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ABSTRACT 

Spatial skills are fundamental to learning and developing expertise in engineering.  This paper 

describes a new virtual and physical manipulatives (VPM) technology that this research team 

recently developed to enhance undergraduate engineering students’ spatial skills.  This technology 

consists of ten manipulatives spanning a variety of levels of geometrical complexity.  Each 

manipulative is authentic due to their real-world engineering applications that were chosen to 

stimulate student interest in engineering.  A computer program was developed to connect virtual 

and physical manipulatives, allowing students to receive spatial training anytime, anywhere 

through the Internet.  Quasi-experimental research, involving an intervention group (n = 37) and a 

control group (n = 34), was conducted.  Each group completed a pre- and post-test using the same 

assessment instrument that measured students’ spatial skills.  Normality tests were conducted.  The 

results show that the data involved in the present study did not have a normal distribution.  Thus, 

non-parametric statistical analysis was performed, including 
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descriptive analysis, correlation analysis, and Mann-Whitney U tests.  The results show that the 

mean value of normalized learning gains is 41.2% for the intervention group, which is 33% higher 

than that for the control group (8.2%).  A statistically significant difference exists between the 

intervention and control groups in terms of normalized learning gains (P < 0.01).  The new VPM 

technology developed from the present study has a medium effect size (0.34) on improving 

students’ spatial skills.   

 

Keywords:  Spatial skills; undergraduate engineering students; new virtual and physical 

manipulatives (VPM) technology 

 

1. Introduction 

1.1 Importance of spatial skills   

Spatial skills are a person’s mental skills of imaging an object’s spatial orientation, or imaging 

what the object looks like from a certain spatial viewpoint.  In some literature [1, 2], spatial skills 

are used interchangeably with the term of “spatial abilities.”  In other literature, only the term of    

spatial skills [3, 4] or only the term of spatial abilities [5, 6] is used.  Regardless of the term used, 

spatial skills or abilities are essential in many real-life situations.  For example, a person traveling 

alone without a Global Positioning System (GPS) in an unfamiliar city must know what direction 

is East, West, South, or North in order to reach their destination.   A person doing a puzzle game 

needs to identify correct shapes in order to connect all pieces successfully.  

Spatial skills are especially important in learning science, technology, engineering, and 

mathematics (STEM) subjects [1-6].  In their recent widely-cited paper, Uttal et al. [3] conducted 

an extensive meta-analysis of studies on spatial training.  They showed a positive correlation 
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between spatial skills and academic achievements.  They found that statistically, high academic 

achievements of a student when learning a STEM subject are positively correlated to his/her strong 

spatial skills.  Wai, Lubinski and Benbow [6] analyzed the data drawn from a massive longitudinal 

study that tracked 400,000 U.S. high school students for more than 11 years.  They found that 

spatial abilities assessed during adolescence are “a salient psychological attribute among those 

adolescents who subsequently go on to achieve advanced educational credentials and occupations 

in STEM.”  They suggested including spatial abilities in modern talent searches to “identify many 

adolescents with potential for STEM who are currently being missed.”   

Spatial skills are essential for learning and developing expertise in engineering, an essential 

“E” in STEM.  For example, mechanical engineers create free-hand sketches and computer 

graphics of complex machines and components.  Civil engineers create free-hand sketches and 

computer graphics of buildings, bridges, and structures.  Manufacturing engineers make 3D prints 

of complex mechanical or electrical parts and components.  Solid spatial skills or abilities are 

required in all these examples in order to complete the work tasks involved.               

Studies have also been conducted to identify important factors affecting students’ spatial skills, 

such as individual differences [7, 8] and gender [9].  Mataix, León and Reinoso [7] recently 

conducted a study involving 750 college students from three majors:  Civil Engineering, Chemical 

Engineering, and Industrial Electronic Engineering.  A spatial test and a questionnaire survey were 

administered at the beginning and the end of the semester.  They found that the factors affecting 

students’ spatial skills included general intelligence, problem-solving ability, gender, construction 

games, and experience in technical drawing [7].  

1.2 Interventions developed to improve students’ spatial skills  

Training of students’ spatial skills, nevertheless, have not yet received sufficient attention in STEM 



4 

 

education because it is not a subject explicitly taught in the classroom [10-12].  To develop and 

improve students’ spatial skills, various educational interventions have been developed, e.g. virtual 

reality [13, 14], augmented reality [15, 16] and digital sketching [17].   Herrera, Pérez, and Ordóñez 

[16] developed various virtual technologies including augmented reality.  They reported that as 

the result of their interventions, the course grades (on a 0-100 point scale) of the experimental 

group were seven points higher than those of the control group. 

Spatial training is often embedded in a computer-aided design (CAD) course [18-21] or other 

courses and workshops that last for either a semester or several weeks [22-24].  Novoa, Spencer, 

Hazlewood and Ortiz [21] provided a series of face-to-face, 2-hour training sessions for 34 

freshman STEM students over six weeks in a semester.  The results from their pre- and post-test 

showed that 85% of student participants improved test scores by nearly 18% on average.  The 

change in test scores was found to be statistically significant.                   

Sorby, Casey, Veurink and Dulaney [24] developed a spatial intervention for freshman 

engineering students that consisted of weekly meetings over the semester in a 1-credit freshman 

orientation course.  A total of 675 students participated in their study and were divided into an 

intervention group (n = 84) and a comparison group (n = 592).  Their results showed that for 

students in the intervention group, the average score increased from 16 points on the pre-test to 

22.5 points on the post-test.  For students in the comparison group, there was only a 1.5-point 

increase from the pre-test score to the post-test score [24].            

1.3 The innovation and contribution of the present study  

In the previous effort to improve middle school students’ spatial skills, Ha and Fang [25] developed  

the earliest version of an education technology called virtual and physical manipulatives (VPM).  

Unlike other technologies using either virtual manipulatives alone or physical manipulatives alone, 
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VPM technology integrates virtual manipulatives with physical manipulatives in a concurrent and 

interactive manner, so that students can simultaneously use multiple senses to help the brain 

process a series of dynamic mental images while performing spatial tasks.   This technology works 

by having a student hold a 3D concrete physical object (i.e., a physical manipulative) in their hands 

while sitting at a computer.  An electrical sensor board, which contains an attitude heading 

reference system and an embedded microcontroller, is connected to the computer via a USB cable.  

Any physical movement of the object is captured by the sensor board, which sends orientation 

signals to the computer for real-time image processing. 

The earliest version of VPM technology [25], which is referred to as the old VPM technology 

in this paper, has two major limitations.  First, the manipulatives employed in spatial training were 

those with artificially created geometrical features with no real-world engineering applications.  

Figure 1 shows two example manipulatives employed in spatial training in the previous work (the 

old VPM technology) [25].  Students often asked what those manipulatives were and what purpose 

they served. It is necessary to develop authentic manipulatives with real-world engineering 

applications to increase student interest and motivation to learn engineering.  

 

[Figure 1 here] 

 

Second, students could play with the manipulatives only on school computers, where the VPM 

computer program had been installed.  This limited the chances for students to use the VPM 

computer program outside the classroom, e.g., at home.   

The present study overcomes these two limitations of the old VPM technology and is 

significantly different from the previous work [25] in the following four regards.  First, a new set 
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of manipulatives that have real-world engineering applications has been developed in the present 

study to motivate and inspire student interest.  By contrast, the manipulatives employed in the 

previous work [25] were those with artificially created geometrical features with no real-world 

engineering applications. 

Second, a new computer program for VPM technology has been developed in the present 

study, enabling students to use the VPM anywhere with the Internet, anytime, and at their own 

pace.  By contrast, the computer program developed in the previous work [25] was outdated and 

did not have this functionality.  

Third, student participants in the present study and the previous work [25] are completely 

different in terms of age and exposure to engineering.  The present study focuses on engineering 

undergraduates (adults) aged 21-25 years old.  The previous work [25] focused on middle school 

8th-grade students (adolescents) aged 15-16 years old.   

Fourth, research design in the present study and the previous work [25] is completely different.  

The present study has involved two groups of student participants: an intervention group who was 

trained with the new version (rather than the earliest version) of VPM technology and a control 

group who was not trained with VPM technology.  The previous work [25] only involved a single 

group of student participants who were trained with the old VPM technology.  No control group 

was involved in the previous work.  Therefore, in terms of research design, the present study is 

more rigorous than the previous work. 

To differentiate from the old VPM technology developed in the previous work [25], the VPM 

technology developed in the present study is referred to as the new VPM technology.  In the 

remaining sections of this paper, the development of the new VPM technology is described, 

including the development of ten manipulatives and a computer program for connecting virtual 
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and physical manipulatives.  Then, research questions, overall research design, student 

participants, as well as data collection and analysis are described.  Next, the research results are 

presented and analyzed, followed by discussions and the description of the limitations of the 

present study.  Conclusions are made at the end of the paper.  

 

2. Development of the new VPM technology  

2.1 Design and manufacture of ten manipulatives  

A total of ten manipulatives with real-world applications were designed via Autodesk Inventor 

Professional 2020 (a computer-aided design software package).  The Autodesk Inventor-designed 

manipulatives were virtual manipulatives that students could see on a computer screen.  Based on 

these virtual manipulatives, physical manipulatives were subsequently manufactured via 3D 

printing.  Students then held and rotated physical manipulatives with their hands during spatial 

training.  The ten virtual and physical manipulatives developed in the present study include Geneva 

wheel, spinner flasks, component grip, door lock, pulley, wheel bearing inside a hub, crankshaft, 

shaft arm valve, compressor wheel, and vacuum pump. 

These manipulatives have a variety of levels of geometrical complexity, ranging from 

relatively simple and symmetric to complex and asymmetric.  Figure 2 shows two example 

manipulatives, including a Geneva wheel (Fig. 2a) with geometrically symmetric geometry and a 

vacuum pump (Fig. 2b) with complex geometry.   

 

[Figure 2 here] 
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Each manipulative has real-world applications.  For example, a Geneva wheel (Fig. 2a) is the 

rotating wheel of a gear mechanism called a Geneva drive, which translates a continuous rotation 

movement into intermittent rotary motion.  Geneva drives have numerous engineering 

applications, e.g., in automated sampling devices, banknote counting machines, and film movie 

projectors.  The Geneva wheel was selected as a manipulative for the new VPM technology due 

to its geometrically symmetric features.  It requires low to medium cognitive effort for students to 

mentally rotate this manipulative.  An additional advantage is that while students were trained with 

this manipulative, students could also understand how the mechanism works in a Geneva Drive in 

terms of fundamental science and engineering concepts like rotational motion, intermittent motion, 

angular speed, and angular acceleration. 

A vacuum pump (Fig. 2b) removes the molecules of air and other gases from a sealed container 

or volume.  It has numerous engineering applications, such as in the automotive and aerospace 

industries.  The vacuum pump was selected as a manipulative for the new VPM technology due to 

its complex geometry. It requires medium to high cognitive effort for students to mentally rotate 

this manipulative.  While students were trained with this manipulative, students could visualize 

the geometrical complexity of vacuum pumps, understand reasons, and develop an initial 

understanding of internal systems inside a vacuum pump.     

2.2 Development of a computer program for connecting virtual and physical manipulatives  

A computer software package called Processing (a new version with P5 Serial Control written for 

JavaScript) was employed to develop a computer program to enable the new VPM technology.  

This computer program communicated with a key hardware component to convert the motion of 

physical manipulatives in the real world to the motion of virtual manipulatives on a computer 

screen.  The key hardware component was an Inertial Measurement Unit (IMU) board 9DoF 
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(Degrees of Freedom) Razor IMU M0 manufactured by SparkFun Electronics.   This key hardware 

component combines a SAMD21 microprocessor with an MPU-9250 9DoF sensor to create a 

reprogrammable IMU.  The MPU-9250 9DoF sensor includes three 3-axis sensors to sense linear 

acceleration, angular rotation velocity and magnetic field vectors. 

The IMU board was connected to a computer with a serial connection over USB with the baud 

rate set to 115,200 bits per second.  The IMU board could also be connected using serial over 

Bluetooth with the use of a Li-Po cell and a Bluetooth adapter.  The data sent by the IMU board 

with its default firmware and Euler angles toggled on was formatted as follows:  Time stamp: 

milliseconds; Accelerometers X, Y, and Z: m/s2/9.8; Gyroscopes X, Y, and Z: Micro Tesla; Euler 

angles X, Y, and Z: Degrees.  The send rate was set to be 20 HZ in the new VPM technology. 

As an example, Fig. 3 shows a physical manipulative and its corresponding virtual 

manipulative (compute image) developed in the present study.  A student can rotate the physical 

manipulative in three directions around the x-, y-, and z-axes.  When the student rotates the 

physical manipulative to observe it from different orientations, for example, 45 degrees clockwise 

or 180 degrees upside down, the student can observe how the image of the exact same virtual 

manipulative simultaneously rotates and changes its orientation on the computer screen. 

 

[Figure 3 here] 

 

3. Research design and data collection  

3.1 Research questions and overall research design   
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This paper focuses on the assessment of the new VPM technology.  Therefore, the research 

questions of the present study are: Does the new virtual and physical manipulatives (VPM) 

technology enhance undergraduate engineering students’ spatial skills? If yes, to what extent?   

Quasi-experimental research design [26, 27] was adopted to answer the above research 

questions.  Two groups of student participants were involved:  an intervention group who was 

trained with the new VPM technology and a control group who was not trained with any VPM 

technology.  Both groups completed a pre- and post-test using the same assessment instrument 

called the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised 

PSVT:R) [28].  Section 3.3 (data collection) will describe some details of the revised PSVT:R 

instrument.            

3.2 Student participants  

A total of 71 undergraduate students from the College of Engineering at Utah State University, a 

public research university in the Mountain West area of the U.S., were recruited to participate in 

the present study.  Student participants were recruited through emails and classroom visits.  Those 

who responded and showed interest in participating in the present study were contacted to find out 

if they could devote a sufficient amount of time to complete necessary tasks designed in the present 

study.  All student participants signed on the Informed Consent form approved by the University’s 

Institutional Review Board before they participated in the present study.  

All 71 student participants were second-year undergraduates majoring in mechanical 

engineering, civil engineering, biological engineering, or other engineering fields such as 

aerospace and environmental engineering.  The intervention group had 37 students.  The control 

group had 34 students.  Table 1 shows student demographics of each group.  Among 71 student 

participants, 56 (79%) were males, and 15 (21%) were females.  Engineering schools across the 
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U.S. typically have 10-25% of female students in their engineering programs.  Therefore, the 

percentage of female students involved in the present study was representative.  In addition, the 

majority of student participants involved in the present study majored either in mechanical 

engineering (44 students or 62%) or in civil engineering (17 students or 24%).    

 

[Table 1 here] 

 

3.3 Data collection 

Each of the 71 student participants completed a pre- and post-test using the same measurement 

instrument called the Revised Purdue Spatial Visualization Test: Visualization of Rotations 

(Revised PSVT:R) [28].  The instrument consists of 30 multiple-choice items corresponding to 13 

symmetrical and 17 non-symmetrical 3D objects, and quantifies changes in spatial skills in student 

participants.  The revised PSVT:R instrument corrected ten figure errors in the original PSVT:R 

instrument [29].  With an internal consistency reliability of 0.86, the revised PVST:R instrument 

is frequently cited as the strongest measurement of students’ mental rotation skills and has been 

widely used in research involving undergraduate education [30, 31]. 

Student participants in the intervention group were trained with the new VPM technology over 

a five-week period in the semester.  On average, two physical manipulatives were provided to each 

student per week.  Student participants were provided access to the new VPM technology over the 

Internet, so they could run all manipulatives remotely on their own computers.  To ensure students 

complete their training, each student participant was also provided a comprehensive workbook to 

use while they were trained with the new VPM technology.  The workbook contains a set of 

multiple-choice questions corresponding to each of the ten manipulatives developed in the present 
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study.  While students were using the new VPM technology, they were required to answer those 

multi-choice questions, which enhanced the effectiveness of spatial training.  Figure 4 shows one 

representative example of worksheets included in the workbook. 

 

[Figure 4 here] 

 

To help student participants in the intervention group get started, we provided them initial 

guidance on how to use virtual and physical manipulatives.  We also helped them solve computer 

hardware and software issues.  After this initial assistance, student participants in the intervention 

group trained themselves with the VPM technology over the five-week period in the semester.  

Each week, they were exposed to two manipulatives. The training with 10 manipulatives was 

completed at the end of the fifth week.  

In addition to pre- and post-test scores, the cumulative grade point average (GPA) data of each 

student participant was also collected.  The purpose was to determine if GPA was statistically 

significantly different between student participants in the intervention and control groups.  If GPA 

were significantly different between the two groups, the two groups were not comparable.     

 

4. Data analysis and results 

4.1 Normality tests  

Normality tests on the data collected in the present study were first conducted to determine if 

parametric or non-parametric statistics should be employed.  If the data had a normal distribution, 

parametric statistics would be employed.  Otherwise, non-parametric statistics would be employed.  

Table 2 summarizes the results of normality tests for grade point average (GPA), pre-test scores, 



13 

 

post-test scores, and normalized learning gains for the intervention and control groups.  The 

normality tests conducted in the present study included both Kolmogorov-Smirnov tests and 

Shapiro-Wilk tests [27]. 

 

[Table 2 here] 

 

In Table 2, based on the pre- and post-test scores of each student participant, the normalized 

learning gain was calculated as [32]:  

 

Normalized learning gain (%) =
Posttest score (%) −  Pretest score (%)

100% −  Pretest score (%)
 

 

In his widely-cited paper [32], Hake proposed the term of normalized learning gain in which 

both pre- and post-test scores are expressed in percentages, rather than absolute numbers.  

Although this term includes the word “normalized,” it does not mean data distribution is always 

“normal.”  The “normalized” learning gain is a non-statistical term defined by Hake [32].  A 

“normal” distribution is a statistical term.   

In Table 2, a p-value (i.e., the Sig. value in columns 4 and 7) less than 0.05 indicates a non-

normal distribution of data.  From Table 2, it can be seen clearly that GPA, pre- and post-test 

scores are not in a normal distribution for both intervention and control groups.  The p-value for 

normalized learning gains is 0.2 (greater than 0.05) for the intervention group based on 

Kolmogorov-Smirnov tests, and 0.172 (greater than 0.05) for the control group based on Shapiro-

Wilk tests.  Further observations of normal Q-Q plots and analysis of homogeneity of variances 

[27] demonstrated that normalized learning gains do not have a normal distribution.  Therefore, 
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non-parametric statistical analysis was subsequently conducted for all data involved in the present 

study.   

4.2 Descriptive analysis  

Table 3 summarizes the results of descriptive analysis, including mean, median, standard 

deviation, minimum, maximum, interquartile range, skewness, and kurtosis.  Median and 

interquartile range are typically involved in non-parametric statistical analysis.  Although mean 

and standard deviation are typically involved in parametric statistical analysis, they are still 

included in Table 3 because they have been most widely employed in the literature to describe and 

explain the results of a statistical analysis.   

 

[Table 3 here] 

 

As can be seen from Table 3, all the values of mean, median, standard deviation, and 

interquartile range values of GPA are close for the intervention and control groups.  For pre-test 

scores, the mean value is 23.62 for the intervention group and 1.5 points greater (25.12) for the 

control group.  The median value is the same (26) for the two groups.  For post-test scores, the 

mean value is nearly the same (25.97 and 26) for the two groups.  However, the median value is 

28 for the intervention group and 2 points less (26) for the control group.   

For normalized learning gains, the mean value is 41.2% for the intervention group, which is 

33% higher than that for the control group (8.2%).  The median value is 50% for the intervention 

group, which is 41.6% higher than that for the control group (8.4%).  The values of standard 

deviation and interquartile range for the control group are higher than those for the intervention 

group.    
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4.3 Correlation analysis  

Spearmen’s correlation coefficients [27] were calculated for non-parametric statistical analysis in 

the present study.  Table 4 shows how student groups (intervention or control) correlate to GPA, 

pre-test scores, post-test scores, and normalized learning gains. 

 

[Table 4 here] 

 

Based on p-values (i.e., Sig. values listed in the third row of Table 4), student groups 

(intervention or control) are not statistically significantly correlated to GPA, pre- and post-test 

scores.  However, student groups (intervention or control) are statistically significantly correlated 

to normalized learning gains (P = 0.003).  Student participants in the intervention group were 

trained with the new VPM technology; whilst those in the control group were not trained with the 

new VPM technology.  Therefore, it can be concluded that whether or not the new VPM 

technology was employed in spatial training is statistically significantly correlated to normalized 

learning gains. 

4.4 Median tests and Mann-Whitney U tests  

Median tests and Mann-Whitney U tests [27] for non-parametric statistical analysis were 

conducted to determine if there exists a statistically significant difference between the intervention 

and control groups in terms of GPA, pre-test scores, post-test scores, and normalized learning 

gains.  Table 5 shows the results of independent-samples median tests.    Table 6 shows the results 

of independent-samples Mann-Whitney U tests. 

[Table 5 here] 
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[Table 6 here] 

 

As can be seen from p-values in Tables 5 and 6 (i.e., asymptotic sig. values in the fourth 

column), there exists no statistically significant difference between the intervention and control 

groups in terms of GPA and pre-test scores.  This implies that the intervention and control groups 

are comparable.  There exists no statistically significant difference between the intervention and 

control groups in terms of post-test scores either.  

However, Tables 5 and 6 show that there exists a statistically significant difference between 

the intervention and control groups in terms of normalized learning gains (P = 0.005 in median 

tests and P = 0.004 in Mann-Whitney U tests).  Based on the data shown in Table 6, the effect size 

of the new VPM technology was further calculated as [33]:  

 

Effect size =
Standardized test statistic score

√N
 

 

where N is the number of student participants, which is 71 in the present study.  The results of 

calculations show the effect size of the new VPM technology is 0.34, which represents a medium 

effect [33].  

 

5. Discussions   

The results described in the above section have demonstrated the effectiveness of the new VPM 

technology on improving students’ spatial skills.  One might ask how the new VPM technology 

compares to the old VPM technology in terms of students’ learning gains.  In the previous work 

[25], the old VPM technology was employed and the results showed that the group-average 
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normalized learning gain was 21.3%.  In comparison, the new VPM technology developed in the 

present study led to a group-average normalized learning gain of 41.2%, nearly doubling the 

learning gain achieved by using the old VPM technology.       

One might also ask how the new VPM technology compares to other existing technologies or 

methods that have been developed to improve students’ spatial skills. To make the comparison 

reasonable, the same assessment instrument must be employed in the studies involved.  This is 

because learning gains measured by different assessment instruments can be quite different [6]. 

The assessment instrument employed in the present study was the Revised Purdue Spatial 

Visualization Test: Visualization of Rotations (Revised PSVT:R) [28].  Extensive literature 

reviews using popular literature database, such as Scopus and Google Scholar, show that the vast 

majority of existing research involving the use of the Revised PSVT:R instrument have not 

provided relevant learning gain data because no post-tests were involved.  The Revised PSVT:R 

instrument was employed to measure students’ spatial skills and correlate them to student’s 

academic performance or gender [28, 31, 34].   

One exception is a recent study in which the Revised PSVT:R instrument was employed in 

two undergraduate engineering courses - computer-aided design (CAD) and computer-aided 

manufacturing (CAM) [35].   In these two courses, students rotated and visualized 2D and 3D 

objects from different orientations, which involved a significant amount of training and 

development of students’ spatial visualization skills.  A pre- and post-test using the Revised 

PSVT:R instrument was administered to measure students’ spatial skills before and after these two 

courses in two semesters. 
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 Student participants in the above study [35] were undergraduates in the Manufacturing and 

Mechanical Engineering Technology program at a public research university in the U.S.  Table 1 

of the paper [35] provided students’ average pre- and post-test scores in the two courses:  

• Students’ average pre-test scores in semester 1: 26.1 (CAD) and 24.2 (CAM) 

• Students’ average post-test scores in semester 1: 25.2 (CAD) and 23.0 (CAM) 

• Students’ average pre-test scores in semester 2:  24.3 (CAD) and 24.7 (CAM) 

• Students’ average post-test scores in semester 2:  23.7 (CAD) and 24.5 (CAM) 

Based on the above data, the class-average normalized learning gain in semester 1 was -48.7% 

for the CAD course and -45.8% for the CAM course.  The learning gains were negative because 

the post-test score was less than the pre-test score.   The class-average normalized learning gain in 

semester 2 was positive: 7% for the CAD course and 12.7% for the CAM course.  These two 

percentage numbers, however, are significantly lower than the 42.1% of the normalized learning 

gain achieved by the new VPM technology developed in the present study.  This comparison 

further demonstrates the effectiveness of the new VPM technology.                  

It is also worth mentioning that the students in the intervention group were trained with the 

new VPM technology for only five weeks between the pre- and post-test.  This short time span (5-

weeks) also demonstrates the effectiveness of the new VPM technology.  According to relevant 

literature [3], spatial training with different techniques or methods involves a wide range of time 

frames from several weeks to several semesters.  Few research studies have discussed how long is 

sufficient for spatial training to be effective.  The results of the present study imply that as long as 

techniques for spatial training are powerful, the period of training can be reduced to just a few 

weeks.                      
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The limitations of the present study need to be discussed.  First, the sample size (n = 71 for 

two groups) is not large.  Because each student participant in the intervention group must be 

committed to spending a significant amount of time over a five-week period, among their busy 

school schedules, in receiving spatial training with the new VPM technology, student recruitment 

turned out to be challenging.  Some students did not participate in the present study because they 

could not make sufficient time commitment to receiving the training and completing pre- and post-

tests.     

Second, although the results of the present study have shown the effectiveness of the new VPM 

technology on enhancing undergraduate engineering students’ spatial skills, it is unclear why the 

effectiveness of training (i.e., normalized learning gains) varies to different extents among 

different students.  In the future work, each student participant’s background and experience as 

well as the way in which he or she employs the new VPM technology during training will be 

examined.  Qualitative research through interviews would also be helpful to explain why the 

effectiveness of training varies from one student to another.                 

 

6.  Conclusions 

In spite of the importance of spatial skills in learning and developing expertise in engineering, the 

training of students’ spatial skills have not received sufficient attention.  Except for computer 

graphic and computer-aided design courses, few engineering courses teach students how to 

develop spatial skills.  This paper has described the new VPM technology that we recently 

developed to enhance undergraduate engineering students’ spatial skills.  Quasi-experimental 

research involving an intervention group (n = 37) and a control group (n = 34) has also been 
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conducted.  The following paragraphs summarize major research findings made in the present 

study:  

1) The mean value of normalized learning gains is 41.2% for the intervention group, which is 

33% higher than that for the control group (8.2%).  The median value of normalized 

learning gains is 50% for the intervention group, which is 41.6% higher than that for the 

control group (8.4%). 

2) Whether or not the new VPM technology was employed in spatial training is statistically 

significantly correlated to normalized learning gains (P < 0.01). 

3) There exists no statistically significant difference between the intervention and control 

groups in terms of GPA, pre- and post-test scores. 

4) A statistically significant difference exists between the intervention and control groups in 

terms of normalized learning gains (P < 0.01). 

5) The new VPM technology has a medium effect size (0.34) on improving students’ spatial 

skills.  
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Figure 2.   New manipulatives developed in the present study: example (a) Geneva wheel and 

example (b) vacuum pump. 

Figure 3.  The new VPM technology: a manipulative at (a) its initial orientation and (b) another 
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Table 1.   Student demographics 

 

Student   

groups 

Number 

of 

students 

Male Female Mechanical 

engineering 

major 

Civil 

engineering 

major 

Biological 

engineering 

major 

Other 

engin-

eering 

major 

Intervention 

group 

37 29 8 21 9 3 4 

Control 

group  

34 27 7 23 8 2 1 

Two-group 

total 

71 56 15 44 17 5 5 
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Table 2.   Results of normality tests  

 

Variables Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic  df Sig.b Statistic  df Sig.b  

Grade point 

average 

(GPA)  

      

   Intervention  0.151 37 0.034 0.904 37 0.004 

   Control 0.158 34 0.031 0.864 34 0.001 

Pre-test scores       

   Intervention 0.284 37 0.000 0.832 37 0.000 

   Control 0.154 34 0.039 0.888 34 0.002 

Post-test 

scores 

      

   Intervention 0.204 37 0.000 0.849 37 0.000 

   Control 0.158 34 0.031 0.919 34 0.015 

Normalized 

learning gains 

(%) 

      

   Intervention 0.111 37 0.200 0.939 37 0.044 

   Control 0.174 34 0.010 0.955 34 0.172 

 
a  Lilliefors significance correction. 
b A p-value less than 0.05 indicates a non-normal distribution of data. 
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Table 3.   Results of descriptive analysis 

 

Variables Mean Median SDa Min. Max. IQRb Skewness Kurtosis 

Grade point 

average 

(GPA)  

        

   Intervention  3.56 3.69 0.38 2.55 4.00 0.54 -0.94 0.16 

   Control 3.67 3.76 0.33 3.00 4.00 0.48 -0.88 -0.36 

Pre-test scores         

   Intervention 23.62 26 4.83 14 29 8.50 -0.77 -0.98 

   Control 25.15 26 3.29 18 29 4.30 -0.92 0.01 

Post-test 

scores 

        

   Intervention 25.97 28 4.08 14 30 5.50 -1.37 1.64 

   Control 26 26 2.87 18 30 3.00 -0.98 0.86 

Normalized 

learning gains 

(%) 

        

   Intervention 41.2 50 41.6 -66.7 100 51.1 -0.59 0.33 

   Control 8.2 8.4 53.1 -100 100 68.4 -0.34 -0.03 

 
a SD stands for standard deviation. 
b IQR stands for interquartile range. 
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Table 4.   Spearmen’s correlation coefficients between student groups (intervention or control) 

and other variables 

 

 Grade point 

average (GPA) 

Pre-test 

scores 

Post-test 

scores 

Normalized 

learning gains 

Correlation coefficients 0.166 0.123 -0.082 -0.344* 

Sig. (2-tailed) 0.167 0.308 0.494 0.003 

N 71 71 71 71 

 

* Correlation is statistically significant at the 0.01 level (2-tailed). 
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Table 5.   Results of independent-samples median tests (N = 71)  

 

Variables Median Test statistic  Asymptotic sig.a 

Graduate point average (GPA)  3.71 0.347 0.556 

Pre-test scores 26.00 0.024  0.877 

Post-test scores 27.00 1.857 0.173 

Normalized learning gains 33.30 7.839 0.005 

 
a A p-value less than 0.05 indicates the statistically significant difference between the 

intervention and control groups.  
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Table 6.   Results of independent-samples Mann-Whitney U tests (N = 71) 

 

Variables Mann-Whitney 

U 

Standardized test 

statistic 

Asymptotic sig.a 

Graduate point average (GPA)  749.500 1.389 0.165 

Pre-test scores 717.500 1.027 0.304 

Post-test scores 569.500 -0.690 0.490 

Normalized learning gains 380.000 -2.881 0.004 

 
a A p-value less than 0.05 indicates the statistically significant difference between the 

intervention and control groups.  
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Figure 1.  Example manipulatives employed in spatial training in the previous work [25]. 
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(a) (b) 

 

Figure 2.  New manipulatives developed in the present study: example (a) Geneva wheel and 

example (b) vacuum pump. 
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(a) (b) 

 

 

Figure 3.  The new VPM technology: a manipulative at (a) its initial orientation and (b) another 

orientation after rotation.  The virtual manipulative shown on the computer screen rotates 

simultaneously with the physical manipulative held in the hand. 
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Figure 4.   An example worksheet developed for student participants to use during training with 

the new VPM technology. 


