, %)
if either C' is smooth or d=4 and C has at worst ADE singularities.

Proof. This follows from interpolation (see [6, Proposition 2.13] or [18, Lemma 2.6]),
since the pair (]P’1 x P, %C) is kIt (resp., Ic) and P! x P! is K-polystable. O

We begin to define the K-moduli stack Kdm and the K-moduli space F(Lc. Let xo(+)
be the Hilbert polynomial of the polarized Fano manifold (P! x P!, — Kpiyp1) — that is,
xo(m) = 4m? +4m + 1. Consider the K-moduli stack KMy, d/2,c and K-moduli space
KM, a/2,c, where d > 3 is an integer and ¢ € (O,%) NQ.

Proposition 4.2. Let d > 3 be an integer. The K-moduli stack KM, q/2.. and K-moduli
space KM, 4/2,c are both normal. Moreover, we have the following cases:

(1) If dis odd, then KM, d/2,c is connected and generically parametrizes (]P’1 X ]PI,CC),
where C € |Op1 xp1(d,d)| is a smooth curve.

(2) If dis even, then KM, q/2,c has at most two connected components. One of these
components generically parametrizes (]P’1 xPl,cC), where C' € |Opiypr(d,d)| is a
smooth curve; the other component, if it exists, generically parametrizes (F1,cC"),
where C' € ’OFI (—%Km)‘ is a smooth curve on the Hirzebruch surface .

Proof. The normality of KM, 4/2,c and KM, 4/2, is a direct consequence of Theorem
2.21. For the rest, notice that there are only two smooth del Pezzo surfaces of degree 8
up to isomorphism: P! x P! and FF;. In addition, they are not homeomorphic, since their
intersection pairings on H?(-,Z) are not isomorphic. By Proposition 4.1 we know that
(IP’l X ]P’l,cC), where C' is a smooth (d,d)-curve, is always parametrized by KM, i/2,c-
If d is odd, then —%K]FI is not represented by any Weil divisor, since it has fractional
intersection with the (—1)-curve on ;. Hence F; will not appear in KM, 4/2 . when d
is odd. The proof is finished. O

Definition 4.3. Let d > 3 be an integer. For ¢ € (O7 %) NQ, let Kd,c denote the connected
component of M, 4/2,. where a general point parametrizes (Pl X Pl,cC), where C €
|Op1 «p1 (d,d)| is a smooth curve. In other words, Kg, . is the moduli stack parametrizing K-
semistable log Fano pairs (X,cD), where X admits a Q-Gorenstein smoothing to P! x P!
and the effective Q-Cartier Weil divisor D ~q f%K x. We let dec denote the good moduli
space of K4 .. From Theorems 2.19 and 2.21 and Proposition 4.2, we know that g . is
a connected smooth Artin stack of finite type over C, and K. is a normal projective
variety over C.
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The following theorem is a direct consequence of [6, Theorem 1.2] and Proposition 4.1:

Theorem 4.4. Let d > 3 be an integer. There exist rational numbers

2
OZCO<01<CQ<"'<Ck:g

such that for each 0 <i<k—1, the K-moduli stacks Ed7c are independent of the choice
of c € (¢i,¢i41). For each 1 <i<k—1 and 0 < e < 1, we have open immersions

Kd,cife — Kd,ci — Ed,cﬂréa
which induce projective birational morphisms

Fd,ci—e — Fd,ci — Fd,ci—i-e-

Moreover, all these morphisms have local VGIT presentations as in [5, (1.2)].

In this paper, we are mainly interested in the case when d = 4, although some results
for general d are presented in §6. We always abbreviate K4 . and K4 . to K, and K.,
respectively.

4.2. Classification of degenerations of P! x P!

The goal of this section is to prove Theorem 4.8, which states that if (X,cD) is a pair
parametrized by K, for some ¢ € (0,1), then X is isomorphic to either P! x P* or P(1,1,2).

Later on, we will show (in Theorem 4.10) that the same is true in Kq . for 0 <c< 4’2—‘}@
and d > 3. First we show that if X is a normal Q-Gorenstein deformation of P! x P!, then
p(X) <2:

Proposition 4.5. Let X be a log del Pezzo surface. Suppose that X admits a Q-Gorenstein
deformation to Pt x P*. Then p(X) < 2.

Proof. Let X — T be a Q-Gorenstein smoothing of X — that is, 0 € T" is a smooth germ
of pointed curve, Xy =2 X, and X; = P! x P! for t € T'\ {0}. By passing to a finite cover of
0 €T, we may assume that X° = (P! xP') x T°, where X° := X'\ X, and T° := T\ {0}.
First, using [29, Lemma 2.11], we show that Cl(X) = Z2. Indeed, consider the exact
sequence

0—-7ZX - ZX — Cl(X) = Cl(X°) =0,

which gives C1(X) = C1(X°) = Z2.
Now we follow the proof of [29, Proposition 6.3]. First note that there is an isomorphism
Pic(X) — Pic(X), and so we obtain the inequality

p(X) =dimPic(X)®Q = dimPic(X)@Q < dimCl(X)@Q = 2,
with equality if and only if X is Q-factorial. O

A result of Hacking and Prokhorov now classifies the possible Q-Gorenstein smoothings
of P! x P! (see [30, Theorem 1.2] and [31, Proposition 2.6]):
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Proposition 4.6 (Hacking and Prokhorov). Let X be a log del Pezzo surface admitting
a Q-Gorenstein smoothing to P! x P, There are two cases:

(1) If p(X) =1, then X is a Q-Gorenstein partial smoothing of a weighted projective
plane P (a?,b?,2¢?), where (a,b,c) € Z3, subject to the equation

a?+b> +2¢% = dabe.

In particular, the local index ind(z,Kx) is odd for any z € X.

1

(2) If p(X) =2, then X only has quotient singularities of type -(1,an —1), where

ged(a,n) = 1.

Suppose = € X is a surface T-singularity. We denote by u, the Milnor number of a
Q-Gorenstein smoothing of z € X. If x € X is a cyclic quotient T-singularity of type
L. (L,ena—1), then p, =e—1.

Theorem 4.7. Let (X,cD) be a K-semistable log Fano pair that admits a Q-Gorenstein
smoothing to (]P’1 X ]P’l,cCt), with ¢ € (07%) and Cy a curve of bidgree (d,d). Let x € X be
any singular point.

(1) If d is even or ind(z,Kx) is odd, then

ind(z, Kx) < _ 5 '
min m ,d ’Lf Mg = 1.

(2) If d is odd and ind(z,Kx) is even, then p(X) =2, pz =0, and

ind(z,Kx) §min{2t ,2d72}.

3
2\/5(27cd)J
Proof. Define 8:=1—¢d/2 € (0,1). We know that an index n point z € X is a cyclic
quotient singularity of type n%(l,na— 1) or ﬁ(l,Qna— 1), where ged(a,n) = 1. If p, =0,
then the orbifold group of 2 € X has order n?, which implies that ;(;l(LX )= % by
[51, Proposition 4.10]. Hence Theorem 2.6 implies that

882 =(—Kx —cD)*< g\a(x,X) = %

This shows that n < ﬁ = m. Similarly, if p, = 1, then « € X has orbifold group

of order 2n?, which implies that n < % =
upper bounds are verified.

The rest of this proof is devoted to verifying the second terms in the index upper
bounds. We know that dK x +2D ~ 0 when d is odd and gKX + D ~ 0 when d is even.
If x ¢ D, then n | d, hence n <d (in fact, n < % if d is even). Hence the second terms are
verified for « € D.

From now on, let us assume x € D. Let (5: € )~(> be the smooth cover of (z € X), with

ﬁ. Hence the first terms in the index

D being the preimage of D. Assume T € X has local coordinates (u,v) where the cyclic
group action is scaling on each coordinate. Let u'v? be a monomial appearing in the
equation on D with minimum ¢+ j = ordzD.
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Case 1. Assume d is even and p, = 0. Then the orbifold group of z € X has order n?.
Since the finite-degree formula is true in dimension 2 by [52, Theorem 4.15], we have

vol (:E,)?,cﬁ) =n? -;(;l(x,XmD).
On the other hand, Theorem 2.6 implies that

9~ 9 ~/ - ~
88% = (—~Kx —cD)* < ZVOI(J?,X,CD) = mvol (i,X,cD) .

<3\/\W§3(2—cordiﬁ>' (4.1)

- 4283 423

In particular, we have n < ﬁ We know that lct; ()Z' ﬁ) > ¢, and Skoda [70] implies

So we have

n

lct (X D) ord~5 so we have ordz D<f Since dKX—i—D 0, we have i+ (na—1)j =

d

sna mod n?, which implies z =j mod n.

Ifp> 2\fd_s_g,thenn< zfg <d+
Then

3 \/5, which implies n < d+ 1. Thus we may assume

p< 2\/§d+3'

~ 2 3
i+j=ordz;D < - <d+——=.
J c 2v/2

Hence i+ j < d+1. Assume to the Contrary that n > d+2 Theni=j modnandi+j<n
implies that i = j. Hence i+ (na — 1)] = 7na mod n? implies i = 4 mod n. But since

i < 4L <, we know that i =j =4 Then formula (4.1) implies that

< 3(276(14‘])) 63
PN RPN

We reach a contradiction.
Case 2. Assume d is even and p, = 1. Then the orbifold group of z € X has order n?.
By a similar argument as in case 1, we know that

9 ~ 9~/ = ~
85% = (~Kx —cD)? < Jvol(w, X,eD) = —vol (#.X.cD).

n2
Hence
3\/‘781@'7)?7‘35) 3(2—0 ordiﬁ)
n < < . (4.2)

86 86
In partlcular we have n <

If 5>
Then

4ﬁ

then n < 4ﬂ <d+3 %> which implies n < d. Thus we may assume 3 <

4d+3 ’ 4d+3

~ 2 3
i+j=ord;D < — <d+-.
c 4
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Hence i+ j < d. Assume to the contrary that n >d+1. Then i=j modn and i+j <n

implies i = j. Hence i+ (na—1)j = gna mod n? implies i = ¢ mod n. But since i < % <n,

2
we know that ¢ = j = 4. Then formula (4.2) implies that
32— cli+)) 68

"STTgs 8B

< 1.
We reach a contradiction.

Case 3. Assume d is odd and p, = 0. In this case we have dKx + 2D ~ 0, which
implies 2(i + (na —1)j) = dna mod n?. If n is odd, then clearly i = j modn. By the
same argument as case 1, we know ¢ = j = % if n > d+ 2, hence a contradiction.

If n is even, then we do a finer analysis. Since both d and a are odd, from 2(i+ (na —

1)j) =dna mod n? we know that i—j =2 modn. Thus n <2(i+j) < 2 = %. Besides,

formula (4.1) implies that n < 2\1/35,8. Hence
[ 2d 3 2v/2(2d) + 3 3
n < min , < =2d+ ——.
{lﬂ 2\/55} 2v2(1-p)+2v28 2v2

Thus n < 2d. Assume to the contrary that n = 2d; then i+j > & = d. Hence formula (4.1)
implies that

3(2—c(i+j))§3(2—cd): 3

428 W2 2V2
We reach a contradiction. Thus we have n < 2d — 2.

Case 4. Assume d is odd and p, = 1. Then by [31, Proposition 2.6], we know that
p(X)=1.So n is odd by Proposition 4.6. Hence 2(i + (2na —1)j) = dna mod n? implies
1 =j mod n. By a similar argument as in case 2, we know i = j = g if n >d+1, hence a
contradiction. O

2d=n<

The index bounds in Theorem 4.7 allow us to limit the surfaces that appear in pairs
parametrized by the moduli stack /C..

Theorem 4.8. Let (X,cD) be a K-semistable log Fano pair that admits a Q-Gorenstein
smoothing to (IP’l ><]P’1,cCt), with ¢ € (0,%) and Cy a (4,4) curve. Then X must be
isomorphic to either P x P! or P(1,1,2).

Proof. By Proposition 4.5, we know that p(X) < 2. We start with p(X) = 1. In this
case, by Proposition 4.6 we know that X is a weighted projective space of the form
P (a?,b%,2¢%), where a? 4 b? 4 2¢ = 4abe, or a partial smoothing. We begin enumerating
the possible integer solutions and see that the first few are

(a,b,c) = (1,1,1),(1,3,1),(1,3,5),(11,3,5),....

We can exclude the last two (and any with higher index) by the index bound of Theorem
4.7. The first gives P(1,1,2) and the second gives P(1,2,9). We now show that the
singularity %(172) cannot appear.

Assume to the contrary that z € X is of type %(172). Suppose D ~ —2K x and consider a

smooth covering (:E ex ) — (z € X). Note that we may assume z € D, because otherwise
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ind(z, K x) <2, and we obtain a contradiction. Consider local coordinates of & € X , namely
(u,v). Let u'v? be a monomial appearing in the equation on D with minimum i+ j =
ord;zD. Then i4+2j =6 mod9. Since we know that (X,cD) is klt at z, we have that

2 ~
- ,zlct(D>>c,
1+

and so in particular i+ j < 2. By formula (4.1) with n =3 and 3 =1 —2¢, we have
—(i+j)e>4v2(1—2¢).
Since this inequality holds for some 0 < ¢ < %, we have i+ j < 3, because otherwise
2—(i+7)c<2—4c < 4v2(1—2¢),

which contradicts the previous inequality. Putting this together with ¢+2j =6 mod 9,
we see that (4,7) = (0,3). N

Consider the valuation w on X, which is the monomial valuation in the coordinates
(u,v) of weights (1,2). In particular, w( ) = 6. Moreover, Az(w) =3 and vol(w) = 1.
Then we note that

‘751(5”7)?7015) < (Ag(w)—cw(f)))zvol( )= %

By formula (4.1) we have
3—6¢
\/§ )

which gives 4v/2 < f’ a contradiction. Thus the surface X with a %(172) singularity

4V2(1—2¢) < y[vol (gﬁ,)?,cf)) <

cannot appear. In particular, the only surface with p(X) =1 is X 2 P(1,1,2).

Now we consider p(X) = 2. By Proposition 4.6, we know that the only singular points
of X are of the form -3 (1,na—1), with n < 5. We already excluded §(1,2), so we only
need to consider n = 2,4,5.

Let us consider n = 4, namely a singularity of type 15 ( 1,3). We show that this singularity

cannot occur. As before, consider a smooth covering (ar €eX ) — (z € X) and suppose

D ~ —2Kx. Note that we may assume x € D, because otherwise ind(z, Kx) < 2, and we
obtain a contradiction. Consider local coordinates of & € X, namely (u,v). Let uv? be a
monomial appearlng in the equation on D with minimum i+ j=ordzD. Then i+3j =8
mod 16, and i+ j < E' By formula (4.1) with n =4 and 8 =1 — 2¢, we have

4V2(1—2¢) < (2—c(i+7)).

Since this inequality holds for some 0 < ¢ < %, we have i+ j < 3 by the same reason in
n = 3. This contradicts i+ 3j =8 mod 16. In particular, a singularity of type 75(1,3)
cannot occur.

Next let us consider n = 5, namely a singularity of type 25(1 4) or 2%(1,9). We
again show that these singularities cannot occur. With the same setup as the previous
paragraph, we have either 1445 =10 mod 25 or :4+95 =20 mod 25. Moreover, we again
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have i +j < 3 by the same reason in n = 3,4, but this contradicts the congruence equations.
Therefore, a singularity of type %(1,4) or %(1,9) cannot occur.

After these discussions, the only case left to study is p(X) = 2 where X has only
singularities of type +(1,1). If X is singular, then by [62, Table 6 and Theorem 7.15]
(see also [2]), we know that X is isomorphic to a blowup of P(1,1,4) at a smooth point.
However, in this case X admits a Q-Gorenstein smoothing to the Hirzebruch surface Fy,
which is not homeomorphic to P! x P!, This is a contradiction. Hence X is smooth and
isomorphic to P! x P!, O

Remark 4.9. Let (X,cD) be a K-semistable log Fano pair that admits a Q-Gorenstein
smoothing to (Pl X Pl,cC’t), with ¢ € (O,%) and C; a (4,4) curve. By Theorem 4.8, this
implies that X is either P! x P* or P(1,1,2). Therefore, there exists a closed embedding
(X,D) < P? such that X € |Ops(2)| and D ~ —2Kx are (2,4)-complete intersections
inside P3. Hence, all K-semistable pairs (X,cD) with ¢ € (0,%) are parametrized by a
Zariski open subset of U.

Theorem 4.10. Let (X,cD) be a K-semistable log Fano pair that admits a Q-Gorenstein
smoothing to (IF’I X ]P17cCt), with ¢ € (07 4_2(\1@) and Cy a (d,d) curve where d > 3. Then
X must be either P' x P! or P(1,1,2).

o . 4—\/32
Proof. By Proposition 4.5, p(X) < 2. By the index bound of Theorem 4.7, for ¢ < 2{

we know that ind(x,Kx) < 3. If p(X) =1, then by Proposition 4.6 we know that X is

Gorenstein, which implies that X = P(1,1,2). If p(X) = 2, then by Proposition 4.6 we

know that either X is smooth, hence isomorphic to P! x P!, or X has only singularities
1

of type 7(1,1). The latter case cannot happen, by the end of the proof of Theorem 4.8.

Therefore, the only surfaces appearing are P! x P! and P(1,1,2). O

5. Wall crossings for K-moduli and GIT

In this section we prove Theorem 1.1 — that is, for 0 < ¢ < %, the K-moduli stack /C,
coincides with the GIT moduli stack .#(t) with t = 5% (see Definition 3.2). The
important observation comes from Theorem 4.8: the surfaces X in the pairs parametrized
by K. are P! x P! or IP(1,1,2), which are quadric surfaces in P2, and the divisors D can

therefore be viewed as (2,4)-complete intersections in P3.

5.1. The first wall crossing

In this section, we show that GIT-(poly/semi)stability of (4,4) curves on P! x P! and
c-K-(poly/semi)stability coincide for ¢ < §. Moreover, we show that ¢; = § is the first
wall for K-moduli stacks K.

Definition 5.1. A (4,4) curve C on P! x P! gives a point [C] € Py 4 :=P(H(P! x P!,
0(4,4))). We say C is GIT-(poly/semi)stable if [C] is GIT-(poly/semi)stable with respect
to the natural Aut (P! x P!)-action on (Py44,0(2)). We define the GIT quotient stack .4
and the GIT quotient space 9 as

M= [PT,/Aut (P' xPY)],  M:=PF, [ Aut (P xP').
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Theorem 5.2. For any 0 <c¢ < &, a curve C C P! x P! of bidgree (4,4) is GIT-
(poly/semi)stable if and only if the log Fano pair (]P’l xIP’l,cC’) is K-(poly/semi)stable.

Moreover, there is an isomorphism of Artin stacks K. ./ .

Proof. We first show that the K-(poly/semi)stability of (P!xP!cC) implies GIT-
(poly/semi)stability of C for any ¢ € (0,1). Consider the universal family = :
(P* X P! x P(4,4),cC) — P(4,4) over the parameter space of (4,4) curves on P! x P!, It
is clear that C € |O(4,4,1)|. Hence by Proposition 2.17 we have

3
ACM, 7,cC = — T« (_KIP’I KPLXP (44 /P (a.0) —CC) = 71, (0(2—4¢,2—4c, —¢))?
= —=3(Op1wp1 (2—4¢,2—4¢)%) Op ., (—¢) = Op, ,, (3(2—4c)*c).

Hence the CM line bundle Acwm, r,cc is ample whenever c € (O, %) Hence the statement of
K implying GIT directly follows from Theorem 2.16.

Next we show the converse — that is, that the GIT-(poly/semi)stability of C implies
K-(poly/semi)stability of (P' x P1,cC) for ¢ < 4. Indeed, using a similar argument as the
proof of [6, Theorem 5.2], with a key ingredient from properness of K-moduli spaces, it
suffices to show that any pair (X, D) appearing in the K-moduli stack K. for ¢ < % satisfies
the conditions that X = P! x P! and D is a (4,4) curve. Since P! x P! has no nontrivial
smooth degeneration, it suffices to show that X is smooth. Assume to the contrary that
X is singular at a point « € X. Then by [51] we know that

8(1—2¢)? = (—Kx —¢D)? < gvAol(x,X,cD) < gvAol(x,X) <

| ©

This implies that ¢ > %, which is a contradiction. Hence for ¢ < %, a K-semistable pair
(X,cD) must be isomorphic to (P! x P!,cC), where C' is a (4,4) curve.

Summing up, the equivalence of K-(poly/semi)stability with GIT-(poly/semi)stability
yields a morphism ¢ : .# — K. which descends to an isomorphism 9t =N K .. To conclude,
it suffices to show that ¢ is an isomorphism between Artin stacks. The proof is similar to
[6, Theorem 3.24]. Denote T":=P7’,. Let 7: (X,D) — T be the universal family. Recall
from [6, Section 3.1] and Theorem 2.21 that K. = [ZS/PGL(N,, +1)], where Z?° is the
K-semistable locus in the Hilbert scheme of embedded by mth multiple of anticanonical
divisors. Denote by 7' : (X/,D') — T" the universal family over T' := Z2. Let P be the
PGL(N,, +1)-torsor over T induced from the vector bundle 7, O« (—mKX/T). Then from
[6, Proof of Theorem 3.24] we see that there is an Aut (P! x P')-equivariant morphism
1 : P — T whose descent is precisely ¢. Hence, to show that ¢ is isomorphic it suffices
to show that 1 provides an Aut (IP’l X ]P’l)—torsor. Indeed, since 7’ : X’ — T’ is isotrivial
where all fibers are isomorphic to P* x P!, we may find an étale covering U;V; = T” such
that there is an isomorphism p; : X’ X1+ V; =N (IP’I X IPI) x V;. Hence by pushing forward
(X', D) X7 V; and its natural frame from PNm+tl 4o (]P’l X IP’l) x V; under p;, we obtain a
section V; = P X7+ V; of ¢ X/ V; which trivializes . Thus the proof is finished. O

The following proposition shows that ¢; = % is the first wall of the K-moduli stacks k..

Note that it is also proved by Fujita [27] independently using different methods.
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Proposition 5.3. Let C =4H, where H is a smooth (1,1)-curve on P! x P*. Let c € (0,%)
be a rational number. Then (Pl xPl,cC) is K-semistable (resp., K-polystable) if and
only if ¢ < % (resp. < %) Moreover, the K-polystable degeneration of (IP’l X]P’l,éC) 18
isomorphic to (]P(I,LQ),%CO), where Co = 4Hy and Hy is the section at infinity.

Proof. We first show that (P! x P!, 1C) is K-semistable where (P(1,1,2),£Cj) is its K-
polystable degeneration. Choose an embedding P! x P! < P3 as a smooth quadric surface.
Then H is a hyperplane section of P! x P!. Pick projective coordinates [zo,71,72,23]
of P3 such that the hyperplane section through H is given by z3 = 0. Then the 1-PS
o : G, — PGL(4) given by o(t)[xo,21,22,23] = [txo,tx1,txe,x3] provides a special test
configuration of (IP’l X Pl,%H ) whose central fiber is an ordinary quadric cone with a
section at infinity of coefficient % — that is, isomorphic to (P(l,l,Q),%HO). By [51] we
know that (]P’(l, 1,2), %HO) admits a conical K&hler—Einstein metric, hence is K-polystable.
The K-semistability of (P'xP! {C) follows from the openness of K-semistability
12, 15].

Next we show that (]P’1 X ]P’l,cC) is K-polystable for c € (0, %) Clearly, it is K-semistable
by interpolation [6, Proposition 2.13]. Let (X,cD) be its K-polystable degeneration. By
Theorem 5.2, we know that X = P! x P!, Since C =4H, we have D = 4H,, for some (1,1)-
curve Ho. If Hy is reducible, then (X,cD) is isomorphic to the self-product of (P*,c[0]).
Since (IP',c[0]) is K-unstable, we know that (X,cD) is also K-unstable by [78]. Thus Hy
must be irreducible, which implies that (JP’1 X Pl,cC’) 2 (X,cD) is K-polystable. Thus the

proof is finished. O
Remark 5.4. (1) The first K-moduli wall crossing at ¢; = § has the following
diagram:
S 2 N U
K;+€—>K; <—K;76=m,
8 8 (=3 8

where the composition ((bl_)fl ot :F%+€ — I is the Kirwan blowup of the
point [4H] in the GIT quotient 9. Across this wall, we replace the quadruple
(1,1) curve 4H on P! x P! with GIT polystable degree 8 curves on P(1,1,2)
which do not pass through the singular point [0,0,1]. This behavior is similar to
[6, Theorem 1.3].

(2) From Remarks 5.13 and 5.14, we will see that c; = £ is the second K-moduli wall.
Moreover, if a degree 8 curve D passes through the singular point of X =P(1,1,2),

then we see that for any ¢ < % the pair (X,cD) is K-unstable.

5.2. Computations on CM line bundles

The main goals of this section are to compute the CM line bundle of the log Fano family
from §3.3 and to show that over the complete intersection locus U, the CM Q-line bundle
is proportional to the VGIT line bundle.

Proposition 5.5. With the notation from §3.3, we have

~f. (Ko o) = 2)") = (2= 40)*(4c+4) (17+ QCBJCr 25) :
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Proof. By construction, we have
Opsxp(e)(Z) = p1Ops (2) @ p57* Ops (1)
02 (2) =p1O0ps(4)| 2r @050y (1)] 2
First note that Ko /p(p) = Ko — f*Kp(g), and by adjunction,
Ko = (Kepoxem) +2) | 5
= (P1O(=4) @p30 (Kp()) ®p1O(2) @ p3m* Ops (1)) | -
=09 (-2)@p30 (Kp(r))| 2w @37 Ops (1)| 2
So in particular we have
Ko pp) =02 (=2)® f*m"Ops (1).
Since 2 = O 4 (4) @ p50p(g)(1)| 2, we see that
On (—Kaojpp)y— ) = 02 (2—4¢) ® [ 7 Ops (1) @ f* Op(pgy (—c).
Let Hy denote an element of the class Oy (1) for Y = 2", P3 P(E), or P?. We compute
3
— fe (=Ko o) =)
=—f.((2—4c)Ha)? =3((2—4c)Ha )? - (¢f *Hp(p) + [*m* Hpo ) +
* * % 2 * * % 3
3((2—4C)Hgy-(cf Hyp(p) + "7 Hyo) )— (cf* Hyp) + f*" Hypo) )

= [ (240 (2| &) = 3(2—4c)*Hp - (2| &) - (cf " Hp(my + "7 Hpo)))

= —(2—4¢)>7* Hpo +6(2 — 4c)? (cH]p(E) +7T*H]P>9) .
Thus the proof is finished, since n = 7*Hps and £ = Hy. O

Proposition 5.6. Let fy : (2Zu,%v) — U be the restriction of f:(2,9) — P(E)
over U C P(E). We denote the CM Q-line bundle of fy with coefficient ¢ by
AU,c = AcM, fu,c2y - Denote by nu and &y the restriction of n and § to U. Then for
any c € [07%), we have

v = (2—4¢)?(de+ 4) <nU+ 203j 2&]). (5.1)
Proof. We take [ € Z~( sufficiently divisible such that £ := —I (K%/P(E) +c@) is a
Cartier divisor on %". From the foregoing computation, we see that £ ~; Ox(I(2 —
4c¢)), which implies that .£ is f-ample. Denote £y := 2| %, . Since both 2" and P(E)
are smooth projective varieties, for ¢ > 1 and using the Grothendieck—Riemann—Roch
theorem we have

3 2
1 (1 (£5) = 1.(29) = 1. (K ey 2) + 0L,
2

& ([ (L2005 (=) = T I (L) =5 £ (2-2°) = [ 1 (Ko oy £°) +O(0).

3
6 2
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Thus ¢ ((f]2)« (Z]57)) = %f* (2-£%) +0O(q). Since CM line bundles are functorial,
by similar arguments to [6, Proposition 2.23] we have

3
C1 (ACM:fU;C9U7$U) = _ZQf* ((_KW/P(E) - C@) ) ‘U
This implies equation (5.1) by Proposition 5.5. O

Proposition 5.7. The CM Q-line bundle Ay, and the VGIT polarization Ny are
proportional up to a positive constant when restricted to U where t = t(c) := 525

2c+2°
Proof. By Proposition 5.6, we see that Ay . is a positive multiple of ny + 20+2 (. B
Proposition 3.4,
—2t t—9
N, 1) ———p5 L
tl = 25191(77Jr v+ ( —29) p2Leclu
1‘”( o)+ (d4n0r +260)
1—925 nu U 2(1—20) nu U
=nu +tlu.

Hence for t = 26+27 we see that Ay . is a positive multiple of Ny|y. O

5.3. K-moduli wall crossings and VGIT
In this section we will prove Theorem 1.1(2) by an inductive argument on walls.
Theorem 5.8 (=Theorem 1.1(2)). Let c € (0,3) be a rational number Then there is

an isomorphism between Artin stacks K. = 4 (t(c)) with t(c) = . Moreover, such
isomorphisms commute with wall-crossing morphisms.

20+2

We first set up some notation. Recall that the open subset U C P(E) is defined to be
the locus parametrizing (X, D), where X is a quadric surface in P? and D is the complete
intersection of X with some quartic surface in P3. Let UX denote the open subset of
U parametrizing c-K-semistable log Fano pairs Let US'T := 27%5(N;) denote the VGIT
semlstable locus in & with slope t = t(c) = 2(‘ 75, which is also contained in U by Lemma

5. We say a point [(X,D)] € U is ¢-GIT-(poly/semi)stable if it is GIT-(poly/semi)stable
in @ with slope t(c). By Theorem 4.4, we know that there are finitely many walls in (0, %)
for K-moduli stacks K.. Denote the sequence of VGIT walls and K-moduli walls by

0=wy < w; <w2<---<wg:§.
That is, either ¢ = w; is a wall for K-moduli stacks K. or t = t(w;) is a wall for VGIT

moduli stacks . (t).
The following proposition allows us to replace K-moduli stacks /C. by a quotient stack
of UK. An essential ingredient is Theorem 4.8.

Proposition 5.9. There is an isomorphism of stacks [UX /PGL(4)] = K.. Moreover,
we have open immersions UX _— UK « Uﬁe which descend (via these isomorphisms)
to wall-crossing morphisms Ke_. < K¢ = Keye.
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Proof. Since UX parametrizes c-K-semistable log Fano pairs, by the universality of K-
moduli stacks we know that there exists a morphism ¢ : [UX¥/PGL(4)] — K.. In order
to show that 1 is an isomorphism, we will construct the inverse morphism =1 : K, —
[UX/PGL(4)]. We follow notation from Theorem 2.21. Let T'C Z:*® be the connected
component where a general point parametrizes P! x P'. By Definition 4.3 we know that
K. 2= [T/PGL(N,, +1)]. Let T’ = pr,(T') C Hilb, (IP’NT"'). By Theorems 2.21 and 4.8 we
know that 7" is smooth and contains a (possibly empty) smooth divisor H' parametrizing
P(1,1,2). Moreover, both 7"\ H' and H' are PGL(N,, + 1)-orbits in Hilb, (P").

In order to construct ¢!, we will first construct a PGL(4)-torsor P’/T". The argument
here is similar to that of [6, Proof of Theorem 5.15]. Let 7: (X, D) = T and «’: X’ — 1" be
the universal families. Since 7’ is an isotrivial P! x PL- fibration over 7"\ H', there exists
a flat quasi-finite morphism T — T’ from a smooth variety T that is étale away from
H'’ whose image intersects H’' (unless H' is empty). From the fact that 7"\ H' and H’
are PGL(N,, 4 1)-orbits, we know that there exists T} = g; - f, where g; € PGL(N,, + 1),
such that L; T/ — T is an fppf covering. Moreover, we may assume that ' x¢. (T/\ H}) :
Xppg — T\ H] is a trivial P! x PL-bundle for each 4, where H! = H' xp: T}. Let L}
be the Weil divisorial sheaf on X}, as the Zariski closure of O(1,1) on XT/Y\ - After

replacing T/ by its Zariski covering, we may assume that £, =2 Swxy /T/ By Kawamata—
Viehweg vanishing, we know that (Wép) L] is a rank 4 vector bundle over T!. Let P!/T!
be the PGL(4)-torsor induced by the projectivized basis of (TFT() L. Since the cocycle

condition of { (ﬂ'}_,) L/ ﬂ} (is off by +1, we know that {P;/T}} is an fppf descent datum
which descends to a PGL(43—torsor P'/T’, by [73, Tag 04U1]. It is clear that P’/T" is
PGL(N,, + 1)-equivariant. Denote P := P’ x7/ T. Hence the morphism P — UK given
by (t,[s0,51,52,53]) = [s0,51,52,53] (X, Dy) induces ¥~ : K. — [UX/PGL(4)]. The proof is
finished. N

In order to prove Theorem 5.8, we run an inductive argument on the walls w;. The
following proposition is an initial step for the induction:

Proposition 5.10. For any c € (0,w;), we have UX = USIT,

Proof. Since both UX and UST are independent of the choice of ¢ € (0,w;), it suffices to
show that they are equal for 0 < ¢ < 1. By Theorem 3.6(2), we know that [(X,D)] € USIT
if and only if X 2 P! x P! and D is a GIT semistable (4,4) curve. By Theorem 5.2 and
Proposition 5.9, we know that UX consists of exactly the same points as USIT. Hence
the proof is finished. O

Next, we divide each induction step into two statements, as Propositions 5.11 and 5.12

Proposition 5.11. Assume that for any c € (0,w;) we have UX = UCGIT. Then Uii, =
USIT,

Proof. For simplicity, denote w := w;. We first show that UX c USIT. Let [(X,D)] be
a point in UX. By Proposition 5.9, we know that [UK/PGL( )] =~ K. By Theorem 4.4,
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the K-moduli wall-crossing morphism K,_. — K, is surjective, induced by the open
immersion UX _ < UK. Hence there exist a w-K-polystable point [(Xo,Do)] € UK, a
(w — €)-K-semistable point [(X’,D")] € UX__, and two 1-PSs ¢ and ¢’ of SL(4), such that

w—e’

lim () [(X.D)] = [(Xo.Do)]. limo’(5)-[(X'.D)] = [(X0.D0)l.  (52)
In other words, (Xo,Dp) is the w-K-polystable degeneration of (X, D), and the existence
of (X’,D") follows from the surjectivity of K, _. — K.. Denote these two special test
configurations by (X,wD) and (X’,wD’), respectively. Since (Xo,wDp) is K-polystable,
we know that Fut(X’,wD’) = 0. Since the generalized Futaki invariant is proportional to
the GIT weight of the CM Q-line bundle Ay, ., which is again proportional to N¢(w)|u by
Proposition 5.7, we have that the GIT weight pNt ([(X’,D’)],0’) = 0. By assumption,
we have [(X',D")] e UX_ = USIT c UST. Hence Lemma 2.4(1) implies that [(Xo,Dy)] €
US'™, which implies [(X,D)] € US'™ by the openness of the GIT semistable locus. Thus
we have shown that UX c US!T.

Next we show the reverse containment USTT ¢ UX. Let [(X,D)] be a point in US!T.
By almost the same argument as the previous paragraph, except replacing K-stability
with GIT stability, we can find [(Xo,Do)] € US™T, [(X',D’)] € US'L, and two 1-PSs 0,0
of SL(4) such that equation (5.2) holds, and

pNee) ([(X,D)],0) = pNee) ([(X,D")],0") = 0.

Note that the surjectivity of wall-crossing morphisms in VGIT follows from [43] (see
Theorem 3.8). By assumption, we have [(X’,D’)] € USIT = UK _ c UK. Again using
Proposition 5.7, we get Fut(X',wD’; L) = 0, where (X’,wD’; L) is the test configuration
of (X',wD',0x:(1)) induced by ¢’. Since (X’,wD’) is K-semistable, by [49, Section 8.2]
we know that X’ is regular in codimension 1. Since X = X is Cohen—Macaulay, we
know that X’ is S3, which implies that X’ is normal. Hence Lemma 2.4(2) implies that
(Xo,wDyp) is K-semistable, and so is (X,wD) by the openness of K-semistability [12, 15].
The proof is finished. O

Proposition 5.12. Assume that for any c € (0,w;] we have UX = UST. Then UK = US'T
for any ¢ € (wi,wiy1).

Proof. For simplicity, denote w := w;. Since the K-semistable locus UX and the GIT
semistable locus UCC,}IT are independent of the choice of ¢’ € (w;,w;41), it suffices to show
that UK, . = USIT. We first show UL, C USIL. Assume to the contrary that [(X,D)] €
US, \US. We note that by Proposition 5.9 and Lemma 3.7, there are open immersions
US,.— UK and USIT — US'™. By assumption, we have [(X,D)] € UX, Cc US =US',
hence [(X,D)] is w-GIT semistable but (w + ¢€)-GIT unstable. Thus by Lemma 3.7 there
exists a 1-PS o : G,,, — SL(4) such that

PN (X.D)o) =0, pesa (X D)].o) <0. (5.3)

Denote (o := lim;_,o0(t) - [(X,D)] € &. Since [(X,D)] is w-GIT semistable, by Lemma
2.4(1) and equation (5.3) we know that (y is also w-GIT semistable; in particular, o =
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[(Xo0,D0)] € U. Denote by (X, wD; L)/A! the test configuration of (X, wD;Ox (1)) induced
by o. Hence by equation (5.3) and Proposition 5.7, we have Fut(X,(w + €)D) < 0. This
implies that (X, (w+e€)D) is K-unstable, which contradicts the assumption that [(X,D)] €
UK, .. Thus we conclude that UL, c UST.

Next, if [(X,D)] € UX, is (w+¢€)-K-polystable, then we claim that [(X,D)] is (w+€)-
GIT polystable. We have already shown that [(X,D)] is (w+ €)-GIT semistable. Let us
take a 1-PS ¢’ of SL(4) degenerating [(X,D)] to a (w+¢)-GIT polystable point [(X',D’)].
Hence we have piw+o ([(X,D)],0’) = 0. By Proposition 5.7, we have Fut(X’,(w +
e)D’; L) =0, where (X',(w+¢€)D’;L') is the test configuration of (X,(w+€)D;O0x (1))
induced by o’. Since [(X',D')] € USIT c US'™ = UX by assumption, we know that
(X', wD’) is K-semistable and hence klt. Thus (X, (w+€)D’) is a special test configuration
with vanishing generalized Futaki invariant. Since (X,(w+¢€)D is K-polystable, we know
that (X,D) = (X',D’), which implies that [(X,D)] and [(X’,D’)] belong to the same
SL(4)-orbit in U. Hence [(X,D)] is (w+¢€)-GIT polystable.

Finally we show that UX, = USIT. Consider the following commutative diagram:

Uf,. — [US,./PGL(4)] —— U%,./PGL(4)

[ [ J»

UGt —— [USE/PGL(4)] —— USLT JPGL(4).

Since f is an open immersion between smooth varieties, its descent g is separated and

~

representable. By Lemma 5.9 we know that [UX, . /PGL(4)] 2 Ky, and hence g maps
closed points to closed points as shown in the previous paragraph and h is quasi-finite.
Since the GIT quotients on the third column are isomorphic to the K-moduli space ?UH_E
and the VGIT moduli space M(t(w + €)), respectively, they are both proper. Thus h
is a finite morphism. Then we apply [3, Proposition 6.4] to conclude that g is a finite
morphism as well. In particular, this implies that f is finite, hence surjective. The proof
is finished. O

Proof of Theorem 5.8. By Propositions 5.10, 5.11, and 5.12 on induction of the walls
{w;}_y, we conclude that UX = U™ for any c € (0,3). Hence the theorem follows from
Proposition 5.9 and the definition . (t(c)) = [US™T /PGL(4)]. O

Proof of Theorem 1.1. Part (1) follows from Theorem 5.2. Part (2) is precisely
Theorem 5.8. O

Proof of Theorem 1.2. The first isomorphism follows from Theorem 1.1. The second
isomorphism follows from Theorem 3.8. For the proportionality statements, the first one
between the CM Q-line bundle and VGIT polarization follows from Proposition 5.7, and
the second one between VGIT polarization and the push-forward of A+ SA follows from
(43, Proposition 7.6]. O
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Proof of Theorem 1.3. Since there are finitely many K-moduli (resp., GIT) walls for
ce (O ) (resp te (0 )), we may assume that € and € satisfy the relation € = 3¢ _

/+2
that is, f—e —t(f—e) By Theorem 1.1, we have 93?(5 ) K

1oe The isomorphism
M(3—¢€)= Z follows from [43, Theorem 1.1].

For part (1), from these isomorphisms we know that 901 (1 —¢€’) parametrizes K-
polystable klt log Fano pairs (X , (% —¢ ) D). By the ACC of log canonical thresholds
[32], we know that (X ,%D) is log canonical. Hence taking a double cover of X branched
along D, we obtain a hyperelliptic K3 surface S with only slc singularities. The proof is
finished.

For part (2), notice that by taking fiberwise double covers of the universal log Fano
family over K 1 ¢ we obtain a universal family of slc K3 surfaces S — T, where T — K 1
is a po-gerbe. In partlcular the Hodge line bundle /\Hodge 7 of the K3 family /T is the

pullback of the Hodge line bundle Agoqge, 1 over Ki_ .. Taking good moduli spaces

—€°

of T—=T and K 1 K 1 gives an isomorphism T 5K 1 Since both spaces are

e
isomorphic to f we know that .# admits an open immersion into T whose complement
has codimension at least 2 In particular, we know that Axodge 7|7 = AHodge,.77, and the
conclusion follows from .#* = ProjR (F, Aiodge, & )- O

Remark 5.13. According to [43], the t-walls for VGIT quotients 2t(¢) and S-walls for
the Hassett—Keel-Looijenga program for # () = ProjR(.%#, A+ SA) with N = 18 (under

the transformation rule ¢t = ﬁ) are given by

pelll 315321 gelyt11111,
6'410°3 148’52 " 230568 J

By the transformation rule t = we obtain the c-walls for K-moduli stacks K.

2-‘,—27
cedlll2s 1411
854’7163 112

Note that ¢ = % corresponds to the log Calabi—Yau wall crossing F%_e — F*, while the
remaining walls are in the log Fano region.

Remark 5.14 (Compare [43, Section 6]). Let ¢ € {1,2,...,7} be an index. For the ith
K-moduli wall ¢;, we have K-moduli wall crossing morphisms

— - +

Ko o 20K, &Ko .
Denote by Zii the closed subset of K, . parametrizing pairs that are (c; +¢)-K-polystable
but not ¢;-K-polystable. As observed in [43, Section 6], we know that a general point
[(X,D)] in & (resp., &) parametrizes a curve D on X 2 P! x P! (resp., X 2 P(1,1,2)).
In Table 1, we rephrase results from [43], especially [43, Table 2], to describe the generic
singularities (in local analytic form) presented in the curves D. Note that a general curve

D in ¥ is smooth when i = 1, and singular only at the cone vertex v = [0,0,1] of P(1,1,2)
when 2 <3 <7.
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TABLE 1. Singularities along the K-moduli walls

i ¢ Sing. of D in X Sing. of D in ¥
1 % Quadruple conic vgD

2 1 Triple conic + transverse conic Ay

3 % Ji,00 22422yt =0 Aq

4 % J30: 23+ bi1x2y3 +1y° + oy’ =0 Az

5 % By 224+ +axy®=0 Ay

6 % Eiz: 2342y’ +ay® =0 As

7 % E12 : x3+y7+axy5 =0 A7

6. Some results for (d,d) curves

In this section we discuss some generalizations of our results to (d,d)-curves on P x P!,
including the proof of Theorem 1.4. We assume d > 3 throughout this section.

6.1. VGIT for (2,d) complete intersections in P?

Define P (g q) := P(H® (P! xP',0(d,d))). We say a (d,d)-curve C on P! x P! is
GIT-(poly/semi)stable if [C] is GIT-(poly/semi)stable with respect to the natural
Aut (IP’l ><]P’1)—action on (P(d,d)70(2))- We define the GIT moduli stack .#; and the
GIT moduli space MM, of degree (d,d) curves as

Mai= [Py /Aut (P xPY) |, M= P, [ Aut (P! < PY).

Next we describe the VGIT of (2,d) complete intersection curves in P? based on
[8, 16, 43]. Our setup is a direct generalization of §3.3. Let

m:P(Eq) = P(H? (P?,0(2))) =P°

be the projective space bundle with fiber P (H 9(Q,0q (d))) over a quadric surface [Q] €
PY. Set f:(2,2) — P(E4) the universal family of quadric surfaces with (2,d) intersections
over P(Ey). Denote 7 := 7*Ops (1) and £ := Op(g,)(1). Then we have the following result
of Benoist, where a special case of d =4 is stated in Proposition 3.1:

Proposition 6.1 ([8, Theorem 2.7]). Ift € Q, then the Q-Cartier class Ny :=n+t£ on

P(E,) is ample if and only if t € (Oaﬁ) nQ.

Let Uz,q) C P(Eq) be the complete intersection locus as an open subset. Then we
know that codimp(g,\P(E£y)\ UGz,q) > 2. There is a birational morphism chow : Uz 4) —
Chow o, 4y as a restriction of the Hilbert-Chow morphism. Hence the graph of chow gives
a locally closed embedding

U(de) — P(Ed) X ChOW(Zd) .

Denote by Z4 the closure of U, 4) in P(Eq) x Chow (s 4). Let p1 and ps be the first and
second projections from &2y to P(Eq) and Chow s, 4), respectively. The action of SL(4) on
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P3 extends naturally to actions on Uz,a), P(Eg), Chow (g 4, and &;4. Similar to §3.3, we
will specify a family of SL(4)- linearized ample Q-line bundles on Z;.
Fix a rational number 0 <d < 5. For t € ( ] NQ, consider the Q-line bundle

No=22 ;j;p (1+8€) + 5 —-Ph e
where LOo is the restriction of the natural polarization of the Chow variety to Chow sy 4).
Since 2 37 < d 7, Proposition 6.1 implies that 1+ 40§ is ample on P(Ey). It is clear that Lo,
is ample on Chow s 4). Hence Ny is ample for § <t < E and semiample for t = %.

Definition 6.2. Let § € Q satisfy 0 <J < 5. For each t € ( ,%) NQ, we define the VGIT
quotient stack .#4(t) and the VGIT quotlent space M4 () of slope ¢ to be

Mot = [PF(N) [PGLA)],  Ma(t) = Pa | y, SLA).

This definition a priori depends on the choice of § € ( '3 d) Nevertheless, similar to [43],
we will show in Theorem 6.6(1) that neither .#;(t) nor My(t) depends on the choice of
d, and hence they are well defined for all ¢ € (0,%). Before stating the main VGIT result
(Theorem 6.6), we need some preparation.

Lemma 6.3. With notation as before, we have Ni|u,, , :Nt|U(2$d) foranyte (5,%] nNQ.

Proof. Denote by Lo, the unique extension of Leo|Uy, 4 to P(Eq). By the same argument
as [43, Proposition 5.4], we get that L., = dn+2¢. Hence we have

2—dt t—0 —
Nt|U(2,d) 9_ d6(77+5§)|U(2 d) ml’oohj(zd)
2 —dt
2 d5(77+6€)|U(2 d) 2 d(s(dn+2§)|U(z d) (7]—1—756)‘[](2 dy*
The proof is finished. O

The following lemma is very useful (see [16, Propositions 4.6 and 6.2] and Lemma 3.5
for d =3,4):
Lemma 6.4. For eachte ( )OQ (resp te ( - 1) (@) the VGIT semistable locus
P55 (Ny) (resp., P(E;)® (Nt)) of slope t is a Zariski open subset of Ua q).
Proof. We first consider the VGIT semistable locus of P(Ey). Let ([Q],[s]) be a point
in P(Eg) \ Uz,q), where Q = (¢ = 0) is a nonnormal quadric surface in P3 and 0 # s €
H°(Q,0¢(d)). Let g € H° (IP3,0ps(d)) be a lifting of s. We choose suitable projective
coordinates [zg,71,%2,23] of P? such that one of the following holds:

(a) ¢ =xox1; g = xoh, where h € Clxy,...,x3]4—1; and z1 1 h; or

(b) g =a3; and g = xoh, where h € Clxo,...,r3]4_1; and xq 1 h.
Let o be the 1-PS in SL(4) of weights (—3,1,1,1) with respect to the chosen coordinates.
By [8, Proposition 2.15], for any t € (0,%] we have

N (([QL[s]),0) < plg,0) +tu(g,0) < —2+1t(d—4) < 0.
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Hence ([Q],[s]) is VGIT unstable of slope t by the Hilbert-Mumford numerical
criterion.

Next we consider the VGIT semistable locus of Z;. It is clear that any point z in
P\ Uz,aqy has the form z = (([Q],[s]),chow (%)), where ([Q],[s]) € P(Eq)\ Uz,q), € €
Hilb(z 4) \ U(2,4), and chow : Hilb(y 4y — Chow s 4 is the Hilbert-Chow morphism. We
choose [zg,...,x3] and o as before. Then

M(20) = 22BN (1L s1).0) + o (chow(%).0).

From the foregoing argument we get u™*(([Q],[s]),0) < 0. By [43, Propostion 5.8] we
know that ple (chow(%),0) < 0. Hence 1Nt(z,0) <0 for any t € (6, %) NQ, and the proof
is finished. O

Indeed, we have a stronger result on VGIT semistable loci (see [43, Lemma 6.8] for
d=4):

Lemma 6.5. For eachte (5,%) nQ (resp,, te ( T 1) ﬁ@) any VGIT semistable point
in P55(Ny) (resp., P(Eq)* (Ny)) of slope t has the form (|Q],[s]), where rank(Q) > 3.

Proof. Let z = ([Q],[s]) be a point in U 4y, where rank(Q) < 2. Hence by Lemma 6.4,
it suffices to show the instability of z in P(E,;) and £, respectively. We will assume
te (0, %) NQ throughout the proof. Choose a projective coordinate [z,...,x3] such that
Q = (¢ =0) is defined by q =23 or z¢z1. Let g € H° (IP’?’,OPs (d)) be a lifting of s. Let
o be the 1-PS in SL(4) of weights (—1, — 1,1,1) with respect to the chosen coordinates.
Then by [8, Proposition 2.15],

uN*(2,0) < p(g.0) +tp(g,0) < —2+1d < 0.

Hence z is N-unstable in P(Ey). It is clear that lim, 0 A\(r) - ([Q],[s]) = ([Q],[9(0,0,22,23)])
in P(Eq). Hence for general s, we see that lim, .o A(r) - ([@],[s]) belongs to U 4. In
particular, Lemma 6.3 implies that pu™Vt(z,0) = u™Nt(2,0) <0, so z is Ny-unstable in 2,
when s is general. Since the GIT unstable locus is closed, we conclude that z is Ng-unstable
for any choice of s. O

The following theorem is a generalization of [43, Theorem 5.6]:

Theorem 6.6. Let § be as before. The following hold:
(1) The VGIT semistable locus P25°(Ny) is independent of the choice of 6.
(2) Forte (5,d 1), we have My(t) = [P(Eq)* (N;) /PGL(4)] and My(t) =P(E,) [,
SL(4).
(3) Forte (6,2), we have Mq(t) = My and My(t) =M.

Proof. (1) Let 6 and ¢’ be two rational numbers in (0,2;). Denote G := SL(4). Denote
the corresponding polarization on &y by Ny and N;. Since both GIT semistable loci &,
with respect to Ny and N/ are contained in Ul2,4), where their restrictions are the same
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by Lemmas 6.3 and 6.4, [16, Lemma 4.17] implies that for m € N sufficiently divisible we
have

G o~
10 (20N 2 B (U N, ) =1 (Vaa NIET, ) & B (208

Since both &5°(N;) and &5 (N{) are unions of nonvanishing loci of G-invariant sections
in the first and last terms of this diagram, we know that they are equal. Hence &5°(NN;)
is independent of the choice of §.

(2) The proof is similar to that of (1), using Lemmas 6.3 and 6.4 and [16, Lemma 4.17].

(3) By (2) it suffices to show that [P(E4)™ (N;)/PGL(4)] = .#, for t € (O7 Z). By
Lemma 6.5, we know that any GIT semistable point z € P(Ey) with respect to N, has the
form z = ([Q],[s]), where rank(Q) > 3. We will show that under the assumption ¢ < 5 d, the
quadric surface @ must be smooth. Assume to the contrary that @ = (¢ = 0) is singular.
Then we may choose a projective coordinate [z, ...,x3] of P3 such that ¢ € C[xy,z2,73)2.
Let o be the 1-PS in SL(4) with weights (3, -1, —1,—1). Let g € H° (P?,Opz(d)) be a
lifting of s. Then by [8, Proposition 2.15] we have

N (2,0) < plg0) +tp(g,0) < —2+1-3d <0,

Hence z is N;-unstable on P(Eqy). Since o fixes @, we know that lim,_,oo(r)-z belongs to
U(z,q)- Hence Nt (z,0) = pNt (z,0) < 0, by Lemma 6.3, which implies that z is N;-unstable

on ;. The rest of the proof is similar to [16, Lemma 4.18]. O

Remark 6.7. When ¢t = %, we can define the VGIT quotient stack and space by
Ma(3) = [Chows o /PGLI)],  Ma(3) := Chows, g /SL(4).

As in [43], one can show that there are natural wall-crossing morphisms .Zy (7 —e) —
My (%) and N, (7 — e) — My ( ) for 0 < e < 1. We omit further discussion on the Chow
quotient, since it is not directly related to our K-moduli spaces when d # 4 (see, e.g.,
Remark 6.10).

6.2. Proofs

In this section we prove Theorem 1.4, starting with part (1).

Proof of Theorem 1.4(1). The proof is similar to that of Theorem 5.2. Consider
the universal family my : (P' X P* x P4 4),cC) — P(q4) over the parameter space of
(d,d)-curves on P! x PL. Tt is clear that C € |O(d,d,1)|. Hence by Proposition 2.17, we
know that the CM Q-line bundle Acw,r,,cc is equal to Op, (S(Zfdc)%), which is
ample for ¢ € (0,2). Hence the K-(poly/semi)stability of (P! xP',cC)) implies the GIT-
(poly/semi)stability of C. For the other direction, let (X,cD) be a K-semistable pair
parametrized by Kg,c, with ¢ € (0,55). By [51], for any point = € X we have

—~ 2
vol(z,X) > vol(a: X,cD) > ~(—Kx —cD)* = 3?(1 —dc)?

@\»-lk
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This implies that any = € X is smooth, hence X = P! x P'. The rest of the proof is exactly
the same as for Theorem 5.2. O
Remark 6.8. Similar to Proposition 5.3, we have that ¢; = ﬁ is the first K-moduli wall
for (d,d)-curves on P! x P!, which replaces (P! xP',dH) by (P(1,1,2),D) where H is a
smooth (1,1)-curve.

Next we prove part (2) of Theorem 1.4. Before starting the proof, we need some
preparation on CM line bundles as a generalization of Propositions 5.6 and 5.7:

Proposition 6.9. For simplicity, denote U := Uy qy. Let fu : (2u,%u) — U be the
restriction of f:(2,9) — P(Eq) over U C P(Ey). We denote the CM Q-line bundle
of fu with coefficient ¢ by Avu,c := AcM, fu,c@p - Then Au,e and Ni|y are proportional up

to a positive constant, where t =t(c) = d§i4 and c € (0,2).

Proof. By the same computations as in §5.2, we get Ay, = (2 — dc)?(dc+4) (n + dffrél f) ‘U
O

Proof of Theorem 1.4(2). We first fix some notation. Let UX be the open subset
of U = U(y,4) parametrizing c-K-semistable log Fano pairs. Let USIT .= P (N) be the
open subset of U parametrizing VGIT semistable points of slope t = t(c) = %izl' Similar
to Proposition 5.9, by Theorem 4.10 we know that [UX/PGL(4)] =Ky as long as c €

0, 4_2f . Hence it suffices to show UX = UST for c € (0, %).

We follow the strategy in the proof of Theorem 5.8 — that is, induction on the walls for
K-moduli and VGIT. It suffices to generalize Propositions 5.10, 5.11, and 5.12 to (2,d)
complete intersections under the assumption ¢ < 4’2;{/5. The generalization of Proposition
5.10 follows from Theorems 1.4(1) and 6.6(3). For Propositions 5.11 and 5.12, we can

generalize them using [UX/PGL(4)] = Kg,c, Proposition 6.9, and Theorem 4.4. O

Remark 6.10. If d # 4, then the isomorphism Fd,c >~ My(t) can fail for ¢ > 4_2;1/5. For
instance, it was observed in [65, Example 5.8] that P(1,2,9) appears in the K-moduli
space F& 1 We will further investigate the case d =3 in a forthcoming work. It would

also be interesting to consider more general divisors as well as other del Pezzo surfaces.

Remark 6.11. In a forthcoming work [7], we give a complete description of wall crossing
for K-moduli compactifications of (IF’3,CS ), where S C P? is a smooth degree 4 K3 surface.
As an application, we prove Laza and O’Grady’s conjecture [42, 44] on birational models
of moduli of degree 4 K3 surfaces. An essential ingredient is Theorem 1.1, which fully
describes the wall-crossing behavior for K-moduli spaces of hyperelliptic quartic K3
surfaces.
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