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Abstract— Autonomous systems like aircraft and assistive
robots often operate in scenarios where guaranteeing safety is
critical. Methods like Hamilton-Jacobi reachability can provide
guaranteed safe sets and controllers for such systems. However,
often these same scenarios have unknown or uncertain environ-
ments, system dynamics, or predictions of other agents. As the
system is operating, it may learn new knowledge about these
uncertainties and should therefore update its safety analysis
accordingly. However, work to learn and update safety analysis
is limited to small systems of about two dimensions due to
the computational complexity of the analysis. In this paper
we synthesize several techniques to speed up computation:
decomposition, warm-starting, and adaptive grids. Using this
new framework we can update safe sets by one or more orders
of magnitude faster than prior work, making this technique
practical for many realistic systems. We demonstrate our results
on simulated 2D and 10D near-hover quadcopters operating in
a windy environment.

I. INTRODUCTION

Safety-critical scenarios are situations in which au-
tonomous systems must be able to ensure safety during
operation. Many techniques have been studied to produce
safe controllers that will keep a particular system within a
guaranteed safe set. However, in the real world, there will
inevitably be unexpected changes in the system or envi-
ronment that may violate initial assumptions, invalidating
safety guarantees. It is therefore crucial that the system is
able to react to changing knowledge and to update its safety
controllers and guarantees accordingly.

Safe learning for dynamical systems is an increasingly
active research area. A few researchers take the approach
of safe (machine) learning, where learning algorithms are
updated or guided to provide safer resulting controllers
during training. This can be done by, for example, projecting
an algorithm’s update of a policy to a valid constraint set [1],
moving slowly in uncertain areas [2], or using Lyapunov
functions to drive the learning of a safe policy [3].

One way to enable any reinforcement algorithm to main-
tain safety is to precompute a fixed guaranteed safe set and
safety override controller to keep the system within that
set. This can be done using techniques like control barrier
functions [4] or Hamilton-Jacobi (HJ) reachability [5].

Another line of work takes the approach of learning for
safety. The premise of this work is that a safe policy or safe
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set will not be valid if the assumptions about the system
model or constraints no longer hold. Therefore, the system
must update its assumptions and corresponding safe methods
as the system learns more about the environment [6–12].

Finally, learning for safety and safe (machine) learning
can be combined by jointly producing a guaranteed safe set
and corresponding safe controller based on information gath-
ered online, while simultaneously learning a performance
controller [13–20]. These approaches produce strong results
for small (2-3D) systems, but struggle to extend to higher-
dimensional systems due to the computational complexity
of updating the safe set and safety controller. For example,
the safe-learning framework in [13, 14] uses HJ reachability
wherein the state space is discretized and scales as O(ND),
where N is the number of grid points in each dimension and
D is the number of dimensions.

In this work we seek to efficiently compute safe controllers
and sets online for realistic systems without compromising
on strong theoretical guarantees. To accomplish this, we build
upon [13, 14] by incorporating three methods to improve
computation:

1) Decomposing dynamical systems with “self-contained
subsystems” to improve computation by orders of mag-
nitude while maintaining exact results [21].

2) When new information is learned about the system or
environments, updating the safe set directly using warm-
starting rather than completely recomputing the safe set.
Recent work [9, 22] proved that this will converge to
exact or conservative results while reducing iterations
to convergence of the computation.

3) Initializing the safe set computation with a coarse grid
that is refined over time, while maintaining exact or
conservative guarantees.

We demonstrate the new learning for safety framework on
a 2D quadcopter model and a 10D near-hover quadcopter
model experiencing unknown wind disturbances. Due to the
exponential computational scaling, computing safe sets for
the 10D model using HJ Reachability directly would be
intractable. Decomposing the system into one 2D and two
4D subsystems using [21] makes the computation tractable
at 2 to 3 hours. Further incorporating the warm-starting and
adaptive grid reduces the time further to an average of 3.3
minutes. Simulation demonstrations in the Robot Operating
System (ROS) [23] environment show the quadcopters main-
taining and updating safety analyses online, with an average
safety update time of less than one second for the 2D system
and 206.6 seconds for the 10D system.
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II. BACKGROUND: SAFE LEARNING

The purpose of the prior framework in [13, 14] is to (a)
provide a safe set within which the system can freely learn a
performance controller, and (b) update that safe set based on
learned information about the system or environment. Note
that there are two forms of learning happening: safe learning
of the performance controller, and learning for safety by
updating the safe set based on learned parameters. This
section provides background on the existing safe learning
framework that our work builds on.

A. Computing Safe Sets & Controllers using HJ Reachability

Consider a general system ẋ = f(x, u, d) describing the
evolution over time of the state x ∈ Rn under system
control inputs u ∈ U in the presence of environmental
disturbances d ∈ D(x), which may vary with the state. Let
there be a state constraint set C ⊂ Rn in the environment
(representing, for example, obstacle boundaries or bounds on
velocity of the system). The maximal safe control-invariant
set is denoted as S(C,D), with corresponding optimal safety
controller, u∗(x), using which the system is guaranteed to
remain in the constraint set C even when experiencing worst-
case disturbances. One way to compute this set is through
HJ reachability analysis. Solving for both S(C,D) and u∗(x)
can be posed as an optimal control problem whose value is

V (x) = sup
d(·)

inf
u(·)

max
τ∈[t,0]

c
(
ξ(τ ;x, t, u(·), d(·))

)
. (1)

Here, ξ(τ ;x, t, u(·), d(·)) denotes the state reached by the
system f at timestep τ when starting at state x and time
t. The cost, c(x), is the signed distance function for the
constraint set C, such that C = {x : c(x) ≤ 0}.

By formulating the value function with a maximum over
time, the analysis captures whether a trajectory ever violates
the state constraints. The infimum over control ensures that
the control input will act optimally to keep the system within
the constraint set C, and the supremum over disturbance
assumes that the disturbances will be acting in an optimally
adversarial manner.

The value function optimization (1) is in general non-
convex and challenging to compute. One method is to use
dynamic programming: the value of the function at the final
time is set as equal to the cost V (x, 0) = c(x), and then
iterated backwards in time using the Hamilton-Jacobi-Isaacs
Variational Inequality (HJI VI) [24] until convergence:

0 = max
{
c(x)− V (x, t),

DtV (x, t) + min
u

max
d
〈∇V (x, t), f(x, u, d)〉

}
.

(2)

In the infinite horizon scenario, we drop the dependence
on time and denote the optimal converged value function
as V ∗(x) with corresponding safe set S(C,D) = {x :
V ∗(x) ≤ 0}. This set captures states from which optimal
trajectories of the system maintain non-positive cost over
an infinite time horizon, and therefore never violate the
constraint set despite worst-case disturbances. The gradients
of this function can be used to compute the optimal safety
control, u∗s(x) = argminumaxd〈∇V ∗(x), f(x, u, d)〉.

Every non-positive level set of the value function provides
a safe invariant set. We therefore set the default safe set as
the subzero level set of the converged value function.

B. Safe Learning: Learning the Performance Controller
within the Safe Set

If the system is within the safe set, it is free to explore
and learn a desired policy or performance controller, denoted
up(x). As the system approaches the boundary of the safe
set, the optimal safety controller u∗s(x) overrides the learned
policy to keep the system within the safe set. By providing
a safe set and safety controller, the learning process can
happen confidently without concern of safety violations.
Due to the switching between the performance and safety
controllers, this structure is more amenable to off-policy
learning methods that do not rely on the assumption that
the data they are trained on is collected from the method’s
controller itself.

C. Learning for Safety: Updating the Safe Set and Controller

The initial safe set from Sec. II-A was computed based
on certain assumptions about the system and the environ-
ment. These assumptions may change in light of data the
system collects online. If this happens, the safety guarantees
established under the initial assumptions will no longer hold,
which will also make the optimal safety controller invalid.
Therefore, the safe-learning framework must include data-
driven methods to learn about the environment in real time
and update the corresponding safety guarantees.

We assume that uncertainties in the dynamics can be de-
scribed as disturbances to the system (e.g. wind, model-plant
mismatch). The system measures these state(xj)-dependent
disturbances(dj) while exploring the state space. A collec-
tion of these measurements {(xj , d̂j)}Nj=1are then used to
estimate the bounds of disturbance across the state space
using Gaussian Process (GP) regression [25]. GP regression
is suitable for our problem since it can capture both epistemic
uncertainty (due to limited data) and the system’s inherent
stochasticity (such as wind effect). Moreover, we can include
measurement noise in the formulation, which allow us to ac-
count for estimation errors in the disturbance measurement.

Based on the collected data, GP regression is performed
by optimizing the kernel parameters and taking the posterior
distribution of GP conditioned on the data. We refer to [25]
for more details. The output is a δ-confidence interval of the
gaussian distribution from the GP model which approximates
the updated disturbance bound D(x) across the state space.
The safe set computed based on this disturbance bound will
provide a high-probability safety guarantee under physical
disturbance, model-plant mismatch, and disturbance estima-
tion errors.

Once the new disturbance bounds are learned, the safe
set must be updated to reflect these changed assumptions.
In the prior safe-learning framework [13, 14], the update
occurs simply by recomputing the entire safe set, as in
Sec. II-A. While recomputation occurs, the system finds
and stays within a negative sublevel set of the previous



safe value function where the disturbance assumptions still
hold. This contraction tends to be overly conservative, but
provides a temporary safe region to stay within while the
new safe set is computed. Unfortunately, recomputing the
safe set online using the prior framework is infeasible for
most realistic systems due to the computational complexity
of HJ reachability.

III. ACCELERATED LEARNING FOR SAFETY

The prior framework [13, 14] was demonstrated on a 2D
system due to its issues with computational scalability. We
propose modifications to the safe set computation in order
to handle higher-dimensional systems.

A. Incorporating Decomposition

Some higher-dimensional systems can be decomposed into
smaller subsystems that can be analyzed independently [21,
26]. When possible, this reduces the computation time by
potentially orders of magnitude. This is simply because
splitting the analysis into multiple computations with lower
dimensions changes the magnitude of the exponential scal-
ing. For example, a 10D quadcopter model that will be
used in Sec. IV can be decomposed into two 4D and one
2D system, changing the computational complexity from
O(N10) to O(N4 + N4 + N2), where N is the number
of grid points in each dimension.

In order to provide exact guarantees on the safe set
and controller computation while using decomposition, the
dynamic system must be either completely decoupled or
coupled via self-contained subsystems (details in [21, 26]).
For systems that do not have these properties, the remaining
two components of the updated safe learning framework in
Sec. III-B and Sec. III-C still apply.

B. Incorporating Warm-Starting

Standard HJ reachability analysis requires that any com-
putation must be initialized at the terminal cost function, i.e.
V (x, 0) = c(x), in order to provide guarantees. In contrast,
the reinforcement learning community often employs the
technique of warm-starting, wherein a “best guess” initial-
ization is used, and therefore the computation may converge
in fewer iterations (if convergence can be achieved). Recent
research was able to prove exact or convervative convergence
of warm-started HJ reachability analyses [22, 27].

We can employ this proven technique to the learning
for safety framework. Upon changes in information or as-
sumptions (e.g. change in disturbances, control authority,
obstacles, model parameters), one can initialize a new com-
putation using the previously computed safe set, rather than
reinitializing from the constraint set. By warm-starting from
a previous solution that was based on slightly different
assumptions, [22] shows empirically that the computation
will generally converge in fewer iterations.

We initialize with the previously computed value function,
which we will define as w(x). The new value function is
computed using the standard HJI VI (2), with initialization
Vw(x, 0) = w(x), constraint set C, and updated disturbance

bounds D(x). The computation is run until convergence,
outputting the converged value function V ∗w(x) and safe set
S(C,D) = {x : V ∗w(x) ≤ 0}.

C. Incorporating Coarse Approximations

The last component of the new safe-learning framework
extends on the work in [22] by applying the warm-starting
technique more generally. In addition to warm-starting from
previous solutions, one could warm-start from coarse ap-
proximations to the safe set. Through an initial computation
using a coarse grid and cheap gradient approximations, a
very quick rough approximation of the true safe set can
be computed. This approximation can then be refined by
using it as an initialization to a fine, higher-accuracy com-
putation. Adaptive grids are used in the fluid mechanics and
reinforcement learning communities [28–31], and with the
warm-starting convergence proofs these techniques can now
be applied to reachability analysis.

We initialize again with the previously computed value
function, this time over a coarse grid wcoarse(x). The new
value function is computed as in Sec. III-B, outputting
the converged value function V ∗,coarse

w (x). This is then
used to initialize a second computation over a coarse grid,
V fine
w (x, 0) = V ∗,coarse

w (x). The final converged value function
is denoted as V ∗w(x) = V ∗,fine

w (x).

IV. COMPUTATION COMPARISON

We first isolate the safe set computation component of the
framework and perform a computational comparison to the
prior work in [13, 14]. The computation comparison will be
for a hypothetical experiment in which an initial safe set is
computed for a 10D near-hover quadcopter [32], and then
must be updated when the GP produces a new disturbance
bound estimate. The 10D model has states (px, py, pz) denot-
ing the position, (vx, vy, vz) for velocity, (θx, θy) for pitch
and roll, and (ωx, ωy) for pitch and roll rates. Its controls are
the desired pitch and roll angle (Sx, Sy), and vertical thrust
Tz . The disturbances (dx, dy, dz) represent wind, and g is
gravity. Its model is:

ṗx
v̇x
θ̇x
ω̇x

ṗy
v̇y
θ̇y
ω̇y

ṗz
v̇z


=



vx
g tan θx + dx
−d1θx + ωx

−d0θx + n0Sx

vy
g tan θy + dy
−d1θy + ωy

−d0θy + n0Sy

vz
(kT /m)Tz − g + dz


. (3)

By limiting the quadcopter to near-hover (small pitch and
roll) conditions, there is assumed to be no coupling through
yaw. The parameters d0, d1, n0, kT , and the control bounds
U that we used were d0 = 10, d1 = 8, n0 = 10, kT =
4.55, |Sx|, |Sy| ≤ 14◦, 0.6mg ≤ Tz ≤ 1.4mg. Extending the
framework to use this model is not an easy task: updating
the safe set online for a 10D system using the original safe-
learning framework would take O(N10), where N is the
number of grid points. With 50 grid points in each dimension



Fig. 1: Computation time comparison for 4D x-subsystem of 10D quadcopter
model. Blue columns show the compute time for the initial computation,
and purple columns show the compute time for the updated computation
with new disturbance bound from data. The sets of bars show the compu-
tation when incorporating (a) decomposition, (b) decomposition and warm-
starting, (c) decomposition and warm-starting and coarse initializations.
Using the new framework (c), the computation of the 4D subsystem takes
minutes instead of hours, making updating a 10D safe set online tractable
for the first time.

TABLE I: Time Comparison of Computation Methods for 4D Subsystem
of 10D Quadcopter Model

Prior
Framework

(with decomp.)

Decomp. +
Warm-Start

New Framework
(Decomp. + Warm-
Start + Coarse Init.)

Initial
Comp

x (4D) 5797 s 5797 s 143.6 s
y (4D) 5645 s 5645 s 145.6 s
z (2D) 1.7 s 1.7 s 1.4 s
total 9656s (2.7hr) 9656s (2.7hr) 290.6s (4.8min)

Update
Comp

x (4D) 5752 s 659.4 s 42.3 s
y (4D) 5535 s 667.3 s 80.3 s
z (2D) 1.1 s 0.4 s 0.3 s
total 11288s (3.1hr) 1327s (22min) 123s (2min)

and an estimated time of 0.001s for each grid point to reach
convergence, this computation would be intractable.

We assume an initial disturbance bound with mean µ =
0 m/s2 and variance σ2 = 0.01 m/s2, bounded at 99.7%(3σ)
confidence. The disturbance bound is then updated by GP
regression from disturbance data collected in simulation (Sec.
V-B) under wind effect, and an updated computation must
occur to incorporate this new information into the safe
set. All computation in this section is done using a 2015
MacBook Pro with a 2.8 GHz Quad-Core Intel processor
and 16GB of memory. All computation results can be seen
in Table I.

A. Incorporating Decomposition

We first use the decomposition technique from [21] to
decompose the 10D dynamical system into three subsystems
in the x (4D), y (4D), and z (2D) dimensions. This reduces
the number of grid points to iterate over from 9.76E16 for
the 10D system to 5.76E6 for the 4D systems and 1E4 for
the 2D system. The safe set can be computed exactly in each
subsystem with the corresponding safety controllers for the
x, y, and z subsystems separately.

Using the decomposed system reduces the computation
time from being intractable to the order of hours. Fig. 1a
shows the computation time for the 4D x-subsystem for the
initial computation (blue, 5797s or 1.6 hours) and updated
computation (purple, 5752s or 1.6 hours). Despite these
improvements, this time frame is still not sufficiently efficient
for the online computation for safe sets for real experiments.

B. Incorporating Warm-Starting

When the disturbance bounds change, we can warm-
start the update from the previously computed safe set.
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Fig. 2: Solid red line: constraint set boundary of 4D x-subsystem of 10D
quadcopter model projected to position and velocity dimensions. Solid lines:
initial safe set S(C,D) boundary computed using prior framework with
decomposition (dark blue, 5797 seconds) and the new framework (cyan,
143.6 seconds). Dashed lines: updated safe set with new disturbances
computed using prior framework with decomposition (dark blue, 5752
seconds) and the new framework (42.3 seconds).

Computation results for decomposition with warm-starting
are shown in Fig. 1b. This method does not impact the time
to compute the initial safe set shown in blue at 5797s (1.6
hours), but does impact the time to update the safe set shown
in purple at 659.4s (11 minutes).

C. Incorporating Coarse Approximations

By initializing computations with a coarse grid that is
run to convergence, broad changes in the safe set can be
computed quickly. The resulting value function can then be
migrated to a finer grid to refine the function more accu-
rately until convergence. Fig. 1c illustrates the computational
results for our new framework that synthesizes this coarse
approximation along with decomposition and warm-starting.
The initial computation of the 4D x-subsystem using the
new framework takes 143.6s, or 2.4min (blue). The up-
dated computation takes 42.3s (purple). Using all three new
components reduces computation by an order of magnitude
compared to the decomposed system, and by several orders
of magnitude compared to the full 10D system!

D. The New Safe-Learning Framework

This updated learning for safety framework reduces the
computation of the 10D set from an intractable length of
time to 4.8 minutes when computed serially, or 2.4 minutes
in parallel. When updating from a previous solution, the
10D computation is 2 minutes in series and 1.3 minutes in
parallel. Note that these computations may take moderately
longer when the computer is also learning the performance
controller and running a simulator.

Figure 2 shows the updated safe set of the 4D x-subsystem
projected onto the position and velocity dimensions. The
constraint (red) has bounds on position (px ∈ [−2.5, 2.5]m)
and velocity (vx ∈ [−3.5, 3.5]m/s). Because computing the
safe set is intractable for the 10D system, we instead show as
ground truth the boundary of the safe set of the decomposed
4D x-subsystem computed with the original framework (solid
blue line). This computation took 92.3 minutes. The dashed
cyan line shows the boundary of the safe set updated using
the new framework, which took 1.2 minutes.



Fig. 3: Close-up of the learning process of the 2D quadcopter over a short time period. Left: Altitude of quadcopter (green), reference trajectory (magenta)
and z-boundaries of the safe set (gray and yellow) are plotted over a snapshot of the training process. The safe set boundaries are computed as a function
of the drone’s velocity, explaining the narrower safe regions during periods of faster motion. Right: The safety controller must override the system (blue
regions of green trace) whenever the quadcopter reaches the boundaries of the safe set as it learns to track the reference trajectory.

Fig. 4: Full view of the training process over time. Altitude of quadcopter (green) and z-boundaries of the safe set (gray and yellow) are plotted over the
course of training. At the beginning, the quadcopter does not track the trajectory well and relies on the safety override (blue regions of green trace) and
as learning progresses, the drone improves its tracking skill. Note that the safe set occasionally contracts due to noise in the disturbance estimation.

Fig. 5: Altitude of quadcopter (green), reference trajectory (magenta), z-
boundaries of the safe set (gray and yellow). Once an external wind
disturbance is introduced (red vertical line), measured disturbance is outside
the confidence bound of the GP model, resulting in a contraction of the
safe set (red shaded regions), allowing the quadcopter to remain safe in
a conservative region while it updates the GP to reflect its belief in the
disturbance function, and computes a corresponding safe set (blue vertical
line). This computation is done with (top) and without (bottom) warm-
starting with the old reachable set. In both cases, after the safe set is updated,
the drone is allowed to expand its safe set again.

V. SIMULATION DEMONSTRATION

We evaluate our framework in a Crazyflie 2.0 [33] sim-
ulation environment [34] built on ROS [23]. To make the
simulation as realistic as possible, we build every task of the
framework, which consist of state estimation, collecting dis-
turbance data, training GP model, updating safe set, learning-
based controller, and safety verification, run in parallel. The
only difference from the real experiment setup is that we
assume that we receive accurate positions of the drone from
the Motion Capture system.

A. Comparison to Original 2D Quadcopter

The prior framework [13, 14] focused on ensuring the
safety of a 2D quadcopter that is learning to follow a simple

sinusoidal reference trajectory. For proper comparison we
will recreate this experiment. The quadcopter is represented
by a 2D affine model:

ẋ1 = x2, ẋ2 = kTu+ g + k0 + d(x) (4)
where x1 is the height, x2 is vertical velocity, and u ∈ [0, 1]
is the normalized motor thrust command. The parameters
kT and k0 are specific to the quadcopter, and the gravity is
g = −9.8 m/s2. The disturbance d(x) represents unmodeled
forces in the system that affect the acceleration of the system
(e.g. external wind). In the simulation environment, the wind
blowing from a fan on the ground is emulated as a vertical
acceleration applied to the drone sampled from a gaussian
distribution, whose mean and variance is a function of the
altitude. Their values are maximal near the ground and
diminish to zero when the altitude gets higher.

The task of the quadcopter is to follow a vertical reference
trajectory without getting too close to the ground or ceiling,
thus the state constraints are set as C = {x : 0.35 m ≤ x1 ≤
2.8 m}. The vertical reference trajectory cycles between an
altitude of 0.35 m and 2.3 m.

The performance controller is adapted from part of a pub-
lic code repository [35] implementing the Soft-Actor Critic
(SAC) algorithm [36], an off-policy reinforcement learning
method that jointly learns a Q-value function over state-
control pairs and a maximum-entropy policy that maximizes
the Q-value function. The reward function used is based
on a squared error between the reference and true states,
and on the difference in the heading of the trajectories. The
controller and Q-value functions are represented by three-
layer neural networks with 32 units per hidden layer.

The state-dependent bound D̂(x) that the disturbance d(x)
may lie within is initialized to be −0.3 m/s2 ≤ d ≤
0.3m/s2. This bound is then updated by learning the Gaussian
process model and setting D̂(x) to the marginal 99.7%(±3σ)
confidence interval at each value of x.



In the prior work, the iterative safety re-computation [13,
14] was only used when the quadrotor was exposed to
minimal disturbances. When adding a significant disturbance
(in the form of a wind from the fan), the quadcopter did not
recompute the safe set, instead using a reactive contraction
method to a smaller subset of the original safe set, providing
a fast but overly conservative safety bound. Here we extend
their experiment to recomputing the safe set in the face
of new disturbances, and will compare this to the new
framework that updates rather than recomputes the safe set.

First, we execute the SAC controller and train its pol-
icy. Before it is trained, the SAC controller would show
aggressive behavior and therefore, without the safe learning
framework, it is impossible to train it safely online. Figure 3,
4 show the training phase, which takes roughly 15 minutes
to learn decent tracking performance while the safety filter is
assuring it to stay within the safe region. The constraint on
minimum and maximum altitude derived from the safe set is
plotted together. This values vary depending on the system’s
current state and the level of the value function that the safe
set is contracted to. Though there is no distribution shift of
the disturbance yet, the contraction happens sometimes due
to noise of the disturbance measurement.

Next, we introduce the effect of wind, d(x) whose value
is sampled from normal distribution with maximal mean
value 3.0m/s2 at x1 = 0.35m. The drone now faces an
unexpected disturbance when it approaches the bottom of
the reference trajectory. Thus, it contracts its safe set and
waits in the conservative safe region until the new safety
information is updated. Figure 5 shows the process of new
safety information updated with our method (top) and recom-
puted from scratch by using the original method (bottom).
The update takes 2.43s for the original method, whereas our
method can do this task within 0.71s. Note that in the figure,
the difference is minute because most of the time until the
safe set is updated is spent on data collection and training
the GP model. Once the safety information is updated, it
learns that the wind is actually blowing in the direction of
“helping” the drone to stay away from the ground, therefore
it is allowed to approach close to the bottom of the trajectory
again. Moreover, when disturbance shift is not present, while
original method takes an average of 2.60s to recompute the
safe set every time it gets new disturbance model, our new
method is able to update it in an average of 0.13s, which
reduces redundant computation significantly.

B. Extension to 10D quadcopter Model

To demonstrate the scalability of the new framework we
test our method with the 10D quadcopter model described in
Sec III. The quadcopter must follow a figure-eight reference
trajectory in 3D space using an LQR-based performance con-
troller while maintaining safety. The constraint set consists of
bounds in px, py ∈ [−2.5, 2.5]m, pz ∈ [0.35, 2.8]m, velocity
vx, vy, vz ∈ [−3.5, 3.5]m/s, and angles θx, θy ∈ [−π8 ,

π
8 ].

The simulation begins without any external disturbances.
Shortly thereafter, the wind [dx dy dz] is introduced in the
left bottom corner of the room (see blue arrows in Fig. 6,

Fig. 6: Demo of 10D near-hover quadcopter. The reference trajectory is
the dashed line. The orange diamond and pink circle denote the start and
end of the quadcopter trajectory. The quadcopter begins in yellow, and then
experiences a sudden change in wind (blue arrows). Its safe set contracts to
a negative level set of the value function (orange trajectory) until the safety
analysis update is complete (pink trajectory).

its quantities are sampled from normal distribution, whose
maximal mean norm is 3.9m/s2 at the edge of the room). The
safe set contracts to a negative level set of the initial value
function, constraining the quadcopter (orange trajectory).
Meanwhile, the new framework computes an updated value
function. Upon completion, the new safe set provides an
updated safety guarantee based on the wind disturbance,
and the quadcopter continues to track the figure-eight as
well as possible while maintaining guaranteed safety (pink).
Updating the safety analysis during the simulation took an
average of 206.6s (3.3 min). This means a system of greater
than three dimensions can now learn and update its safety
guarantees online.

VI. DISCUSSION & CONCLUSION

In this paper we used decomposition, warm-starting, and a
simple adaptive grid to speed up the computation of safe sets
and controllers for autonomous systems. This is particularly
useful when the system needs to update its safety analysis
online when faced with new information about uncertainties
in the environment or system dynamics. Using our methods
we were able to compute and update the safety analysis for a
10D near-hover quadcopter in an average of 3.3 minutes, as
opposed to 1 to 2 hours for the prior work to update safety
for a 4D system or an intractable amount of time for the
10D system. This new framework allows learning for safety
to be applied to a much larger class of realistic systems.

This work can be extended in several ways. First, the
techniques introduced in the new framework can be general-
ized beyond wind disturbances, updating the safety analysis
when changes in knowledge of obstacles, model uncertainty,
or other agents occur. The efficiency of this framework can
also be sped up through (a) efficient toolbox implementations
of HJ reachability, [37, 38] (b) more sophisticated adaptive
gridding, and (c) localized warm-starting [9]. Finally, the
code was written to easily generalize to any robot using
ROS, and we are eager to perform hardware experiments
across different platforms.
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