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Abstract

Commitment to cell division at the end of G1 phase, termed Start in the budding yeast Sac-

charomyces cerevisiae, is strongly influenced by nutrient availability. To identify new domi-

nant activators of Start that might operate under different nutrient conditions, we screened a

genome-wide ORF overexpression library for genes that bypass a Start arrest caused by

absence of the G1 cyclin Cln3 and the transcriptional activator Bck2. We recovered a hypo-

thetical gene YLR053c, renamed NRS1 for Nitrogen-Responsive Start regulator 1, which

encodes a poorly characterized 108 amino acid microprotein. Endogenous Nrs1 was

nuclear-localized, restricted to poor nitrogen conditions, induced upon TORC1 inhibition,

and cell cycle-regulated with a peak at Start. NRS1 interacted genetically with SWI4 and

SWI6, which encode subunits of the main G1/S transcription factor complex SBF. Corre-

spondingly, Nrs1 physically interacted with Swi4 and Swi6 and was localized to G1/S pro-

moter DNA. Nrs1 exhibited inherent transactivation activity, and fusion of Nrs1 to the SBF

inhibitor Whi5 was sufficient to suppress other Start defects. Nrs1 appears to be a recently

evolved microprotein that rewires the G1/S transcriptional machinery under poor nitrogen

conditions.

Introduction

All organisms have evolved adaptive regulatory mechanisms to optimize fitness in the face of

ever-changing environmental conditions. This ability to adapt is particularly important for

unicellular organisms, which lack the capacity to establish the internal homeostatic environ-

ments of metazoan species. In the budding yeast Saccharomyces cerevisiae, different carbon
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and nitrogen sources can dramatically affect the rates of cell growth and division, as well as

developmental programs [1]. Yeast cells commit to division at the end of G1 phase, an event

referred to as Start [2,3]. In order to pass Start, cells must achieve a characteristic critical size

threshold that dynamically adjusts to changing nutrient availability, thereby optimizing com-

petitive fitness [3]. How nutrient conditions modulate the growth and division machinery at

the molecular level is still largely unknown.

Start initiates a complex G1/S transcriptional program of approximately 200 genes that

encode proteins necessary for bud emergence, DNA replication, spindle pole body duplication,

and other processes. This program is controlled by 2 transcription factor complexes, SBF

(Swi4/6 Cell Cycle Box [SCB]-binding factor) and MBF (MluI Cell Cycle Box [MCB]-binding

factor), each comprised of related DNA-binding proteins, Swi4 and Mbp1, respectively, cou-

pled to a common regulatory subunit Swi6 [4,5]. Individually Swi4 and Mbp1 are not essential,

but a double swi4Δ mbp1Δ mutant is inviable [6], consistent with the significant overlap

between SBF and MBF binding sites in G1/S promoters [7–10]. In pre-Start cells that have not

achieved critical cell size, SBF is inhibited by the Whi5 transcriptional repressor [11–13]. At

Start, the G1 cyclin (Cln)-Cdc28 protein kinases phosphorylate both SBF andWhi5 to disrupt

the SBF–Whi5 interaction and trigger Whi5 nuclear export [12–14]. The upstream G1 cyclin

Cln3 is thought to initiate a positive feedback loop in which SBF-dependent expression of

CLN1/2 further amplifies Cln-Cdc28 activity and thus SBF activation [15,16]. The expression

of Cln3 itself does not rely on SBF-dependent positive feedback [17]. Although CLN3 was iso-

lated as a potent dose-dependent activator of Start [18,19], the size-dependent mechanism

whereby Cln3-Cdc28 initiates the SBF positive feedback loop remains uncertain [20–28].

CLN3 is essential only in the absence of other parallel activators of Start, most notably BCK2,

which encodes a general transcriptional activator [29,30].

Connections between the main yeast nutrient signaling conduits, the cell size threshold,

and Start have been established. Activation of the protein kinase A (PKA) pathway by glucose

represses CLN1 and other G1/S transcripts, which may increase the cell size threshold in rich

nutrients [31,32]. The TOR signaling network, which controls many aspects of cell growth

including the rate of ribosome biogenesis (Ribi), has been linked to the size threshold [11,33–

35]. The TORC1 complex phosphorylates and activates the effector kinase Sch9 and the master

transcription factor Sfp1 to activate ribosomal protein (RP) and Ribi genes [33,34,36]. Deletion

of either SFP1 or SCH9 abrogates the carbon source–dependent control of cell size [33]. The

Rim15 kinase, which is active under respiratory growth conditions in poor carbon sources,

suppresses the Cdc55 phosphatase that dephosphorylates Whi5 and thereby contributes to

Whi5 inactivation even when Cln3 activity is low [37]. Poor nutrient conditions also increase

the expression of the G1/S transcription factors and thereby activate Start at a smaller cell size

[22]. Notably, though, a cln3Δ bck2Δ whi5Δ triple mutant is completely viable and still

responds to nutrient cues, suggesting that nutrient regulation of Start may be partly indepen-

dent of the Cln3-Bck2-Whi5-SBF axis [12,33].

To identify activators of Start that might act in parallel to the central Cln3-Bck2-Whi5 path-

way, we screened for dosage suppressors of the lethal cln3Δ bck2Δ Start arrest phenotype

[12,13,38,39]. The screen identified YLR053c, a poorly characterized hypothetical gene that

encodes a recently evolved 108 amino acid microprotein, which we renamed NRS1 for Nitro-

gen-Responsive Start regulator 1. Nrs1 was only expressed in poor nitrogen conditions and

was cell cycle regulated with peak nuclear localization at Start. Nrs1 interacted genetically and

physically with SBF and caused a small size phenotype when overexpressed in wild-type cells.

Nrs1 exhibited intrinsic transactivation activity and direct fusion of Nrs1 to Whi5 was suffi-

cient to reduce cell size in rich carbon sources and rescue the cln3Δ bck2Δ lethality. These
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results demonstrate that the recently evolved Nrs1 microprotein allows cells to adapt to poor

nitrogen conditions by rewiring the Start transcriptional machinery.

Results

A genome-wide screen identifies overexpression of YLR053c as a rescue of
cln3Δ bck2Δ lethality

We constructed a cln3Δ bck2Δ whi5::GAL1-WHI5 strain that is viable in glucose but not galac-

tose medium due to conditionalWHI5 expression [12,13]. We used synthetic genetic array

(SGA) methodology to cross this query strain to an array of 5,280 strains that each of con-

tained a GAL1-GST-ORF 2-μm high copy plasmid [40–42] and assessed the growth of the

resulting array on galactose medium (Fig 1A and 1B). Three replicates of the screen identified

12 genes that reproducibly rescued the cln3Δ bck2Δ lethal Start arrest (S1 Table). These genes

included the G1 cyclins CLN1 and CLN3 but not other known Start activators such as CLN2,

BCK2, SWI4, and SWI6, possibly due to the high level ofWHI5 expression used in our screen,

and/or overexpression toxicity of particular genes. We recovered 10 genes not known to be

Start regulators. Notably, the short hypothetical ORF YLR053c restored cln3Δ bck2Δ growth to

the same extent as CLN3, as validated by direct transformation of the query strain with

GAL1-YLR053c and GAL1-CLN3 constructs (Fig 1C). Other prospective high copy rescue

genes, such as YEA4 (Fig 1C), could not be confirmed by direct transformation.

YLR053c encodes a 108 residue microprotein that is only poorly characterized. Micropro-

teins are often encoded by newly evolved proto-genes that are thought to form a genetic reser-

voir that fuels adaptive evolution [43]. To gain insight into YLR053c locus evolution, we

aligned the Ylr053c protein sequence from S. cerevisiae with predicted orthologs from other

yeast species (Fig 1D and 1E). To estimate the extent to which YLR053c locus evolved across

these species, we used the standard dN/dS metric that measures the ratio of single DNA site

substitution rates at nonsynonymous codons (dN) versus synonymous codons (dS). The

YLR053c locus appears to have evolved relatively rapidly within the Saccharomyces sensu stricto

group, with a dN/dS ratio in the 98th, 79th, and 90th percentile in Saccharomycesmikatae, Sac-

charomyces bayanus, and Saccharomyces castellii, respectively, as compared with S. cerevisiae

(see S1A Fig). In comparison, the evolution of other core Start regulators was closer to the

genome median, with dN/dS ratios in the 74th, 77th, and 58th percentile forWHI5, 69th, 75th,

and 31st percentile for SWI4, and 82nd, 51st, and 43rd percentile for SWI6. A 17 amino acid

sequence at the Ylr053c carboxyl-terminal region was conserved even in more distant yeasts

such as Kluyveromyces waltii (Fig 1E). Given its genetic role at Start and expression pattern

(see below), we renamed the YLR053c gene NRS1 for Nitrogen-Responsive Start regulator 1.

Nrs1 is induced by rapamycin and nitrogen limitation

To understand the function of Nrs1, we first sought to characterize its endogenous expres-

sion at the protein level. We performed scanning Number and Brightness (sN&B) confocal

microscopy to localize and quantify an Nrs1-GFPmut3 fusion protein at the subcellular

scale in live wild-type cells under a range of conditions [22,44]. GFPmut3, a monomeric

fast-folding GFP mutant [45], will be referred to here as GFP for brevity. Nrs1-GFP was not

detected in cells grown on either SC + 2% glucose or SC + 2% raffinose medium (Fig 2A),

consistent with previous analysis of YLR053/NRS1mRNA levels [46]. In contrast, Nrs1-GFP

was readily detected in the nucleus of cells grown overnight to mid log-phase in nitrogen-

limited (YNB + 0.4% proline + 2% glucose, abbreviated YNB+Pro) medium (Fig 2A), also

in accord with published genome-wide transcriptome analyses under various nutrient
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conditions [47] and the presence of binding sites for the Gln3 transcription factor in the

NRS1 promoter [48,49]. Induction of Nrs1 upon the switch to nitrogen-limited YNB+Pro

medium required a long incubation time, as Nrs1-GFP signal above autofluorescence back-

ground could not be detected after 7 hours in YNB+Pro but was clearly visible after 22

hours growth to mid-log phase in YNB+Pro (S1B Fig). Inhibition of TORC1 with 100 nM

rapamycin induced Nrs1-GFP expression and nuclear localization within 1 hour in rich SC

+ 2% glucose medium (Fig 2A), as also evident by immunoblot analysis of an endogenously

tagged Nrs113MYC strain treated with rapamycin (S1C Fig). These expression patterns were

Fig 1. A genome-wide screen identifies YLR053c/NRS1 as a dosage suppressor of cln3Δ bck2Δ lethality. (A)
Schematic of SGA genetic screen for dosage suppressors of cln3Δ bck2Δ lethality. (B) Representative screen plate
scored for growth on galactose medium. Red box, GAL1-YLR053c. (C) Comparison of growth at 30˚C for the indicated
strains streaked onto either glucose or galactose medium. YEA4 was a candidate hit that did not validate. (D)
Chromosomal region around YLR053c/NRS1 on Chr. XII and translated 108 amino acid (12.7 kDa) protein sequence.
(E) Ylr053c/Nrs1 protein sequence in S. cerevisiae (top) aligned with sequences of other yeast species. Conservation of
a KKXNPFYVPSXVVREMVmotif at the carboxyl terminus is indicated by a red bar. NRS1, Nitrogen-Responsive
Start regulator 1; SGA, synthetic genetic array.

https://doi.org/10.1371/journal.pbio.3001548.g001
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Fig 2. Nitrogen limitation and rapamycin treatment induce cell cycle–regulated Nrs1 expression. (A) sN&B images
of untagged and NRS1-GFP strains. Cells were grown and imaged in SC + 2% glucose with or without 100 nM
rapamycin, SC + 2% raffinose or nitrogen-limited medium (YNB +0.4% proline + 2% glucose + His, Leu, Met, Ura;
labeled YNB+Pro), as indicated. Scale bar is 10 μm. The same intensity scale was used for all conditions. (B) Abundance
of Nrs113MYC in various nutrient conditions as determined by immunoblot of anti-MYC immune complexes. raf, 2%
raffinose; gly, 2% glycerol; eth, 2% ethanol; C-, no carbon source; sat, saturated culture; rap, 100 nM rapamycin; pro,
0.4% proline; N-, no nitrogen source; glu, 2% glucose. IgG indicates antibody light chain. A raw image of the original
immunoblot is provided in S1 Raw Images. (C)Nrs1MYC immunoprecipitates from a rapamycin treatment time course
were either mock-treated (M, negative control), treated with lambda phosphatase (P), or lambda phosphatase
+ phosphatase inhibitors (P+I) prior to detection by anti-MYC immunoblot. In vitro phosphorylated recombinant Sic1
was used as a control to demonstrate activity of the phosphatase. (D) Absolute Nrs1 concentration in single cells grown
and imaged in nitrogen-limited medium (YNB+Pro) as a function of cell size, as determined by sN&B. Blue and orange
dots represent individual cells from 2 different experiments. The typical size range of cells at the G1/S transition (800 to
1,000 pixels, corresponding to 27 to 38 fL) is indicated. Cell-averaged total Nrs1 concentration (top) and nuclear
concentration where Nrs1 nuclear localization was evident (bottom) are shown. Infrequent small cells with high Nrs1
levels had high autofluorescence and no nuclear localization of the signal. (E) Example of high-content confocal image of
Nrs1-GFP cells grown to log phase in nitrogen-limited medium. Arrows indicate example cells with strong (green), dim
(blue), or no nuclear Nrs1 (red) or inviable cells (white). The histogram summarizes Nrs1 signals in small unbudded
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confirmed with an independent fusion of Nrs1 to wild-type GFP (S1D Fig). Hyperosmotic

stress, oxidative stress, and DNA damage did not induce Nrs1 expression in SC + 2% glu-

cose medium (S1E and S1F Fig). Immunoblot analysis of a Nrs113MYC strain in different

carbon and nitrogen sources, as well as in rapamycin-treated and saturated cultures, con-

firmed the specific expression of Nrs1 only under conditions of nitrogen limitation or

TORC1 inhibition (Fig 2B). A slow-migrating form of Nrs1 was induced by nitrogen limita-

tion (Fig 2B) and also appeared first upon rapamycin treatment before conversion to the

fast-migrating form (S1C Fig). To investigate the nature of this presumptive posttransla-

tional modification (PTM) on Nrs1, we treated Nrs1MYC immunoprecipitates with lambda

phosphatase but found that this did not affect the slower-migrating species (Fig 2C). We

also did not detect Nrs1-derived phosphopeptides by mass spectrometry (see below; S4

Table). We have not been able to determine the nature of this modification on Nrs1.

Nrs1 abundance peaks at the G1/S transition

We quantified Nrs1-GFP levels in asynchronous populations of live cells grown in nitro-

gen-limited YNB medium with our custom sN&B analysis software [22]. Nrs1-GFP concen-

trations, averaged over entire single cells, were between 5 and 20 nM. Higher levels were

observed in cells close to the typical critical size at the end of G1 phase, where Nrs1-GFP

was predominantly nuclear. In these cases, Nrs1 nuclear concentration was 60 to 80 nM

(Fig 2D). These Nrs1 nuclear levels at Start were comparable to Swi4 (50 to 100 nM), Whi5

(100 to 120 nM), and Swi6 (130 to 170 nM) levels determined previously by the same

method [22]. We further confirmed Nrs1-GFP expression and nuclear localization princi-

pally in large unbudded and small-to-medium budded cells in high-content images

acquired by standard confocal microscopy (Fig 2E). The cell cycle–regulated expression pat-

tern of Nrs1 protein suggested that it plays a role at Start, consistent with suppression of the

cln3Δ bck2Δ arrest by NRS1 overexpression.

NRS1 genetically interacts with SBF and other Start regulators

To investigate the mechanism by which Nrs1 promotes Start, we examined genetic interac-

tions of NRS1 with the main known Start regulators. Overexpression of NRS1 from the GAL1

promoter, either integrated at the NRS1 locus or from a 2-μm high copy plasmid [50], caused a

pronounced small size phenotype, in agreement with its putative role as a Start activator (Fig

3A and 3B). To interrogate the genetic requirements for this size phenotype, we transformed

deletion mutants of known Start regulators with the GAL1-NRS1 high copy plasmid and exam-

ined cell size epistasis. NRS1 overexpression almost entirely rescued the large size phenotype

of a cln3Δ mutant and partially rescued the large size of a bck2Δ mutant (Fig 3B). A whi5Δ
mutant was epistatic to NRS1 overexpression, whereas a nrs1Δ deletion did not exacerbate the

larger size caused byWHI5 overexpression and only modestly increased the size of a whi5Δ
mutant (Fig 3C). Notably, the small size caused by NRS1 overexpression was abrogated in

swi6Δ and swi4Δ mutant strains (Fig 3D). This requirement for full SBF function was further

demonstrated with a temperature-sensitive swi4-ts strain in which Swi4 binding to Swi6 is

altered [51], grown at the semipermissive temperature of 30˚C (Fig 3E).

(708 cells), large unbudded and small-to-medium budded (599 cells) and medium-to-large budded cells (186 cells) from
18 confocal images. Inviable cells with high autofluorescence, out-of-focus cells for which the budding pattern could not
be ascertained and regions in which illumination was not homogeneous were not scored. All numerical values
underlying panels D and E may be found in S1 Data. NRS1, Nitrogen-Responsive Start regulator 1; sN&B, scanning
Number and Brightness; YNB+Pro, YNB + 0.4% proline + 2% glucose.

https://doi.org/10.1371/journal.pbio.3001548.g002
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In contrast to its overexpression, deletion of NRS1 did not detectably affect overall growth

rate or cell size in a wild-type S288C (BY4741) laboratory strain, regardless of whether cells

were grown in either nitrogen-replete or nitrogen-limited medium (S2A–S2D Fig). Moreover,

in competitive growth experiments, nrs1Δ and wild-type cells had indistinguishable fitness

Fig 3. NRS1 is genetically upstream of SBF. Cell size distributions were determined for the indicated genetic
combinations. (A)NRS1 overexpression alone. (B) NRS1 overexpression with either cln3Δ or bck2Δ mutations. (C) NRS1
overexpression and nrs1Δ mutation with eitherWHI5 overexpression or whi5Δ mutation. (D) NRS1 overexpression with
either swi4Δ or swi6Δ mutations. (E) NRS1 overexpression with a swi4-tsmutation. Strains were transformed with either
GAL1-NRS1, GAL1-WHI5, or empty vector control high copy plasmids as indicated. Strains bearing galactose-regulated
constructs and associated controls were induced for 6 hours in SC + 2% galactose before size determination. WT plots
shown in panels B, C, and D (left, middle) represent the same measurement. All numerical values underlying this figure
may be found in S2 Data. NRS1, Nitrogen-Responsive Start regulator 1; SBF, SCB-binding factor; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001548.g003
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(S1 Text and S2E Fig). Because the small size phenotype caused by NRS1 overexpression

depended on SWI4 and SWI6, we hypothesized that MBF might partially compensate for loss of

NRS1 function. We therefore generated anmbp1Δ nrs1Δ double mutant strain and evaluated

growth in nitrogen-rich SC and nitrogen-poor YNB+Pro media. While the single mutant

strains had no growth defect in either condition, thembp1Δ nrs1Δ double mutant had a pro-

nounced growth defect that was specific to nitrogen-poor conditions (Fig 4A). We furthermore

considered the possibility that laboratory strains may have lost some requirements forNRS1

through the course of decades-long propagation in artificially rich nutrient conditions. To test

this idea, we deletedNRS1 in the prototrophic wild yeast Saccharomyces boulardii, which shares

>99% of its genome with S. cerevisiae including NRS1 [52]. An S. boulardii strain lacking NRS1

grew slower than wild-type cells in nitrogen-poor medium specifically (i.e., YNB+Pro+0.1%

glucose medium not supplemented with amino acids, Fig 4B). Hence, under conditions of

nitrogen limitation, NRS1 promotes growth in genetically crippled contexts in laboratory strains

and is required for optimal growth of a wild variant of S. cerevisiae. Taken together, these

genetic interactions suggested that Nrs1 promotes the G1/S transition by acting upstream of the

Whi5-inhibited form of SBF in a manner that is independent of Cln3 and Bck2.

Fig 4. NRS1 is required for optimal growth in poor nitrogenmedium. (A)Growth curves for WT (BY4741), nrs1Δ,mbp1Δ, and
mbp1Δ nrs1Δ laboratory strains grown in nitrogen-limited YNB+Pro+0.1% glucose medium and nitrogen-rich SC+0.1% glucose
medium. Curves represent the average of 3 different clones for each mutant strain. (B)Growth curves for WT and nrs1Δ S. boulardii
strains were grown in either nitrogen-poor YNB+Pro+0.1% glucose minimal medium (i.e., not supplemented with any other amino
acids) or nitrogen-rich SC+0.1% glucose medium. Three different isolates for the nrs1Δ S. boulardii strain were analyzed. Growth
curves are the average of at least 12 independent colonies for each strain. To eliminate potential nutrient lag effects, cultures were
rediluted into fresh medium, and their growth was monitored again. All numerical values are provided in S3 Data. NRS1, Nitrogen-
Responsive Start regulator 1; WT, wild-type; YNB+Pro, YNB + 0.4% proline + 2% glucose.

https://doi.org/10.1371/journal.pbio.3001548.g004
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Nrs1 interacts with SBF in vivo and in vitro

We next sought to identify Nrs1 protein interactors under conditions in which Nrs1 was

endogenously expressed at physiological levels. We performed immunoaffinity purification on

lysates from an endogenously tagged NRS113MYC strain and a control untagged strain grown in

nitrogen-limited YNB+Pro medium. Analysis of the samples by mass spectrometry (see Meth-

ods and S1 Text) identified multiple peptides (S4 Table) from which the corresponding pro-

teins were identified (>2 unique peptides, false discovery rate [FDR]<1%, S5 Table). Proteins

specific to the Nrs113MYC sample were identified by subtracting proteins present in the

untagged control and filtering hits against the CRAPome database of nonspecific interactions

[53]. This workflow yielded 7 proteins that were specific to the Nrs113MYC sample (S3 Table

and S3A Fig). Of these, Nrs1 was represented by 7 peptides (48% coverage), Swi4 by 5 peptides,

and Swi6 by 5 peptides; the remaining 4 candidates were represented by only 2 or 3 peptides

and thus of lower confidence. This unbiased analysis demonstrated that endogenous Nsr1

expressed under physiological conditions interacted with SBF. To confirm this result, we per-

formed co-immunoprecipitation experiments on extracts of rapamycin-treated cells express-

ing either SWI43FLAG or SWI63FLAG alleles in combination with either NRS113MYC or

WHI513MYC alleles, each expressed from their respective endogenous promoter. Swi43FLAG and

Swi63FLAG were each immunoprecipitated with anti-FLAG resin and then blotted with anti-

bodies against either FLAG or MYC epitope tags. Nrs113MYC andWhi513MYC were detected in

immunoprecipitates of endogenous Swi43FLAG and Swi63FLAG from cells grown the presence

of rapamycin but not in control immunoprecipitates from strains that lacked the FLAG-tagged

alleles (Figs 5A and S3B). A similar experiment carried out with polyclonal anti-Swi4 and anti-

Swi6 antibodies specifically detected endogenous SBF in Nrs113MYC immunoprecipitates from

cells grown in the presence but not the absence of rapamycin (S3C Fig). Collectively, these

results suggested that Nrs1 directly interacted with SBF under physiological conditions.

To determine if the interaction between Nrs1 and SBF was direct, we carried out in vitro

binding assays with purified recombinant proteins. We titrated recombinant FLAGSwi4-Swi6

and FLAGMbp1-Swi6 complexes produced in baculovirus-infected insect cells [12] against

recombinant GSTNrs1 produced in E. coli and immobilized on GSH-Sepharose resin. Swi4 and

Swi6 were both captured with GSTNrs1 across the titration series, whereas control GSH-Se-

pharose resin did not bind SBF (Fig 5B). In contrast, GSTNrs1 did not detectably interact with

the FLAGMbp1-Swi6 complex under the conditions tested, suggesting that specificity for Nrs1

is determined by the DNA-binding subunit and not the common Swi6 subunit of SBF/MBF.

To test whether Nrs1 was able to interact with Whi5-bound SBF, we titrated purified recombi-

nant GSTNrs1 into a preformed recombinant GSTWhi5-FLAGSwi4-Swi6 complex. We observed

that Nrs1 bound effectively even in the presence of Whi5 (Fig 5C). These results demonstrated

that endogenous Nrs1 interacts directly and specifically with the Swi4-Swi6 complex, that no

additional factors are needed for this interaction to occur, and that Nrs1 can bind SBF even in

the presence of Whi5.

Nrs1 binds to SBF-regulated promoters in vivo

We next assessed the presence of Nrs113MYC at the SBF-regulated promoters of CLN2 and

PCL1 by chromatin immunoprecipitation (ChIP). For both genes, we specifically detected

SCB-containing promoter sequences by PCR in cross-linked anti-MYC immune complexes

purified from cells that expressed Nrs113MYC from the endogenous NRS1 locus (Fig 6A). The

enrichment of PCL1 and CLN2 sequences in Nrs113MYC immunoprecipitates only in rapamy-

cin-treated cells further demonstrated that Nrs1 specifically binds SBF-regulated G1/S pro-

moter DNA (Fig 6A).
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Fig 5. Nrs1 binds to SBF in vivo and in vitro. (A) Swi43FLAG or Swi63FLAG complexes were immunoprecipitated from
the indicated strains grown in the presence of 200 nM rapamycin for 2 hours and interacting proteins assessed by
immunoblot with the antibodies against the indicated tags or proteins. Co-immunoprecipitation of Whi513MYC with
Swi43FLAG and Swi63FLAG served as a positive control. Mr markers (M) are indicated for each blot. Pgk1 served as a
loading control. Note the lower Mr form of Whi5 visible in the input blot is obscured by the IgG heavy chain signal in
the immunoprecipitations. Data is representative of at least 5 independent experiments (see S3B Fig for a replicate
experiment and S3C Fig for a reciprocal Nrs113MYC andWhi513MYC co-immunoprecipitation experiment performed
with polyclonal anti-Swi4 and anti-Swi6 antibodies). (B) Recombinant GSTNrs1 immobilized on GSH-Sepharose resin
was incubated with increasing concentrations of soluble purified SBF (FLAGSwi4-Swi6) or MBF (FLAGMbp1-Swi6).
Bound proteins were analyzed by immunoblot with anti-Swi6 and anti-FLAG antibodies as indicated. GSH-Sepharose
resin alone served as a negative control. (C) Recombinant FLAGSwi4-Swi6-GSTWhi5 complexes containing 0.1 ug of
GSTWhi5 were incubated with increasing amounts of recombinant His6-tagged Nrs1 (0.1 ug, 0.2 ug, and 0. 5ug,
equivalent to 4, 8, and 20 Nrs1:Whi5 molar ratio), immunoprecipitated using anti-FLAG beads to capture SBF–Whi5
complexes and probed with anti-GST antibody to detect Whi5 and anti-HIS6 antibody to detect Nrs1. Co-
immunoprecipitation with an irrelevant recombinant protein complex (Cdc4-FLAGSkp1) on anti-FLAG beads served
as a negative control for interaction specificity. Ponceau S stain was used to demonstrate equivalent input protein
complexes in each lane. Raw images of all original immunoblots are provided in the S1 Raw Images. MBF,
MCB-binding factor;NRS1, Nitrogen-Responsive Start regulator 1; SBF, SCB-binding factor.

https://doi.org/10.1371/journal.pbio.3001548.g005
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Fig 6. Nrs1 binds to SBF-regulated promoter DNA and activates SBF-driven transcription. (A) Anti-MYC chromatin
immunoprecipitates fromWT untagged control andNRS113MYC strains either untreated or treated with 200 ng/mL
rapamycin for 2 hours were probed for the presence of CLN2 and PCL1 promoter DNA sequences by real-time quantitative
PCR. Bars indicate the mean fold-enrichment across 2 replicates, and error bars show the standard error on the mean. (B)
Top panel: RICS vertical correlations from a NRS1-GFP strain grown in nitrogen-limited medium (YNB+Pro) as a function
of the pixel shift for total and cytosolic Nrs1-GFP pools. RICS correlation for free GFP was used as a control for
unconstrained diffusion. Data points show correlation averages over N FOV (N = 25 for nuclear Nrs1,N = 7 for cytosolic
Nrs1,N = 12 for free GFP). Each FOV contained 1 to 5 cells. Error bars represent the standard error on the mean. Bottom
panel: Scatter plots of fitted diffusion coefficients from individual FOVs of the same strains. Data from Swi6-GFP FOVs
served as a control for constrained diffusion. All numerical values underlying panels A and B may be found in S5 Data. (C)
Heatmaps of gene expression profiles upon galactose induction of GAL1-NRS1 andWT control strains. Genes were selected
based on a gene rank score across biological triplicates and values shown are upper quartile-normalized log2-read counts
averaged across triplicates for each time point. Genes that were strongly up-regulated (gene score> 0.5) and down-regulated
(gene score< −0.5) are shown. Genes were clustered for GAL1-NRS1 andWT heatmaps separately according to the default
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We predicted that Nrs1 binding to chromatin should reduce Nrs1 mobility in the nucleus.

To test this hypothesis, we assessed the molecular dynamics of Nrs1-GFP in cells grown in

nitrogen-limited medium using raster image correlation spectroscopy (RICS). The RICS

method exploits the hidden time structure of imaging scans, in which adjacent pixels are

imaged a few microseconds apart, to quantify the diffusional properties of fluorescent mole-

cules [54–56]. Intensity correlations between pixels shifted along the direction of scanning

(horizontal correlations), and along the orthogonal direction (vertical correlations), are aver-

aged over multiple scans. Horizontal and vertical correlations that decay with increasing pixel

shift are characteristic of the dynamical properties on 10 to 100 μs and 5 to 50 ms timescales,

respectively. We found that the vertical RICS correlations of nuclear Nrs1-GFP signal

decreased on a slower timescale than either free nuclear GFP or cytosolic Nrs1-GFP signal (Fig

6B). Fitted Nrs1-GFP diffusion coefficients in cells in which Nrs1 was predominantly nuclear

were lower compared to cells in which it was mostly cytosolic and also lower than the diffusion

coefficient of free nuclear GFP, a proxy for free diffusion in the nucleus. The Nrs1 diffusion

coefficient was similar to that of Swi6-GFP which is largely DNA bound (Fig 6B). This result

indicated that Nrs1 associates with a slow-moving nuclear component, most likely chromatin.

The apparent size epistasis between whi5Δ and GAL1-NRS1 prompted us to ask whether

Nrs1 might reduce the association Whi5 with SBF and/or chromatin. However, ChIP analysis

of Whi5HA at the CLN2 and PCL1 promoters revealed that Whi5HA–promoter interactions

were not reduced in the presence of overexpressed NRS1 (S4A Fig). In addition, GAL1-NRS1

cells had wild-type levels of Whi5 as determined by sN&B quantification (S4B Fig), and

GAL1-NRS1 did not alter Whi5HA association with Swi4 or Swi6 in co-immunoprecipitation

experiments (S4C Fig). Nrs1 and Whi5 also did not compete for SBF binding in in vitro bind-

ing assays with recombinant proteins (S4D Fig). Together, these results obtained using differ-

ent in vivo, in vitro, biochemical, and imaging-based approaches suggested that Nrs1 binds

SBF at G1/S promoters in vivo, but that the binding of Nrs1 does not alter Whi5 interactions

with SBF or promoter DNA. These results led us to consider the possibility that Nrs1 might

directly activate transcription.

Ectopic expression of NRS1 activates the G1/S regulon

To assess the potential role of Nrs1 in transcription, we used RNA sequencing (RNA-seq) to

determine the genome-wide transcriptional response to ectopic NRS1 overexpression. Three

biological replicates of nrs1::GAL1-NRS1 and wild-type cells were grown to log-phase in SC

+2% raffinose medium, induced with galactose for 6 hours, and transcriptional profiles ana-

lyzed by RNA-seq. Gene scores were defined based on their expression fold-change before and

after 6-hour induction, comparing for each gene the fold-change across multiple replicates to

control for intersample expression variability and the effects of galactose (see Methods; all

scores provided in S6 Table). Up-regulated genes in the GAL1-NRS1 samples included NRS1

itself as expected (rank 1) and many of the 139 SBF/MBF target genes that comprise the G1/S

regulon as defined by integration of multiple microarray-based analyses of G1/S regulated

genes [10]. These G1/S genes included CLN2 (rank 12) and PCL1 (rank 82), the promoters of

which were bound by Nrs1 as shown above. Nrs1 also strongly induced the expression ofHO

settings of the R Heatmap function. Positions of NRS1 (�), CLN2 (��), and PCL1 (���) are indicated. SBF (red), MBF (blue),
and SBF/MBF (purple) target genes are indicated on the left side. Raw data underlying this panel may be found on the Gene
Expression Omnibus database under the accession number GSE179366. FOV, field of view; MBF, MCB-binding factor;
NRS1, Nitrogen-Responsive Start regulator 1; RICS, raster image correlation spectroscopy; SBF, SCB-binding factor; WT,
wild-type; YNB+Pro, YNB + 0.4% proline + 2% glucose.

https://doi.org/10.1371/journal.pbio.3001548.g006
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(rank 10), RNR1 (rank 15), andHCM1 (rank 20), which are markers of the G1/S transition.

Visualization of the data in a heatmap format illustrated the overall enrichment of SBF/MBF

target genes (Fig 6C). Among the most strongly up-regulated genes (score>0.5), SBF targets

were enriched 12-fold compared to random expectation (24 of 86 genes, p = 3�10−20), MBF

targets were enriched 7-fold (17 of 101 genes, p = 9�10−11), but out of the 17 strongly up-regu-

lated MBF targets, 16 were also SBF targets so that MBF-only targets were not enriched (1/53

genes, p = 0.65). In the wild-type control samples, no significant enrichment/depletion com-

pared to random expectations was observed. We note that in addition to recognition of its cog-

nate SCB elements, SBF can also activate genes that only contain MCB elements [57] such that

the apparent specificity of Nrs1 for SBF is not undermined by the up-regulation of MBF genes

in these experiments.

Nrs1 confers transcriptional activity that can rescue G1/S-transcription
deficient mutants

We next asked whether Nrs1 might itself function directly as a transcriptional activator. To

test this hypothesis, we constitutively expressed a Nrs1-Gal4 DNA-binding domain fusion pro-

tein (GAL4DBD-NRS1) in a reporter strain bearing theHIS3 gene under control of the GAL1

promoter. We used GAL4DBD alone and GAL4DBD fused to an irrelevant human gene

(UBE2G2) that potently transactivates as negative and positive controls, respectively. Full-

length NRS1, but not a truncated version that encoded only the conserved carboxyl terminus,

was able to activate transcription of theHIS3 reporter and thereby allow cell growth in

medium lacking histidine (Figs 7A and S5A).

Given the inherent transactivation capacity of Nrs1, we next investigated whether NRS1

overexpression could suppress the growth defects caused by loss of other G1/S activators. We

first tested a cln1Δ cln2Δ cln3Δ MET-CLN2 strain, in which G1 cyclin activity is restricted to

methionine-free media, with or without a<pGAL1-NRS1> plasmid. Repression of CLN2 by

methionine caused a growth arrest, whether or not NRS1 was expressed, although ectopic

expression of NRS1 did modestly reduce cell size and slightly increased cell proliferation (S5B

Fig). Hence, NRS1 cannot compensate for the total lack of G1-cyclin activity. We then tested

whether NRS1 overexpression could suppress the growth defects of mutants in which G1/S

transcription was impaired, but in which Cln-Cdc28 activity was preserved. We first tested a

mbp1Δ swi4-ts double mutant [58]. The growth of a GAL1-NRS1 mbp1Δ swi4-ts strain was

improved with respect to thembp1Δ swi4-ts control at a semipermissive temperature of 30˚ in

galactose medium (Fig 7B; see S5C Fig for plate images with a 2-day extension of the incuba-

tion period), but not in other media or at the fully permissive temperature (S5B Fig). As a fur-

ther test, we examined NRS1-mediated suppression in strains that expressedWHI512A and

SWI6SA4 alleles in which all Cdc28 consensus sites are mutated, a combination that abrogates

the Cln-Cdc28 mediated relief of SBF inhibition by Whi5 [12,14]. Overexpression of NRS1

also partially rescued the growth defect of this strain (Fig 7C). These results suggested that

Nrs1 provides an alternative mechanism of Start activation by augmenting G1/S transcription

in the presence of Whi5-mediated inhibition.

Nrs1 can bypass Whi5 inhibition of SBF

To test whether physiological levels of Nrs1 targeted to SBF are sufficient to promote Start acti-

vation, we constructed a strain expressing a Whi5-Nrs1-GFP fusion protein from the endoge-

nousWHI5 promoter. Experiments with this strain were carried out in SC complete medium

to avoid other possible nitrogen-dependent parallel inputs to Start and to focus on Nrs1 func-

tion. The chimeric protein was expressed and had the expected molecular mass (S6A Fig) and
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retained the localization pattern of endogenous Whi5, with about 30% to 35% of pre-Start cells

showing a prominent nuclear signal (Figs 8A and S6B). Cells expressing Whi5-Nrs1-GFP were

almost as small as whi5Δ cells (Fig 8B). This phenotype was not due to the presence of the GFP

tag since size distributions of strains expressing untagged versus GFP-tagged Whi5 were

Fig 7. Nrs1 has an inherent transcription activation function that can partially rescue G1/S-transcription
deficient mutants. (A) Transactivation of aHIS3 reporter by fusion of Nrs1 to the Gal4 DNA-binding domain
(GAL4DBD-NRS1) but not by fusion of the Nrs1 carboxyl terminus (GAL4DBD-NRS1Cter). GAL4DBD-UBE2G2 and
GAL4DBD constructs served as positive and negative controls, respectively. Growth curves were determined in -His
-Trp medium. All numerical values underlying this panel may be found in S6 Data. (B) Serial 5-fold dilutions ofNRS1
and GAL1-NRS1 strains in WT, swi4-ts,mbp1Δ, andmbp1Δswi4-ts backgrounds were spotted onto SC + 2% glucose,
SC + 2% raffinose and SC + 2% galactose, and grown for 5 days at 30˚C. C1 to C4 indicate 4 independent clones of the
mbp1Δ swi4-ts GAL1-NRS1 strain. (C) Serial 5-fold dilutions of WT or swi6Δ strains transformed with GAL1-WHI5,
GAL1-WHI512A, GAL1-SWI6SA4, GAL1-NRS1, or empty control plasmids or combinations thereof were spotted on
rich medium containing 2% glucose or 2% galactose and grown for 2 days at 30˚C.NRS1, Nitrogen-Responsive Start
regulator 1; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001548.g007
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indistinguishable (S6C Fig). Moreover, cells expressing the chimeric protein grew at the same

rate as wild-type and whi5Δ strains (S6D Fig). Strikingly, cells expressing Whi5-Nrs1-GFP

were as small as cells that expressed GAL1-NRS1 in galactose medium (Fig 8C).

As a reduction of Whi5 dosage in the Whi5-Nrs1-GFP fusion context could in principle

explain the small size of this strain, we used sN&B to compare the nuclear concentrations of

Whi5 in the wild-type and the Nrs1-fusion contexts. Whi5 levels in wild-type cells were 110 to

130 nM, consistent with those determined previously [22]. The Whi5-Nrs1-GFP chimera was

present at a slightly lower concentration, 80 to 100nM (Fig 8A), close to endogenous Nrs1

nuclear levels in nitrogen-limited media (60 to 80 nM, see Fig 2D). This slight decrease in

Whi5 abundance was unlikely to explain the small size of cells expressing Whi5-Nrs1-GFP

since cell size is not strongly sensitive toWHI5 gene dosage [25,59]. We confirmed that hemi-

zygousWHI5/whi5Δ diploid cells were only marginally smaller than wild-type diploid cells

(S6E Fig) and, moreover,WHI5 overexpression only causes a 20% to 30% increase in mode

size (Fig 3C), in agreement with previous results [25,59]. Consistently, our previously pub-

lished Start model [22] also predicted that down-regulating Whi5 levels from 120nM to 85nM

should not affect the critical size at Start (S6F Fig).

Finally, we predicted that the Whi5-Nrs1 fusion should be sufficient to rescue the lethal

Start arrest of a cln3Δ bck2Δ strain. We crossed a cln3Δ strain bearing the integrated

WHI5-NRS1-GFP allele to a bck2Δ strain and analyzed growth of dissected tetrads on selective

media to identify spore genotypes (Fig 8D). We recovered many viable cln3Δ bck2Δ
WHI5-NRS1-GFP triple mutant spore clones but did not recover any viable cln3Δ bck2Δ WHI5

double mutant clones (Fig 8D). As expected, no viable cln3Δ bck2Δ spore clones were obtained

from a control cross of a cln3Δ whi5::WHI5-GFP and a bck2Δ strain (Fig 8D). As a further con-

trol to ensure that the Nrs1 fusion did not merely inactivate Whi5 in a nonspecific manner, we

fused the above transcriptionally inactive carboxyl-terminal fragment of Nrs1 to Whi5 and

showed that it did not reduce cell size (S7A Fig) nor rescue the cln3Δ bck2Δ lethality (S7B Fig).

These results supported a model in which Nrs1 bypasses Whi5 inhibition by directly confer-

ring transactivation activity on the Whi5-inhibited SBF complex.

Discussion

On the premise that additional genes may activate Start under suboptimal nutrient conditions,

we screened for genes that can circumvent the Start arrest caused by loss of both CLN3 and

BCK2 function. We discovered that NRS1 overexpression efficiently bypasses the lethality of a

cln3Δ bck2Δ strain and activates Start in wild-type cells; that Nrs1 associates with SBF at G1/S

promoter DNA and promotes SBF-dependent transcription; that NRS1 overexpression can

genetically suppress defects in SBF function; and that Nrs1 is itself a transcriptional activator.

Our data suggest a model whereby nitrogen limitation or TORC1 inhibition promote NRS1

expression and that Nrs1 binding to SBF directly recruits the transcriptional machinery to

overcomeWhi5-mediated inhibition of SBF (Fig 8E). In effect, endogenous Nrs1 acts as a

nutrient-dependent parallel input into SBF. Although this input appears dispensable under

most growth conditions, it is revealed in a genetically sensitized context in laboratory strains

and in wild yeast strains. We stress that the cln3Δ bckΔ GAL1-WHI5 parental background used

for the original high copy suppression screen might have biased towards the discovery of Start

activators able to operate in presence of high Whi5 dosage.

This model of Nrs1 function (Fig 8E) allows reinterpretation of some previous YLR053c/

NRS1 genetic interactions uncovered in high-throughput studies [60]. Deletion of NRS1

slightly aggravates the growth defect of a ESS1 prolyl isomerase mutation which, in turn,

exhibits negative genetic interactions with deletions of SWI6 or SWI4 [61]. Although the latter
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Fig 8. Tethered Nrs1 bypasses theWhi5-dependent lethal arrest of a cln3Δ bck2Δ strain. (A) sN&Bmicroscopy images ofWHI5-GFP
andWHI5-NRS1-GFP cells grown in SC + 2% glucose. Scale bars are 5 μm. The same intensity scale was used on both images. Fractions
of pre-Start G1 cells were computed based on the assessment of nuclear GFP signal inWHI5-GFP cells (N = 245) andWHI5-NRS1-GFP
(N = 95) cells. Absolute concentrations of Whi5-GFP andWhi5-Nrs1-GFP are shown in the plot. (B) Cell size distributions of WT,
GAL1-NRS1, whi5Δ, andWHI5-NRS1-GFP strains in SC + 2% glucose. (C) Cell size distributions of WT, GAL1-NRS1, whi5Δ, and
WHI5-NRS1-GFP strains in SC + 2% galactose. All numerical values underlying panels A–C may be found in S7 Data. (D)Genotype of
10 tetrads from a cln3Δ WHI5-NRS1-GFP X bck2Δ cross (top) and a cln3Δ WHI5-GFP X bck2Δ cross (bottom). For each tetrad, spore
clone growth was assessed on SD-LEU (indicates cln3::LEU2), SC+NAT (indicates bck2::NATR), and SD-HIS (indicates whi5::
WHI5-NRS1-GFP-HIS3 or whi5::WHI5-GFP-HIS3). Colored boxes indicate viable cln3Δ bck2Δ spore clones, all of which also contained
theWHI5-NRS1-GFP construct. (F) Simplified schematic for Nrs1-dependent activation of Start. Red lines indicate nitrogen-limited
conditions. Not all components of the Start machinery are shown. See text for details.NRS1, Nitrogen-Responsive Start regulator 1;
sN&B, scanning Number and Brightness; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3001548.g008
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interactions suggested a possible role of Ess1 in Swi6/Whi5 nuclear import, we did not observe

mis-localization of Swi4, Swi6 or Whi5 in either GAL1-NRS1 or nrs1Δ strains. With respect to

interactions with the transcriptional machinery, NRS1 overexpression exacerbates the defect

caused by deletion of CTK1, the catalytic subunit of RNA Pol II carboxyl-terminal domain

(CTD) kinase I [62]. In contrast, NRS1 deletion shows a positive genetic interaction with the

RNA Pol II CTD-associated phosphatase, FCP1, which negatively regulates transcription [63].

NRS1 overexpression also subtly increases chromosomal instability [64], which might result

from premature Start activation [65]. These interactions with transcriptional regulators are

consistent with our proposed model for Nrs1 function in G1/S transcription activation.

NRS1 is a member of a newly described class of genetic elements variously called proto-

genes, neo-ORFs, smORFS, small ORF encoded peptides (SEPs), or microproteins [43,66–74].

Computational predictions and ribosomal footprinting first identified hundreds of short spe-

cies-specific translated peptides from extragenic regions in yeast [43]. Subsequent approaches

have yielded a plethora of microproteins encoded by smORFs in various species [66–69,75].

Ribosome profiling and high-throughput genetic analyses has revealed hundreds of functional

microproteins in human cells [76,77]. Documented functions for microproteins include

phagocytosis [70], autophagy [71], actin-based motility [72], mRNA decapping [78], proteo-

lytic processing [79], mitotic chromosome segregation [73], mitochondrial morphology con-

trol [76], plant hormone signaling [80], transcriptional control [81], and cancer cell survival

[77], among many others [82,83]. Microproteins derived from noncanonical coding regions

represent a substantial fraction of major histocompatibility complex (MHC) class I–associated

tumor-specific antigens [84,85]. De novo appearance of short proto-genes coupled with rapid

evolution may form a dynamic reservoir for genetic innovation and diversification [43]. Inter-

estingly, lncRNAs appear to evolve rapidly from junk transcripts and, in turn, many lncRNAs

appear to encode microproteins [86–88], consistent with the idea that such regulatory func-

tions can readily emerge de novo. Fast evolving genes often have complex expression patterns

compared to highly conserved genes and tend to be enriched for transcription-associated func-

tions [89]. The rewiring of transcription factor function by microprotein partners may aug-

ment the inherent evolvability of transcriptional control by promoter binding site mutations

[90]. As illustrated by the example of NRS1, transcription activation may be a particularly facile

route for proto-genes to quickly acquire important regulatory functions that optimize fitness

under specific conditions.

Methods

Yeast strains construction and culture

All S. cerevisiae strains were isogenic with the S288C (BY4741) auxotrophic background (S2

Table). Standard molecular genetics methods were employed for genomic integration of car-

boxyl-terminal tagging cassettes [91] and verified by PCR or sequencing. Standard media were

used for yeast growth: rich (XY: 2% peptone, 1% yeast extract, 0.01% adenine, 0.02% trypto-

phan); synthetic complete (SC: 0.17% YNB, 0.2% amino acids, 0.5% ammonium sulfate); or

nitrogen-limited (0.17% YNB, 0.4% proline, supplemented with histidine, leucine, methionine

and uracil to complement auxotrophies as needed). Prototrophic S. boulardii strains were

grown in SC or nitrogen-limited (0.17% YNB, 0.4% proline) without amino acid supplements.

To delete NRS1 in S. boulardii, the strain MYA-796 was transformed with pGZ110-Cas9-amd-

SYM-nrs1_sgRNA and plated on acetamide-containing medium. Deletion alleles were con-

firmed by DNA sequencing of the coding region and the pGZ110 plasmid was counter-

selected on fluoroacetamide medium [92]. Carbon sources were added to 2% w/v as indicated.

Unless otherwise specified, cells were grown to saturation in SC + 2% glucose and diluted 1 in
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5,000 into fresh medium for 16 to 18 hours growth prior to experiments. These conditions

ensured homeostatic growth in log-phase at the time of experiment at a culture density of 2 to

5 106 cells/mL. For strains bearing constructs expressed under the inducible GAL1 promoter,

pre-growth was in SC + 2% raffinose. Cell size distributions were acquired using a Beckman

Coulter Z2 counter (Beckman Coulter, Brea, CA, USA). Growth curves were acquired at 30˚C

using a Tecan Sunrise shaker-reader (Tecan Group Ltd., Männedorf, Switzerland).

SGA screen

A cln3Δ bck2Δ whi5::GAL1-WHI5 strain was mated to an array of 5,280 GAL1-ORF fusion

strains [41]. Following haploid selection, strains were scored for growth on selective medium

containing 2% galactose. Three replicates of this screen were performed. For the third repli-

cate, expression of the GAL4 transcription factor was increased in case it was limiting for

expression ofWHI5, the ORFs, or GAL genes required for growth in the presence of galactose

at the sole carbon source. For this purpose, GAL4 was placed under the control of the ADH1

promoter in a cln3::LEU2 bck2::NATR whi5::KanR-pGAL1-WHI5 can1d mfa1::MFA1pr-spHIS5

+ GAL4p::HphRpADH1-GAL4 query strain. Screen hits were validated by transformation of

the GAL1-GST-ORF construct directly into the cln3Δ bck2Δ whi5::GAL1-WHI5 query strain.

Chromatin immunoprecipitation

Cells were grown in XY with 2% raffinose, induced with 2% galactose for 6 hours to an OD600

�0.5 and fixed with 1% formaldehyde. Whole-cell extracts from 50 mL of culture were pre-

pared by glass bead lysis, sonicated to shear chromatin DNA into fragments, and incubated

with the appropriate antibody coupled to magnetic beads (Dynabeads PanMouse IgG). Immu-

noprecipitated DNA was washed, de-crosslinked, purified, and analyzed by quantitative real-

time PCR. Reactions with appropriate oligonucleotides were set-up with SYBR Green PCR

Master Mix (Applied Biosystems, Waltham, Massachusetts, USA) and carried out on an ABI

7500 Fast Real-Time PCR System. Enrichment at the CLN2 or PCL1 locus was determined

after normalization against values obtained from input samples using SYP1 as the reference

gene. HAWhi5 and Nrs113MYC ChIP experiments were performed in biological duplicates. The

bar height on Fig 6A and S4A Fig represent the mean over duplicates, and the error bars repre-

sent the standard error on the mean.

Immunoprecipitation and immunoblot analysis

Protein extracts were prepared in lysis buffer (10 mMHEPES-KOH pH 7.9, 50 mM KCl, 1.5

mMMgCl2, 1 mm EDTA, 0.5 mMDTT, 50 mMNaF, 50 mM sodium pyrophosphate, 1 mM

Na3VO4 and Roche protease inhibitor cocktail; Roche, Basel, Switzerland) by glass bead lysis.

On S3C Fig, the lysis buffer contained 200mMNaCl, 50 mMHEPES pH 7.5, 1 mM EDTA, 1

mMDTT, 1.5 mMMgCl2, protease inhibitors, 2 mMNaF, and 2 mMNa-pyrophosphate. Due

to low expression levels in the 60 to 150 nM range (Fig 2D and [22]), in some cases, we concen-

trated Nrs113MYC by immunoprecipitation prior to immunoblot detection. Immunoprecipita-

tions were carried out at 4˚C for 2 hours with indicated antibodies in soluble form (9E10 anti-

MYC from EMDMillipore, Burlington, Massachusetts, USA, 05–419; M2 anti-FLAG from

Sigma, St Louis, Missouri, USA, F1804) then bound to protein G resin (Pierce, Waltham, Mas-

sachusetts, USA, 20398) for 1 hour at 4˚ C, followed by either 1 or 3 washes with wash buffer

(10 mM Tris-Cl pH7.9, 0.1% Triton X-100, 0.5 mMDTT, 0.2 mM EDTA, 10% glycerol, 150

mMNaCl; for Fig 5A, Wash buffer: 10 mM Tris-HCl pH7.9, 0.5 mMDTT, 0.2 mM EDTA,

150 mMNaCl), and resuspension in SDS sample buffer. In Fig 5A, the immunoprecipitations

were performed as above except that cell pellets were resuspended in 200 mMNaCl, 50 mM
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HEPES-KOH pH 7.9, 5mM EDTA, 1 mMDTT, MCE protease inhibitors, 2 mMNaF, 2 mM

Na-pyrophosphate, 0.1% NP-40 prior to lysis and complexes captured directly onto 15 μL of

M2 anti-FLAG resin (anti-FLAGM2 affinity gel Sigma, A2220). For S3C Fig, the complexes

were captured directly onto 15 μL of anti-MYC resin (Pierce, 20168). Proteins were resolved

by SDS-PAGE, transferred onto nitrocellulose membrane, and immunoblotted with anti-HA,

anti-Swi4 (gift from Brenda Andrews), anti-Swi6 (gift from Kim Nasmyth), anti-GST, anti-

MYC 9E10, or anti-FLAGM2 antibodies, followed by detection with the appropriate HRP-

conjugated secondary antibody [12,93].

In vitro binding assays

Recombinant GST-Nrs1 fusion protein was affinity purified with GSH-Sepharose 4B (Amer-

sham Biosciences, Little Chalfont, Buckinghamshire, UK) in 50 mMHEPES-NaOH, pH 7.5,

150 mMNaCl, 5 mM EDTA, 5 mMNaF, 0.1% NP-40, 10% glycerol, supplemented with 1 mM

PMSF. Recombinant SBF or MBF complex was purified with anti-FLAG resin (M2, Sigma)

from insect cells co-infected with FLAGSwi4-Swi6 or FLAGMbp1-Swi6 baculovirus constructs in

buffer supplemented with complete protease inhibitor cocktail (Roche) and then eluted with

excess FLAG peptide [12]. Binding reactions were incubated at 4˚C for 1 hour with rotation.

Washed samples were resolved on SDS-PAGE gel followed by immunoblotting with anti-

FLAG (M2, Sigma) and anti-Swi6. SBF-GST-Nrs1 and SBF-HA-Whi5 complexes were pre-

formed in solution and immobilized on glutathione or anti-HA resin, respectively, incubated

with GST-Nrs1 or HAWhi5, washed and analyzed as described above.

Immunoprecipitation and mass spectrometry analysis

Cell pellets from untagged and Nrs113MYC strains from 100 mL of culture at OD600 = 1 were

lysed in standard lysis buffer (50 mM Tris-HCl pH8.0, 150 mM KCl, 100 mMNaF, 10% glyc-

erol, 0.1% tween-20, 1 mM tungstate, 1 mMDTT, 10 mM AEBSF, 10 mM pepstatin A, 10 mM

E-64) [56] supplemented with protease inhibitors using a N2(l) freezer mill. Lysates (0.5 mL)

were incubated for 1 hour with 5 μL of anti-MYC antibody (Gentex, Zeeland, MI, USA) fol-

lowed by 1-hour incubation with an additional 50 μL of GammaBind plus Sepharose beads

(GE Healthcare, Chicago, IL, USA) to capture protein complexes. After multiple washes, sam-

ples were separated on Bio-Rad (Hercules, CA, USA) precast gels, and the entire gel lane was

cut for each sample (CAPCA core facility, https://capca.iric.ca; see Supporting information

Methods). Gel samples were destained, alkylated, and digested with trypsin for 8 hours at 37˚C

and peptides extracted in 90% ACN. Peptides were separated on a home-made C18 column

connected to Q-Exactive HF Biopharma with a 56-minute gradient of 0% to 30% acetonitrile

in 0.2% formic acid. Each full MS spectrum of extracted peptides was acquired at a resolution

of 120,000, followed by acquisition of 15 tandemMS (MS–MS) spectra on the most abundant

multiply charged precursor ions by collision-induced dissociation (HCD). Data were pro-

cessed using PEAKS X (Bioinformatics Solutions, Waterloo, Ontario, Canada) and the Uni-

Prot yeast database. Variable selected posttranslational modifications were carbamidomethyl

(C), oxidation (M), deamidation (NQ), acetyl (N-ter), and phosphorylation (STY). Control

untagged and Nrs113MYC data were analyzed with Scaffold 4.8.9 at an FDR of 1% for at least 2

peptides with a likelihood of at least 99%.

RNA-seq analysis

Wild-type and GAL1-NRS1 strains were inoculated for overnight growth in SC + 2% raffinose

at 30˚C, then diluted in SC + 2% raffinose to an OD600 of 0.07–0.1, incubated at 30˚C until an

OD600 of 0.15–0.2 was reached, at which point a sample was collected for RNA extraction
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prior to galactose induction. For NRS1 induction, the cultures were either concentrated by

centrifugation, resuspended in 20 mL SC+2% raffinose and added to 200 mL SC+2% galactose

(replicate 2,3) or grown to an OD600 of 0.15 to 0.2 in 200 mL SC + 2% raffinose followed

direct addition of 2% galactose to the culture (replicate 1). Time point 0 was collected immedi-

ately, followed by time points up to 6 hours. Total RNA was prepared as described in [94].

Briefly, cells were pelleted at 3500 rpm, disrupted using glass beads, phenol/chloroform

extracted, and the aqueous phase containing nucleic acids was ethanol-precipitated. Contami-

nating genomic DNA was removed by DNase treatment (Qiagen, Hilden, Germany). Total

RNA was quantified using Qubit (Thermo Scientific, Waltham, MA, USA) and RNA quality

assessed with a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Transcrip-

tome libraries were generated using the Kapa RNA HyperPrep (Roche) using a Poly-A selec-

tion (Thermo Scientific). Sequencing was performed on the Illumina NextSeq 500 system,

aiming for 10 million single-end reads per sample, 40 million for raffinose, and final (6 hours)

induced time points. RNA-seq experiments were performed in biological triplicate.

Reads were aligned to all Ensembl yeast transcripts using Bowtie 2.2.5 [95] with default

parameters. Read counts were tabulated for each gene, only considering alignments with an

edit distance no greater than 5. Genes with at least 500 reads in at least 1 sample were included

in the analysis. Gene expression levels for each sample, expressed as log2 read counts, were

normalized to the upper quartile gene expression level for the same sample, as recommended

in Bullard and colleagues [96], and represented as heatmaps Fig 6C.

For each of the 3 GAL1-NRS1 biological replicate samples, the expression after 6 hours

galactose induction was normalized separately to the expression in raffinose (prior to induc-

tion) and to the wild-type sample from the same replicate after 6 hours induction. The former

controls for the sample-to-sample variation, while the latter controls for the effect of the switch

to galactose-containing media. To ensure to the best possible extent that observed expression

differences are due to NRS1 expression and not to one of the 2 abovementioned sources of var-

iation, the direction and magnitude of the differential expression of each gene had to be repro-

duced relative to both controls. We thus kept as the final score for each replicate the smallest

absolute log2-fold change produced by either of the 2 comparisons and set the score to zero if

the signs of the 2 disagreed. The values for each of the 3 replicates were averaged to yield the

final gene score (S6 Table). This procedure was designed to control for the effects of galactose

medium (i.e., normalizing by 6 hours wild-type samples) and for intersample expression vari-

ability (i.e., normalization to expression levels prior to induction of each culture and averaging

over replicates). Hence, high scores for GAL1-NRS1 (positive or negative) could be obtained

only for genes up-/down-regulated both in galactose compared to raffinose and compared to

wild-type cells in galactose. Wild-type 6 hours scores (S6 Table) were obtained in the same

fashion except that gene expression in wild-type cells after 6 hours in galactose were normal-

ized separately to wild-type expression in raffinose and to GAL1-NRS1 after 6-hour induction.

This control analysis is symmetrical and thus equivalent to the analysis performed on

GAL-NRS1 samples.

High-content imaging

High-content images were acquired on an OPERA high-throughput confocal microscope

(PerkinElmer, Waltham, MA, USA) equipped with a 60× water objective. Pixel resolution was

220 nm at 2�2 binning. 200 μL of culture were directly transferred to a Greiner Screenstar

glass-bottom 96-well imaging plate and imaged within 30 to 45 minutes. GFP was excited with

a 488 nm laser (800 ms exposure for endogenously tagged proteins and 320 ms for overex-

pressed proteins) and detected using a 520/35 nm band-pass filter. ForWHI5-GFP and
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WHI5-NRS1-GFP strains, pre-Start G1 phase cells were identified by nuclear localization of

the GFP signal, as computed using a custom image-analysis script written in MATLAB (Math-

Works, Natick, MA, USA). The script masks individual cells using threshold-based detection

of the autofluorescence background and determines the fraction of individual cells that display

a pre-Start nuclear localization of the GFP signal.

sN&B and RICS fluorescence fluctuation microscopy

Live cells in log-phase were imaged on an Alba sN&B system (ISS, Champaign Illinois, USA)

comprised of an inverted confocal Nikon Eclipse microscope equipped with a 100× water

objective, a FianiumWhitelase continuous white laser with 488 nm emission filters and single

photon APD detectors, as described previously [22]. In brief, 1.5 mL of cell culture was pelleted

for 2 minutes at 3,000 rpm in a microfuge, resuspended in approximately 100 μL of culture

supernatant and 3 μL deposited on a preset 65 μL drop of SC + 2% glucose + 2% agar gel

medium on a circular glass coverslip (#1, VWR) that was encircled by an adhesive silicon ring.

After 4 minutes drying time, a ConcanavalinA-coated (Sigma, 2 mg/mL) coverslip was gently

pressed on top of the agarose to seal the pad against the adhesive silicon ring. Sealed pads were

clamped in an AttoFluor chamber (Molecular Probes, Eugene, OR, USA) and immediately

imaged for no more than 1.5 hours. Unless otherwise specified, the culture growth medium

was reused to make the imaging pads in order to prevent inadvertent nutrient up- or down-

shifts. For this purpose, 1 mL of cell culture was pelleted at 15,000 rpm for 1 minute, and

500 μL of the supernatant was mixed with 10 mg of agarose and warmed for 1 to 2 minutes at

98˚C to melt the agar, followed by application to a coverslip. For sN&B experiments in the

presence of rapamycin, growth medium containing 100 nM rapamycin was also used to pre-

pare the pad. To mitigate possible degradation of rapamycin during the pad preparation, an

additional 100 nM of rapamycin was added to the pre-warmed agar mix just before making

the pad. The final rapamycin concentration was therefore 200 nM, i.e., about 200 ng/mL, simi-

lar to rapamycin treatment time courses in Figs 5B and S1C, and the fixed-duration treatment

in Fig 5A. Cells were pretreated 1 hour before imaging and imaging lasted about 1.5 hours,

yielding a treatment duration between 1 hour and 2.5 hours across the various fields of view

(FOVs). There were no significant differences in Nrs1-GFP signals across different FOVs.

sN&B imaging was performed using 20 raster scans of the same 30 μm–wide FOVs of 256

pixels (pixel size 117 nm), using an excitation power of 1 to 2 μW at 488 nm wavelength and a

64 μs pixel dwell time. sN&B images shown in the figures are projections of the 20 raster scans.

Protein concentrations were extracted from sN&B data using custom analysis software [22].

RICS imaging was performed in a similar fashion to sN&B imaging but different parameters

were used to improve correlation curves (pixel size of 48.8 nm, 50 frames, 20 μs pixel dwell

time) as described previously [56]. RICS vertical correlations for individual FOVs were fitted

to single mode–free diffusion models using the SimFCS analysis software. FOVs of poor-qual-

ity fit were discarded from diffusion coefficients plots.

Bioinformatics

The sequences of orthologs of YLR053c were obtained from the Fungal Orthogroups website.

For Saccharomyces paradoxus and Saccharomyces mikatae, where no ORF was predicted at the

expected locus, the YLR053c sequence was searched against whole genome assemblies using

TBLASTN 2.2.27 to predict orthologs. The synteny of the regions in K. waltii and S. cerevisae

was confirmed based on Orthogroups orthology assignments of the upstream (47.17997 and

IES3) and downstream (47.18006 and OSW2) genes and the fact that each of these assignments
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were supported by highly significant Blast e-values. Alignments were generated using ClustalO

1.2.0 and displayed using the MView online tool.

Mathematical model of Start

Whisker and box plots for model predictions of the critical size at Start were obtained using

the mathematical model and the data processing procedure described previously [22]. For

each plot, 50 individual cells bearing variable Whi5 concentrations randomly picked in the 100

to 140 nM (for theWHI5-GFP strain) and 65 to 105 nM (for theWHI5-NRS1-GFP strain)

ranges were simulated and plots generated in Excel using standard statistics of the distribu-

tions of critical size values for each strain.

Supporting information

S1 Fig. Additional characterization of Nrs1. (A) Full Ylr053c/Nrs1 protein sequence is con-

served across the Saccharomyces sensu stricto group of species. Sequence alignment showing

the Ylr053c/Nrs1 protein sequence in S. cerevisiae (top), aligned with sequences of orthologs

in S. bayanus (c672-g32.1), S. castellii (656.13d), S. paradoxus, and S.mikatae from top to bot-

tom. Ylr053c/Nrs1 orthologs were not predicted in S. paradoxus or S.mikatae because of

sharp length cutoffs in ORF prediction algorithms (the ORFs would span only 108 and 75 resi-

dues in S. paradoxus and S.mikatae, respectively). The lack of an obvious TATA box could

also explain why no protein was predicted in S. paradoxus. Neighboring upstream and down-

stream genes both show high similarity to YLR053c neighbors in S. cerevisiae. The YLR053c/

NRS1 sequence also aligns in S. kudriavzevii (not shown). (B) Kinetics of Nrs1 expression

upon nitrogen starvation. sN&B images of untagged WT and NRS1-GFP log-phase cells

(OD = 0.4 to 0.7), following 22 hours growth in YNB Pro medium from 1/5,000 dilution (left)

and 7 hours growth from 1/100 dilution (right) from saturated precultures. Arrows indicate

representative Nrs1 signal beyond autofluorescence at 22 hours. (C) Prolonged exposure to

rapamycin results in accumulation of a faster migrating form of Nrs1. Rapamycin was added

to log-phase cultures of NRS113MYC cells, aliquots were removed at indicated time intervals,

and immunoprecipitates were analyzed by anti-MYC immunoblot. A raw image of the original

immunoblot is provided in the S1 Raw Images. (D)Nuclear localization of Nrs1 upon rapamy-

cin treatment is not a consequence of the particular GFPmut3 fluorophore. Confocal micros-

copy image of NRS1WT-GFP cells grown in SC + 2% glucose medium, either untreated or

treated with 200 ng/mL rapamycin for 2 hours. (E) sN&B images of untagged WT cells and

NRS1-GFP cells grown to log-phase in SC + 2% glucose and plated on SC + 2% glucose agar

pads containing either 0.5 M NaCl or 1 mMH2O2 and imaged over a 2-hour time course.

Images were acquired after approximately 1-hour treatment, but Nrs1 expression was not

observed at any time point for any of the treatments. (F) Nrs1 is not induced by DNA damage.

NRS113MYC cells grown in rich medium were exposed 0.1%MMS for 1 hour prior to immuno-

precipitation and Nrs113MYC was detected with anti-MYC 9E10 antibody. Nrs1 expression

from cells exposed to 200 ng/mL rapamycin and processed in parallel served as a positive con-

trol. A raw image of the original immunoblot is provided in the S1 Raw Images. NRS1, Nitro-

gen-Responsive Start regulator 1; sN&B, scanning Number and Brightness; WT, wild-type.

(PDF)

S2 Fig. Additional characterization of nrs1Δ strains. (A)Deletion of NRS1 does not affect

growth. Optical density (vertical axis) of WT (black) and nrs1Δ (blue) strains grown in SC

+ 2% glucose (solid lines) or nitrogen-limited (YNB+Pro, dashed lines) medium as a function

of time (horizontal axis). (B–D)Deletion of NRS1 does not affect cell size. Cell size
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distributions of WT (black) and nrs1Δ (blue) strains grown in SC + 2% glucose (B, solid lines),

nitrogen-limited (B, YNB+Pro, dashed lines), SC + 2% galactose (C, solid lines), SC + 2% raffi-

nose (C, dotted lines), YNB + 0.4% proline + 2% galactose (C, YNB pro gal, dashed lines), SC

+ 2% glucose (D, solid lines), SC + 4% glucose (D, dotted lines) and SC + 0.1% glucose (D,

dashed lines). (E)Deletion of NRS1 does not affect competitive fitness in SC + 2% glucose and

nitrogen limited (YNB+Pro) medium during growth to stationary phase. Bar charts represen-

tation of the composition of 2 mixes of competing strains (Mix1: WT transformed with

mCherry plasmid (red) and nrs1Δ transformed with Venus plasmid (green); Mix2: WT with

Venus plasmid (green), and nrs1Δ with mCherry plasmid (red)) as a function of time from

inoculation. The percentage of each strain within the mixes shown is derived from 3 replicate

cultures from the same original mixes (see S1 Text Methods). Error bars show the standard

error on the mean. All numerical values underlying this figure may be found in S2 Data. NRS1,

Nitrogen-Responsive Start regulator 1; WT, wild-type.

(PDF)

S3 Fig. Additional data demonstrating the physical interaction between Nrs1 and SBF. (A)

Example Swi4 and Swi6 peptide spectra detected in Nrs1 immunoprecipitates. The first of the

5 peptides identified for Swi4 (ITSPSSYNKTPR) and Swi6 (SGLRPVDFGAGTSK) are shown

on top and bottom, respectively. Data were processed with Scaffold software. (B) Replicate

experiment for interactions detection with endogenous level of tagged proteins (Fig 5A).

Swi43FLAG or Swi63FLAG complexes were immunoprecipitated from the indicated strains

grown in the presence of 200 nM rapamycin for 3 hours and interacting proteins assessed by

immunoblot with the indicated antibodies. Co-immunoprecipitation of Whi513MYC with

Swi43FLAG and Swi63FLAG served as a positive control. Mr markers (M) are indicated for each

blot. Pgk1 served as a loading control. Asterisk indicates IgG heavy and light chains. (C)

Detection of endogenous untagged Swi4 and Swi6 in Nrs113MYC immunoprecipitates.

Nrs113MYC or Whi513MYC complexes were immunoprecipitated from cultures of the indicated

strains that were either untreated or treated with 200 nM rapamycin for 3 hours. Interacting

proteins assessed by immunoblot with the indicated antibodies. Co-immunoprecipitation of

Swi4 and Swi6 with Whi513MYC served as a positive control. Double asterisk indicates Whi513-

MYC degradation product that migrated at a similar size as Nrs113MYC. Mr markers (M) are

indicated for each blot. NRS1, Nitrogen-Responsive Start regulator 1; SBF, SCB-binding factor.

(PDF)

S4 Fig. Additional data demonstrating lack of effect of Nrs1 onWhi5. (A) NRS1 overex-

pression does not inhibit Whi5 association with G1/S promoter DNA. WT orWHI5HA strains

carrying empty vector or a GAL1-NRS1 plasmid were grown in SC + 2% raffinose medium

and induced with 2% galactose for 6 hours prior to crosslinking. Anti-HA ChIPs were assessed

for the presence of CLN2 and PCL1 promoter DNA by quantitative RT-PCR. Bars indicate the

mean fold-enrichment across 2 replicates, and error bars show the standard error on the

mean. (B) NRS1 overexpression does not affect Whi5 protein levels. Whi5-GFP absolute con-

centration in single WT (blue dots) and GAL1-NRS1 (orange dots) cells first grown in SC + 2%

raffinose then induced with 2% galactose for 6 hours prior to sN&B microscopy. Nuclear

Whi5-GFP levels in pre-Start cells and cell-averaged levels in post-Start cells where Whi5 has

been exported from the nucleus are shown. All numerical values underlying panels A and B

may be found in S4 Data. (C) NRS1 overexpression does not inhibit Whi5 association with

SBF. The indicated Whi5HA immunoprecipitates from strains induced with galactose for 6

hours were probed for Whi5HA, Swi4, or Swi6 by immunoblot. (D)Nrs1 does not compete

with Whi5 for binding to SBF in vitro. The indicated amounts of recombinant HAWhi5 or
GSTNrs1 was titrated into preformed FLAGSwi4-Swi6-GSTNrs1 or FLAGSwi4-Swi6-HAWhi5
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complexes immobilized on anti-FLAG resin, respectively. Bound proteins were resolved by

SDS-PAGE then immunoblotted (top) or stained with Coomassie Brilliant Blue (bottom).

Note that added soluble GSTNrs1 or HAWhi5 saturated the respective SBF-HAWhi5 and

SBF-GSTNrs1 complexes at the lowest input concentrations. Raw image of the original immu-

noblots used to made panels C and D are provided in S1 Raw Images. ChIP, chromatin immu-

noprecipitation; NRS1, Nitrogen-Responsive Start regulator 1; SBF, SCB-binding factor;

sN&B, scanning Number and Brightness; WT, wild-type.

(PDF)

S5 Fig. Additional data relevant to Nrs1-mediated transactivation and GAL1-NRS1 genetic

interactions. (A) Control growth curves for transactivation assays. Reporter strains trans-

formed with plasmids expressing either GAL4DBD alone, GAL4DBD-NRS1, GAL4DBD-UBE2G2,

or GAL4DBD-NRS1Cter were grown in SD-Trp medium at 30˚C. (B) NRS1 overexpression does

not rescue a cln1Δcln2Δcln3Δ G1 phase arrest. Left: Cultures of cln1Δcln2Δcln3Δ MET-CLN2

and cln1Δcln2Δcln3Δ MET-CLN2 +<pGAL1-NRS1> strains grown to log-phase in SC-Met

+2% raffinose, then reinoculated in either SC-Met+2% raffinose, SC-Met+2% galactose, SC

+Met+2% raffinose or SC+Met+2% galactose for the indicated periods of time before determi-

nation of cell size distributions on a Beckman Z2 Coulter counter. Right: bar charts showing

the average number of cell divisions for cln1Δcln2Δcln3Δ MET25-CLN2 and cln1Δcln2Δcln3Δ
MET25-CLN2 +<pGAL1-NRS1> strains during the 18 hour interval between the 6 hours and

24 hours time points in SC+Met+2%galactose. Bar heights represent the average of 4 different

clones (N = 4); error bars represent the standard deviation. (C) Room temperature growth

controls for genetic interactions of NRS1 with SWI4 andMBP1. Serial 5-fold dilutions of WT

NRS1 and nrs1::GAL1-NRS1 strains in WT (rows 1, 2, 10), swi4-ts (row 3),mbp1Δ (row 4), and

mbp1Δswi4-ts (rows 5–9) backgrounds were spotted onto SC + 2% glucose, SC + 2% raffinose,

and SC + 2% galactose medium and grown for 5 days at 23˚C. C1-4 are 4 clones ofmbp1Δ
swi4-ts GAL1-NRS1. (D) Images of the same serial 5-fold dilutions of NRS1 and GAL1-NRS1

strains in WT, swi4-ts,mbp1Δ, andmbp1Δ swi4-ts backgrounds as in Fig 7B, spotted onto SC

+ 2% glucose, SC + 2% raffinose and SC + 2% galactose, but grown for an additional 2 days

(i.e., 7 days total growth time at 30˚C). C1 to C4 are 4 clones ofmbp1Δ swi4-ts GAL1-NRS1. All

numerical values underlying panels A and B may be found in S6 Data. NRS1, Nitrogen-

Responsive Start regulator 1; WT, wild-type.

(PDF)

S6 Fig. Additional characterization and controls for Nrs1 andWhi5 fusion proteins. (A)

TheWhi5-Nrs1-GFP chimeric protein is produced in vivo and migrates at the expected size.

WHI5-GFP, NRS1-GFP, andWHI5-NRS1-GFP strains were grown in nitrogen-limited (YNB

+Pro) medium and extracts immunobloted with anti-GFP antibody. A raw image of the origi-

nal immunoblot is provided in S1 Raw Images. (B) A carboxyl-terminal fusion of Nrs1 to

Whi5 does not affect cell cycle distribution. High-content images ofWHI5-GFP and

WHI5-NRS1-GFP cells grown in SC + 2% glucose were acquired on an OPERA high-through-

put confocal microscope (PerkinElmer) equipped with a 60× water objective. The same inten-

sity scale was used for both panels. Scale bar is 10 μm. The fraction of pre-Start (G1) cells was

obtained using a customMATLAB script (see Methods). (C) Fusion of a GFP tag at the Whi5

carboxyl terminus does not affect cell size. Cell size distributions of untagged WT and

WHI5-GFP cells grown in SC + 2% glucose were determined on a Beckman Z2 Coulter

counter. (D) Growth curves of WT, whi5Δ, andWHI5-NRS1-GFP strains in SC + 2% glucose

medium at 30˚C. (E)WHI5 dosage has only minor effects on cell size. Cell size distributions of

WT andWHI5/whi5 heterozygous diploid strains grown in SC + 2% glucose. Dotted, dashed,

and solid blue lines represent 3 differentWHI5/whi5 clones. (F) Predicted effects ofWHI5
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dosage on cell size in a mathematical model of Start. Box and whisker plots show distribution

of critical cell sizes predicted by the Start model published in [22] for simulated average Whi5

concentrations of 120 nM (corresponding toWHI5-GFP cells, left boxplot) and 85 nM (corre-

sponding toWHI5-NRS1-GFP cells, right boxplot). All numerical values underlying panels C–

F may be found in S7 Data. NRS1, Nitrogen-Responsive Start regulator 1; WT, wild-type; YNB

+Pro, YNB + 0.4% proline + 2% glucose.

(PDF)

S7 Fig. Nrs1 function at G1/S requires the poorly conserved N-terminal region. (A) Cell

size distributions of WT andWHI5-NRS1Cter-GFP strains grown in SC+2% glucose deter-

mined on a Beckman Z2 Coulter counter. (B) Genotype of 10 tetrads from a cln3Δ whi5::

WHI5-NRS1Cter-GFP X bck2Δ cross. For each tetrad, spore clone growth was assessed on

SD-Leu (indicates cln3::LEU2), SC+NAT (indicates bck2::NATR), and SD-HIS (indicates

whi5::WHI5-NRS1Cter-GFP-HIS3). Blue boxes indicate viable cln3Δ or bck2Δ spore clones. No

viable cln3Δ bck2Δ double mutant clones were recovered. All numerical values underlying

panel A may be found in S7 Data. NRS1, Nitrogen-Responsive Start regulator 1; WT, wild-

type.

(PDF)

S1 Table. Candidate dosage suppressors of cln3Δ bck2Δ lethality.

(XLSX)

S2 Table. Yeast strains and plasmids used in this study.

(DOCX)

S3 Table. Proteins detected specifically in Nrs1 immunoprecipitates by mass spectrometry.

NRS1, Nitrogen-Responsive Start regulator 1.

(XLSX)

S4 Table. List of peptides identified in Nrs1 and control immunoprecipitates by mass spec-

trometry. NRS1, Nitrogen-Responsive Start regulator 1.

(XLSX)

S5 Table. List of proteins identified in Nrs1 and control immunoprecipitates by mass spec-

trometry. NRS1, Nitrogen-Responsive Start regulator 1.

(XLSX)

S6 Table. Calculated gene scores for RNA-seq experiments performed with WT and

GAL1-NRS1 strains. For up-regulated (score>0) and strongly up-regulated (score> 0.5)

genes, Swi4/Mbp1-binding scores were imported from Ferrezuelo and colleagues [10], and

SBF/MBF targets were identified and counted. These data were used to perform the hypergeo-

metric enrichment tests. MBF, MCB-binding factor; NRS1, Nitrogen-Responsive Start regula-

tor 1; RNA-seq, RNA sequencing; SBF, SCB-binding factor; WT, wild-type.

(XLSX)

S1 Raw Images. Contains raw images of uncropped gels (western blots, Coomassie, Pon-

ceau) used in the manuscript.

(PDF)

S1 Data. Raw numerical data used to generate Fig 2D and 2E.

(XLSX)

S2 Data. Raw numerical data used to generate Figs 3 and S2.

(XLSX)
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S3 Data. Raw numerical data used to generate Fig 4A and 4B.
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S4 Data. Raw numerical data used to generate S4A and S4B Fig.
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