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Abstract
The action principle by Low (1958 Proc. R. Soc. Lond. A 248 282–7) for the
classic Vlasov–Maxwell system contains a mix of Eulerian and Lagrangian
variables. This renders the Noether analysis of reparametrization symme-
tries inconvenient, especially since the well-known energy- and momentum-
conservation laws for the system are expressed in terms of Eulerian variables
only. While an Euler–Poincaré formulation of Vlasov–Maxwell-type systems,
effectively starting with Low’s action and using constrained variations for the
Eulerian description of particle motion, has been known for a while Cendra et al
(1998 J. Math. Phys. 39 3138–57), it is hard to come by a documented deriva-
tion of the related energy- and momentum-conservation laws in the spirit of the
Euler–Poincarémachinery. To our knowledge only one such derivation exists in
the literature so far, dealing with the so-called guiding-center Vlasov–Darwin
system Sugama et al (2018 Phys. Plasmas 25 102506). The present exposi-
tion discusses a generic class of local Vlasov–Maxwell-type systems, with a
conscious choice of adopting the language of differential geometry to exploit
the Euler–Poincaré framework to its full extent. After reviewing the transition
from a Lagrangian picture to an Eulerian one, we demonstrate how symme-
tries generated by isometries in space lead to conservation laws for linear-
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and angular-momentum density and how symmetry by time translation pro-
duces a conservation law for energy density. We also discuss what happens if
no symmetries exist. Finally, two explicit examples will be given—the clas-
sic Vlasov–Maxwell and the drift-kinetic Vlasov–Maxwell—and the results
expressed in the language of regular vector calculus for familiarity.

Keywords: Euler–Poincaré reduction,Noether theorem, plasma physics, kinetic
theory

1. Introduction

Recall that the Vlasov–Maxwell system couples an advection equation for particle
phase-space number density F (x, v, t) d3xd3v to Maxwell’s equations for the electromag-
netic fields in a self-consistent manner: the current and charge densities in Maxwell’s
equations are computed as velocity-space moments of the particle distribution function,
according to � = e

∫
vFd3v and j = e

∫
vvFd3v (the y assumed and henceforth omitted),

and the Lorentz force responsible for the particle trajectories depends on the fields E
and B. The set of equations, governing the dynamics and constraints of the system,
becomes

∂tF +∇ · (vF)+ ∂v ·
(
(e/m) (E+ v × B)F

)
= 0, (1a)

ε0∂tE+ j − μ−1
0 ∇× B = 0, (1b)

∂tB+∇× E = 0, (1c)

ε0∇ · E− � = 0, (1d)

∇ · B = 0. (1e)

Conservation laws for this system are straightforward to identify directly from the equations
ofmotion,with a bit of intuition.Multiplying the advection equation forFwithmv and 1

2m|v|2,
and integrating over the velocity space, one finds

∂t

∫
mvFd3v +∇ ·

∫
mvvFd3v = �E+ j × B, (2)

∂t

∫
1
2
m|v|2Fd3v +∇ ·

∫
1
2
m|v|2vFd3v = j · E. (3)

On the other hand, an educated guess and Maxwell’s equations demonstrate that

E · j + 1
2
∂t
(
ε0|E|2 + μ−1

0 |B|2
)
= −∇ · (μ−1

0 E× B), (4)

�E+ j × B+ ∂t(ε0E× B) = −∇ ·
(
1
2
(ε0|E|2 + μ−1

0 |B|2)1− μ−1
0 BB− ε0EE

)
, (5)

where 1 is the identity dyad. When the expressions above are combined, local conservation
laws for linear momentum density and energy density are obtained
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∂t

(∫
mvFdv + ε0μ0S

)
+∇ ·

(∫
mvvFdv − E

)
= 0, (6)

∂t

(∫
1
2
m|v|2Fdv − Tr (E)

)
+∇ ·

(∫
1
2
m|v|2vFdv + S

)
= 0, (7)

where Tr(·) is the trace and the Maxwell stress tensor E and the Poynting vector S are

E = −1
2

(
ε0|E|2 + μ−1

0 |B|2
)
1+ ε0EE+ μ−1

0 BB, (8)

S = μ−1
0 E× B. (9)

Conservation of angular momentumwith respect to a given axis follows immediately from the
symmetry of vv and E 6.

While the results above were easy to come by, it is preferable to obtain them directly from
a variational principle using Noether’s theorem. This systematic strategy is especially useful
when dealing with alternate Vlasov–Maxwell-type systems where the particle motion couples
to electromagnetic fields in a far more complicated way, blurring the intuition for making an
educated guess. At least four such Vlasov–Maxwell systems exist and can be used in numerical
modeling of plasmas in various branches of science. These are the guiding-center [1], the drift-
kinetic [2, 3], the gyrokinetic [3, 4], and the spin-Vlasov–Maxwell system [5]. They all have
a structure similar to equation (1).

Over the years, several papers discussing action principles for the Vlasov–Maxwell sys-
tem or related ones7 have been presented [1–4, 6–20] and many of them [1, 8, 9, 14–18, 20]
discuss the local energy and momentum conservation laws. Nevertheless, to our knowledge
the only documented work dealing with the conservation laws that has been carried out in
the spirit of Euler–Poincaré formalism is the recent paper by Sugama et al focusing on the
guiding-center Vlasov–Darwin model [20]. To continue filling the information vacuum, the
present paper discusses a generic class of local Vlasov–Maxwell-type systems, with a con-
scious choice of adopting the language of differential geometry to exploit the Euler–Poincaré
framework to its full extent. The reason we focus on genuine Vlasov–Maxwell type systems
is their invariance under electromagnetic gauge transformations. This property together with
compatible discretization schemes has opened new avenues in numerical plasma simulations
(see, e.g., [21] and references therein).

We will start from a modification of Low’s action principle for Vlasov–Maxwell-type sys-
tems and, after reviewing the transition from a Lagrangian picture to an Eulerian one, we
demonstrate how space-time-isometry symmetries in the action functional lead to conservation
laws for linear- and angular-momentum density and for energy density. We will also discuss
what happens if no such symmetry with respect to an isometry exists. Once this process is
finished, we hope to have demonstrated how powerful the Euler–Poincaré framework can be
in the context of kinetic plasma theories and how elegantly its geometric exposition suits the
study of space-time symmetries.

6 In right-handed cylindrical coordinates (r,ϕ, z), let ∇z be axis of rotation and ϕ the angle of rotation. Then for
any symmetric second order tensor T we have (∇ · T) · ∂ϕx= ∇ · (T · ∂ϕx)− T :∇∂ϕx= ∇ · (T · ∂ϕx) because
∇∂ϕx = r(∇r∇ϕ−∇ϕ∇r) is antisymmetric, and angular momentum conservation follows.
7 By systems related to Vlasov–Maxwell models, we mean (1) genuine Vlasov–Maxwell models that form an
infinite-dimensional initial-value problem for the dynamical variables, and (2) the so-called Vlasov–Poisson–Ampère
models which provide an initial value problem for the distribution function only and constraint equations for the
electromagnetic potentials.
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Finally, two explicit examples will be given—the classic Vlasov–Maxwell in an axially
symmetric background magnetic field and the drift-kinetic Vlasov–Maxwell that is obtain-
able as the long-wave-length limit of the non-local gyrokinetic theory [3]—and the results
expressed in the language of regular vector calculus for familiarity. The reason for focusing on
these two systems is because of their robustness, fidelity and efficiency in kinetic simulations
of magnetized plasmas. Combining a full Larmor model of ions and a drift-center description
of electrons avoids many complications due to the non-local nature of gyrokinetic theories
and, at the same time, eliminates the electron-cyclotron-frequency time scale. This combina-
tion has been made possible thanks to recently developed electromagnetically gauge-invariant
gyrokinetic theory [3].

The derivation of the guiding-center Vlasov–Maxwell model is a straightforward applica-
tion of our general procedure and is hence omitted.

2. Euler–Poincaré formulation of the action principle

We start with a slightly modified version of Low’s action principle [6]. The purpose of the
modification is to introduce the capability to handle a wider class of Vlasov–Maxwell-type
systems, such as the classic full-particle and the drift-kinetic Vlasov–Maxwell systems. In
what follows, all dynamical variables (time-dependent) are denoted by the subscript t to clearly
separate them from parameters and/or integration labels.

2.1. Action in a mixed-variable representation

In the action principle, the single-particle phase-space Lagrangian is first multiplied by the
phase-space density of fixed-value particle labels, then integrated over all of the particle’s
phase-space and a given time interval, and finally combined with the standard electromagnetic
action to account for electromagnetic interactions in a self-consistent way. In such systems, the
electromagnetic fields are treated as Eulerian variables and the role of the single-particle action
is to carry (advect) the fixed-value phase-space-density labels along the phase-space flow of
individual particles.

The action is a functional of the particle’s phase-space trajectory zt, the vector potential At,
the scalar potential φt, which depends parametrically on the fixed-value density F. Written in
a general form, we have

SF[zt,At,φt] =
∫ t2

t1

∫
R3

∫
R3

(
ϑα (zt (z)) ∂tzαt (z)− K (zt (z) ,Et (xt (z)) ,Bt (xt (z)))

)
F (z) d6zdt

+

∫ t2

t1

∫
R3

∫
R3

(eAt (xt (z)) · ∂txt (z)− eφt (xt (z)))F (z) d6zdt

+

∫ t2

t1

∫
R3

1
2
(ε0|Et (x) |2 − μ−1

0 |Bext (x)+ Bt (x) |2)d3xdt. (10)

Here z = {zα}6α=1 = (x, v) = ({xi}3i=1, {vi}3i=1) are integration labels in the phase-space, zt =
{zαt }6α=1 = (xt, vt) = ({xit}3i=1, {vit}3i=1) are the time-dependent phase-space coordinates of a
single particle with ∂ tzt = (∂ txt, ∂ tvt) as time derivatives (Eulerian phase-space velocities),
and zt (z) = (xt (z) , vt (z)) refers to the coordinates the particle would reach in time t when
starting from an initial point z. The notation F (z) d6z = F (z) d3xd3v denotes the phase-space
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density of the fixed-value labels, with the bare volume elements being d3x = dx1dx2dx3 and
d3v = dv1dv2dv3. The dynamical electric and magnetic fields are derived from the potentials
via the standard relations Et = −∂ tAt −∇φt. The external magnetic field emanates from an
external, static vector potential Bext = ∇× Aext with no external electric field present. The
dot · refers to the Euclidean inner product of vectors in R3.

The original phase-space formulation of the classic Vlasov–Maxwell system would be
recovered by setting Aext = 0, and choosing the functionsϑα andK so that ϑα (zt (z)) ∂tzαt (z) =
mvt (z) · ∂txt (z) and K (zt (z)) = 1

2m|vt (z) |2. One can then interpret the first row of (10)
to represent the free-particle action, the second row the coupling term to the electromag-
netic fields, and the last row the electromagnetic action in a vacuum. Our modifications
effectively affect only the ‘free-particle’ action, where we allow the kinetic energy to
depend locally on the dynamic electric and magnetic fields and the functions ϑα to pos-
sibly depend on the whole phase-space, in anticipation of how the velocity vector vt in
guiding-center dynamics is defined with respect to a fairly unique choice of the coordinates
(v1, v2, v3).

One could applyHamilton’s principle directly to (10) and derive the related Euler–Lagrange
conditions for the trio (zt,At,φt). This approach will not yield the Vlasov equation
directly though, as the source terms appearing in the Maxwell’s equations involves inte-
gration of the fixed-value density F over the initial phase-space coordinates. In this pic-
ture, a Noether-type analysis of symmetries rapidly becomes intricate via the space-
time reparametrization of trajectories and fields. It is thus helpful to convert the action
above and apply Hamilton’s principle and Noether’s theorem directly in terms of Eulerian
variables.

2.2. Conversion to Eulerian variables

The process is initiated by identifying different coordinate functions that appear in (10) with
their differential-geometric counterparts. We list these elements and their interpretation as
follows:

(a) The phase-space integration domain, namely the open set {(x, v) |x ∈ R
3, v ∈ R

3},
is identified as the tangent bundle TQ =

⋃
{(x, vx)|x ∈ Q, vx ∈ TxQ} of the manifold

Q = R
3. Unbolded symbols will denote representative elements, e.g. a point x ∈ Q, a

tangent vector vx ∈ TxQ at point x ∈ Q, and a generic point z ∈ TQ on the tangent
bundle.

(b) The time-dependent functions zαt , representing a single-particle phase-space trajectory
in R

6, are interpreted as the local coordinates of a time-dependent diffeomorphisms
gt ∈ Diff(TQ), namely a family of smooth maps gt : TQ→ TQ with smooth inverse
such that g−1

t (gt(z)) = gt(g−1
t (z)) = z for all t ∈ (t1, t2) ⊂ R and for all z ∈ TQ. For a

fixed point z ∈ TQ, the time derivative of the diffeomorphism generates a tangent vector
∂tgt(z) ∈ Tgt(z)TQ. We then construct the Eulerian velocity field ξt = ∂tgt ◦ g−1

t ∈ X(TQ)
such that ∂ tgt(z) = ξt(gt(z)) = ξt(zt). If this vector field has a coordinate representation
ξt = ξαt (z) ∂/∂z

α, then ∂tzαt (z) = ξαt (zt (z)).
(c) The scalar potential φt and the vector potential At (x) = At,i (x) ei (x) (written in so-

called covariant components) are identified respectively as a time-dependent zero-form
φt ∈ Ω0(Q) and as a time-dependent one-form At ∈ Ω1(Q), locally expressed as Atx =
At,i (x)dxi ∈ T∗

xQ. The related time-dependent electric-field one-form Et = −∂ tAt −
dφt ∈ Ω1(Q) and time-dependent magnetic-field two-form Bt = dAt ∈ Ω2(Q) are also
introduced.
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(d) The canonical projection map π : TQ→ Q, (x, v) �→ π(x, v) = x is used to pro-
mote the electromagnetic potentials to differential forms on the tangent bundle,
namely π∗φt = φt ◦ π ∈ Ω0(TQ) and π∗At ∈ Ω1(TQ). This permits the identifica-
tion φt (xt(z)) = π∗φt(gt(z)) = g∗t π

∗φt(z) as a function on TQ. Using the tangent
map of the canonical projection Tπ : TTQ→ TQ such that Tπgt (z)(∂tgt(z)) =
∂t xt(z) ∈ Tπ(gt(z))Q, we identify At (xt(z)) · ∂txt(z) = Atπ(gt(z))(Tπgt(z)(∂tgt(z))) =
π∗Atgt(z)(∂tgt(z)) = ιξtπ

∗At(gt(z)) = g∗t (ιξtπ
∗At)(z) = g∗t (ι∂tgt◦g−1

t
π∗At)(z) as a function on

TQ.
(e) The fixed phase-space volume form f ∈ Ω6(TQ) is introduced and, in local coordinates,

has the expression fz = F (z) dx1 ∧ dx2 ∧ dx3 ∧ dv1 ∧ dv2 ∧ dv3.
(f) We denote the function Kt ∈ Ω0(TQ), which depends parametrically on the elec-

tromagnetic forms through the rule Kt(z) = K(z, π∗Et(z), π∗Bt(z)). We then iden-
tify the term K (zt(z),Et(xt(z)),Bt(xt(z))) = Kt(gt(z)) = g∗t Kt(z) as a function on
TQ.

(g) The functions ϑα are analoguously viewed as the components of a phase-space one-
form ϑ ∈ Ω1(TQ) expressed in local coordinates as ϑz = ϑα (z)dzα ∈ T∗

z TQ. We view
ϑα (zt(z)) ∂tzαt (z) = ϑgt(z)(ξt(gt(z))) = (ιξtϑ)(gt(z)) = g∗t (ιξtϑ)(z) = g∗t (ι∂tgt◦g−1

t
ϑ)(z) as a

function on TQ.

The electromagnetic part of the action, the third line in (10), when written in geometric
terms, becomes

SEM[At,φt] =
∫ t2

t1

∫
Q

1
2

(
ε0Et ∧ �Et − μ−1

0 (Bext + Bt) ∧ �(Bext + Bt)
)
dt, (11)

where � : Ωk(Q)→ Ωn−k(Q) is the Hodge star operator induced by the Riemannian metric
on Q.

Conversion of the first and second line of (10) proceeds by substituting the definitions from
the list above and using the change of coordinates formula on the manifold so that the entire
action can be written as

SF[zt,At,φt] =
∫ t2

t1

∫
TQ

g∗t
(
ι∂tgt◦g−1

t
(ϑ+ eπ∗At)− (Kt + eπ∗φt)

)
f dt + SEM[At,φt]

=

∫ t2

t1

∫
Imgt (TQ)

(
ι∂tgt◦g−1

t
(ϑ+ eπ∗At)− (Kt + eπ∗φt)

)
gt∗ f dt + SEM[At,φt]

=

∫ t2

t1

∫
TQ

(
ι∂tgt◦g−1

t
(ϑ+ eπ∗At)− (Kt + eπ∗φt)

)
gt∗ f dt + SEM[At,φt]

=S f [gt,At,φt] (12)

The last step follows from the fact that diffeomorphisms are one-to-one maps, meaning that
Imgt (TQ) = TQ. Here the subscript f in Sf [gt,At,φt] stresses the parametric dependency on the
fixed volume form f , rather than on the scalar F as in the non-geometric expression.

The conversion is completed by interpreting f t = gt∗ f ∈ Ω6(TQ) and ξt = ∂tgt ◦ g−1
t as new

but enslaved variables. In particular, by (A.1), the variable f t satisfies the Vlasov equation

6
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(∂t +£ξt ) ft = 0. (13)

Under the assumption of the enslaved definitions, we can then interpret the action Sf [gt,At,φt]
as a functionalS[ξt, ft,At,φt] of the Eulerian variables (ξt, f t,At,φt) according to

S[ξt, ft,At,φt] ≡
∫ t2

t1

∫
TQ

[
ιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt)

]
ft dt + SEM[At,φt] (14)

where f t ∈ Ω6(TQ) is promoted to the set of variables as a dynamical top-form. In what follows,
we will be using the kinetic energy functional to denote

K[ ft,Et,Bt] :=
∫
TQ

Kt ft =
∫
TQ

K(z, π∗Et(z), π∗Bt(z)) ft. (15)

The process of switching from the Lagrangian variables to the Eulerian by enslaving the
relations between ξt, f t, and gt is the basis of Euler–Poincaré right-reduction [13, 22, 23].

2.3. Constrained variations and Euler–Lagrange conditions

Hamilton’s principle of stationary action applied to (12) is equivalent to Hamilton’s principle
of least action applied to (14) as long as we remember the enslaving relations ξt = ∂tgt ◦ g−1

t

and f t = gt∗ f . In practice, these relations have consequences on the type of variations the
fields ξt and f t are allowed. From (12), one perturbs the one-parameter diffeomorphism gt
to a two-parameter diffeomorphism gt,s, the one-form At to At,s, and the zero-form φt to φt,s,
and computes the variation of the action in the form

∂s|s=0S f [gt,s,At,s,φt,s] = δS f [δgt, δAt, δφt], (16)

where δgt(z) = ∂s|s=0gt,s(z) ∈ Tgt(z)TQ, δAt = ∂s|s=0At,s ∈ Ω1(Q), and δφt = ∂s|s=0φt,s ∈
Ω0(Q) are arbitrary but vanishing at t = t1 and t = t2. Then, one requests that the first variation
of the action vanishes, in accordance with the Hamilton’s principle.

Alternatively, and perhaps more directly, variation of the action can be recorded with the
variables ξt and f t by simply letting ξt,s = ∂tgt,s ◦ g−1

t,s and f t,s = gt,s∗ f , and writing

∂s|s=0S f [gt,s,At,s,φt,s] = ∂s|s=0S[ξt,s, ft,s,At,s,φt,s] = δS[δξt, δ ft, δAt, δφt]

(17)

as long as the variations of the Eulerian variables respect the relations

δξt = ∂s|s=0(∂tgt,s ◦ g−1
t,s ) ∈ X(TQ), (18)

δ ft = ∂s|s=0(gt,s∗ f ) ∈ Ω6(TQ). (19)

These expressions can be made more transparent by introducing the arbitrary time-dependent
vector field ηt = δgt ◦ g−1

t ∈ X(TQ), which vanishes for t = t1 and t = t2 since δgt does, and
by using the corollary A.1 and the theorem A.3 to recover the identities

δ ft = −£ηt ft, (20)

δξt = (∂t +£ξt )ηt. (21)

7
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Putting the constrained variations to work, we then compute the variation of the action (14).
After applying the Leibniz rule a couple of times (for both the Lie derivative and the temporal
derivative), the result can be expressed as

δS[(∂t +£ξt )ηt,−£ηt ft, δAt, δφt]

=

∫ t2

t1

∫
TQ

{
(∂t +£ξt )

(
ιηt (ϑ+ eπ∗At) ft

)
−£ηt

[
(ιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt)) ft

]}
dt

−
∫ t2

t1

∫
TQ

ιηt [(∂t + ιξtd)(ϑ+ eπ∗At)+ d(Kt + eπ∗φt)] ft dt

+

∫ t2

t1

∫
TQ

e
(
ιξtπ

∗δAt − π∗δφt
)
ft dt +

∫ t2

t1

∫
Q

{
d
[
�

(
ε0Et −

δK
δEt

)]
δφt

− d
[
�

(
ε0Et −

δK
δEt

)
δφt

]}
dt +

∫ t2

t1

∫
Q

δAt ∧
[
�∂t

(
ε0Et −

δK
δEt

)

− d �

(
μ−1
0 (Bext + Bt)+

δK
δBt

)]
dt −

∫ t2

t1

∫
Q

{
d
[
δAt ∧ �

(
μ−1
0 (Bext + Bt)+

δK
δBt

)]

+ ∂t

[
δAt ∧ �

(
ε0Et −

δK
δEt

)]}
dt. (22)

In the above equation, the functional derivatives of the kinetic-energy functional are identified
via the relations

∂s|s=0K[ ft,Et,s,Bt] =
∫
Q

δK
δEt

∧ �∂s|s=0Et,s (23)

∂s|s=0K[ ft,Et,Bt,s] =
∫
Q

δK
δBt

∧ �∂s|s=0Bt,s, (24)

These expressions are well defined since we explicitly request the functionK not to depend on
the derivatives of Et or Bt.

Since ∂Q = ∅ and ∂TQ = ∅, the spatial boundary terms in (22) will vanish. Further-
more, since ηt, δAt, δφt all vanish at t = t1 and t = t2, also the temporal boundary terms
will vanish. For the Hamilton’s principle of stationary action to hold, namely that δS[(∂t +
£ξt )ηt,−£ηt ft, δAt, δφt] = 0 with respect to arbitrary ηt, δAt, δφt, it is enough to request the
following Euler–Lagrange conditions for the vector field ξt

d(Kt + eπ∗φt)+ (∂t + ιξtd)(ϑ+ eπ∗At) = ιξt (dϑ+ eπ∗Bt)+ dKt − eπ∗Et = 0, (25)

for the magnetic one-form At

∫
TQ

e ftιξtπ
∗δAt =

∫
Q

δAt ∧ (d � Ht − �∂tDt) ⇐⇒ �∂tDt + eπ∗(ιξt ft) = d � Ht,

(26)

8
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and for the scalar potential φt∫
TQ

eπ∗δφt ft =
∫
Q

δφtd � Dt ⇐⇒ d � Dt = eπ∗( ft). (27)

Here π∗(·) denotes a fiber integral8 from TQ down to Q, and the one-formDt ∈ Ω1(Q) and the
two-formHt ∈ Ω2(Q) have been introduced to denote the displacement and magnetising fields

Dt = ε0Et −
δK
δEt

, (28)

Ht = μ−1
0 (Bext + Bt)+

δK
δBt

. (29)

Note that equation (25), determining the vector field ξt, effectively provides the characteristics
of single-particle motion for the Vlasov equation while the equations (26) and (27) are the
geometric versions of the Ampère–Maxwell equation and the Gauss’s law for the electric field
including polarization and magnetization effects.

3. Noether equations for spatial isometries and time translations

To study the effects of spatial isometries9 and time translations, we will construct a new func-
tional that is obtained from the action functional evaluated over not the whole of Q and TQ but
the subsetsU ⊆ Q and TU =

⋃
{(x, vx)|x ∈ U, vx ∈ TxQ} ⊆ TQ. In effect, this new functional

can then be treated as to parametrically depend on the domain U and the temporal end-points
t1 and t2. The new functional we introduce is given by

SU,t1,t2 [ξt, ft,At,φt] =
∫ t2

t1

∫
TU

ιξtϑ ftdt−
∫ t2

t1

KTU[ ft,Et,Bt]dt+
∫ t2

t1

∫
TU

(
eιξtπ

∗At−eπ∗φt
)
ftdt

+

∫ t2

t1

∫
U

1
2

(
ε0Et ∧ �Et − μ−1

0 (Bext + Bt) ∧ �(Bext + Bt)
)
dt, (30)

where the modified kinetic energy functional is defined in the natural way

KTU[ ft,Et,Bt] :=
∫
TU

Kt ft =
∫
TU

K(z, π∗Et(z), π
∗Bt(z)) ft. (31)

Trivially, if we choose U = Q, we obtain the original action.
A few remarks are in order here. In what follows, the functional (30) will be varied and the

functional derivatives of KTU used. This might raise some questions since no specific form of
the functionKt is given yet. Specifically, one could question whether the functional derivatives
δKTU/δEt and δKTU/δBt exists at all with respect to an arbitrary domainU. This small curios-
ity was the reason why we restricted our discussion to such Kt which do not depend on the

8 Given a map h : E→ P, fiber integration h∗ (·) satisfies
∫
Pα ∧ h∗ (β) =

∫
Eh∗α ∧ β. Taking E = TQ, P = Q, h = π,

α = δAt and β = f t, we rewrite
∫
TQιξtπ

∗δAt ft=
∫
TQπ

∗δAt ∧ ιξt ft=
∫
QδAt ∧ π∗(ιξt ft), where the first step follows

because f t is a top-form and so ω ∧ f t = 0 for any ω ∈ Ωk(TQ) and because the interior product is an anti-derivation,
namely ιX(ω ∧ β) = ιXω ∧ β + (−1)kω ∧ ιXβ.
9 Isometries on a manifold M are distance preserving diffeomorphism. On R

3 these include constant translations and
rotations. The pullbacks of isometries commute with the Hodge operator �.

9
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derivatives of Et or Bt. Then the functional derivatives δKTU/δEt and δKTU/δBt are not only
well defined but are, in fact, equal to the functional derivatives of K.

3.1. Spatial isometries

The idea in analysing symmetries related to spatial isometries is to introduce a one-parameter
isometry ψs ∈ Diff(Q) with ψ0 = id and its lift Ψs ∈ diff(TQ) with Ψ0 = id. The lift in our
context means that Ψs is required to satisfy π ◦Ψs = ψs ◦ π. Consequently, there will be
the vector fields X = ∂s|s=0ψs ◦ ψ−1

0 and X̃ = ∂s|s=0Ψs ◦Ψ−1
0 which act as the infinitesimal

generators for ψs and Ψs respectively, and are π-related, i.e., Tπ ◦ X̃ = X ◦ π, and it can be
shown that Ψs∗π

∗α = π∗ψs∗α for any α ∈ Ωk(Q). Furthermore, since TU is locally U × R
3,

we have that ImΨs (TU) = TImψs (U). With these definitions in mind, one performs a coordi-
nate transformation, acting with Ψs on the TU part and with ψs on the U part of (30), and
obtains

SU,t1,t2 [ξt, ft,At,φt] = SImψs (U),t1,t2
[Ψs∗ξt,Ψs∗ ft,ψs∗At,ψs∗φt]

+

∫ t2

t1

∫
ImΨs (TU)

ιΨs∗ξt (Ψs∗ − id)ϑΨs∗ ftdt

−
∫ t2

t1

∫
ImΨs (TU)

[Ψs∗Kt − K(z,Ψs∗π
∗Et(z),Ψs∗π

∗Bt(z))]Ψs∗ ftdt

−
∫ t2

t1

∫
Imψs (U)

μ−1
0 (ψs∗ − id)Bext ∧ �(Bext + ψs∗Bt)dt

−
∫ t2

t1

∫
Imψs (U)

1
2
μ−1
0 (ψs∗ − id)Bext ∧ �(ψs∗ − id)Bextdt. (32)

If some specific isometry ψs and its lift Ψs are to generate a symmetry in the sense that

SU,t1,t2 [ξt, ft,At,φt] = SImψs (U),t1,t2
[Ψs∗ξt,Ψs∗ ft,ψs∗At,ψs∗φt], (33)

then this isometry and its lift have to satisfy the conditions

ψs∗Bext = Bext, (34a)

Ψs∗ϑ = ϑ, (34b)

K(Ψ−1
s (z), π∗Et(Ψ

−1
s (z)), π∗Bt(Ψ

−1
s (z))) = K(z,Ψs∗π

∗Et(z),Ψs∗π
∗Bt(z)). (34c)

If the conditions (34) are satisfied, the existence of a local conservation law will be guar-
anteed by Noether’s first theorem. These are the strong conditions for a conservation law to
exists. There are also weaker conditions, which we will discuss shortly.

To extract the local conservation law, the expression (33) will be differentiated with respect
to s at s = 0 and evaluated on-shell, i.e., the Euler–Lagrange conditions required to hold. This
provides, subject to the symmetry conditions, that

0 = ∂s|s=0SImψs (U),t1,t2
[ξt, ft,At,φt]+ δSU,t1,t2 [−£

˜Xξt,−£
˜X ft,−£XAt,−£Xφt]. (35)

10
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Applying the fundamental theorem of calculus, the first term can be evaluated immediately

∂s|s=0SImψs (U),t1,t2
[ξt, ft,At,φt]

=

∫ t2

t1

∫
TU

£
˜X

(
ιξtϑ ft − Kt ft + (eιξtπ

∗At − eπ∗φt) ft
)
dt

+

∫ t2

t1

∫
U

1
2
£X

(
ε0Et ∧ �Et − μ−1

0 (Bext + Bt) ∧ �(Bext + Bt)
)
dt. (36)

To evaluate the term δSU,t1,t2 [−£
˜Xξt,−£

˜X ft,−£XAt,−£Xφt] on-shell, we use the fact that X
and X̃ are both independent of time t so that −£

˜Xξt = (∂t +£ξt )X̃. This helps us recognize
that the term can be evaluated as a special case of (22) with ηt = X̃, δAt = −£XAt = −ιXBt −
d(ιXAt) and δφt = −£Xφt = ιXEt + ∂ t(ιXAt), now only evaluated over U and TU instead of Q
and TQ. This means that when the Euler–Lagrange conditions are implied, only the boundary
terms, that vanish in (22), will remain. It is then a straightforward task to compute the on-shell
variation (see appendix B for details)

δSU,t1,t2 [(∂t +£ξt )X̃,−£
˜X ft,−ιXBt − d(ιXAt), ιXEt + ∂t(ιXAt)]

=

∫ t2

t1

∫
TU

(∂t +£ξt )
(
ftι˜Xϑ

)
−£

˜X

[
ftιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt) ft

]
dt

+

∫ t2

t1

∫
U

[d(ιXBt ∧ �Ht − �DtιXEt)+ ∂t(ιXBt ∧ �Dt)] dt. (37)

Finally, combining the on-shell variation (37) with the expression (36), and requesting the
result to be true with respect to arbitrary domain U, a local conservation law is obtained

∂t(π∗( ftι˜Xϑ)+ ιXBt ∧ �Dt)+ π∗(£ξt ( ftι˜Xϑ))− d(BtιX � Ht + �DtιXEt)

+£X(Bt ∧ �Ht)+
1
2
£X

(
ε0Et ∧ �Et − μ−1

0 (Bext + Bt) ∧ �(Bext + Bt)
)
= 0. (38)

At this point, we remind that for this equation to hold, the symmetry conditions (34) must be
true. In case the isometry does not satisfy the symmetry conditions, one may still differentiate
(32) with respect to s at s = 0 and account for the remaining volumetric terms. In that case,
equation (38) would be modified by a volumetric source term S appearing on the right, the
source term being

S = π∗(ιξt£˜Xϑ ft −£
˜XKt ft)+

δK
δEt

∧ �£XEt

+
δK
δBt

∧ �£XBt + μ−1
0 £XBext ∧ �(Bext + Bt). (39)

From this expression, we see that the weak condition for a conservation law to exist is that this
source term vanishes, given the Euler–Lagrange conditions. Alternatively, the source term can
be used to investigate the momentum balance of the system in directions other than the obvious
symmetry direction of the external magnetic field.

11
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3.2. Constant translations in time

Analysing constant translations in time is simpler than the analysis of spatial isometries for
there is no need to consider lifts or diffeomorphisms at all. Since the action does not have
parametric dependencies on time, i.e., ∂ tϑ = 0 and the function Kt depends on time only
via Et and Bt, we immediately obtain for any constant T the following, strong symmetry
condition

SU,t1,t2 [ξt, ft,At,φt] = SU,t1+T,t2+T[ξt−T , ft−T ,At−T ,φt−T] (40)

and there will be a related conservation law guaranteed by Noether’s first theorem.
To extract the conservation law, we proceed as with the spatial isometries, differentiating

(40) with respect to T at T = 0:

0 = ∂T |T=0SU,t1+T,t2+T[ξt, ft,At,φt]+ δSU,t1,t2 [−∂tξt,−∂t ft,−∂tAt,−∂tφt]. (41)

Using again the fundamental theorem of calculus, the first term is straightforward to
evaluate

∂T |T=0SU,t1+T,t2+T[ξt, ft,At,φt]

=

∫ t2

t1

∫
TU

∂t
(
ftιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt) ft

)
dt

+

∫ t2

t1

∫
U

1
2
∂t
(
ε0Et ∧ �Et − μ−1

0 (Bext + Bt) ∧ �(Bext + Bt)
)
dt. (42)

To evaluate the second term, we apply a trick similar to what we used in analysing the spa-
tial isometries: we re-express−∂tξt = (∂t +£ξt )(−ξt) and−∂t ft = −£−ξt ft. This observation
then helps us identify that δSU,t1,t2 [−∂tξt,−∂t ft,−∂tAt,−∂tφt] is effectively a special case of
(22) with ηt = −ξt, δAt = Et + dφt, and δφt = −∂ tφt, now only evaluated over U and TU
instead of Q and TQ. Direct substitution then provides the on-shell variation (see appendix C
for details)

δSU,t1,t2 [(∂t +£ξt )(−ξt),−£−ξt ft,Et + dφt,−∂tφt]

= −
∫ t2

t1

∫
TU

∂t
(
ftιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt) ft

)
dt

−
∫ t2

t1

∫
U

[d(Et ∧ �Ht)+ ∂t(Et ∧ �Dt)] dt −
∫ t2

t1

∫
TU

(∂t +£ξt )( ftK)dt. (43)

Putting everything together by summing (42) and (43), and noting that the domain U is
arbitrary, we obtain the local conservation law for the energy density

∂t

(
π∗( ftKt)+ Et ∧ �Dt −

1
2
ε0Et ∧ �Et +

1
2
μ−1
0 (Bext + Bt) ∧ �(Bext + Bt)

)

+ π∗(£ξt ( ftKt))+ d(Et ∧ �Ht) = 0. (44)

12
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4. Example applications

Explicitly, we shall consider two models, namely the full-particle Vlasov–Maxwell in a back-
ground magnetic field and the drift-kinetic Vlasov–Maxwell that is obtainable as the long-
wave-length limit of the gyrokinetic Vlasov–Maxwell system [3]. For the external magnetic
field, we shall consider the axially symmetric, time-independent magnetic field often encoun-
tered in a tokamak. In cylindrical coordinates (R,ϕ, z), the vector-calculus representation of
such field is given by

Bext = G(R, z)∇ϕ+∇Ψ(R, z)×∇ϕ. (45)

This field admits a rotational symmetry with respect to an isometry ψs and the related vector
field X = ∂s|s=0ψs ◦ ψ−1

0 , that are defined via

ψs(R,ϕ, z) = (R,ϕ+ s, z), (46a)

X = ẑ× x · ∇ = eϕ · ∇ = ∂ϕ. (46b)

Expressed mathematically, the symmetry exists in the sense of

ψs∗Bext = Bext (47)

ψs∗Aext = Aext. (48)

which, in coordinates and in differential sense, means that ∂ϕBext = ẑ× Bext and ∂ϕAext =
ẑ× Aext. Naturally, since this field admits only a rotational symmetry, there will be no con-
servation law for linear momentum density. The conservation law for linear momentum den-
sity would require a translational symmetry in Bext, a case which we leave as an exercise
for an interested reader to verify with the machinery we have presented in the previous
section.

And since we are merely applying the machinery derived earlier, we will perform the
computations in this section in coordinates and provide the results in terms of regular vec-
tor calculus. This choice will hopefully make these example computations approachable to a
larger audience.

4.1. Classic full-particle Vlasov–Maxwell

In the classic Vlasov–Maxwell system, the kinetic energy of a particle depends only on the
velocity coordinate v. Considering the possibility of the external axially symmetric mag-
netic field, the one-form ϑ and the kinetic energy function K are then given by the coordinate
expressions

ϑ = eAext · dx+ mv · dx, (49)

Kt =
1
2
m|v|2. (50)

In component form, the Euler–Lagrange condition (25) for ξt is given by

mv · dv − e
(
Et + ξxt × (Bext + Bt)

)
· dx+ mξvt · dx− mξxt · dv = 0, (51)

13
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which is straightforward to invert for the components

ξxt = v, (52)

ξvt =
e
m

(Et + v × (Bext + Bt)) . (53)

Furthermore, since the energy function Kt is now entirely independent of the electric and mag-
netic field, the components of the one-form Dt and the two-form Ht are given by Dt = ε0Et
and Ht = μ−1

0 (Bext + Bt). The equations (26) and (27) then provide the standard Gauss’s and
Faraday’s laws

ε0∂tEt − μ−1
0 ∇× (Bext + Bt)+ jt = 0, (54)

ε0∇ · Et − �t = 0, (55)

with the current and charge densities computed from the density f t = Ftd3xd3v as the velocity
space integrals

jt = e
∫

ξxt Ftd
3v, (56)

�t = e
∫
Ftd3v. (57)

Finally, the Vlasov equation is obtained from the enslaved advection condition

(∂t +£ξt ) ft = (∂tFt + ∂zα (ξαt Ft))d
6z = 0. (58)

To check the symmetry conditions (34), we use their differential form (differentiation with
respect to s) and consider the tangential lift Ψs(x, v) = (ψs(x),ψs(v)) with the corresponding
vector field given in components according to

X̃ = ẑ× x · ∇+ ẑ× v · ∂/∂v (59)

It is then a straightforward to verify that

£
˜X (v · dx) = 0, (60)

£
˜X

1
2
|v|2 = 0, (61)

Obtaining the associated conservation law is then a matter of translating (38) to the language of
ordinary vector calculus. The result, the conservation law for the angular momentum density,
becomes

∂t

(∫
Ft(mv + eAext) · eϕd3v + ε0Et × Bt · eϕ

)

+∇ ·
(∫

vFt(mv + eAext) · eϕd3v +
1
2
ε0|Et|2eϕ − 1

2
μ−1
0 |Bext + Bt|2eϕ

− ε0EtEt · eϕ − μ−1
0 Bt (Bext + Bt) · eϕ + μ−1

0 Bt · (Bext + Bt) eϕ
)
= 0. (62)

In a similar manner, we translate (44) to vector calculus and write down the conservation law
for energy density

14
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∂t

(∫
1
2
m|v|2Ftd3v +

1
2
ε0|Et|2 +

1
2
μ−1
0 |Bext + Bt|2

)

+∇ ·
(∫

1
2
m|v|2vFtd3v + μ−1

0 Et × (Bext + Bt)
)

= 0. (63)

4.2. Drift-kinetic Vlasov–Maxwell

In the drift-kinetic Vlasov–Maxwell, the one-form ϑ and the kinetic energy Kt are given by
the coordinate expressions

ϑ = eAext · dx+ mv‖bext · dx+ (m/e)μdθ (64)

Kt =
1
2
mv2‖ + μ|Bext|

(
1+

bext · Bt
|Bext|

+
|Bt⊥|2
2|Bext|2

)
− m

2|Bext|2
|Et⊥ + v‖bext × Bt|2

(65)

with the subscript ⊥ referring to dot product with the dyad 1⊥ = 1− bextbext and bext =
Bext/|Bext| is the unit vector in the direction of the externalmagnetic field. The Euler–Lagrange
condition (25) for the vector field ξt gives

∇Kt · dx+ ∂v‖Ktdv‖ + ∂μKtdμ− e
(
Et + ξxt × (Bt + Bext + (m/e)v‖∇ × bext)

)
· dx

+ (m/e)(ξμt dθ − ξθt dμ)+ ξ
v‖
t mbext · dx− mbext · ξxt dv‖ = 0. (66)

From this expression, we invert for the components

ξxt =
∂v‖Kt

m
B�
t

bext · B�
t
+

(eEt −∇Kt)× bext
ebext · B�

t
, (67)

ξ
v‖
t =

B�
t · (eEt −∇Kt)
mbext · B�

t
, (68)

ξμt = 0, (69)

ξθt =
e
m
∂Kt
∂μ

, (70)

where B�
t = Bt + Bext + (m/e)v‖∇ × bext. The Euler–Lagrange conditions for At (26) and φt

(27) provide

∂tDt −∇×Ht + jt = 0, (71)

∇ · Dt − �t, = 0 (72)

where the macroscopic fields Dt and Bt and the sources jt and �t are defined as

Dt = ε0Et −
∫

∂EtKtFtdv‖dμdθ, (73)

Ht = μ−1
0 (Bext + Bt)+

∫
∂BtKtFtdv‖dμdθ, (74)
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jt =
∫
eξxt Ftdv‖dμdθ, (75)

�t =

∫
eFtdv‖dμdθ. (76)

The Vlasov equation is obtained, as previously, from the enslaved advection condition

(∂t +£ξt ) ft = (∂tFt + ∂zα (ξαt Ft))d
6z = 0. (77)

To check the symmetry conditions (34), we again use their differential form and consider
the tangential lift Ψs(x, v) = (ψs(x),ψs(v)). Now the component form of the vector field X̃ is,
however, given by the expression

X̃ = ẑ× x · ∇, (78)

which follows from the fact that rotating the guiding-center-particle velocity along the sym-
metry direction of the external magnetic field does not change the values of the coordinates v‖,
μ, or θ as they are defined locally with respect to the direction and magnitude of the external
magnetic field. It is then a straightforward computation to verify the infinitesimal forms of the
symmetry conditions, namely that

£
˜Xϑ = e

(
A�
ext ×∇× eϕ + eϕ · ∇A�

ext + A�
ext · ∇eϕ

)
· dx = 0, (79)

∂ϕKt + ∂BtKt · (̂z× Bt − ∂ϕBt)+ ∂EtKt · (̂z× Et − ∂ϕEt) = 0, (80)

where eA�
ext = eAext + mv‖bext. The conservation law for angular momentum density is then

obtained after translating (38) to the language of ordinary vector calculus. The result is

∂t

(∫
Ft(eAext + mv‖bext) · eϕdv‖dμdθ + Dt × Bt · eϕ

)

+ ∇ ·
(∫

ξxt Ft(eAext + mv‖bext) · eϕdv‖dμdθ +
1
2
ε0|Et|2eϕ

− 1
2
μ−1
0 |Bext + Bt|2eϕ − DtEt · eϕ − BtHt · eϕ + Bt ·Hteϕ

)
= 0. (81)

In a similar manner, we translate (44) to vector calculus and obtain the conservation law for
energy density

∂t

(∫
KtFtdv‖dμdθ + Dt · Et −

1
2
ε0|Et|2 +

1
2
μ−1
0 |B0 + Bt|2

)

+ ∇ ·
(∫

ξxt KtFtdv‖dμdθ + Et ×Ht

)
= 0. (82)

5. Summary

In this paper, we have reviewed the geometric interpretation of the Euler–Poincaré formulation
for the purposes of applying it to Vlasov–Maxwell-type systems encountered in the kinetic the-
ory of plasmas, and explained how the possible conservation laws related to constant rotations
and translations in space and translations in time can be obtained in an algorithmic manner.
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After the rather mathematical exposition, two explicit examples were given—the full-particle
Vlasov–Maxwell in an axially symmetric tokamak-like background magnetic field and the
drift-kinetic Vlasov–Maxwell obtained as the long-wave-length limit of the gyrokineticmodel
[3]—with the results being translated to the language of regular vector calculus in the end. We
hope that readers would find the demonstrative calculations helpful in their own endeavours
and that the explicit demonstrations of the geometric take on the Euler–Poincaré methodology
would help unmask its potential to the plasma physics community.
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Appendix A. Certain useful identities

It is useful to review a few identities in order to understand the origins of the constrained
variations in the Euler–Poincaré formalism. Parts of this material are covered in, e.g., reference
[23] section 6, where also the general theory of Euler–Poincaré reduction is presented.We first
recall some basic definitions:

Definition A.1 (Tangent map). Given a smooth map ϕ :U→ V between open subset U ⊆
R
m and V ⊆ R

n, the differential of ϕ at point x ∈ U, Txϕ : Rm → R
n is the unique linear

map such that lim
‖v‖Rm→0

‖ϕ(x + v)− ϕ(x)− Txϕ(v)‖Rn/‖v‖Rm = 0. This concept generalises to

smooth maps ϕ :M→ N between any smooth manifoldsM and N, defining what is called the
tangent map (or pushforward) Tϕ : TM→ TN.

As a bundlemap, it can be seen thatϕ ◦πM = πN ◦ Tϕ, where πM : TM→M and πN : TN→
N are canonical projections.

Definition A.2 (Pullback of k-form). Let ϕ :M→ N be a smooth map between smooth
manifolds M and N, and let α ∈ Ωk(N) be a k-form on N. The pullback of α is a k-form on
M, ϕ∗α ∈ Ωk(M), defined by (ϕ∗α)x(v1, . . . , vk) = αϕ(x)(Txϕ(v1), . . . , Txϕ(vk)). In the case
of a zero-form (or function) f ∈ Ω0(N), the pullback reduces to precompositionϕ∗f = f ◦ ϕ ∈
Ω0(M).

The most important properties of the pullback is that it is compatible with the wedge prod-
uct, ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β, and commutes with the exterior derivative, ϕ∗(dα) = d(ϕ∗α).

Now, let M be an m-dimensional manifold and gt :M→M a smooth family of diffeomor-
phisms (smooth mappings with smooth inverses) with parameter t ∈ I ⊆ R taking values in an
open interval I. The sequence of mappings induces a curve x(t) = gt(x0) ∈ M for each indi-
vidual reference point x0 ∈ M. The reference point x0 should not be interpreted as an initial
condition but rather as a label for the particle moving along the curve x(t). (See section 1
of reference [23] for a discussion of particle relabeling symmetry in fluid theories.) The time-
derivativeof such curve is a tangent vector at x(t), i.e. ẋ(t) = ∂ tgt(x0) = Xt(x(t)) ∈ Tx(t)Mwhere
the time-dependent vector field Xt := ∂tgt ◦ g−1

t :M→ TM has been identified.
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Proposition A.1 (Derivative of a pullback of a time−dependent function). Let ft :M→ R

be a time-dependent f unction. Let Xt :M→ TM be the time-dependent vector field associated
to dif f eomorphism gt :M→M. The pullback of f t by gt satisfies

∂t(g∗t ft) = g∗t (∂t ft +£Xt ft).

Proof. For x0 ∈ M and its characteristic curve x(t) = gt(x0), we have g∗t ft(x0) = ft(x(t)).
Using the chain rule for differentiation, direct calculation gives

∂t(g∗t ft)(x0) = ∂t ft(x(t))+ d ft x(t)(ẋ(t))

= ∂t ft(gt(x0))+£Xt ft(gt(x0))

= [g∗t (∂t ft +£Xt ft)](x0).

�

Proposition A.2 (Derivative of a pullback of a time−dependent k− form). Given a time-
dependent k-f orm αt and a time-dependent vector field Xt related to f amily of dif f eomor-
phisms gt, one has

∂t(g∗t αt) = g∗t (∂tαt +£Xtαt)

Proof. We first assume that it is true for the forms αt and βt. Then it is true for αt ∧ βt
because

∂t(g∗t (αt ∧ βt)) = ∂t(g∗tαt) ∧ g∗t βt + g∗t αt ∧ ∂t(g∗t βt)

= g∗t ((∂tαt +£Xtαt) ∧ βt + αt ∧ (∂tβt +£Xtβt))

= g∗t (∂t(αt ∧ βt)+£Xt (αt ∧ βt))

and trivially also for dαt and dβ t as the exterior derivative commutes with the pullback and the
Lie derivative. Proposition A.1 shows that it is true for zero forms (functions). All other forms
can be constructed from zero forms using combinations of d and ∧, so the result follows. �

Corollary A.1 Let α be a (time-independent) k-f orm on M and let αt = g−1
t

∗
α = :gt∗α be

the pushf orward of α by gt. Then,

(∂t +£Xt )αt = 0,

where Xt = ∂ tgt ◦ g−1
t is the related vector field.

Proof. Since g∗t αt = α, ∂tg∗t αt = ∂tα = 0, and the result follows from proposition A.2. �

Proposition A.3 (Derivative of a vector field of a two−parameter diffeomorphism). Let
gt,s :M→M be a two-parameter f amily of dif f eomorphisms with (t, s) ∈ I × J ⊆ R

2 (open),
which generates the pair of two-parameter vector fields Xt,s = ∂tgt,s ◦ g−1

t,s and Yt,s = ∂sgt,s ◦
g−1
t,s . Then

∂sXt,s − ∂tYt,s = [Xt,s, Yt,s] = −[Yt,s,Xt,s],

where [X, Y] = £XY is the Lie bracket of vector fields satisf ying £X£Y − £Y£X = £[X,Y].

18
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Proof. Let f :M→ R be a function and set ft,s = g∗t,s f . The partial derivatives with respect
to t and s commute (Clairaut’s theorem). Using proposition A.1 (first for time-independent
function and then for a time-dependent function), we compute

0 = ∂t∂s ft,s − ∂s∂t ft,s

= ∂t(g∗t,s(£Yt,s f ))− ∂s(g∗t,s(£Xt,s f ))

= g∗t,s(∂t£Yt,s f +£Xt,s£Yt,s f − ∂s£Xt,s f −£Yt,s£Xt,s f )

= g∗t,s(£∂tYt,s−∂sXt,s+[Xt,s ,Yt,x ] f )

Because f is arbitrary, the result follows. �

Appendix B. Derivation of (37)

Assuming ξt, At, and φt to satisfy the Euler–Lagrange conditions (25)–(27), a direct substitu-
tion to (22) with the replacements Q→ U and TQ→ TU provides

δSU,t1,t2 [(∂t +£ξt )X̃,−£
˜X ft,−ιXBt − d(ιXAt), ιXEt + ∂t(ιXAt)]

=

∫ t2

t1

∫
TU

{
(∂t +£ξt )

(
ι
˜Xϑ ft

)
−£

˜X

[
(ιξt (ϑ+ eπ∗At)− (Kt + eπ∗φt)) ft

]}
dt

−
∫ t2

t1

∫
U

[d(�DtιXEt − ιXBt ∧ �Ht)− ∂t(ιXBt ∧ �Dt)] dt

+

∫ t2

t1

∫
U

{d(ιXAt) ∧ (�∂tDt − d � Ht)− (ιX∂tAt)d �Dt} dt

+

∫ t2

t1

∫
TU

(∂t +£ξt )
(
eι

˜Xπ
∗At ft

)
dt, (B.1)

where only rearrangements have occurred. Since f t satisfies (13), one has (∂t +
£ξt )

(
eι

˜Xπ
∗At ft

)
= e ftπ∗ιX∂tAt + e ftιξtπ

∗d(ιXAt). Using once more the equations (26) and
(27), with the testing zero- and one-form being ιX∂ tAt and d(ιXAt), respectively, one
observes that the last two lines in the above variation cancel each other and (37)
follows.

Appendix C. Derivation of (43)

Assuming ξt, At, and φt to satisfy the Euler–Lagrange conditions (25)–(27), a direct substitu-
tion to (22) with the replacements Q→ U and TQ→ TU provides

δSU,t1,t2 [(∂t +£ξt )(−ξt),−£−ξt ft,Et + dφt,−∂tφt]

= −
∫ t2

t1

∫
TU

∂t
(
ιξt (ϑ+ eπ∗At) ft − (Kt + eπ∗φt) ft

)
dt
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−
∫ t2

t1

∫
U

{d(Et ∧ �Ht)+ ∂t(Et ∧ �Dt)} dt −
∫ t2

t1

∫
TU

(∂t +£ξt )(Kt ft) dt

−
∫ t2

t1

∫
U

{−∂tφtd � Dt+dφt ∧ (�∂tDt−d � Ht)} dt −
∫ t2

t1

∫
TU

(∂t +£ξt )(eπ
∗φt ft) dt,

(C.1)

where only rearrangements have occurred. Since f t satisfies (13), one has (∂t +
£ξt ) (eπ

∗φt ft) = e ftπ∗∂tφt + e ftιξtπ
∗dφt. Using once more the equations (26) and (27), with

the testing zero- and one-form being ∂ tφt and dφt, respectively, one observes that the terms on
last line in the above variation cancel each other and (43) follows.
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