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ABSTRACT
We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical
datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial
domain and modeling the regions in the partition using a sparsity-inducing directed acyclic graph (DAG). We
extend the model over the DAG to a well-defined spatial process, which we call the meshed Gaussian pro-
cess (MGP). A major contribution is the development of an MGPs on tessellated domains, accompanied by a
Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can
harness high-performance computing resources by executing all large-scale operations in parallel within
the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes.
Unlike some existing models for large spatial data, a Q-MGP facilitates massive caching of expensive matrix
operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-
MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using
Normalized Difference Vegetation Index data from the Serengeti park region to recover latent multivariate
spatiotemporal random effects at millions of locations. The source code is available at github.com/mkln/
meshgp. Supplementary materials for this article are available online.
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1. Introduction

Collecting large quantities of spatial and spatiotemporal
data is now commonplace in many fields. In ecology and
forestry, massive datasets are collected using satellite imaging
and other remote sensing instruments such as LiDAR that
periodically record high-resolution images. Unfortunately,
clouds frequently obstruct the view resulting in large regions
with missing information. Figure 1 shows this phenomenon in
Normalized Difference Vegetation Index (NDVI) data from the
Serengeti region. Filling such gaps in the data is an important
goal as is quantifying uncertainty in predictions. This goal
is achieved through stochastic modeling of the underlying
phenomenon, which involves the specification of a spatial or
spatiotemporal process characterizing dependence from a finite
realization. Gaussian processes (GPs) are a customary choice
to characterize spatial dependence, but their implementation is
notoriously burdened by their O(n3) computational complexity.
Consequently, intense research has been devoted in recent years
to developing scalable models for large spatial datasets—see
detailed reviews by Sun, Li, and Genton (2011) and Banerjee
(2017).

Computational complexity can be reduced by considering
low-rank models; among these, knot-based methods motivated
by “kriging” ideas enjoy some optimality properties but
oversmooth the estimates of spatial random effects unless the
number of knots is large, and require corrections to avoid
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overestimation of the nugget (Banerjee et al. 2008; Cressie
and Johannesson 2008; Banerjee et al. 2010; Guhaniyogi et al.
2011; Finley, Banerjee, and Gelfand 2012). Other methods
reduce the computational burden by introducing sparsity in the
covariance matrix; strategies include tapering (Furrer, Genton,
and Nychka 2006; Kaufman, Schervish, and Nychka 2008) or
partitioning of the spatial domain into regions with a typical
assumption of independence across regions (Sang and Huang
2012; Stein 2014). These can be improved by considering a
recursive partitioning scheme, resulting in a multi-resolution
approximation (MRA; Katzfuss 2017). Other assumptions
on conditional independence assumptions also have a good
track record in terms of scalability to large spatial datasets:
Gaussian random Markov random fields (GMRF; Rue and
Held 2005), composite likelihood methods (Eidsvik et al. 2014),
and neighbor-based likelihood approximations (Vecchia 1988)
belong to this family.

The recent literature has witnessed substantial activity sur-
rounding the so called Vecchia approximation (Vecchia 1988).
This approximation can be regarded as a special case of the
GMRF approximations with a simplified neighborhood struc-
ture motivated from a directed acyclic graphical (DAG) repre-
sentation of a GP likelihood. Extensions leading to well-defined
spatial processes to accommodate inference at arbitrary loca-
tions by extending the DAG representation to the entire domain
include nearest neighbor Gaussian processes (NNGPs; Datta,

© 2020 American Statistical Association
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Figure 1. Left: NDVI in the Serengeti region on 2016-12-17. White areas correspond to missing data due to cloud cover. Right: Elevation data for the same region.

Banerjee, Finley, Gelfand, et al. 2016; Datta, Banerjee, Finley,
Hamm, et al. 2016) and further generalizations by construct-
ing DAGs over the augmented space of outcomes and spatial
effects (Katzfuss and Guinness 2017). These approaches ren-
der computational scalability by introducing sparsity in the
precision matrix. The DAG relies upon a specific topological
ordering of the locations, which also determine the construction
of neighborhood sets, and certain orderings tend to deliver
improved performance of such models (Katzfuss and Guinness
2017; Guinness 2018).

When inference on the latent process is sought, Bayesian
inference has the benefits of providing direct probability state-
ments based upon the posterior distribution of the process.
Inference based on asymptotic approximations are avoided, but
there remain challenges in computing the posterior distribu-
tion given that inference is sought on a very high-dimensional
parameter space (including the realizations of the latent pro-
cess). One possibility, available for Gaussian first-stage likeli-
hoods, is to work with a collapsed or marginalized likelihood
by integrating out the spatial random effects. However, Gibbs
samplers and other MCMC algorithms for the collapsed models
can be inexorably slow and are impractical when data are in
the millions. A sequential Gibbs sampler that updates the latent
spatial effects (Datta, Banerjee, Finley, Gelfand, et al. 2016) is
faster in updating the parameters but suffers from high auto-
correlation and slow mixing. Another possibility emerges when
interest lies in prediction or imputation of the outcome variable
only and not the latent process. Here, a so called “response”
model that models the outcome itself using an NNGP can be
constructed. This model is much faster and enjoys superior con-
vergence properties, but we lose inference on the latent process
and its predictive performance tends to be inferior to the latent
process model. Furthermore, these options are unavailable in
non-Gaussian first-stage hierarchical models or when the focus
is not uniquely on prediction. A detailed comparison of different
approaches for computing Bayesian NNGP models is presented
in Finley et al. (2019).

Our current contribution introduces a class of meshed Gaus-
sian process (MGP) models for Bayesian hierarchical modeling

of large spatial datasets. This class builds upon the aforemen-
tioned works that build upon Vecchia (1988) and other DAG
based models. The inferential focus remains within the con-
text of massive spatial datasets over very large domains. We
exploit the demonstrated benefits of the DAG based models,
but we now adapt them to partitioned domains. We describe
dependence across regions of a partitioned domain using a
small, patterned DAG which we refer to as a mesh. Within each
region, some locations are selected as reference and collectively
mapped to a single node in the DAG. Relationships among
nodes are governed by kriging ideas. In the resulting MGP,
regions in the spatial domain depend on each other through
the reference locations. Realizations at all other locations are
assumed independent, conditional upon the reference locations.
This construction leads to a valid standalone spatial process.

As a particular subclass of MGPs, we propose a novel parti-
tioning and graph design based on domain tessellations. Unlike
methods that build sparse DAGs by limiting dependence to m
nearest neighbors, our approach shapes the underlying DAG
with a known, repeating pattern corresponding to the chosen
tessellation geometry. The underlying sparse DAG enables scal-
ing computations to large data settings and its known pattern
guarantees the availability of block-parallel sampling schemes;
furthermore, large computational savings can be achieved at no
additional approximation cost if data are collected on patterned
lattices. Finally, extensions to spatiotemporal and/or multivari-
ate data are straightforward once a suitable covariance function
has been defined. We use axis-parallel domain partitioning and
the corresponding cubic DAG—resulting in cubic MGPs or Q-
MGPs—to show substantial improvements in computational
time and inferential performance relative to other models with
data sizes ranging from the thousands to the several millions,
for both spatial and spatiotemporal data and using multivariate
spatial processes.

The present work may appear to share similarities with
the block-NNGP model of Quiroz, Prates, and Dey (2019),
who advocate building sparse DAGs on grouped locations
based on their ordering and subsequent identification of m
“past” neighbors. Unlike block-NNGPs, our tessellated GPs
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consider the domain tessellation as generating the DAG; the
number of parents of any node is thus fixed and depends
on the geometry of the chosen tessellation rather than on a
user-defined parameter. Inclusion of more distant locations in
the parent set of any location will, therefore, not proceed by
increasing the number of neighbors m, but rather by increasing
the regions’ size and/or modifying their shape. Central to
tessellated GPs is the idea of forcing a DAG with known
coloring on the data, resulting in guaranteed efficiencies when
recovering the latent spatial effects. This strategy is analogous
in spirit to multi-resolution approximations (Gramacy and Lee
2008; Katzfuss 2017), which also force a DAG on the data,
resulting in conditional independence patterns that are known
in advance and that can be used to improve computations.
However, while multi-resolution approximations are defined by
branching graphs associated to recursive domain partitioning,
tessellated GPs use a single domain partition, with each region
connected in the DAG only to its immediate neighbors.
Compared to treed graphs, tessellated GPs are associated to
DAGs with fewer conditionally independent groups and whose
repeated patterns facilitate the identification of redundant
matrix operations arising when one or more coordinate margins
are gridded. We also note that while the idea of partitioning
domains to create approximations is not new, construction of
the DAG-based approximation over partitioned domains has
received considerably less attention. Finally, our focus here is in
developing tessellated GPs as a methodology that enables the
efficient recovery of the latent spatial random effects and the
Bayesian estimation of covariance parameters via MCMC; we
are thus not focusing on alternative computational algorithms
(see, e.g., Finley et al. 2019), which have been developed for
NNGPs but can nonetheless all be adapted to general MGP
models.

The balance of this article proceeds as follows. Section 2
introduces our general framework for hierarchical Bayesian
modeling of spatial processes using networks of grouped spatial
locations. The MGP is outlined in Section 3, where we pro-
vide a general, scalable computing algorithm in Section 3.1.
Tessellation-based schemes and the specific case of Q-MGPs
are outlined in Section 4, which highlights their properties and
computational advantages. We illustrate the performance of our
proposed approach in Section 5 using simulation experiments
and an application on a massive dataset with millions of spa-
tiotemporal locations. We conclude the article with a discus-
sion and pointers to further research. Supplementary materials
accompanying this article as an appendix are available online
and contain further comparisons of Q-MGPs with several state-
of-the-art methods for spatial data.

2. Spatial Processes on Partitioned Domains

A q × 1 spatial process assigns a probability law on {w(�) : � ∈
D}, where w(�) is a q × 1 random vector with elements wi(�)
for i = 1, 2, . . . , q. In the following general discussion we will
not distinguish between spatial (D ⊂ �d) and spatiotemporal
domains (D ⊂ �d+1), and denote spatial or spatiotemporal
locations as �, s, or u.

For any finite set of spatial locations {�1, �2, . . . , �nL} =
L ⊂ D of size nL, let P(·) denote the probability law of the
nLq×1 random vector wL = (w(�1)

�, w(�2)
�, . . . , w(�nL)�)�

with probability density p(·). The joint density of wL can be
expressed as a DAG (or a Bayesian network model) with respect
to the ordered set of locations L as

p(wL) =
nL∏
i=1

p(w(�i) | w(�1), . . . , w(�i−1)), (1)

where the conditional set for each w(�i) can be interpreted as
the set of its parents in a large, dense Bayesian network. Defining
a simplified valid joint density on L by reducing the size of the
conditioning sets is a popular strategy for fast likelihood approx-
imations in the context of large spatial datasets. One typically
limits dependence to “past” neighboring locations with respect
to the ordering in (1) (Vecchia 1988; Stein, Chi, and Welty 2004;
Gramacy and Apley 2015; Datta, Banerjee, Finley, Gelfand, et al.
2016; Katzfuss and Guinness 2017). The neighbors are defined
and fixed and model performance may benefit from the addition
of some distant locations (Stein, Chi, and Welty 2004). The
ordering in L is also fixed and inferential performance may
benefit from the use of some fixed permutations (Guinness
2018). The result of shrinking the conditional sets to a smaller
set of neighbors from the past yields a sparse DAG or Bayesian
network, which yields potentially massive computational gains.

We proceed in a similar manner, but instead of defining a
sparse DAG at the level of each individual location, we map
entire groups of locations to nodes in a much smaller graph;
the same graph will be used to model the dependence between
any location in the spatial domain and, therefore, to define a
spatial process. Let P = {D1, . . . ,DM} be a partition of D
into M mutually exclusive subsets so that D = ∪M

i=1Di and
Di ∩ Dj = ∅ whenever i 	= j. Similar to the nomenclature
in the NNGP, we fix a reference set S = {s1, . . . , snS } ⊂ D,
which itself is partitioned using P by letting Sj = Dj ∩ S .
The set of nonreference locations is similarly partitioned with
Uj = Dj \ Sj so that Dj = Sj ∪ Uj for each j = 1, 2, . . . , M. We
now construct a DAG to model dependence within and between
S and U . Let G = {V , E} be a graph with nodes V = A ∪ B,
where we refer to A = {a1, . . . , aM} as the reference nodes and to
B = {b1, . . . , bM} as the nonreference, or simply “other”, nodes.
Let A ∩ B = ∅. We introduce a map η : D → V such that

η(�) =
{

aj ∈ A if � ∈ Sj,
bj ∈ B if � ∈ Uj.

(2)

This surjective many-to-one map links each location in Sj and
Uj to a node in G. The edges connecting nodes in G are E =
{Pa[v1], . . . , Pa[v2M]} where Pa[v] ⊂ V denotes the set of
parents of any v ∈ V and, hence, identifies the directed edges
pointing to v. We letG be acyclic, that is, there is no chain {vi1 →
vi2 → · · · → vit } of elements of V such that vij ∈ Pa[vij+1]
and vij+1 ∈ Pa[vi1 ]. Crucially, we assume that Pa[v] ⊂ A for
all v ∈ V , that is, that only reference nodes have children,
to distinguish the reference nodes A from the other nodes B.
Apart from the assumption that aj ∈ Pa[bj], we refrain from
defining the parents of a node, thereby retaining flexibility. In
general, however, all locations in Uj will share the same parent
set. In Section 4, we will consider meshes associated to domain
tessellations.
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Consider the enumeration Si = {si1 , . . . , sini
}, where

{i1, i2, . . . , ini} ⊂ {1, 2, . . . , nS}, and let wi = (w(si1)
�,

w(si2)
�, . . . , w(sini

)�)� be the niq × 1 random vector listing
elements of w(s) for each s ∈ Si. We now rewrite (1) as a product
of M conditional densities

p(wS) = p(w1, w2, . . . , wM) =
M∏

i=1
p(wi | w1, . . . , wi−1). (3)

The conditioning sets are then reduced based on the graph G:

p̃(wS) =
M∏

i=1
p(wi | w[i]) , (4)

where we denote w[i] = {wj : aj ∈ Pa[ai]}, and Pa[ai] ⊂
{a1, . . . , ai−1} ⊂ A. This is a proper multivariate joint density
since the graph is acyclic (Lauritzen 1996). It is instructive to
note how the above approximation behaves when the size of
the parent set shrinks, for a given domain partitioning scheme.
To this end, we adapt a result in Banerjee (2020) and show
that sparser DAGs correspond to a larger Kullback–Leibler (KL)
divergence from the base density p. This result has been proved
earlier for Gaussian likelihoods by Guinness (2018), but the
argument given below is free of distributional assumptions and
is linked to the submodularity of entropy and the “information
never hurts” principle (see, e.g., Cover and Thomas 1991).

Consider random vector w and some partition of the domain
P corresponding to nodes V = {v1, . . . , vM} via map η. Let
the base process correspond to graph G0 = {V , E0} where
E0 = {Pa0[v1], . . . , Pa0[vM]}. Then, let G1 = {V , E1} where
E1 = {Pa1[v1], . . . , Pa1[vM]} and Pa1[vi] ⊆ Pa0[vi] for all
i ∈ {1, . . . , M}. Finally construct G2 = {V , E2} by letting
Pa2[vi∗ ] = Pa1[vi∗ ]\{v∗} for some v∗ ∈ Pa1[vi∗ ]. In other words,
graph G2 is obtained by removing the directed edge v∗ → vi∗
from G1. We approximate p using densities p1 and p2 based on
G1 and G2, respectively, obtaining

p1(w)

p2(w)
=

M∏
i=1

p(wi | w[i]1)

p(wi | w[i]2)
= p(wi∗ | w[i∗]1)

p(wi∗ | w[i∗]2)
. (5)

Considering the KL divergence of each density from p, and
denoting V∗ = V \ {{i∗} ∪ Pa1[i∗]}, we find

KL(p2‖p) − KL(p1‖p)

=
∫ {

log
(

p(w)

p2(w)

)
− log

(
p(w
p1(w

)}
p(w)dw

=
∫

log
(

p1(w)

p2(w)

)
p(w)dw

=
∫

log
(

p(wi∗ | w[i∗]1)

p(wi∗ | w[i∗]2)

)
p(w)dw

=
∫

log
(

p(wi∗ | w[i∗]1)

p(wi∗ | w[i∗]2)

)
p(wi∗ , w[i∗]1)dwi∗dw[i∗]1

=
∫ {∫

log
(

p(wi∗ | w[i∗]1)

p(wi∗ | w[i∗]2)

)
p(wi∗ | w[i∗]1)dwi∗

}
× p(w[i∗]1)dw[i∗]1 ≥ 0,

(6)

where we use (5), the fact that V∗ and {i∗}∪ Pa1[i∗] are disjoint,
and Jensen’s inequality. This result implies that larger parent sets

are preferrable as they correspond to better approximations to
the full model; the choice of sparser graphs will be driven by
computational considerations—see Section 3.2.

We construct the spatial process over arbitrary locations by
enumerating other locations as U = {u1, . . . , unU } ⊂ D \S and
extending (4) to the nonreference locations. Given the partition
of U defined earlier with components Uj for j = 1, 2, . . . , M, for
each u ∈ Uj we set η(u) = bj and recall that Pa[bi] ⊂ A by
construction. For each i = 1, . . . , nU , we denote w[ui] = {wj :
aj ∈ Pa[η(ui)]} ⊂ wS and define the conditional density of wU
given wS as

p̃(wU | wS) =
∏

ui∈U
p(w(ui) | w[ui]) =

M∏
j=1

p(wUj | w[bj]). (7)

Therefore, for any finite subset of spatial locations L ⊂ D we
can let U = L \ S and obtain

p̃(wL) =
∫

p̃(wU | wS )̃p(wS)
∏

si∈S\L
d(w(si)) .

We show (see Appendix A, available online) that this is a well-
defined process by verifying the Kolmogorov consistency condi-
tions. This new process can be built starting from a base process,
a fixed reference set, domain partition P and a graph G. Next,
we elucidate with GPs.

3. Meshed Gaussian Processes

Let {w(�) : � ∈ D} be a q-variate multivariate GP, denoted
as w(�) ∼ GP(0, C(·, · | θ)). The cross-covariance C(·, · | θ)

indexed by parameters θ is a function C : D × D → Mq×q,
where Mq×q is a subset of �q×q (the space of all q × q real
matrices) such that the (i, j)th entry of C(�, �′ | θ) evaluates
the covariance between the ith and jth elements of w(�) at � and
�′, respectively, that is, cov(wi(�), wj(�

′)). We omit dependence
on θ to simplify notation. The cross-covariance function itself
needs to be neither symmetric nor positive-definite, but must
satisfy the following two properties: (i) C(�, �′) = C(�′, �)�;
and (ii)

∑n
i=1

∑n
j=1 z�

i C(�i, �j)zj > 0 for any integer n and any
finite collection of points {�1, �2, . . . , �n} and for all zi ∈ �q\{0}.
See Genton and Kleiber (2015) for a review of cross-covariance
functions for multivariate processes. The (partial) realization of
the multivariate process over any finite set L has a multivariate
normal distribution wL ∼ N(0, CL) where wL is the qnL × 1
column vector and CL is the qnL × qnL block matrix with the
q × q matrix C(�i, �j) as its (i, j) block for i, j = 1, . . . , nL.

We construct the MGP from a base, or parent, multivariate
GP for w(�) and then, using the graph G defined in Section 2,
represent the joint density at the reference set S as

p̃(wS) =
M∏

j=1
N(wj | Hjw[j], Rj), (8)

where H1 = On1×1, R1 = CSj and for j > 1, Hj =
CSj,S[j]C

−1
S[j] and Rj = CSj − CSj,S[j]C

−1
S[j]CS[j],Sj . The resulting

joint density p̃(wS) is multivariate normal with covariance C̃S
and a precision matrix C̃−1

S . The precision matrix for Gaussian
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graphical models is easily derived using customary linear model
representations for each conditional regression. Consider the
DAG in (4). Each wi is niq × 1 and let Ji = |Pa[ai]| be the
number of parents for ai in the graph G. Furthermore, let Ci,j be
the niq × njq covariance matrix between wi and wj, Ci,[i] be the
niq×Jiq covariance matrix between wi and w[i], and C[i],[i] be the
Jiq× Jiq covariance matrix between w[i] and itself. Representing
each conditional density in (4) as a linear regression on wi, we
get

w1 = ω1 ∼ N(0, R1) ; wi =
∑

{j:aj∈Pa[ai]}
Hijwj + ωi ,

i = 2, 3, . . . , M , (9)

where each Hij is an niq×njq is a coefficient matrix representing

the multivariate regression of wj given w[i], ωi
ind∼ N(0, Ri) for

i = 1, 2, . . . , M, and each Ri is an niq × niq residual covariance
matrix. We set Hii = O and Hij = O, where O is the matrix
of zeros, whenever j ∈ {j : aj /∈ Pa[ai]}. For j ∈ {j :
aj ∈ Pa[ai]}, let {j1, j2, . . . , jJi} be the indices in Pa[ai] and
let Hi,[i] =

[
Hi,j1 , Hi,j2 , . . . , Hi,jJi

]
be the niq × (

∑Ji
k=1 njk)q

block matrix formed by stacking Hi,jk side by side for each
ajk ∈ Pa[ai]. Since E[wi | w[i]] = Hi,[i]w[i] = Ci,[i]C−1

[i][i]w[i],
we obtain Hi,[i] = Ci,[i]C−1

[i][i] and each HijK can be obtained
from the respective submatrix of Hi[i]. We also obtain Ri =
var{wi | w[i]} = Ci,i −Ci,[i]C−1

[i][i]C[i],i. Therefore, all the Hij’s and
Ri’s can be computed from the base cross-covariance function.

The distribution of w = [w�
1 , w�

2 , . . . , w�
M]� can be obtained

by noting that w = Hw + ω, where H = {Hij} is the
(
∑M

i=1 niq) × (
∑M

i=1 niq) block matrix with {Hij} as (i, j)th
block. Therefore, C̃S = var(w) = (I − H)−1R(I − H)−�,
where R is block-diagonal with Ri as the (i, i)th block. Note that
I − H is block lower-triangular with 1’s on the diagonal, hence
nonsingular. Also, the precision matrix C̃−1

S = (I−H)�R−1(I−
H) is sparse because of Hij = O whenever aj /∈ Pa[ai]. Block-
sparsity of C̃−1

S can be induced by building G with few, carefully
placed directed edges among nodes in A; Appendix B, available
online, contains a more in-depth treatment. We extend (8) to the
collection of nonreference locations U ⊂ D \ S :

p̃(wU | wS) =
M∏

j=1
N(wUj | HUj w[bj], RUj)

= N(wU | HUwS , RU ), (10)

where HUj = CUj,S[bj]C
−1
S[bj]

and RUj = CUj − CUj,S[bj]C
−1
S[bj]

CS[bj],Uj , analogously to (8), while HU and RU are analogous
to HS and RS . Clearly, given that all the p̃ densities are Gaus-
sian, all finite dimensional distributions will also be Gaussian.
We have constructed a GP with the following cross-covariance
function for any two locations �1, �2 ∈ D
coṽp(w(�1), w(�2))

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C̃si,sj if �1 = si, �2 = sj and si, sj ∈ S ,
H�1 C̃S[�1],sj if �1 ∈ D \ S , �2 = sj and sj ∈ S ,
δ(�1=�2)R�1

+H�1 C̃S[�1],S[�2]H�
�2

otherwise.

For a given base Gaussian covariance function C, domain par-
titioning P , mesh G, and reference set S , we denote the corre-
sponding MGP as MGP(G,P ,S , C).

3.1. Bayesian Hierarchical Model and Gibbs Sampler

Meshed GPs produce block-sparse precision matrices that are
constructed cheaply from their block-sparse Cholesky factors by
solving small linear systems. General purpose sparse-Cholesky
algorithms (Davis 2006; Chen et al. 2008) can then be used
to obtain collapsed samplers as in Finley et al. (2019). Unfor-
tunately, these algorithms can only be used on Gaussian first
stage models and are computationally impracticable for data
in the millions. Hence, we develop a more general scalable
Gibbs sampler for the recovery of spatial random effects in
hierarchical MGP models that entirely circumvents large matrix
computations.

Consider a multivariate spatiotemporally varying regression
model at � ∈ D ⊂ �d+1,

y(�) = X(�)�β + Z(�)�w(�) + ε(�), (11)

where y(�) ∈ �l is the multivariate point-referenced outcome,
X(�)� = blockdiag{xi(�)�}l

i=1 is a l × p = l × ∑
pi matrix

of spatially referenced predictors linked to constant coefficients
β , w(�) is the spatial process, Z(�) is a l × q design matrix,
ε(�) is measurement error such that ε(�)

iid∼ N(0, D) and
D = diag(τ 2

1 , . . . , τ 2
l ). A simple univariate regression model

with a spatially varying intercept can be obtained with l =
1, Z(�) = 1. For observed locations T = {�1, . . . , �n}, we
write the above model compactly y = Xβ + Zw + ε, where
y = (y(�1)�, . . . , y(�n)�)�, w and ε are similarly defined,
X = [X(�1) : · · · : X(�n)]�, Z = blockdiag({Z(�i)�}n

i=1), and
Dn = blockdiag({D}n

i=1).
For subsets {�1, . . . , �nA} = A ⊂ T , let y(A) =

(y(�1)
�, . . . , y(�nA)�)�, with analogous definitions for w(A)

and ε(A), X(A) = [X(�1) : . . . : X(�nA)]�, ZA =
blockdiag({Z(�i)�}nA

i=1) and DA = blockdiag({D}nA
i=1). After

fixing a reference set S , we obtain S∗ = T ∩ S and U = T \ S .
We partition the domain as above to obtain Sj,S∗

j ,Uj for
j = 1, . . . , M and model w(�) using the MGP which yields
w ∼ N(0, C̃S

−1
). We complete the model specification by

assigning β ∼ N(β | μβ , �β), τ 2
j ∼ Inv.Gamma(τ 2

j | aτj , bτj),
θ ∼ p(θ).

The resulting full conditional distribution for β is N(�∗
βμ∗

β ,
�∗

β), where �∗
β = (�−1

β + X�D−1
n X)−1, μ∗

β = �−1
β μβ +

X�D−1
n (y − Zw). For τ 2

r , r = 1, . . . , q, the full conditional is
Inverse-Gamma with parameters aτr + n/2 and bτr + 1

2 E�
r Er

where Er = y·r − X·rβ − Z·rw and y·r , X·r , Z·r are the subsets of
y, X, Z corresponding to outcome r (out of q).

The Gibbs update of the wU components can proceed simul-
taneously as all blocks in U have no children and their parents
are in S . The full conditional for wUj for j = 1, . . . , M is thus
N(�∗

Uj
μ∗
Uj

, �∗
Uj

) where �∗
Uj

= (Z(Uj)D−1Z(Uj)�+R−1
Uj

)−1 and
μ∗
Uj

= Z(Uj)D−1(y(Uj)−X(Uj)�β)+R−1
Uj

HUj w[bj], where w[bj]
is the spatial process at locations corresponding to the parents
of bj ∈ B ⊂ V .
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We update wSj = wj for j = 1, . . . , M via its full conditional
N(�∗

j μ
∗
j , �∗

j ). Let 1j = (In(s1 ∈ S∗
j ), . . . , In(snj ∈ S∗

j ))� be
the vector of indicators that identify locations with nonmissing
outputs, and let aj ∈ V be the node in G corresponding to Sj.
Then,

�∗−1
j = Z�

j D̃−1
nj Zj + R−1

j +
|Ch[aj]|∑

i=1
H

[j]�
i R

[j]−1
i H

[j]
i ,

μ∗
j = R−1

j Hjw[j] + Z�
j D̃−1

nj ỹj +
|Ch[aj]|∑

i=1
H

[j]�
i R

[j]−1
i w

[j]
i ,

(12)
where D̃−1

nj = Ij �D−1
nj with Ij = 1j1�

j , and ỹj = 1j �(yj −Xjβ)

and � denotes the Hadamard or Schur (element-by-element)
product. Finally, θ is updated via a Metropolis step with target
density p(θ)N(wS | 0, C̃S)N(wU | HUwS , RU ) using (8)
and (10). The Gibbs sampling algorithm will iterate across the
above steps and, upon convergence, will produce samples from
p(β , {τ 2

j }q
j=1, w | y).

We obtain posterior predictive inference at arbitrary � ∈ D
by evaluating p(y(�) | y). If � ∈ S ∪U , then we draw one sample
of y(�) ∼ N(X(�)�β + Z(�)�w(�), D) for each draw of the
parameters from p(β , {τ 2

j }q
j=1, w | y). Otherwise, considering

that � ∈ Dj for some j and thus η(�) = bj, with parent nodes
Pa[bj] and children Ch[bj] = ∅, we sample w(�) from the
full conditional N(�∗

�μ
∗
� , �∗

�), where �∗
� = (Z(�)D−1Z(�)� +

R−1
� )−1 and μ∗

� = Z(�)D−1(y(�)−X(�)�β)+R−1
� H�w[bj], then

draw y(�) ∼ N(X(�)�β + Z(�)�w(�), D).

3.2. Nonseparable Multivariate Spatiotemporal
Covariances

We provide an account of the computational cost of general
MGPs as a starting point to motivate the introduction of more
efficient tessellated MGPs, and specifically Q-MGPs, in Sec-
tion 4. We consider (11) and take l = 1 to simplify our exposi-
tion. In the resulting model, β is the regression coefficient on the
p point-referenced regressors with a static effect on the outcome,
whereas the q-variate spatiotemporal process w(·) captures the
dynamic effect of the Z regressors. Typically in geostatistical
modeling p and q are small, hence sampling β and τ 2 carries a
negligible computational cost. The cost of each Gibbs iteration
is dominated by updates of θ and w. Let us assume, solely for
expository purposes, that each of the M blocks comprise the
same number of locations, that is, |Sj| = |Uj| = m, for all
j = 1, . . . , M. Thus, m = n

2M and the graph nodes have J or
fewer parents and L or fewer children.

The evaluation of N(wS | 0, C̃S) = ∏M
j=1 N(wj | Hjw[j], Rj)

and N(wU | HUwS , RU ) = ∏M
j=1 N(wUj | HUj w[bj], RUj) dom-

inates the computation. Each term in the product entails R−1
j

and R−1
Uj

, both of size qm × qm, and their determinants. These
require C−1

[j] of size Jqm×Jqm or less, resulting in O(2M(q3m3 +
J3q3m3)) = O(2Mq3m3(J3 + 1)) ≈ O(2Mq3m3J3) = O(

n3q3J3

M2 )

flops via Cholesky decomposition. Reasonably, J and m are fixed
so M may grow linearly with sample size and the cost is O(nq3J3)

considering M ∝ n. The total computing time is ∼ O(
nq3J3

K )

with K processors for computing the 2M densities. Sampling
wS and wU from their full conditional distributions requires
O(2Mq3m3 +MLq2m2 +Mq2m2) flops, assuming R−1

j and R−1
Uj

are stored in the previous step. The first term in the complex-
ity order is due to the Cholesky decomposition of covariance
matrices, the second is due to sampling the reference nodes, and
the third comes from sampling other nodes. Without further
assumptions, parallelization reduces complexity to O(

2Mq3m3

K +
Mq2m2

K + MLq2m2), since the covariances can be computed
beforehand and the M components of wU are independent given
wS . With fixed block size m, the overall complexity for a Gibbs
iteration is O( 2

K Mq3m3(J3 + 1) + 1
K 2Mq3m3 + 1

K Mq2m2 +
MLq2m2) ≈ O( 1

K J3q3n + q2n) ≈ O(n), linear in the sample
size and cubic in J, highlighting the computational speedup of
sparse graphs (J small), the negative impact of large q, and the
serial sampling of wS .

In terms of storage, Hj and Rj correspond to a storage
requirement of O(4Mq2m2) = O(q2n). The matrix Z of size
qn×qn can be represented as a list of 2M block-diagonal (hence
sparse) Zj matrices. Furthermore, computing Zw (dimension
n × 1) can be vectorized as the row-wise sum of Z∗ � w∗ where
Z∗ and w∗ are n × q matrices with jth column representing the
jth space-time varying predictor. The cost of storing Z is thus
O(2qn).

Complexity is further reduced by considering a graph with
small J or a finer partition resulting in large M and small
m, whereas the overall time can be reduced by distributing
computations on K processors. Possible choices for G include
nearest-neighbor graphs and multiresolution trees. In settings
with large q, adjusting J and M may be insufficient to reduce the
computational burden. Covariance functions that are separable
in the variables (but perhaps nonseparable in space and time)
bring the cost of Choesky factorizations of Jqm × Jqm matrices
from O(J3q3m3) to O(J3m3 + q3) because C−1 = (Ch,u ⊗
Cv)−1 = C−1

h,u ⊗ C−1
v , where Ch,u is the Jm × Jm space-time

component of the cross-covariance, and Cv the q × q variable
component. Savings accrue when evaluating the likelihood and
in sampling from the full-conditionals at the cost of realism in
describing the spatial process.

The next section develops a novel MGP design based on
domain tessellations or tiling—that is, partitions of the domain
forming repeated patterns—to which we associate similarly pat-
terned meshes. If observations are also located in patterns, the
bulk of the largest linear solvers will be redundant, resulting in a
significant reduction in computational time. In either scenario,
sampling wS will also proceed in parallel with improved mixing.

4. MGPs Based on Domain Tessellation or Tiling

We construct MGPs based on a tessellation or tiling of the
domain. For spatial domains (d = 2, Figure 2), regular tiling
results in triangular, quadratic, or hexagonal tessellations; mixed
designs are also possible. These partition schemes can be linked
to a DAGG by drawing directed outgoing edges starting from an
originating node/tile. The same fixed pattern can be repeated
over a surface of any size. In dimensions d > 2, which may
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Figure 2. Regular tessellation base units and corresponding MGP graphs for spatial domains.

include time, space-filling tessellations or honeycombs can
be constructed analogously, along with their corresponding
meshes. Constructions of MGPs based on these ideas simply
requires partitioning the locations S into subsets based on the
chosen tessellation.

This subclass of MGP models corresponds by design to
graphs with known coloring, with each color linked to a
subgraph conditionally independent of all nodes of other
colors, regardless of the dimension of the domain. This feature
enables large-scale parallel sampling of wS and improves
mixing without the need to implement heuristic graph-coloring
algorithms. Furthermore, regions in a tessellated domain are
typically translations and/or rotations of a single geometric
shape. Carefully choosing S , it will be possible to avoid
computing the bulk of linear solvers, resulting in substantial
computational gains. Subsequently, we focus on axis-parallel
partitioning (quadratic or cubic tessellation) and cubic meshes,
but analogous constructions and the same properties hold with
other tessellation schemes.

A cubic MGP (Q-MGP) is constructed by partitioning each
coordinate axis into intervals. In d + 1 dimensions, splitting
each axis into L intervals results in Ld+1 regions. Consider
a spatiotemporal domain D = ×d+1

r=1 D(r), where D(d+1) is
the time dimension. We partition each coordinate axis into Lr
disjoint sets: D(r) = Ir,1 ∪ · · · ∪ Ir,Lr , where Ir,j ∩ Ir,k = ∅ if
j 	= k and Ir,s denotes the sth interval in the rth coordinate axis.
Solely for exposition, and without loss of generality, assume that
D(r) = I = [0, 1] and Lr = L for r = 1, . . . , d + 1. Any location
� = (�1, . . . , �d+1) ∈ D will be such that � ∈ I1,i1 × · · · ×
Id+1,id+1 = Dj for some i1, . . . , id+1 and with j = 1, . . . , M,
where M = Ld+1. We refer to this axis-parallel partition scheme
as a cubic tessellation and denote it by T = {Ir,s}s=1,...,L

r=1,...,d+1.
We use T to partition the reference set S as Sj = Dj ∩ S for
j = 1, . . . , Ld+1.

Next, we define η(�) = (η1(�), . . . , ηL(�)) ∈ {1, . . . , L}d+1,
where ηj = ηj(�) = r if �j ∈ Ij,r . Then, let Q = (V , E) be a
DAG with V = A ∪ B and reference nodes A = {a1, . . . , aLd+1}.
Therefore, for any j = 1, . . . , Ld+1 if s ∈ Sj then η(s) = aj ∈
A ⊂ V . We write each node v ∈ V as v = (vη1 , . . . , vηL) ∈
{1, . . . , L}d+1. The directed edges are constructed using a “line-
of-sight” strategy. Suppose Pa[v] = {x(1), . . . , x(d+1)}. The hth
parent of v is defined as x(h) = (aη1 , . . . , aηh − k, . . . , aηL) ∩
{1, . . . , d + 1}d+1, where k ≥ 1 is the smallest integer such that
x(h) ∈ A. Consequently x(h) = ∅ if ah = 1. Thus, the parents

of node v = η(�) are the ones that precede it along each of the
d + 1 coordinates. If � ∈ Dj \ Sj, then η(�) = bj ∈ B and
Pa[bj] = {aj} ∪ Pa[aj] where aj ∈ A is a reference node. To
avoid Pa[bj] = ∅ we set Pa[bj] = {x(1)

1 , x(1)
2 , . . . , x(d+1)

1 , x(d+1)
2 }.

The two parents along the hth dimension are x(h)
1 = aηh + k1,

x(h)
2 = aηh − k2 where ki is the smallest positive integer such

that x(h)
i ∈ A, i = 1, 2. In this setting J = 2(d + 1). The

construction is finalized by fixing the cross-covariance function
C(�, �′); Figure 3 shows that the same basic structure can be
immediately extended to higher dimensions, including time.

4.1. Caching Redundant Expensive Matrix Operations

The key computational bottleneck for the Gibbs sampler in Sec-
tion 3.2 is calculating, for j = 1, . . . , 2M, of (i) C−1

[j] (2MJ3q3m3

flops) and (ii) R−1
j , �∗−1

j (4Mq3m3 flops). The former is costlier
than the latter by a factor of J3/2. Q-MGPs are designed to
greatly reduce this cost. We start with an axis-parallel tessella-
tion of the domain in equally sized regions D1, . . . ,DM , storing
observed locations in U to create U1, . . . ,UM , which we assume,
for simplicity, to be no larger than m in size. Taking a stationary
base-covariance function C, implies that C(L1,L2) = C(L1 +
h,L2 + h), where h ∈ �d+1 is used to shift all locations in
the sets. Recall that the reference set S of MGPs can include
unobserved locations. Hence, we can build S on a lattice of
regularly spaced locations. Since domain partitions have the
same size, we have Sj = S∗ + hj for j = 1, . . . , M, where S∗
is a single “prototype set” using which one can locate all other
reference subsets. Also, since Pa[aj] ⊂ Pa[bj], there will be
4(d + 1) prototype sets for parents, that is, SPa[vj] = S∗

r + hj
for some r ∈ {1, . . . , 4(d + 1)} and j = 1, . . . , 2M. Then,
we can build maps ξS : {1, . . . , M} → {1, . . . , 4(d + 1)} and
ξU : {1, . . . , M} → {1, . . . , 4(d + 1)} linking each of Sj and
Uj to a parent prototype. This ensures that C−1

[j] = C−1
S∗

r
for

each j = 1, . . . , 2M. One only needs the maps ξS and ξU ,
cache the r unique inverses, and reuse them. The same method
applies to cache R−1

Sj
= R−1

S∗
r

on reference sets, but not on other
locations since no redundancy arises in CUj for j = 1, . . . , M.
See Figure 4 for an illustration. Compared to general MGPs
(see Table 1), the number of large linear system solvers is now
constant with sample size and (d+1) � M significantly reduces
computational cost.
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Figure 3. Q-MGP meshes used for spatial data on d = 2 (left) can be extended for use on spatiotemporal data d = 3 (right). Node colors correspond to Gibbs sampler
blocks.

Figure 4. Visualizing redundancies: a spatial domain is partitioned in M = 25
regions and linked to a quadratic mesh. The reference set S is fixed on a regular
grid, with m = 9. Parent locations of the orange (resp. purple) are in green (resp.
blue). Using a stationary covariance, Cblue,blue = Cgreen,green. Therefore, only one
inversion is necessary; this can be replicated at no cost across 9 of the 16 regions.

Furthermore, Q-MGPs automatically adjust to settings
where observed locations T are on partly regular lattices,
that is, they are located at patterns repeating in space or time
which emerge after initial inspections of the data. Appendix
G, available online, outlines a simple algorithm to identify
such patterns and create maps ξS and ξU . In such cases, we
fix S ⊇ T and U = ∅. In addition to the above mentioned
savings, we now do not have to compute R−1

Uj
and �∗−1

Uj
. If T is

not a regular lattice over the whole domain, 4(d + 1) is a lower
bound and in general there are M∗ � M inverses to compute.
If T is a fully observed regular lattice and if Z(�) = I (a varying
intercept model), then we save in computing the full conditional
covariances as well, since all Dj = I. See Appendix C, available
online, for details on choosing S and U .

4.2. Improved Mixing via Parallel Sampling

With caching, a much larger proportion of time is spent on sam-
pling; parallelization may in general be achieved via appropriate
node coloring algorithms (see, e.g., Molloy and Reed 2002; Gon-
zalez et al. 2011; Lewis 2016), but this step is unnecessary in Q-
MGPs as the colors in Q are set in advance independently of the
data and result in efficient parallel sampling of the latent effects.
Reference nodes A of Q are colored to achieve independence
conditional on realizations of nodes of all other colors. For
example, we partition spatial domains (d = 2) into M1 × M2
regions and link each region to a reference node in a quadratic

Table 1. Summary of computational cost of general MGPs and Q-MGPs.

C−1
[j],[j] R−1

S j
R−1
Uj

�∗−1
Sj

�∗−1
Uj

Sampling wS , wU

MGPs (all cases) 2MJ3q3m3 Mq3m3 Mq3m3 Mq3m3 Mq3m3 MLq2m2 + Mq2m2

Q-MGPs
Irregular locations 4(d + 1)J3q3m3 4(d + 1)q3m3 Mq3m3 Mq3m3 Mq3m3 MLq2m2 + Mq2m2

Pattern lattice w/missing 2M∗J3q3m3 2M∗q3m3 Mq3m3 MLq2m2

Lattice w/ missing 4(d + 1)J3q3m3 4(d + 1)q3m3 Mq3m3 MLq2m2

Full lattice and Z(�) = Iq 4(d + 1)J3q3m3 4(d + 1)q3m3 2(d+2)(d + 1)q3m3 MLq2m2

NOTE: Rows are sorted from most expensive (top) to least expensive (bottom).
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mesh. A “central” reference node v+ will have two parents and
two children, that is, Pa[v+] = {vl, vb} and Ch[v+] = {vr , vt},
with l, b, r, t, respectively, denoting left, bottom, right, top—refer
to Figure 3 (left). We have Pa[vt] = {v+, vtl} and Pa[vr] =
{v+, vbr}. The Markov blanket of v+, denoted as mb(v+), is
the set of neighbors of v+ in the undirected “moral” graph
QM, hence mb(v+) = Pa[v+] ∪ Ch[v+] ∪ {vtl, vbr}. The
corresponding spatial process is such that p(w+ | w \ w+) =
p(w+ | wmb(v+)). Denoting vbl = Pa[vl] ∩ Pa[vb] and vtr =
Ch[vr] ∩ Ch[vt], we note that {vbl, vtr} ∩ mb(v+) = ∅. We par-
tition reference nodes A into four groups {A(1), A(2), A(3), A(4)},
such that {v+} ⊂ A(1), {vb, vt} ⊂ A(2), {vl, vr} ⊂ A(3), and
{vtl, vtr , vbl, vbr} ⊂ A(4). This 3 × 3 pattern is repeated over the
whole graph. Then, if v ∈ A(j), mb(v) ∩ A(j) = ∅. Denoting by
D the other variables in the Gibbs sampler, we get:

p(wj | w−j, D) = p(wj | wmb(vj), D) =
∏

vi∈A(j)

p(wi | wA(−j) , D).

Since parallelization is possible within each of the groups, only
be four serial steps are needed; time savings are due to M/4
typically being orders of magnitude larger than the number of
available processors. Extensions to other tessellation schemes
and higher dimensional domains and the associated graphs
follow analogously.

5. Data Analysis

Satellite imaging and remote sensing data are nowadays
frequently collected in large quantities and processed to be
used in geology, ecology, forestry, and other fields, but clouds
and atmospheric conditions obstruct aerial views and corrupt
the data creating gaps. Recovery of the underlying signal
and quantification of the associated uncertainty are thus the
major goals to enable practitioners in the natural sciences to
fully exploit these data sources. Several scalable geostatistical
models based on GPs have been implemented on tens or
hundreds of thousands of data points, with few exceptions.
In considering larger data sizes, one must either have a large
time budget—usually several days—or reduce model flexibility
and richness. Scalability concerns become the single most
important issue in multivariate spatiotemporal settings. In
fact, repeated collection of aerial images and multiple spatially
referenced predictors modeled to have a variable effect on the
outcome have a multiplicative effect on data size. With no
separability assumptions, the dimension of the latent spatial
random effects that one may wish to recover will be huge even
when individual images would be manageable when considered
individually.

The lack of software to implement scalable models for spa-
tiotemporal data makes it difficult to compare our proposed
approach with others in these settings. On the other hand, a
recent article (Heaton et al. 2019) pins many state-of-the-art
models against each other in a spatial (d = 2) prediction contest.
On the same data, we show in Appendix E, available online, that
Q-MGPs can outperform all competitors in terms of predictive
performance and coverage while using a similar computational
budget.

5.1. Nonseparable Multivariate Spatiotemporal Base
Covariance

In our analyses, we choose a class of multivariate space-time
cross-covariances that models the covariance between variables
i and j at the (h, u) ∈ �d+1 space-time lags as

Cij(h, u) = σ 2(
ψ1

(
|u|2

ψ2
(
δ2

ij

)
))d/2 (

ψ2
(
δ2

ij

))1/2
φ1

×

⎛⎜⎜⎜⎜⎝ ‖h‖2

ψ1

(
|u|2

ψ2
(
δ2

ij

)
)

⎞⎟⎟⎟⎟⎠ ,

(13)

where δij > 0 (and with δij = δji) is the latent dissimilarity
between variables i and j. In the resulting cross-covariance
function C(h, u, v) in �d+1+k, each component of the q-variate
spatial process is represented by a point in a k-dimensional
latent space, k ≤ q. Refer to Apanasovich and Genton (2010)
for a more in-depth discussion. We set φ1(x) = exp(−cx)

and ψj(x) = (ajxαj + 1)βj , j = 1, 2; see Gneiting (2002) for
alternatives. We also fix α1 = α2 = 1

2 , and seek to estimate
θ = (σ 2, c, a1, β1, a2, β2, {δij}i<j,j=1,...,q) a posteriori. The usual
exponential covariance arises in univariate spatial settings.

5.2. Synthetic Data

We mimick real world satellite imaging data analyzed later in
Section 5.3 at a much smaller scale by generating 81 datasets
from the model y(�) = Z(�)�w(�) + ε(�), where ε(�) ∼
N(0, τ 2) with � ∈ T and T is a regular grid of size 40×40×10,
resulting in nall = 16,000 total locations. We take w ∼ GP(0, C)

where C is as in (13), ψ2 ≡ 1 and σ 2 = 1. We generate
one dataset for each combination of τ 2 ∈ {1/1000, 1/20, 1/10},
temporal range α ∈ {5, 50, 500}, space-time separability β ∈{

1/20, 1/2, 1 − 1
20

}
, and spatial range c ∈ {1, 5, 25}.

We compare Q-MGPs with the similarly targeted Gapfill
method of Gerber et al. (2018) as implemented in the R package
gapfill. We create “synthetic clouds” of radius

√
0.1 and with

center (c1,t , c2,t) ∈ [0, 1/20]2 where c1,t , c2,t
iid∼ U[0, 1] to cover

the outcomes at six randomly selected times for each of the 81
datasets. Outcomes at two of the remaining four time periods
were then randomly selected to be completely unobserved at
all but 10 locations to avoid errors from gapfill. Refer to
Figure 5 for an illustration.

A Q-MGP model with M = 500 was fit by partitioning each
spatial axis into 10 intervals and the time axis into 5 intervals.
The priors were τ 2 ∼ Inv.G.(2, 1), σ 2 ∼ Inv.G.(2, 1), β ∼
U(0, 1), α ∼ U(0, 104), c ∼ U(0, 104); 7000 iterations of
Gibbs sampling were run, of which 5000 used for burn-in and
thinning the remaining 2000 to obtain a posterior sample of size
1000. For each of the 81 datasets we calculate the mean absolute
prediction error (MAE) and the root mean squared prediction
error (RMSE). Figure 6 compares Gapfill’s 90% intervals with
90% posterior equal-tailed credible intervals for the Q-MGP
predictions obtained from 1000 posterior samples. In terms of



10 M. PERUZZI, S. BANERJEE, AND A. O. FINLEY

Figure 5. Artificial cloud covering in synthetic data.

Figure 6. Performance of Q-MGP and Gapfill in out-of-sample predictions in 81 spatiotemporal datasets, at the three tested levels of noise variance τ 2.

MAE, the Q-MGP model outperformed Gapfill in all datasets;
in terms of RMSE, it outperformed Gapfill in all but one dataset.
The average MAE of Q-MGP was 0.4094 against Gapfill’s 0.5366;
the average RMSE was 0.5308 against Gapfill’s 0.6820. The Q-
MGP also yielded improved coverage of the prediction intervals,
although some under-coverage was observed possibly due to the
large M. This comparison may favor Q-MGPs as the data were
generated from a GP. Appendix K, available online, confirms
similar findings on non-Gaussian data (a GIF image).

5.3. NDVI Data From the Serengeti Ecosystem

Time series of NDVI derived from satellite imagery are used
to understand spatial patterns in vegetation phonology. For
such studies, image pixel-level NDVI values are observed over
time to assess seasonal trends in vegetation green-up, grow-
ing season length and peak, and senescence. These analyses
typically require NDVI values for all pixels over the region
and time period of interest. As noted in the beginning of this

section, atmospheric conditions, for example, cloud cover, and
sensor malfunction cause missing NDVI pixel values and hence
predicting such values, that is, gap-filling, is of key interest to
the remote sensing community. Here, we consider NDVI data
derived from the LandSat 8 sensor (which provides a ∼30×30 m
spatial resolution pixel) taken over Serengeti National Park, Tan-
zania, Africa. These data were part of a larger study conducted
by Desanker, Dahlin, and Finley (2020) that looked at environ-
mental drivers in vegetation phonology change. The data cover
an area of 30 km × 30 km and 34 months, and correspond to
64 images of size 1000×1000 collected at 16-day intervals. Data
on NDVI are complemented with elevation and soil moisture
data, for a total of three spatially referenced predictors. We are
thus interested in understanding their varying effect in space
and time, in addition to predicting NDVI output at missing
locations. We achieve both these goals by implementing model
(11), where Z(�) = X(�) includes the intercept and three pre-
dictors; their varying effect will be represented by w(�), which
we recover by implementing Q-MGP models. Storing posterior
samples of the multivariate spatially varying coefficients for the
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full data with q = 4 is impossible using our computing resources
as each sample would be of size 1000 × 1000 × 64 × 4 = 2.56
e+8. For this reason, we consider two feasible setups. Denote
by nall the number of observed and missing locations. In model
(1), we subsample each image to obtain 64 frames of size 500
× 500, and fit a regression model with Z(�) = 1 resulting
in a spatially varying intercept model on nobs = 12,582,484
observed locations, a total of nall = 16,000,000 locations for
prediction, and a latent spatial random effect w of the same size.
The Q-MGP was fit using M = 328,125 space-time regions of
size ∼48.

The base covariance of (13) becomes a univariate nonsepa-
rable spatiotemporal covariance as in Gneiting (2002). In model
(2), we aim to estimate the varying effect of elevation on NDVI.
We subsample each image to obtain 64 frames of size 278 ×
278, each covering an area of 25 km × 25 km, and take Z(�) =
(1 Xelev(�)) resulting in q = 2 and targeting the recovery
of latent effects of size 9,892,352. Considering the additional
computational burden of the multivariate latent effects, in this
case we used M = 156,800, corresponding to smaller space-
time regions of average size ∼31. In this model, there is a single
unknown δij in (13) which corresponds to the latent dissim-
ilarity between the intercept and elevation. We thus consider
ψ2 = (a2δij + 1)β2 as the unknown parameter. We assign priors
βr ∼ N(0, 100) for r = 1, . . . , q, σ 2 ∼ Inv.G.(2, 1), τ 2 ∼
Inv.G.(2, 1), and uniform priors to other covariance parameters
(their support is reported in Table 2).

In both cases, approximate posterior samples of the latent
random effects and the other unknown parameters were
obtained by running the proposed Gibbs sampler for a total
of 25,000 iterations. A posterior sample of size 500 was obtained
by using the first 22,000 iterations as burn-in, and thinning
the remaining 3000 by a factor of 6. Additional computational
details are at Appendix F, available online. Posterior summaries

Table 2. Posterior summaries of Q-MGP models implemented on the Serengeti
data.

Q-MGP model (1) Q-MGP model (2)

nall 16,000,000 4,946,176
nobs 12,755,856 3,961,715
M 328,125 156,800
q 1 2
βelevation 0.0017(0.0014,0.0021) 0.0415(0.0398,0.0432)
βtopoindex 5.54e-4(4.72e-4,6.30e-4) −0.0011(−0.0012,−0.0008)

βaccum −4.84e-4(−5.66e-4,−4.02e-4) 7.88e-4(6.94e-4,9.06e-4)

σ 2 0.0585(0.0583,0.0587) 0.0728(0.0711,0.0749)

τ2 1.05e-4(1.05e-4,1.05e-4) 1.27e-4(1.21e-4,1.32e-4)
c ∼ U(0, 1e+6) 7.0331(7.0146,7.0519) 3.0710(3.0562,3.0846)
a1 ∼ U(0, 1e+6) 433.98(429.67,439.50) 3857.6(3492.6,4154.7)
β1 ∼ U(0, 1) 0.0694(0.0690,0.0697) 0.1058(0.1043,0.1080)
ψ2 ∼ U(0, 1e+6) – 221.36(198.09,240.57)
95% coverage 94.96 95.66
RMSE 0.0175 0.0253
Time/it. (sec) 6.18 4.53
Time (hr) 42.9 31.5

of the unknown parameters for these models are reported
in Table 2, along with RMSE in predicting NDVI at 10,000
left-out locations, 95% posterior coverage at those locations,
and run times. Both models achieved similar out-of-sample
predictive performance and coverage. Figure 7 shows the NDVI
predictions of model (2) at one of the 64 time points. This reveals
that the varying effect of elevation on NDVI output (see, e.g.,
Figure 8) is credibly different from zero at 42.54% of the space-
time locations (95% CI). In particular, it highlights the extent
to which higher elevation reduces vegetation. The spatial range
is approximately 4 km; the time range is about 8 days. The
large estimated ψ2 indicates that the correlation between the
two covariates of the latent random process is very small at
all spatial and temporal lags. The predicted NDVI and latent
spatiotemporal effects are supplied as animated GIF images in
the supplementary materials.

Figure 7. NDVI predictions from Q-MGP model (2) at time 60 (2016-12-17).
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Figure 8. Top: the effect of elevation on NDVI output, evolving over five time periods. Middle left: effect on NDVI not explained by elevation; right: effect on NDVI attributable
to elevation. Bottom left: Estimated covariance at different space-time lags; right, in blue: locations with credibly nonzero effect of elevation on NDVI output.
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6. Discussion

We have developed a class of Bayesian hierarchical models
for large spatial and spatiotemporal datasets based on linking
domain partitions to DAGs. These models can be tailored
for specific algorithmic needs, and we have demonstrated the
advantages of using a cubic tessellation scheme (Q-MGP) when
targeting the efficient recovery of spatial random effects in
Bayesian hierarchical models using Gibbs samplers.

When considering alternative computational strategies, the
proposed Q-MGP may not be optimal. For example, Gaussian
first stage models enable marginalization of the latent spatial
effects; posterior sampling of unknown covariance parameters
via MCMC is typically associated by better mixing. Future
research may thus focus on identifying “optimal” DAGs for
collapsed samplers. Furthermore, the blocked conditional
independence structure of Q-MGPs may be suboptimal as it
corresponds to possibly restrictive conditional independence
assumptions in neighboring locations. While we have not
focused on the effect of different tessellations or partitioning
choices in this article, alternative tessellation schemes (e.g.,
hexagonal) may be associated to less stringent assumptions and
possibly better performance, while retaining all the desirable
features of Q-MGP.

Other natural extensions to high-dimensional spatiotempo-
ral statistics include settings where there are a very large number
of spatiotemporal outcomes in addition to a large number of
spatial and temporal locations. Here there are a few different
avenues. One approach is in the same spirit of joint modeling
pursued here, but instead of modeling the cross-covariance
functions explicitly, as has been done here, we pursue dimen-
sion reduction using factor models (see, e.g., Christensen and
Amemiya 2003; Lopes, Salazar, and Gamerman 2008; Ren and
Banerjee 2013; Taylor-Rodriguez et al. 2019). The aforemen-
tioned references have attempted to model the factor mod-
els using spatial processes some of which have used scalable
low-rank predictive processes or the NNGP. We believe that
modeling latent factors using spatiotemporal MGPs will impart
some of the computational and inferential benefits seen here.
However, this will need further development especially with
regard to identifiability of loading matrices (Lopes, Salazar, and
Gamerman 2008; Ren and Banerjee 2013) and process parame-
ters.

A different approach to multivariate spatial modeling has
relied upon conditional or hierarchical specifications. This has
been well articulated in the text by Cressie and Wikle (2011);
see also Royle and Berliner (1999) and the recent developments
in Cressie and Zammit-Mangion (2016). An advantage of the
hierarchical approach is that the multivariate processes are valid
stochastic processes, essentially by construction and without
requiring spectral representations, and can also impart consid-
erable computational benefits. It will be interesting to extend
the ideas in Cressie and Zammit-Mangion (2016) to augmented
spaces of DAGs to further introduce conditional independence,
and therefore sparsity, in MGP models with high-dimensional
outcomes.

Finally, it is worth pointing out that alternate computational
algorithms, particularly tuned for high-dimensional Bayesian
models, should also be explored. Recent developments on

algorithms based upon classes of piecewise deterministic
Markov processes (see, e.g., Fearnhead et al. 2018; Bierkens,
Fearnhead, and Roberts 2019, and references therein) that avoid
Gibbs samplers and even reversible MCMC algorithms are
being shown to be increasingly effective for high-dimensional
Bayesian inference. Adapting such algorithms to MGP and Q-
MGP for scalable Bayesian spatial process models will constitute
natural extensions of our current offering.

Supplementary Materials

The online supplement includes additional theoretical and computational
details on Meshed Gaussian Processes, along with discussions on tes-
sellation designs; the choice of the reference set and partition sizes; an
application to multivariate outcomes; and and a comparison with other
state-of-the-art scalable methods for large spatial data.
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