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—— Abstract

In recent years, pangenomes received increasing attention from the scientific community for their
ability to incorporate population variation information and alleviate reference genome bias. Maximal
Exact Matches (MEMs) and Maximal Unique Matches (MUMs) have proven themselves to be useful
in multiple bioinformatic contexts, for example short-read alignment and multiple-genome alignment.
However, standard techniques using suffix trees and FM-indexes do not scale to a pangenomic level.
Recently, Gagie et al. [JACM 20] introduced the r-index that is a Burrows-Wheeler Transform
(BWT)-based index able to handle hundreds of human genomes. Later, Rossi et al. [JCB 22] enabled
the computation of MEMs using the r-index, and Boucher et al. [DCC 21] showed how to compute
them in a streaming fashion.

In this paper, we show how to augment Boucher et al’s approach to enable the computation
of MUMs on the r-index, while preserving the space and time bounds. We add additional O(r)
samples of the longest common prefix (LCP) array, where r is the number of equal-letter runs of the
BWT, that permits the computation of the second longest match of the pattern suffix with respect
to the input text, which in turn allows the computation of candidate MUMs. We implemented a
proof-of-concept of our approach, that we call MUM-PHINDER, and tested on real-world datasets. We
compared our approach with competing methods that are able to compute MUMs. We observe that
our method is up to 8 times smaller, while up to 19 times slower when the dataset is not highly
repetitive, while on highly repetitive data, our method is up to 6.5 times slower and uses up to 25
times less memory.
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1 Introduction

With the advent of third-generation sequencing, the quality of assembled genomes drastically
increased. In the last year the Telomere-to-Telomere project released the first complete
haploid human genome [19] and the Human Pangenome Reference Consortium (HPRC)
plans to release hundreds of high-quality assembled genomes to be used as a pangenome
reference. One important step to enable the use of these high-quality assembled genomes is
to build a multiple-sequence alignment of the genomes. Tools like MUMmer [13, 18], and
Mauve [5] proposed a solution to the original problem of multiple-sequence alignment by
using Maximal Unique Matches (MUMs) between two input sequences as prospective anchors
for an alignment. MUMs are long stretches of the genomes that are equal in both genomes
and occur only once in each of them. To reduce the computational costs of computing the
MUMs, progressive approaches have also been developed like progressive Mauve [6] and
progressive Cactus [1] that enables the construction of pangenome graphs, among others,
that have been used in recent aligners like Giraffe [21]. MUMSs have also been proven useful
for strain level read quantification [23], and as a computationally efficient genomic distance
measure [7].

Recent advances in pangenomics [20, 3] demonstrated that it is possible to index hundreds
of Human Genomes and to query such an index to find supersets of MUMs that are maximal
exact matches (MEMs), which are substrings of the pattern that occur in the reference and
that cannot be extended neither on the left nor on the right. The tool called MONTI [20]
requires two passes over the query sequence to report the MEMs. Later PHONTI [3] showed
how to modify the query to compute the MEMSs in a streaming fashion, with only one single
pass over the query string. Both MONI and PHONT are built on top of an r-index [11] and
a straight-line program SLP [9]. Their main objective is to compute the so called matching
statistics (see Definition 3) of the pattern with respect to the text, that can be used to
compute the MEMs with a linear scan. While, MONI uses the SLP for random access to the
text, and needs to store additional information to compute the matching statistics and the
MEMs, PHONT uses the SLP to compute efficient longest common extension (LCE) queries
which allow to compute the matching statistics and the MEMs with only one scan of the
query.

We present MUM-PHINDER, a tool that is able to compute MUMs of a query pattern
against an index on a commodity computer. The main observation of our approach is to
extend the definition of matching statistics to include, for each suffix of the pattern, the
information of the length of the second longest match of the suffix in the text, which allows
to decide whether a MEM is also unique. We extended PHONTI to keep track at each step of
the query, the second longest match of the pattern in the index, and its length. To do this,
we add O(r) samples of the longest common prefix (LCP) array to PHONI.

We evaluated our algorithm on real-world datasets, and we tested MUM-PHINDER against
MUMmer [18]. We measured time and memory required by both tools for sets of increasing
size of haplotypes of human chromosome 19 and SARS-CoV2 genomes and queried using one
haplotype of chromosome 19 and one SARS-CoV2 genome not present in the dataset. We
report that MUM-PHINDER requires consistently less memory than MUMer for all experiments
being up to 25 times smaller. Although MUMer is generally faster than ours (18 times faster
for 1 haplotype of chromosome 19, and 6.5 times faster for 12,500 SARS-CoV2 genomes),
it cannot process longer sequences due to memory limitations. Additionally, we observe
that when increasing the number of sequences in the dataset, the construction time of
MUM-PHINDER increases, while the query time decreases. This phenomenon is due to the
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increase in the number of matches in the search process, that prevents the use of more
computational-demanding operations. Note that, due to the use of the r-index, the efficiency
of our method increases when the dataset is highly repetitive as in the case of pangenomes.

2 Preliminaries

Let ¥ = {ag < a1 < ... < ay—1} be an ordered alphabet, where < represents the lexicograph-
ical order. A string (or text) T is a sequence of characters T[0]T[1]---T[n — 1] such that
T[j] € ¥ for all j € [0..n). The length of a string is denoted by |T'|. We refer to the empty
string with e, that is the only substring of length 0.

We denote a factor (or substring) of T as T'[i..j) = T[i]T[i +1]---T[j — 1] if i < j, and
T[i..j) = € otherwise. We refer to T'[0..5) as the j — 1-th prefix of T and to T'[i..n) as the
i-th suffix of T'.

We assume throughout the paper that the text T is terminated by termination character
$ that does not occur in the original text and it is lexicographically smaller than all the other
characters in the alphabet.

Suffix array, inverse suffix array, and longest common prefix array

The Suffiz array (SA) of a string T'[0..n) is an array of length n such that T[SA[i]..n) <
T[SA[j]..n) for any 0 < ¢ < j < n. The Inverse Suffiz array (ISA) is the inverse of
SA, i.e. ISA[i] = j if and only if SA[j] = i. Let lcp(u,v) be the length of the longest
common prefix between two strings u and v, that is u[0..lcp(u,v)) = v[0..lep(u, v)) but
ullep(u, v)] # v[lep(u,v)] (assuming lep(u, v) < min{|u|, [v|}). The Longest Common Prefix
array (LCP) of T'[0..n) is an array of length n such that LCP[0] = 0 and LCP[i] = lep(T[SA[i —
1]..n), T[SA[i]..n)), for any 0 < i < n.

Burrows-Wheeler Transform, Run-Length Encoding, and r-index

The Burrows-Wheeler Transform (BWT) of T is a reversible transformation of the characters
of T [4]. That is the concatenation of the characters preceding the suffixes of T listed in
lexicographic order, i.e., for all 0 < ¢ < n, BWT[i]| = T[SA[i]] — 1 mod n]. The LF-mapping
is the function that maps every character in the BWT with its preceding text character, in
the BWT, i.e. LF(d) = ISA[SA[i] =1 mod n].

The run-length encoding of a string T is the representation of maximal equal-letter runs
of T as pairs (¢, £), where ¢ is the letter of the run and ¢ > 0 is the length of the run. For
example, the run length encoding of T = AAACAAGGGG is (4,3)(C,1)(A,2)(G,4). We
refer to the number of runs of the BWT with r.

The BWT tends to create long equal-letter runs on highly repetitive texts such as genomic
datasets. The run-length encoding applied to the BWT (in short RLBWT) is the basis of
many lossless data compressors and text indexes, such as the FM-index [8] which is the base
of widely used bioinformatics tools such as Bowtie [14] and BWA [15]. Although the BWT
can be stored and queried in compressed space [17], the number of samples of the SA required
by the index grows with the length of the uncompressed text. To overcome this issue Gagie
et al. [11] proposed the r-index whose number of SA samples grows with the number of runs
r of the BWT. The r-index is a text index composed by the run-length encoded BWT and
the SA sampled at run boundaries, i.e., in correspondence of the first and last character of a
run of the BWT, and it is able to retrieve the missing values of the SA by using a predecessor
data structure on the samples of the SA.
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Grammar and straight-line program

A context-free grammar G = {V, X, R, S} consists in a set of variables V, a set of terminal
symbols 3, a set of rules R of the type A — «a, where A € V and o € {V UX}*, and the
start variable S € V. The language of the grammar L(G) C X* is the set of all words over
the alphabet of terminal symbols generated after applying some rules in R starting from S.
When L(G) contains only one string T', that is G only generates T, then the grammar G is
called straight-line program (SLP).

Longest Common Extension, rank, and select queries

Given a text T[0..n), the longest common extension (LCE) query between two positions
0 <i,j5 <nin T is the length of the longest common prefix of T[i..n) and T'[j..n). Thus, if
¢ =LCE(i,5), then T[i..i + £) = T[j..j + £) and either T[i + ¢] # T[j + {] or either i + { =n
or j+ ¢ =n.

Given a character ¢ and an integer i, we define T.rank. () as the number of occurrences
of the character ¢ in the prefix T'0..7), while we define T'select.(7) as the position p € [0..n)
of the ith occurrence of ¢ in T if it exists, and p = n otherwise.

3 Computing MUMs using MS

Given a text T'[0..n) and a pattern P[0..m), we refer to any factor in P that also occurs in T’
as a match. A match w in P can be defined as a pair (i, £) such that w = P[i..i + £). We say
that w is maximal if the match can not be extended neither on the left nor on the right, i.e.
either ¢ = 0 or P[i — 1..i + £) does not occur in T and either ¢ = m — £ or P[i..i + £+ 1) does
not occur in 7.

» Definition 1. Given a text T and a pattern P, a Mazimal Unique Match (MUM) is a
mazimal match that occurs exactly once in T and P.

» Example 2. Let T = ACACTCTTACACCATATCATCAAS be the text and P =
AACCTAA the pattern. The factor AA is maximal in P and occurs only once in T,
while it is repeated in P at positions 0 and 5. The factor CT of P starting in position 3 is a
maximal match that occurs only once in P, but it is not unique in 7. The factor CC of P
starting in position 2 is unique in both 7" and P, but both can be extended on the left with
an A. On the other hand, the factor P[1..4) = T[10..13) =ACC is a MUM.

From now on, we refer to the set of all maximal unique matches between T' and P as
MUMs. In [3] the authors showed how to compute maximal matches (not necessarily unique
neither in 7" nor P) in O(r + g) space, where r is the number of runs of the BWT of T and ¢
is the size of the SLP representing the text T". This is achieved by computing the matching
statistics, for which we report the definition given in [3].

» Definition 3 ([3]). The matching statistics MS of a pattern P[0..m) with respect to a text
T[0..n) is an array of (position, length)-pairs MS[0..m) such that

Pli..i + MS[i].len) = T[MS[i].pos..MS[i].pos + MS[i].len);

either i = m — MSJi].len or Pli..i + MS[i].len + 1) does not occur in T.
That is, MS[i].pos is the starting position in T of an occurrence of the longest prefix of Pli..m)
that occurs in T, and MS[i].len is its length.

A known property of the matching statistics is that for all ¢ > 0, MS[i].len > MS[i —
1].len — 1.
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Our objective is to show how to further compute MUMs within the same space bound.
For our purpose, we extend the definition of MS array with an additional information field
to each entry.

» Definition 4. Given a text T =1[0...n) and a pattern P = [0...m), we define the extended

matching statistics eMS as an array of (pos,len,slen )-tuples eMS[0...m) such that
eMS[i].pos = MS][i].pos and eMS[i].len = MSJ[i].len;
eMSi].slen is the largest value £ for which there exists p # eMS|i].pos such that Pli..i+£) =
Tlp.p+19).

In other words, eMS[i].slen is the length of the second longest match of a prefix Pli.n) in T.

Note that eMS][i].slen < eMS[i].len, for any i € [0..m).

3.1 Checking Maximality and Uniqueness of matches

We now show how to compute MUMs by using the eMS array. Lemma 5 shows how to verify
if a match occurs only once in 7'

» Lemma 5. Given a text T, a pattern P, and the eMS array computed for P with respect to
T, let w = Pli..i + eMS[i].len) = T'[eMS]i].pos..eMS[i].pos 4+ eMS[i].len) be a mazimal match
between a pattern P[0..m) and a text T[0..n)$. Then w occurs exactly once in T if and only

if eMSJi].slen < eMS[i].len.

Proof. For the if direction, we assume by contradiction that w is unique in T and
that eMSJi].slen > eMS[i].len. By definition, eMSJ[i].slen < eMS[i].len, hence we assume
eMSJi].slen = eMS[i].len. By definition of eMS[i].slen there exists p # eMSJi].pos such that
w = Pli..i + eMS[i].slen) = T[p..p + eMS[i].slen) = T[eMS[i].pos..eMS[i].pos + eMS[i].len),
that contradicts the assumption that w occurs only once in the text T. Analogously, as-
sume that eMS[i].slen < eMSJ[i].len and that there exists a position j # eMS[i].pos such that
T[j..j+eMS[i].len) = T'[eMS]i].pos..eMS[i].pos+eMS][i].len). However, this is in contradiction
with the definition of eMS[i].slen and the assumption of eMS[i].slen < eMS[i].len, concluding
the proof. <

We check the maximality of a match in the pattern using an analogous approach as
in [20], that we summarize with the following lemma.

» Lemma 6. Given a text T, a pattern P, and the eMS array computed for P with respect
to T, let w = P[i..i + eMS[i].len) be a match with a text T. Then w is a mazimal match if
and only if either i =0 or eMS[i — 1].len < eMSJ[i].len.

Proof. First we show that if w = P[i..i + eMS[i].len) is a maximal match then either
i = 0 or eMS[i — 1].len < eMSJi].len. Let us assume that w is not maximal and either
i = 0 or eMS[i — 1].len < eMS]Ji].len, hence either P[i..i + eMS[i].len 4+ 1) occurs in T or
P[i — 1..i 4+ eMS]Ji].len) occurs in T'. The former case is in contradiction with the definition
of eMS, hence P[i — 1..i + eMSJi].len) occurs in 7. This implies that ¢ > 0 and that
eMS[i — 1].len = eMS][i].len + 1 in contradiction with the hypothesis that eMS[i — 1].len <
eMS[i].len.

Now we show that if either i = 0 or eMS[i —1].len < eMS[i].len then w is a maximal match.
By definition of eMS[i].len, we know that either i + eMS[i].len = m or P[i..i + eMS[i].len + 1)
does not occur in T'$, that is w cannot be extended on the right in P. If ¢ = 0 we can not
further extend the match w on the left, hence w is maximal. If ¢ > 0, then by definition of
matching statistics it holds that eMS[i — 1].len < eMS[i].len 4 1. Note that if there exists a
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character a € ¥ such that P[i — 1..i — 1 + eMS[i — 1].len) = aw and aw occurs in T, then
eMS[i — 1] = eMSJ[i] + 1. Hence if eMS[i — 1] = eMS[i] + 1 then it is easy to see that w is not
maximal because it can be extended on the left. It also follows that if eMS[i — 1] < eMSJi]
then w cannot be extended on the left, hence it is maximal and the thesis follows. <

Let £ C [0..m) be the subset of positions in P such that both Lemma 5 and Lemma 6
hold, i.e. £ contains all the positions in P where a maximal match unique in T starts. One
can notice that if a match w; = P[i..i + eMS[i].len) is a MUM, then i € L.

We first show that given ¢ € L, if a match w; is not unique in P, then the second
occurrence of w; in P is contained in another maximal match unique in 7.

» Lemma 7. Given a text T, a pattern P, and the eMS array computed for P with respect
to T, let L be the subset of positions in P such that w; = P[i..i + eMS]i].len) is mazimal and
occurs only once in T for alli € L. Then, w; is not unique in P if and only if there exist
i" € L\ {i} and two possibly empty strings u,v such that wy = uw;v is a factor of P.

Proof. Let us assume by contradiction that such i’ does not exist, then let j ¢ £ be such
that P[j..j + |w;]) = w;. Since j ¢ L then either P[j..j 4+ |w;|) is not unique in T', or it is not
maximal. The former case it contradicts ¢ € £ because P[j..j + |w;|) = w; occurs twice in
T. Hence, P[j..j + |w;|) occurs only once in T and it is not maximal, therefore there exists
k € L such that k < j and |wg| > |w;| which contradict the hypothesis. The other direction
of the proof is straightforward since by definition of w;/, either w; occurs twice in P or it is
not maximal. <

The following Lemma shows, for any ¢ € £, if a match w; is unique in P by using the
eMS array.

» Lemma 8. Given a text T, a pattern P, and the eMS array computed for P with respect to T,
let L be the subset of positions in P such that w; = Pl[i..i +eMS[i].len) is mazimal and occurs
only once in T, for alli € L. Then, w; occurs only once in P if and only if, for alli’ € L\ {i},
either eMS[i].pos < eMS[i’].pos or eMS][i].len + eMS[i].pos > eMS[i'].len + eMS][i’].pos.

Proof. We first show that if w; occurs only once in P then for all i’ € £\ {i}, either
eMSJi].pos < eMS[i’].pos or eMSJi].len + eMS[i].pos > eMSJi].len + eMS[i'].pos. Since £
contains only positions of maximal matches unique in T, then for all for ¢ € £ we can map w; to
its occurrence in the text T'[eMS[i].pos..eMS][i].pos + eMSJi].len). Since w; occurs only once in
T, by Lemma 7 we have that eMS[i'].pos = eMS[i].pos— |u| and eMS[i’].len = eMS[i].len+ |u|+
|v|. Hence, eMS[i’].pos < eMSJi].pos and eMS[i].pos + eMS[i].len < eMS[i’].pos + eMS[i’].len.

We now show the other direction of the implication. If given a position 7 € £ for all i/ €
L\ {i}, either eMS[i].pos < eMS[i'].pos or eMS[i].len + eMS[i].pos > eMS][i’].len + eMS[i’].pos
then w; occurs only once in P. Assuming by contradiction that there exists a position i € £
such that for all i/ € £\ {i}, either eMS[i].pos < eMS[i’].pos or eMS][i].len + eMS[i].pos >
eMS[i’].len 4+ eMS[i’].pos and w; does not occur only once in P, then by Lemma‘7 there
exist 7 € £ and two possibly empty strings u,v such that w; = uw;v is a factor of P. It
is easy to see that eMS[j].pos = eMSJi].pos — |u| and eMS[j].len = eMS[i].len + |u| + |v|.
Hence, eMS[j].pos < eMS[i].pos and eMS[i].pos + eMS[i].len < eMS[j].pos + eMS[j].len, in
contradiction with the hypothesis, concluding the proof. |

We can summarize the previous Lemmas in the following Theorem.

» Theorem 9. Given a text T, a pattern P, and the eMS array computed for P with respect
to T, for all0 < i < m, w; = P[i..i+eMS[i].len) is a MUM if and only if i € L and Lemma 8
holds.
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» Example 10. Let T = ACACTCTTACACCATATCATCAAS be the text and P =
AACCTAA the pattern. In the table below we report the values of the eMS of P with respect
to T.

ilo 1 2 3 4 5 6
Pil[A A C C T A A
eMS[i].pos 21 10 11 5 6 21 8
eMSfillen | 2 3 2 2 2 1
eMSfilslen | 1 2 1 2 2 1 1

It is easy to check that £ = {0,1,5}, where £ contains those indices ¢ which verify both

Lemma 5 (eMS[i].slen < eMS[i].len) and Lemma 6 (either ¢ = 0 or eMS[i—1].len < eMSJi].len).

Note that eMS[0].pos = eMS][5].pos and eMS[0].len = eMS][5].len, and by Lemma 8 we know
that P[0..2)(= PI5..7)) is repeated in P. Since eMS[1].pos < eMS][0].pos = eMS[5].pos, by
Theorem 9 the match P[1..4) = T'[10..13) = ACC is a MUM.

3.2 Computing the second longest match

Now we show how we can compute eMS extending the algorithm presented in Boucher et
al. [3] while preserving the same space-bound.

We can apply verbatim the algorithm of [3] to compute the eMS[i].pos and eMS[i].len
while we extend the algorithm to include the computation of eMS[i].slen. The following
Lemma shows how to find the second longest match using the LCP array.

» Lemma 11. Given a text T, a pattern P, and the eMS array of P with respect to T, let
Pli..i + eMSJi].len) = T'[eMS][i].pos..eMS[i].pos + eMS][i].len) and ¢ = ISA[eMS][i].pos]. Then,
for all 0 < g < n, eMSJi].slen = max{LCP[q|, LCP[q + 1]}, where LCP[n] = 0.

Proof. Let us consider the set T = {wy < wy < ... < wy} of the lexicographically sorted
suffixes of T'. Then, for all i € [0..m), at least one suffix of T starting with the second longest
match P[i..i +eMS[i].slen) must be adjacent to w, = T'[eMS[i].pos..n) in T. Hence, assuming
q # 0 and ¢ # n, eMS[i].slen is either the LCP value between w,_; and w, or between w,
and w41, that are respectively LCP[g] and LCP[g + 1]. Note that if ¢ = 0 then both LCP[0]
and LCP[1] exist, while for the case ¢ = n only LCP[n] is available, that is eMS[¢].slen must
be LCP[n]. |

4  Algorithm description

In this section we present the algorithm that we use to compute MUMs that builds on the
approach of Boucher et al. [3] for the computation of the MS array. The authors showed
how to use the r-index and the SLP of [10, 9] to compute the MS array of a pattern P[0..m)
in O(m - (tLr + tice + tpred)) time, where tiF, tice, and tpeq represent the time to perform
respectively one LF, one LCE, and one predecessor query. Our algorithm extends Boucher et
al’s method by storing additional O(r) samples of the LCP array. Given a text T'[0..n) and
a pattern P[0..m), in the following, we first show how to compute the eMS array of P with
respect to T using the r-index, the SLP, and the additional LCP array samples. Then we
show how to apply Theorem 9 to compute the MUMs from the eMS array.
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4.1 Computing the eMS array

The key point of the algorithm is to extend the last computed match backwards when possible,
otherwise we search for the new longest match that can be extended on the left by using the
BWT. Let g be the index such that P[i..i + eMS[i].len) = T[SA[q]..SA[q] + eMS][i].len) is the
longest match found at step i:
if BWT][q] = P[i — 1], then it can be extended on the left, i.e. P[i —1..i + eMSJi].len) =
T[SA[q] — 1..SA[q] + eMS[i].len);
otherwise, we want to find the longest prefix of P[i..i + eMSJi].len) that is preceded
by P[i — 1] in the text T. As observed in Bannai et al. [2] it can be either the suffix
corresponding to the occurrence of P[i — 1] in the BWT immediately preceding or
immediately following ¢, that we refer to as g, and ¢, respectively. Formally, ¢, =
max{j < q | BWT[j] = P[i — 1]} and g, = min{j > ¢ | BWT[j] = P[i — 1]}.

The algorithm to compute the pos and len entry of the eMS array is analogous to the
procedure detailed in [3]. We use the same data structures as the one defined in [3], that are
the run-length encoded BWT and the samples of the SA in correspondence of positions ¢
such that BWT]q| is either the first or the last symbol of an equal-letter run of the BWT.
Note that both ¢, and g5 are respectively the last and the first index of their corresponding
equal-letter run.

An analogous reasoning can be formulated to compute the second longest match.

» Lemma 12. Given a text T[0..n), let LCP, SA and ISA be respectively the longest common
prefiz array, suffic array and inverse suffix array of T. Then, for all0 < q < n, leti,j be two
integers such that ¢ — 1 = LF[i] and q = LF[j], then if BWT[i] # BWT]j] then LCP[g] = 0,
otherwise LCP[q] = LCE(SA[é], SA[j]) + 1.

Proof. Let w, be the ¢-th suffix in lexicographic order. Note that if w, = $ then LCP[¢] =
LCP[g+1] = 0. For all 1 < ¢ < n, if wy_1 = au$ and w, = bv$ for some a < b € ¥ and
some strings u and v, then LCP[g] = 0. On the other hand, if w,—1 = au$ and w, = av$,
then LCP[g] = 1 + lcp(u$, v$). The thesis follows by observing that the suffixes u$ and v$
respectively correspond to w; and w;. <

Note that, the second longest match can be retrieved from the LCP values in corres-
pondence of the longest maximal match (Lemma 11). Once we have the maximal match
in position ¢ in the BWT, we can compute LCP[gq] and LCP[g 4 1] from the LCE queries on
T[SA[q]..n) with T[SA[gp]..n) and T[SA[gs]..n) (Lemma 12).

Moreover, assuming the index g, is the greatest index smaller than ¢ such that BWT|[g,] =
BWT](q|, then LF(g,) = LF(q) — 1. It follows that if BWT[LF(g,)] = BWT|[LF(q) — 1] =
BWTILF(q)], then LCP[LF(g)]) is an extension of the LCE query computed between SA[g,]
and SA[qg| (see Figure 1). Symmetrically, if ¢, is the smallest index greater than ¢ such that
BWT][gs] = BWT][g], then LF(gs) = LF(q) 4+ 1. Thus, at each iteration, we keep track of both
LCP values computed to find the second longest match.

With respect to the implementation in [3], we add O(r) sampled values from the LCP
array. Precisely, we store the LCP values between the first and the last two suffixes in
correspondence of each equal-letter run (if only one suffix corresponds to a run we simply
store 0). As shown later, this allows to overcome the problem of computing the LCE queries
in case a position p in 7" is not stored in the sampled SA, i.e. when ISA[p] is neither the first
nor the last index of its equal-letter run.

For simplicity of exposition we ignore the cases when a select query of a symbol ¢ in
the BWT fails. However, whenever it happens, either ¢ does not occur in T or we are
attempting to find an occurrence out of the allowed range, that is between 0 and the number
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F BWT
LCE(SALqL,SALgp])
———
dp |
q 1
LF(gp) \
LF(q) |
LCP[LF(qg)]

Figure 1 Application of Lemma 12 to compute LCP[LF(q)] by extending the result of the last
LCE query.

of occurrences of the character ¢ minus 1. For the first case we can simply reset the algorithm
starting from the next character of P to process, while the second occurs when we are
attempting to compute an LCE query, whose result can be safely set to 0.

Algorithm 1 computes the extended matching statistics eMS of the pattern P =[0...m)

with respect to the text T =[0...n) starting from the last element of the pattern (line 2).

Moreover, we keep track of the first LCP values with respect to the maximal match of length 1
(line 3).

At each iteration of the loop (line 5), the algorithm tries to extend the match backwards
position by position. If the match can be extended (line 7), then we use Algorithm 2 to

compute the entry of the eMS. Otherwise, we use Algorithm 3 to compute the next entry of
eMS (line 9).

Match case

Suppose eMS[i + 1...m) has already been processed and that P[i] = T'[eMS[i + 1].pos — 1],
namely we can further extend the longest match at the previous step by one position to the
left. Algorithm 2 handles such scenario.

Let ¢ be such that SA[g] = eMS[i + 1].pos — 1. Hence, we have that eMS[i].pos =
eMS[i 4 1].pos — 1 and eMS[i].len = eMS[i + 1].len + 1 (line 1). At this point, we search for
the greatest index ¢, among those smaller than ¢ such that BWT][g,] = P[i]. As discussed
before, when ¢, = ¢ — 1, then LCP[LF(¢)] = LCP[g] + 1 = lcp, + 1 (line 3). Otherwise we can
compute the LCE query between SA[g] and SA[gy|, to which we add 1 for the match with
Pli] in correspondence of BWT][q] and BWT]g,| (line 6). Note that SA[g] = eMS[i + 1].pos,
while g, is the last index of its equal-letter run (and therefore SA[gy| is stored).

Analogously we compute lcps (lines 7-10) and, by Lemmas 11 and 12, we assign to
eMS[i].slen the maximum between lep, and leps.
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Algorithm 1 Computation of eMS.

Input :Pattern P[0, m)
Output : Extended matching statistics eMS[0..m)

q < BWT.select p[n,—1)(1)
eMS[m — 1] + (pos : SA[g] — 1,len : 1,slen : 1)
lepp <=0, leps 1
q + LF(q)
for i < m — 2 down to 0 do
if BWT[q] = P[i] then

‘ eMS[i], lepy, leps < MSMatch(PJi], g, eMS[i + 1].pos, eMS[i + 1].pos, lcp,,, leps)
else

eMS[i], lepy, leps <+

L MSMisMatch(P[i], ¢, eMS[i 4 1].pos, eMS[i 4 1].pos, lep,, leps)

10 q < LF(q)

© W N4 O WA W N R

11 return eMS

Mismatch case

We use Algorithm 3 when ¢ is such that BWT]g] # P[i]. We search for the index ¢’ in SA
such that, among the suffixes of T' preceded by PJ[i], at position SA[¢'] in T starts the longest
match with a prefix of P[i + 1..m). Note that T[SA[¢'] — 1] = P[i], and that ¢ is either g,
or gs.

Hence, if g, = ¢ — 1, then by Lemma 12 the longest common prefix of T[SA[¢']..n) and
P[i + 1..m) has length lcp), = lcp, computed at the previous step (line 5), otherwise we
compute and store the LCE between T'[q..n) and T'[g,..n) (line 7). A symmetric procedure is
used to compute lcp/, (lines 8-11).

Without loss of generality, we assume that lcp} > lcp),, hence eMS[i].pos = SA[g;] — 1.
Then eMS[i].len = Icpg+1 and lep, = lepy,+1 (line 13). We add 1 to both lep); and Icp;, because
both matches can be extended by one position on the left since P[i] = BWT]g,] = BWT]g,].
In order to compute eMS[i].slen we need to compute the value of leps with respect to ¢gs. To
do so, we look for the smallest index ¢, greater than g, such that BWT[q,] = P[i], and then
apply a similar procedure to Algorithm 2 (lines 14-18). In this case, if BWT[gs + 1] = PJi],
then we can retrieve lcps from LCP[gs + 1] since ¢ is in correspondence of a run boundary.
Symmetrically we handle the case lcp, > lcp; (lines 20-26). Finally, we compute eMS[i].slen
by picking the maximum between lcp, and lcps.

» Theorem 13. Given a text T[0..n), we can build a data structure in O(r + g) space that
allows to compute the set MUMs between any pattern P[0..m) and T in O(m-(tLr+tLce+Epred))
time.

Proof. Algorithm 1, Algorithm 2 and Algorithm 3 show how to compute the eMS array
in m steps by using the data structure used in [3] of size O(r + g), to which we add O(r)
words from the LCP array, preserving the space bound. Since at each step the dominant cost
depends on the LF, LCE, and rank/select queries, eMS is computed in O(m(tLr + tiLce + tored))
time. By Lemmas 5 and 6, we can build the set £ in O(m) steps from the eMS array. Recall
that £ contains those indices i € [0..m) such that P[i..i + eMSJi].len) is a maximal match
that occurs only once in 7.
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Algorithm 2 MSMatch(P]i], g,eMS[i + 1].pos, eMS[i + 1].len, lcpy, leps).

1 pos < eMS[i + 1].pos — 1, len <— eMS[i + 1].len + 1
2 ¢+ BWT.rankp(;(q)
3 if BWT|[g — 1] = PJi] then

| lepp <= lepp + 1
4 else

L qp < BWT .selectp[;)(c)

lepp <— min(lep,, LCE(eMS[i + 1].pos, SA[g,))) + 1

7 if BWT[q + 1] = P[i] then

| leps <+ leps + 1
8 else
L qs < BWT.selectpp; (¢ + 2)

leps < min(leps, LCE(eMS[i + 1].pos, SA[gs])) + 1

11 slen <— max(lepp, leps)
12 return (pos, len,slen),lcpy, lcps

10

Now we have to search those indices in £ that are also unique in P. A simple algorithm is
to build both the LCP and ISA array of P, and then check for each i € £ if both LCP[ISA[]]
and LCP[ISA[i] + 1] (or only LCP[ISA[]] if ISA[i]] = m) are smaller than eMS[i].len, i.e. the
same property that we use to check the uniqueness in 7. Both structures can be build
in O(m) time. The overall time is O(m(tLr + tice + tpred) + m + m), which collapses to
O(m(tir + tice + tpred))- <

Note that both g and t cg depends on the grammar scheme chosen. In fact, if exists a
data structure of size A\ that supports LCE queries on a text 7', then we can still compute
MUMs in O(r + A) space and O(m - (tLr + tiLce + tpred)) time, with £ ce that depends on the
data structure used.

4.2 Computing MUMs from eMS

Here we present a different approach to compute the MUMSs from the eMS from the one in

Theorem 13, that is of more practical use, and that does not require sorting the suffixes of P.

We summarize this approach in Algorithm 4.

Let £ be the set of indexes ¢ € [0.m) such that P[i..eMS[i].len) =
T[eMS]i].pos..eMS[i].pos + eMS[i].len) is a maximal and unique match in 7. By Lemmas
5 and 6, we can check in constant time if an index i belongs to £. Note that building £
(lines 3-4) can be also executed in streaming while computing the eMS array (for simplicity
of exposition of the algorithms we have separated the procedures). Observe that a match
Pli..i + eMS]i].len) such that ¢ € £ is a MUM if and only if it is not fully contained into
another candidate, i.e. it does not exist j € £\ {i} such that (i) eMS[j].pos < eMSJi].pos
and (ii) eMS[i].pos + eMS[i].len < eMS[j].pos + eMS[j].len (Theorem 9). Hence, we sort
the elements in £ with respect to the position in T, and starting from £[0], we compare
every entry with the following and if both factors are not contained into the other, we store
in the set MUMs the one with the smallest starting position and keep track of the other
one, otherwise we simply discard the one that is repeated and continue with the following
iteration.
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Algorithm 3 MSMismatch(PJi], g, eMS[i + 1].pos, eMS[i + 1].len, lcpy, leps).

c < BWT.rankpp; (q)
qp < BWT .selectpf;)(c)
qs < BWT.selectpp;j(c + 1)
if ¢, =q—1 then
‘ lepy, < lepy
else
| lep), < min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[g]))

N O kA W=

8 if s =g+ 1 then
9 ‘ lepl, + leps
10 else

11 L lep!, <— min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[gs]))

12 if lep), < lep then

13 pos < SA[gs] — 1,len < lepl + 1, lepy < lep), + 1
14 qs < BWT.selectpp;)(c +2)

15 if ¢, = qs; + 1 then

16 ‘ leps <+ min(len, LCP[gs + 1] + 1)

17 else

18 L leps < min(len, LCE(SA[gs], SA[¢L]) + 1)

19 q<4gs

20 else

21 pos <— SA[g,] — 1,len < lcpp, leps < lepl, + 1
22 q, < BWT.selectp;)(c — 1)

23 if ¢, = g, — 1 then

24 ‘ lepp, <= min(len, LCP[g,] + 1)

25 else

26 L lepy < min(len, LCE(SAg,], SA[g,]) + 1)

27 | g4 gp

28 slen <— max(lcpp, leps)
29 return (pos,len,slen), lep,, leps

To handle the special case when two candidates ¢ # j € L are such that
T'[eMS][i].pos..eMS[i].pos + eMS[i].len) = T'[eMS[j].pos..eMS[j].pos + eMS[j].len), we further
keep track whether the current maximal match is unique. This final procedure, excluding
the building time for £ that is done in streaming, takes O(|L|log |L]|) time, since the sorting
of the indexes in £ dominates the overall cost.

5 Experimental results

We implemented our algorithm for computing MUMs and measured its performances on real
biological datasets. We performed the experiments on a desktop computer equipped with
3.4 GHz Intel Core i7-6700 CPU, 8 MiB L3 cache. and 16 GiB of DDR4 main memory. The
machine had no other significant CPU tasks running, and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs were
compiled using gcc version 8.1.0 with -03 ~-DNDEBUG -funroll-loops -msse4.2 options. We
recorded the runtime and memory usage using the wall clock time, CPU time, and maximum
resident set size from /usr/bin/time.



S. Giuliani, G. Romana, and M. Rossi

Algorithm 4 retrieveMUMs(eMS).
Input :Extended Matching Statistics eMS[0,m)
Output : MUMs

1 £,MUMs « 0)
2 fori+ 0tom—1do
3 L if (i = 0 or MS[i — 1].len < MS[i].len) and MS[i].len > MSJi].slen then

'

| £.add(i)

5 sortByPosition (L)

6 (p,¢) < (eMS[L][0]].pos,eMS[L][0]].len)
7 unique < true

8 for i« 1to |£|—1do

9 (', ") < (eMS]|L[i]].pos, eMS[L]i]].len)
10 if p =p’ then

11 if / =/ then

12 ‘ unique < false

13 else if ¢/ < ¢’ then

14 L1

15 L unique < true

16 else if ¢ < ¢ 4+ (p' — p) then

17 if unique then

18 L MUMs.add((p, £))

19 (P, 0) < (¢, 1)

20 unique < true

21 if unique then
22 | MUMs.add((p, ?))

23 return MUMs

Setup

We compare our method (MUM-PHINDER) with MUMmer [18] (mummer). We tested two
versions of mummer, v3.27 [13] (mummer3) and v4.0 [18] (mummer4). We executed mummer with
the -mum flag to compute MUMs that are unique in both the text and the pattern, -1 1
to report all MUMs of length at least 1, and -n to match only A,C,G,and T characters.
We setup MUM-PHINDER to produce the same output as mummer. We did not test against
Mauve [6] because the tool does not directly reports MUMs. We also did not consider
algorithms that does not produces an index for the text that can be queried with different
patterns without reconstructing the index, e.g. the algorithm described in Mékinen et al. [16,
Section 11.1.2]. The experiments that exceeded exceeded 16 GB of memory were omitted
from further consideration.

Datasets

We evaluated our method using real-world datasets. We build our index for up to 512
haplotypes of human chromosome 19 from the 1000 Genomes Project [22] and up to 300,000
SARS-CoV2 genomes from EBI’s COVID data portal [12]. We provide a complete list of
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Table 1 Dataset used in the experiments. For each collection of datasets of the human chromosome
19 (chr19) dataset in Table 1la and for the SARSCoV2 (sars-cov2) dataset in Table 1b, we report
the number of sequences (No. seqs), the length n in Megabytes (MB), and the ratio n/r, where r is
the number of runs of the BWT for each number of sequences in a collection.

(a) Collections of chromosome 19. (b) Collections of SARS-CoV2 gen-
omes.
’ No. seqs ‘ n (MB) n/r ‘ ’ No. segs ‘ n (MB) n/r ‘
1 59 1.92 1562 46 459.57
2 118 3.79 3125 93 51542
4 236 7.47 6250 186 576.47
8 473 14.78 12,500 372 622.92
16 946  29.19 25,000 744 704.73
32 1892  57.63 50,000 1490  848.29
64 3784 113.49 100,000 2983  1060.07
128 7568  222.23 200,000 5965 1146.24
256 15,136 424.93 300,000 8947  1218.82
512 30,272  771.53

accession numbers in the repository. We divide the sequences into 11 collections of 1, 2, 3, 4,
8, 16, 32, 64, 128, 256, 512 chromosomes 19 (chr19) and 9 collections of 1,562, 3,125, 6,250,
1250,00, 25,000, 50,000, 100,000, 200,000, 300,000 genomes of SARS-CoV2 (sars-cov2). In
both datasets, each collection is a superset of the previous one. In Table 1 we report the
length n of each collection and the ratio n/r, where r is the number of runs of the BWT.

Furthermore, for querying the datasets, we used the first haplotype of chromosome 19
of the sample NA21144 from the 1000 Genomes Project, and the genome with accession
number MZ477765 from EBI’s COVID data portal [12].

Results

In Figure 2 we show the construction and query time and space for MUM-PHINDER and
mummer. Since mummer is not able to decouple the construction of the suffix tree from the
query, for our method we report the sum of the running times for construction and query,
and the maximum resident set size of the two steps. We observe that on chr19 mummer3
is up to 9 times faster than MUM-PHINDER, while using up to 8 times more memory, while
mummer4 is up to 19 times faster than MUM-PHINDER, while using up to 7 times more memory.
However both mummer3 and mummer4 cannot process more than 8 haplotypes of chr19 due to
memory limitations. MUM-PHINDER was able to build the index and query in 48 minutes for
512 haplotypes of chr19 while using less than 11.5 GB of RAM. On sars-cov2, mummer3 is
up to 6.5 times faster than MUM-PHINDER, while using up to 24 times more memory, while
mummer4 is up to 1.2 times slower than MUM-PHINDER, while using up to 25 times more
memory. mummer3 was not able to process more than 25,000 genomes while mummer4 were
not able to query mote than 12,500 genomes of sars-cov2 due to memory limitations.

In Figure 2 we also show the construction time and space for MUM-PHINDER. We observe
that the construction time grows with the number of sequences in the dataset, however
the query time decreases while increasing the number of sequences in the index with a
9x speedup when moving from 1 to 512 haplotypes of chr19. A similar phenomenon is
observed in [3] and it is attributed to the increase number of match cases (Algorithm 2) while
increasing the number of sequences in the index. From our profiling (data not shown) the
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Figure 2 Human chromosome 19 and SARS-CoV2 genomes dataset construction CPU time and
peak memory usage. We compare MUM-PHINDER with mummer3 and mummer4. For MUM-PHINDER
we report a breakdown of the construction (build) and query time and space. Note that for
MUM-PHINDER we consider as time the sum of construction and query time, while for memory we
consider the maximum between construction and query memory.

more time-demanding part of the queries are LCE queries, which are not performed in case

of matches. This observation also motivates the increase in the control logic of Algorithm 3
to limit the number of LCE queries to the essential ones.
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