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Abstract

In recent years, pangenomes received increasing attention from the scientiĄc community for their

ability to incorporate population variation information and alleviate reference genome bias. Maximal

Exact Matches (MEMs) and Maximal Unique Matches (MUMs) have proven themselves to be useful

in multiple bioinformatic contexts, for example short-read alignment and multiple-genome alignment.

However, standard techniques using suffix trees and FM-indexes do not scale to a pangenomic level.

Recently, Gagie et al. [JACM 20] introduced the r-index that is a Burrows-Wheeler Transform

(BWT)-based index able to handle hundreds of human genomes. Later, Rossi et al. [JCB 22] enabled

the computation of MEMs using the r-index, and Boucher et al. [DCC 21] showed how to compute

them in a streaming fashion.

In this paper, we show how to augment Boucher et al.Šs approach to enable the computation

of MUMs on the r-index, while preserving the space and time bounds. We add additional O(r)

samples of the longest common preĄx (LCP) array, where r is the number of equal-letter runs of the

BWT, that permits the computation of the second longest match of the pattern suffix with respect

to the input text, which in turn allows the computation of candidate MUMs. We implemented a

proof-of-concept of our approach, that we call mum-phinder, and tested on real-world datasets. We

compared our approach with competing methods that are able to compute MUMs. We observe that

our method is up to 8 times smaller, while up to 19 times slower when the dataset is not highly

repetitive, while on highly repetitive data, our method is up to 6.5 times slower and uses up to 25

times less memory.
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1 Introduction

With the advent of third-generation sequencing, the quality of assembled genomes drastically

increased. In the last year the Telomere-to-Telomere project released the Ąrst complete

haploid human genome [19] and the Human Pangenome Reference Consortium (HPRC)

plans to release hundreds of high-quality assembled genomes to be used as a pangenome

reference. One important step to enable the use of these high-quality assembled genomes is

to build a multiple-sequence alignment of the genomes. Tools like MUMmer [13, 18], and

Mauve [5] proposed a solution to the original problem of multiple-sequence alignment by

using Maximal Unique Matches (MUMs) between two input sequences as prospective anchors

for an alignment. MUMs are long stretches of the genomes that are equal in both genomes

and occur only once in each of them. To reduce the computational costs of computing the

MUMs, progressive approaches have also been developed like progressive Mauve [6] and

progressive Cactus [1] that enables the construction of pangenome graphs, among others,

that have been used in recent aligners like Giraffe [21]. MUMs have also been proven useful

for strain level read quantiĄcation [23], and as a computationally efficient genomic distance

measure [7].

Recent advances in pangenomics [20, 3] demonstrated that it is possible to index hundreds

of Human Genomes and to query such an index to Ąnd supersets of MUMs that are maximal

exact matches (MEMs), which are substrings of the pattern that occur in the reference and

that cannot be extended neither on the left nor on the right. The tool called MONI [20]

requires two passes over the query sequence to report the MEMs. Later PHONI [3] showed

how to modify the query to compute the MEMs in a streaming fashion, with only one single

pass over the query string. Both MONI and PHONI are built on top of an r-index [11] and

a straight-line program SLP [9]. Their main objective is to compute the so called matching

statistics (see DeĄnition 3) of the pattern with respect to the text, that can be used to

compute the MEMs with a linear scan. While, MONI uses the SLP for random access to the

text, and needs to store additional information to compute the matching statistics and the

MEMs, PHONI uses the SLP to compute efficient longest common extension (LCE) queries

which allow to compute the matching statistics and the MEMs with only one scan of the

query.

We present mum-phinder, a tool that is able to compute MUMs of a query pattern

against an index on a commodity computer. The main observation of our approach is to

extend the deĄnition of matching statistics to include, for each suffix of the pattern, the

information of the length of the second longest match of the suffix in the text, which allows

to decide whether a MEM is also unique. We extended PHONI to keep track at each step of

the query, the second longest match of the pattern in the index, and its length. To do this,

we add O(r) samples of the longest common preĄx (LCP) array to PHONI.

We evaluated our algorithm on real-world datasets, and we tested mum-phinder against

MUMmer [18]. We measured time and memory required by both tools for sets of increasing

size of haplotypes of human chromosome 19 and SARS-CoV2 genomes and queried using one

haplotype of chromosome 19 and one SARS-CoV2 genome not present in the dataset. We

report that mum-phinder requires consistently less memory than MUMer for all experiments

being up to 25 times smaller. Although MUMer is generally faster than ours (18 times faster

for 1 haplotype of chromosome 19, and 6.5 times faster for 12,500 SARS-CoV2 genomes),

it cannot process longer sequences due to memory limitations. Additionally, we observe

that when increasing the number of sequences in the dataset, the construction time of

mum-phinder increases, while the query time decreases. This phenomenon is due to the
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increase in the number of matches in the search process, that prevents the use of more

computational-demanding operations. Note that, due to the use of the r-index, the efficiency

of our method increases when the dataset is highly repetitive as in the case of pangenomes.

2 Preliminaries

Let Σ = ¶a0 < a1 < . . . < aσ−1♢ be an ordered alphabet, where < represents the lexicograph-

ical order. A string (or text) T is a sequence of characters T [0]T [1] · · ·T [n − 1] such that

T [j] ∈ Σ for all j ∈ [0..n). The length of a string is denoted by ♣T ♣. We refer to the empty

string with ε, that is the only substring of length 0.

We denote a factor (or substring) of T as T [i..j) = T [i]T [i + 1] · · ·T [j − 1] if i < j, and

T [i..j) = ε otherwise. We refer to T [0..j) as the j − 1-th preĄx of T and to T [i..n) as the

i-th suffix of T .

We assume throughout the paper that the text T is terminated by termination character

$ that does not occur in the original text and it is lexicographically smaller than all the other

characters in the alphabet.

Suffix array, inverse suffix array, and longest common preĄx array

The Suffix array (SA) of a string T [0..n) is an array of length n such that T [SA[i]..n) <

T [SA[j]..n) for any 0 ≤ i < j < n. The Inverse Suffix array (ISA) is the inverse of

SA, i.e. ISA[i] = j if and only if SA[j] = i. Let lcp(u, v) be the length of the longest

common preĄx between two strings u and v, that is u[0..lcp(u, v)) = v[0..lcp(u, v)) but

u[lcp(u, v)] ̸= v[lcp(u, v)] (assuming lcp(u, v) < min¶♣u♣, ♣v♣♢). The Longest Common PreĄx

array (LCP) of T [0..n) is an array of length n such that LCP[0] = 0 and LCP[i] = lcp(T [SA[i−

1]..n), T [SA[i]..n)), for any 0 < i < n.

Burrows-Wheeler Transform, Run-Length Encoding, and r-index

The Burrows-Wheeler Transform (BWT) of T is a reversible transformation of the characters

of T [4]. That is the concatenation of the characters preceding the suffixes of T listed in

lexicographic order, i.e., for all 0 ≤ i < n, BWT[i] = T [SA[i]− 1 mod n]. The LF-mapping

is the function that maps every character in the BWT with its preceding text character, in

the BWT, i.e. LF(i) = ISA[SA[i]− 1 mod n].

The run-length encoding of a string T is the representation of maximal equal-letter runs

of T as pairs (c, ℓ), where c is the letter of the run and ℓ > 0 is the length of the run. For

example, the run length encoding of T = AAACAAGGGG is (A, 3)(C, 1)(A, 2)(G, 4). We

refer to the number of runs of the BWT with r.

The BWT tends to create long equal-letter runs on highly repetitive texts such as genomic

datasets. The run-length encoding applied to the BWT (in short RLBWT) is the basis of

many lossless data compressors and text indexes, such as the FM-index [8] which is the base

of widely used bioinformatics tools such as Bowtie [14] and BWA [15]. Although the BWT

can be stored and queried in compressed space [17], the number of samples of the SA required

by the index grows with the length of the uncompressed text. To overcome this issue Gagie

et al. [11] proposed the r-index whose number of SA samples grows with the number of runs

r of the BWT. The r-index is a text index composed by the run-length encoded BWT and

the SA sampled at run boundaries, i.e., in correspondence of the Ąrst and last character of a

run of the BWT, and it is able to retrieve the missing values of the SA by using a predecessor

data structure on the samples of the SA.

SEA 2022
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Grammar and straight-line program

A context-free grammar G = ¶V, Σ, R, S♢ consists in a set of variables V , a set of terminal

symbols Σ, a set of rules R of the type A 7→ α, where A ∈ V and α ∈ ¶V ∪ Σ♢∗, and the

start variable S ∈ V . The language of the grammar L(G) ⊆ Σ∗ is the set of all words over

the alphabet of terminal symbols generated after applying some rules in R starting from S.

When L(G) contains only one string T , that is G only generates T , then the grammar G is

called straight-line program (SLP).

Longest Common Extension, rank, and select queries

Given a text T [0..n), the longest common extension (LCE) query between two positions

0 ≤ i, j < n in T is the length of the longest common preĄx of T [i..n) and T [j..n). Thus, if

ℓ = LCE(i, j), then T [i..i + ℓ) = T [j..j + ℓ) and either T [i + ℓ] ̸= T [j + ℓ] or either i + ℓ = n

or j + ℓ = n.

Given a character c and an integer i, we deĄne T.rankc(i) as the number of occurrences

of the character c in the preĄx T [0..i), while we deĄne T.selectc(i) as the position p ∈ [0..n)

of the ith occurrence of c in T if it exists, and p = n otherwise.

3 Computing MUMs using MS

Given a text T [0..n) and a pattern P [0..m), we refer to any factor in P that also occurs in T

as a match. A match w in P can be deĄned as a pair (i, ℓ) such that w = P [i..i + ℓ). We say

that w is maximal if the match can not be extended neither on the left nor on the right, i.e.

either i = 0 or P [i− 1..i + ℓ) does not occur in T and either i = m− ℓ or P [i..i + ℓ + 1) does

not occur in T .

▶ DeĄnition 1. Given a text T and a pattern P , a Maximal Unique Match (MUM) is a

maximal match that occurs exactly once in T and P .

▶ Example 2. Let T = ACACTCTTACACCATATCATCAA$ be the text and P =

AACCTAA the pattern. The factor AA is maximal in P and occurs only once in T ,

while it is repeated in P at positions 0 and 5. The factor CT of P starting in position 3 is a

maximal match that occurs only once in P , but it is not unique in T . The factor CC of P

starting in position 2 is unique in both T and P , but both can be extended on the left with

an A. On the other hand, the factor P [1..4) = T [10..13) =ACC is a MUM.

From now on, we refer to the set of all maximal unique matches between T and P as

MUMs. In [3] the authors showed how to compute maximal matches (not necessarily unique

neither in T nor P ) in O(r + g) space, where r is the number of runs of the BWT of T and g

is the size of the SLP representing the text T . This is achieved by computing the matching

statistics, for which we report the deĄnition given in [3].

▶ DeĄnition 3 ([3]). The matching statistics MS of a pattern P [0..m) with respect to a text

T [0..n) is an array of (position, length)-pairs MS[0..m) such that

P [i..i + MS[i].len) = T [MS[i].pos..MS[i].pos + MS[i].len);

either i = m−MS[i].len or P [i..i + MS[i].len + 1) does not occur in T .

That is, MS[i].pos is the starting position in T of an occurrence of the longest preĄx of P [i..m)

that occurs in T , and MS[i].len is its length.

A known property of the matching statistics is that for all i > 0, MS[i].len ≥ MS[i −

1].len− 1.
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Our objective is to show how to further compute MUMs within the same space bound.

For our purpose, we extend the deĄnition of MS array with an additional information Ąeld

to each entry.

▶ DeĄnition 4. Given a text T = [0 . . . n) and a pattern P = [0 . . . m), we deĄne the extended

matching statistics eMS as an array of (pos, len, slen)-tuples eMS[0 . . . m) such that

eMS[i].pos = MS[i].pos and eMS[i].len = MS[i].len;

eMS[i].slen is the largest value ℓ for which there exists p ̸= eMS[i].pos such that P [i..i+ℓ) =

T [p..p + ℓ).

In other words, eMS[i].slen is the length of the second longest match of a preĄx P [i..n) in T .

Note that eMS[i].slen ≤ eMS[i].len, for any i ∈ [0..m).

3.1 Checking Maximality and Uniqueness of matches

We now show how to compute MUMs by using the eMS array. Lemma 5 shows how to verify

if a match occurs only once in T .

▶ Lemma 5. Given a text T , a pattern P , and the eMS array computed for P with respect to

T , let w = P [i..i + eMS[i].len) = T [eMS[i].pos..eMS[i].pos + eMS[i].len) be a maximal match

between a pattern P [0..m) and a text T [0..n)$. Then w occurs exactly once in T if and only

if eMS[i].slen < eMS[i].len.

Proof. For the if direction, we assume by contradiction that w is unique in T and

that eMS[i].slen ≥ eMS[i].len. By deĄnition, eMS[i].slen ≤ eMS[i].len, hence we assume

eMS[i].slen = eMS[i].len. By deĄnition of eMS[i].slen there exists p ̸= eMS[i].pos such that

w = P [i..i + eMS[i].slen) = T [p..p + eMS[i].slen) = T [eMS[i].pos..eMS[i].pos + eMS[i].len),

that contradicts the assumption that w occurs only once in the text T . Analogously, as-

sume that eMS[i].slen < eMS[i].len and that there exists a position j ̸= eMS[i].pos such that

T [j..j +eMS[i].len) = T [eMS[i].pos..eMS[i].pos+eMS[i].len). However, this is in contradiction

with the deĄnition of eMS[i].slen and the assumption of eMS[i].slen < eMS[i].len, concluding

the proof. ◀

We check the maximality of a match in the pattern using an analogous approach as

in [20], that we summarize with the following lemma.

▶ Lemma 6. Given a text T , a pattern P , and the eMS array computed for P with respect

to T , let w = P [i..i + eMS[i].len) be a match with a text T . Then w is a maximal match if

and only if either i = 0 or eMS[i− 1].len ≤ eMS[i].len.

Proof. First we show that if w = P [i..i + eMS[i].len) is a maximal match then either

i = 0 or eMS[i − 1].len ≤ eMS[i].len. Let us assume that w is not maximal and either

i = 0 or eMS[i − 1].len ≤ eMS[i].len, hence either P [i..i + eMS[i].len + 1) occurs in T or

P [i− 1..i + eMS[i].len) occurs in T . The former case is in contradiction with the deĄnition

of eMS, hence P [i − 1..i + eMS[i].len) occurs in T . This implies that i > 0 and that

eMS[i − 1].len = eMS[i].len + 1 in contradiction with the hypothesis that eMS[i − 1].len ≤

eMS[i].len.

Now we show that if either i = 0 or eMS[i−1].len ≤ eMS[i].len then w is a maximal match.

By deĄnition of eMS[i].len, we know that either i + eMS[i].len = m or P [i..i + eMS[i].len + 1)

does not occur in T$, that is w cannot be extended on the right in P . If i = 0 we can not

further extend the match w on the left, hence w is maximal. If i > 0, then by deĄnition of

matching statistics it holds that eMS[i− 1].len ≤ eMS[i].len + 1. Note that if there exists a
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character a ∈ Σ such that P [i − 1..i − 1 + eMS[i − 1].len) = aw and aw occurs in T , then

eMS[i− 1] = eMS[i] + 1. Hence if eMS[i− 1] = eMS[i] + 1 then it is easy to see that w is not

maximal because it can be extended on the left. It also follows that if eMS[i− 1] ≤ eMS[i]

then w cannot be extended on the left, hence it is maximal and the thesis follows. ◀

Let L ⊆ [0..m) be the subset of positions in P such that both Lemma 5 and Lemma 6

hold, i.e. L contains all the positions in P where a maximal match unique in T starts. One

can notice that if a match wi = P [i..i + eMS[i].len) is a MUM, then i ∈ L.

We Ąrst show that given i ∈ L, if a match wi is not unique in P , then the second

occurrence of wi in P is contained in another maximal match unique in T .

▶ Lemma 7. Given a text T , a pattern P , and the eMS array computed for P with respect

to T , let L be the subset of positions in P such that wi = P [i..i + eMS[i].len) is maximal and

occurs only once in T for all i ∈ L. Then, wi is not unique in P if and only if there exist

i′ ∈ L \ ¶i♢ and two possibly empty strings u, v such that wi′ = uwiv is a factor of P .

Proof. Let us assume by contradiction that such i′ does not exist, then let j /∈ L be such

that P [j..j + ♣wi♣) = wi. Since j /∈ L then either P [j..j + ♣wi♣) is not unique in T , or it is not

maximal. The former case it contradicts i ∈ L because P [j..j + ♣wi♣) = wi occurs twice in

T . Hence, P [j..j + ♣wi♣) occurs only once in T and it is not maximal, therefore there exists

k ∈ L such that k ≤ j and ♣wk♣ > ♣wi♣ which contradict the hypothesis. The other direction

of the proof is straightforward since by deĄnition of wi′ , either wi occurs twice in P or it is

not maximal. ◀

The following Lemma shows, for any i ∈ L, if a match wi is unique in P by using the

eMS array.

▶ Lemma 8. Given a text T , a pattern P , and the eMS array computed for P with respect to T ,

let L be the subset of positions in P such that wi = P [i..i + eMS[i].len) is maximal and occurs

only once in T , for all i ∈ L. Then, wi occurs only once in P if and only if, for all i′ ∈ L\¶i♢,

either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos.

Proof. We Ąrst show that if wi occurs only once in P then for all i′ ∈ L \ ¶i♢, either

eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos. Since L

contains only positions of maximal matches unique in T , then for all for i ∈ L we can map wi to

its occurrence in the text T [eMS[i].pos..eMS[i].pos + eMS[i].len). Since wi occurs only once in

T , by Lemma 7 we have that eMS[i′].pos = eMS[i].pos−♣u♣ and eMS[i′].len = eMS[i].len+♣u♣+

♣v♣. Hence, eMS[i′].pos ≤ eMS[i].pos and eMS[i].pos + eMS[i].len ≤ eMS[i′].pos + eMS[i′].len.

We now show the other direction of the implication. If given a position i ∈ L for all i′ ∈

L\ ¶i♢, either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos

then wi occurs only once in P . Assuming by contradiction that there exists a position i ∈ L

such that for all i′ ∈ L \ ¶i♢, either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos >

eMS[i′].len + eMS[i′].pos and wi does not occur only once in P , then by LemmaŚ7 there

exist j ∈ L and two possibly empty strings u, v such that wj = uwiv is a factor of P . It

is easy to see that eMS[j].pos = eMS[i].pos − ♣u♣ and eMS[j].len = eMS[i].len + ♣u♣ + ♣v♣.

Hence, eMS[j].pos ≤ eMS[i].pos and eMS[i].pos + eMS[i].len ≤ eMS[j].pos + eMS[j].len, in

contradiction with the hypothesis, concluding the proof. ◀

We can summarize the previous Lemmas in the following Theorem.

▶ Theorem 9. Given a text T , a pattern P , and the eMS array computed for P with respect

to T , for all 0 ≤ i < m, wi = P [i..i + eMS[i].len) is a MUM if and only if i ∈ L and Lemma 8

holds.
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▶ Example 10. Let T = ACACTCTTACACCATATCATCAA$ be the text and P =

AACCTAA the pattern. In the table below we report the values of the eMS of P with respect

to T .

i 0 1 2 3 4 5 6

P [i] A A C C T A A

eMS[i].pos 21 10 11 5 6 21 8

eMS[i].len 2 3 2 2 2 2 1

eMS[i].slen 1 2 1 2 2 1 1

It is easy to check that L = ¶0, 1, 5♢, where L contains those indices i which verify both

Lemma 5 (eMS[i].slen < eMS[i].len) and Lemma 6 (either i = 0 or eMS[i−1].len ≤ eMS[i].len).

Note that eMS[0].pos = eMS[5].pos and eMS[0].len = eMS[5].len, and by Lemma 8 we know

that P [0..2)(= P [5..7)) is repeated in P . Since eMS[1].pos < eMS[0].pos = eMS[5].pos, by

Theorem 9 the match P [1..4) = T [10..13) = ACC is a MUM.

3.2 Computing the second longest match

Now we show how we can compute eMS extending the algorithm presented in Boucher et

al. [3] while preserving the same space-bound.

We can apply verbatim the algorithm of [3] to compute the eMS[i].pos and eMS[i].len

while we extend the algorithm to include the computation of eMS[i].slen. The following

Lemma shows how to Ąnd the second longest match using the LCP array.

▶ Lemma 11. Given a text T , a pattern P , and the eMS array of P with respect to T , let

P [i..i + eMS[i].len) = T [eMS[i].pos..eMS[i].pos + eMS[i].len) and q = ISA[eMS[i].pos]. Then,

for all 0 ≤ q < n, eMS[i].slen = max¶LCP[q], LCP[q + 1]♢, where LCP[n] = 0.

Proof. Let us consider the set T = ¶w0 < w1 < . . . < wn♢ of the lexicographically sorted

suffixes of T . Then, for all i ∈ [0..m), at least one suffix of T starting with the second longest

match P [i..i + eMS[i].slen) must be adjacent to wq = T [eMS[i].pos..n) in T . Hence, assuming

q ≠ 0 and q ̸= n, eMS[i].slen is either the LCP value between wq−1 and wq or between wq

and wq+1, that are respectively LCP[q] and LCP[q + 1]. Note that if q = 0 then both LCP[0]

and LCP[1] exist, while for the case q = n only LCP[n] is available, that is eMS[i].slen must

be LCP[n]. ◀

4 Algorithm description

In this section we present the algorithm that we use to compute MUMs that builds on the

approach of Boucher et al. [3] for the computation of the MS array. The authors showed

how to use the r-index and the SLP of [10, 9] to compute the MS array of a pattern P [0..m)

in O(m · (tLF + tLCE + tpred)) time, where tLF, tLCE, and tpred represent the time to perform

respectively one LF, one LCE, and one predecessor query. Our algorithm extends Boucher et

al.Šs method by storing additional O(r) samples of the LCP array. Given a text T [0..n) and

a pattern P [0..m), in the following, we Ąrst show how to compute the eMS array of P with

respect to T using the r-index, the SLP, and the additional LCP array samples. Then we

show how to apply Theorem 9 to compute the MUMs from the eMS array.
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4.1 Computing the eMS array

The key point of the algorithm is to extend the last computed match backwards when possible,

otherwise we search for the new longest match that can be extended on the left by using the

BWT. Let q be the index such that P [i..i + eMS[i].len) = T [SA[q]..SA[q] + eMS[i].len) is the

longest match found at step i:

if BWT[q] = P [i− 1], then it can be extended on the left, i.e. P [i− 1..i + eMS[i].len) =

T [SA[q]− 1..SA[q] + eMS[i].len);

otherwise, we want to Ąnd the longest preĄx of P [i..i + eMS[i].len) that is preceded

by P [i − 1] in the text T . As observed in Bannai et al. [2] it can be either the suffix

corresponding to the occurrence of P [i − 1] in the BWT immediately preceding or

immediately following q, that we refer to as qp and qs respectively. Formally, qp =

max¶j < q ♣ BWT[j] = P [i− 1]♢ and qs = min¶j > q ♣ BWT[j] = P [i− 1]♢.

The algorithm to compute the pos and len entry of the eMS array is analogous to the

procedure detailed in [3]. We use the same data structures as the one deĄned in [3], that are

the run-length encoded BWT and the samples of the SA in correspondence of positions q

such that BWT[q] is either the Ąrst or the last symbol of an equal-letter run of the BWT.

Note that both qp and qs are respectively the last and the Ąrst index of their corresponding

equal-letter run.

An analogous reasoning can be formulated to compute the second longest match.

▶ Lemma 12. Given a text T [0..n), let LCP, SA and ISA be respectively the longest common

preĄx array, suffix array and inverse suffix array of T . Then, for all 0 < q ≤ n, let i, j be two

integers such that q − 1 = LF[i] and q = LF[j], then if BWT[i] ̸= BWT[j] then LCP[q] = 0,

otherwise LCP[q] = LCE(SA[i], SA[j]) + 1.

Proof. Let wq be the q-th suffix in lexicographic order. Note that if wq = $ then LCP[q] =

LCP[q + 1] = 0. For all 1 ≤ q < n, if wq−1 = au$ and wq = bv$ for some a < b ∈ Σ and

some strings u and v, then LCP[q] = 0. On the other hand, if wq−1 = au$ and wq = av$,

then LCP[q] = 1 + lcp(u$, v$). The thesis follows by observing that the suffixes u$ and v$

respectively correspond to wi and wj . ◀

Note that, the second longest match can be retrieved from the LCP values in corres-

pondence of the longest maximal match (Lemma 11). Once we have the maximal match

in position q in the BWT, we can compute LCP[q] and LCP[q + 1] from the LCE queries on

T [SA[q]..n) with T [SA[qp]..n) and T [SA[qs]..n) (Lemma 12).

Moreover, assuming the index qp is the greatest index smaller than q such that BWT[qp] =

BWT[q], then LF(qp) = LF(q) − 1. It follows that if BWT[LF(qp)] = BWT[LF(q) − 1] =

BWT[LF(q)], then LCP[LF(q)]) is an extension of the LCE query computed between SA[qp]

and SA[q] (see Figure 1). Symmetrically, if qs is the smallest index greater than q such that

BWT[qs] = BWT[q], then LF(qs) = LF(q) + 1. Thus, at each iteration, we keep track of both

LCP values computed to Ąnd the second longest match.

With respect to the implementation in [3], we add O(r) sampled values from the LCP

array. Precisely, we store the LCP values between the Ąrst and the last two suffixes in

correspondence of each equal-letter run (if only one suffix corresponds to a run we simply

store 0). As shown later, this allows to overcome the problem of computing the LCE queries

in case a position p in T is not stored in the sampled SA, i.e. when ISA[p] is neither the Ąrst

nor the last index of its equal-letter run.

For simplicity of exposition we ignore the cases when a select query of a symbol c in

the BWT fails. However, whenever it happens, either c does not occur in T or we are

attempting to Ąnd an occurrence out of the allowed range, that is between 0 and the number
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F BWT

LCE(SA[q],SA[qp])

q

qp

LF(qp )
LF(q )

LCP[LF(q)]

Figure 1 Application of Lemma 12 to compute LCP[LF(q)] by extending the result of the last

LCE query.

of occurrences of the character c minus 1. For the Ąrst case we can simply reset the algorithm

starting from the next character of P to process, while the second occurs when we are

attempting to compute an LCE query, whose result can be safely set to 0.

Algorithm 1 computes the extended matching statistics eMS of the pattern P = [0 . . . m)

with respect to the text T = [0 . . . n) starting from the last element of the pattern (line 2).

Moreover, we keep track of the Ąrst LCP values with respect to the maximal match of length 1

(line 3).

At each iteration of the loop (line 5), the algorithm tries to extend the match backwards

position by position. If the match can be extended (line 7), then we use Algorithm 2 to

compute the entry of the eMS. Otherwise, we use Algorithm 3 to compute the next entry of

eMS (line 9).

Match case

Suppose eMS[i + 1 . . . m) has already been processed and that P [i] = T [eMS[i + 1].pos− 1],

namely we can further extend the longest match at the previous step by one position to the

left. Algorithm 2 handles such scenario.

Let q be such that SA[q] = eMS[i + 1].pos − 1. Hence, we have that eMS[i].pos =

eMS[i + 1].pos− 1 and eMS[i].len = eMS[i + 1].len + 1 (line 1). At this point, we search for

the greatest index qp among those smaller than q such that BWT[qp] = P [i]. As discussed

before, when qp = q− 1, then LCP[LF(q)] = LCP[q] + 1 = lcpp + 1 (line 3). Otherwise we can

compute the LCE query between SA[q] and SA[qp], to which we add 1 for the match with

P [i] in correspondence of BWT[q] and BWT[qp] (line 6). Note that SA[q] = eMS[i + 1].pos,

while qp is the last index of its equal-letter run (and therefore SA[qp] is stored).

Analogously we compute lcps (lines 7-10) and, by Lemmas 11 and 12, we assign to

eMS[i].slen the maximum between lcpp and lcps.
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Algorithm 1 Computation of eMS.

Input : Pattern P [0, m)

Output : Extended matching statistics eMS[0..m)

1 q ← BWT.selectP [m−1](1)

2 eMS[m− 1]← (pos : SA[q]− 1, len : 1, slen : 1)

3 lcpp ← 0, lcps ← 1

4 q ← LF(q)

5 for i← m− 2 down to 0 do

6 if BWT[q] = P [i] then

7 eMS[i], lcpp, lcps ← MSMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].pos, lcpp, lcps)

8 else

9 eMS[i], lcpp, lcps ←

MSMisMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].pos, lcpp, lcps)

10 q ← LF(q)

11 return eMS

Mismatch case

We use Algorithm 3 when q is such that BWT[q] ̸= P [i]. We search for the index q′ in SA

such that, among the suffixes of T preceded by P [i], at position SA[q′] in T starts the longest

match with a preĄx of P [i + 1..m). Note that T [SA[q′]− 1] = P [i], and that q′ is either qp

or qs.

Hence, if qp = q − 1, then by Lemma 12 the longest common preĄx of T [SA[q′]..n) and

P [i + 1..m) has length lcp′

p = lcpp computed at the previous step (line 5), otherwise we

compute and store the LCE between T [q..n) and T [qp..n) (line 7). A symmetric procedure is

used to compute lcp′

s (lines 8-11).

Without loss of generality, we assume that lcp′

s ≥ lcp′

p, hence eMS[i].pos = SA[qs] − 1.

Then eMS[i].len = lcp′

s+1 and lcpp = lcp′

p+1 (line 13). We add 1 to both lcp′

s and lcp′

p because

both matches can be extended by one position on the left since P [i] = BWT[qp] = BWT[qs].

In order to compute eMS[i].slen we need to compute the value of lcps with respect to qs. To

do so, we look for the smallest index q′

s greater than qs such that BWT[q′

s] = P [i], and then

apply a similar procedure to Algorithm 2 (lines 14-18). In this case, if BWT[qs + 1] = P [i],

then we can retrieve lcps from LCP[qs + 1] since qs is in correspondence of a run boundary.

Symmetrically we handle the case lcp′

p > lcp′

s (lines 20-26). Finally, we compute eMS[i].slen

by picking the maximum between lcpp and lcps.

▶ Theorem 13. Given a text T [0..n), we can build a data structure in O(r + g) space that

allows to compute the set MUMs between any pattern P [0..m) and T in O(m·(tLF+tLCE+tpred))

time.

Proof. Algorithm 1, Algorithm 2 and Algorithm 3 show how to compute the eMS array

in m steps by using the data structure used in [3] of size O(r + g), to which we add O(r)

words from the LCP array, preserving the space bound. Since at each step the dominant cost

depends on the LF, LCE, and rank/select queries, eMS is computed in O(m(tLF + tLCE + tpred))

time. By Lemmas 5 and 6, we can build the set L in O(m) steps from the eMS array. Recall

that L contains those indices i ∈ [0..m) such that P [i..i + eMS[i].len) is a maximal match

that occurs only once in T .
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Algorithm 2 MSMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].len, lcpp, lcps).

1 pos← eMS[i + 1].pos− 1, len← eMS[i + 1].len + 1

2 c← BWT.rankP [i](q)

3 if BWT[q − 1] = P [i] then
lcpp ← lcpp + 1

4 else

5 qp ← BWT.selectP [i](c)

6 lcpp ← min(lcpp, LCE(eMS[i + 1].pos, SA[qp])) + 1

7 if BWT[q + 1] = P [i] then
lcps ← lcps + 1

8 else

9 qs ← BWT.selectP [i](c + 2)

10 lcps ← min(lcps, LCE(eMS[i + 1].pos, SA[qs])) + 1

11 slen← max(lcpp, lcps)

12 return (pos, len, slen), lcpp, lcps

Now we have to search those indices in L that are also unique in P . A simple algorithm is

to build both the LCP and ISA array of P , and then check for each i ∈ L if both LCP[ISA[i]]

and LCP[ISA[i] + 1] (or only LCP[ISA[i]] if ISA[i] = m) are smaller than eMS[i].len, i.e. the

same property that we use to check the uniqueness in T . Both structures can be build

in O(m) time. The overall time is O(m(tLF + tLCE + tpred) + m + m), which collapses to

O(m(tLF + tLCE + tpred)). ◀

Note that both g and tLCE depends on the grammar scheme chosen. In fact, if exists a

data structure of size λ that supports LCE queries on a text T , then we can still compute

MUMs in O(r + λ) space and O(m · (tLF + tLCE + tpred)) time, with tLCE that depends on the

data structure used.

4.2 Computing MUMs from eMS

Here we present a different approach to compute the MUMs from the eMS from the one in

Theorem 13, that is of more practical use, and that does not require sorting the suffixes of P .

We summarize this approach in Algorithm 4.

Let L be the set of indexes i ∈ [0..m) such that P [i..eMS[i].len) =

T [eMS[i].pos..eMS[i].pos + eMS[i].len) is a maximal and unique match in T . By Lemmas

5 and 6, we can check in constant time if an index i belongs to L. Note that building L

(lines 3-4) can be also executed in streaming while computing the eMS array (for simplicity

of exposition of the algorithms we have separated the procedures). Observe that a match

P [i..i + eMS[i].len) such that i ∈ L is a MUM if and only if it is not fully contained into

another candidate, i.e. it does not exist j ∈ L \ ¶i♢ such that (i) eMS[j].pos ≤ eMS[i].pos

and (ii) eMS[i].pos + eMS[i].len ≤ eMS[j].pos + eMS[j].len (Theorem 9). Hence, we sort

the elements in L with respect to the position in T , and starting from L[0], we compare

every entry with the following and if both factors are not contained into the other, we store

in the set MUMs the one with the smallest starting position and keep track of the other

one, otherwise we simply discard the one that is repeated and continue with the following

iteration.
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Algorithm 3 MSMismatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].len, lcpp, lcps).

1 c← BWT.rankP [i](q)

2 qp ← BWT.selectP [i](c)

3 qs ← BWT.selectP [i](c + 1)

4 if qp = q − 1 then

5 lcp′

p ← lcpp

6 else

7 lcp′

p ← min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[qp]))

8 if qs = q + 1 then

9 lcp′

s ← lcps

10 else

11 lcp′

s ← min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[qs]))

12 if lcp′

p ≤ lcp′

s then

13 pos← SA[qs]− 1, len← lcp′

s + 1, lcpp ← lcp′

p + 1

14 q′

s ← BWT.selectP [i](c + 2)

15 if q′

s = qs + 1 then

16 lcps ← min(len, LCP[qs + 1] + 1)

17 else

18 lcps ← min(len, LCE(SA[qs], SA[q′

s]) + 1)

19 q ← qs

20 else

21 pos← SA[qp]− 1, len← lcpp, lcps ← lcp′

s + 1

22 q′

p ← BWT.selectP [i](c− 1)

23 if q′

p = qp − 1 then

24 lcpp ← min(len, LCP[qp] + 1)

25 else

26 lcpp ← min(len, LCE(SA[qp], SA[q′

p]) + 1)

27 q ← qp

28 slen← max(lcpp, lcps)

29 return (pos, len, slen), lcpp, lcps

To handle the special case when two candidates i ≠ j ∈ L are such that

T [eMS[i].pos..eMS[i].pos + eMS[i].len) = T [eMS[j].pos..eMS[j].pos + eMS[j].len), we further

keep track whether the current maximal match is unique. This Ąnal procedure, excluding

the building time for L that is done in streaming, takes O(♣L♣ log ♣L♣) time, since the sorting

of the indexes in L dominates the overall cost.

5 Experimental results

We implemented our algorithm for computing MUMs and measured its performances on real

biological datasets. We performed the experiments on a desktop computer equipped with

3.4 GHz Intel Core i7-6700 CPU, 8 MiB L3 cache. and 16 GiB of DDR4 main memory. The

machine had no other signiĄcant CPU tasks running, and only a single thread of execution

was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs were

compiled using gcc version 8.1.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. We

recorded the runtime and memory usage using the wall clock time, CPU time, and maximum

resident set size from /usr/bin/time.
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Algorithm 4 retrieveMUMs(eMS).

Input : Extended Matching Statistics eMS[0, m)

Output : MUMs

1 L, MUMs← ∅

2 for i← 0 to m− 1 do

3 if (i = 0 or MS[i− 1].len ≤ MS[i].len) and MS[i].len > MS[i].slen then

4 L.add(i)

5 sortByPosition (L)

6 (p, ℓ)← (eMS[L[0]].pos, eMS[L[0]].len)

7 unique← true

8 for i← 1 to ♣L♣ − 1 do

9 (p′, ℓ′)← (eMS[L[i]].pos, eMS[L[i]].len)

10 if p = p′ then

11 if ℓ = ℓ′ then

12 unique← false

13 else if ℓ < ℓ′ then

14 ℓ← ℓ′

15 unique← true

16 else if ℓ < ℓ′ + (p′ − p) then

17 if unique then

18 MUMs.add((p, ℓ))

19 (p, ℓ)← (p′, ℓ′)

20 unique← true

21 if unique then

22 MUMs.add((p, ℓ))

23 return MUMs

Setup

We compare our method (mum-phinder) with MUMmer [18] (mummer). We tested two

versions of mummer, v3.27 [13] (mummer3) and v4.0 [18] (mummer4). We executed mummer with

the -mum Ćag to compute MUMs that are unique in both the text and the pattern, -l 1

to report all MUMs of length at least 1, and -n to match only A,C,G,and T characters.

We setup mum-phinder to produce the same output as mummer. We did not test against

Mauve [6] because the tool does not directly reports MUMs. We also did not consider

algorithms that does not produces an index for the text that can be queried with different

patterns without reconstructing the index, e.g. the algorithm described in Mäkinen et al. [16,

Section 11.1.2]. The experiments that exceeded exceeded 16 GB of memory were omitted

from further consideration.

Datasets

We evaluated our method using real-world datasets. We build our index for up to 512

haplotypes of human chromosome 19 from the 1000 Genomes Project [22] and up to 300,000

SARS-CoV2 genomes from EBIŠs COVID data portal [12]. We provide a complete list of
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Table 1 Dataset used in the experiments. For each collection of datasets of the human chromosome

19 (chr19) dataset in Table 1a and for the SARSCoV2 (sars-cov2) dataset in Table 1b, we report

the number of sequences (No. seqs), the length n in Megabytes (MB), and the ratio n/r, where r is

the number of runs of the BWT for each number of sequences in a collection.

(a) Collections of chromosome 19.

No. seqs n (MB) n/r

1 59 1.92

2 118 3.79

4 236 7.47

8 473 14.78

16 946 29.19

32 1892 57.63

64 3784 113.49

128 7568 222.23

256 15,136 424.93

512 30,272 771.53

(b) Collections of SARS-CoV2 gen-
omes.

No. seqs n (MB) n/r

1562 46 459.57

3125 93 515.42

6250 186 576.47

12,500 372 622.92

25,000 744 704.73

50,000 1490 848.29

100,000 2983 1060.07

200,000 5965 1146.24

300,000 8947 1218.82

accession numbers in the repository. We divide the sequences into 11 collections of 1, 2, 3, 4,

8, 16, 32, 64, 128, 256, 512 chromosomes 19 (chr19) and 9 collections of 1,562, 3,125, 6,250,

1250,00, 25,000, 50,000, 100,000, 200,000, 300,000 genomes of SARS-CoV2 (sars-cov2). In

both datasets, each collection is a superset of the previous one. In Table 1 we report the

length n of each collection and the ratio n/r, where r is the number of runs of the BWT.

Furthermore, for querying the datasets, we used the Ąrst haplotype of chromosome 19

of the sample NA21144 from the 1000 Genomes Project, and the genome with accession

number MZ477765 from EBIŠs COVID data portal [12].

Results

In Figure 2 we show the construction and query time and space for mum-phinder and

mummer. Since mummer is not able to decouple the construction of the suffix tree from the

query, for our method we report the sum of the running times for construction and query,

and the maximum resident set size of the two steps. We observe that on chr19 mummer3

is up to 9 times faster than mum-phinder, while using up to 8 times more memory, while

mummer4 is up to 19 times faster than mum-phinder, while using up to 7 times more memory.

However both mummer3 and mummer4 cannot process more than 8 haplotypes of chr19 due to

memory limitations. mum-phinder was able to build the index and query in 48 minutes for

512 haplotypes of chr19 while using less than 11.5 GB of RAM. On sars-cov2, mummer3 is

up to 6.5 times faster than mum-phinder, while using up to 24 times more memory, while

mummer4 is up to 1.2 times slower than mum-phinder, while using up to 25 times more

memory. mummer3 was not able to process more than 25,000 genomes while mummer4 were

not able to query mote than 12,500 genomes of sars-cov2 due to memory limitations.

In Figure 2 we also show the construction time and space for mum-phinder. We observe

that the construction time grows with the number of sequences in the dataset, however

the query time decreases while increasing the number of sequences in the index with a

9x speedup when moving from 1 to 512 haplotypes of chr19. A similar phenomenon is

observed in [3] and it is attributed to the increase number of match cases (Algorithm 2) while

increasing the number of sequences in the index. From our proĄling (data not shown) the
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