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ABSTRACT

Spatial skills are fundamental to learning and developing expertise in engineering. This paper
describes a new virtual and physical manipulatives (VPM) technology that this research team
recently developed to enhance undergraduate engineering students’ spatial skills. This technology
consists of ten manipulatives spanning a variety of levels of geometrical complexity. Each
manipulative is authentic due to their real-world engineering applications that were chosen to
stimulate student interest in engineering. A computer program was developed to connect virtual
and physical manipulatives, allowing students to receive spatial training anytime, anywhere
through the Internet. Quasi-experimental research, involving an intervention group (n=37) and a
control group (n = 34), was conducted. Each group completed a pre- and post-test using the same
assessment instrument that measured students’ spatial skills. Normality tests were conducted. The
results show that the data involved in the present study did not have a normal distribution. Thus,

non-parametric statistical analysis was performed, including
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descriptive analysis, correlation analysis, and Mann-Whitney U tests. The results show that the
mean value of normalized learning gains is 41.2% for the intervention group, which is 33% higher
than that for the control group (8.2%). A statistically significant difference exists between the
intervention and control groups in terms of normalized learning gains (P < 0.01). The new VPM
technology developed from the present study has a medium effect size (0.34) on improving

students’ spatial skills.

Keywords: Spatial skills; undergraduate engineering students; new virtual and physical

manipulatives (VPM) technology

1. Introduction
1.1 Importance of spatial skills
Spatial skills are a person’s mental skills of imaging an object’s spatial orientation, or imaging
what the object looks like from a certain spatial viewpoint. In some literature [1, 2], spatial skills
are used interchangeably with the term of “spatial abilities.” In other literature, only the term of
spatial skills [3, 4] or only the term of spatial abilities [5, 6] is used. Regardless of the term used,
spatial skills or abilities are essential in many real-life situations. For example, a person traveling
alone without a Global Positioning System (GPS) in an unfamiliar city must know what direction
is East, West, South, or North in order to reach their destination. A person doing a puzzle game
needs to identify correct shapes in order to connect all pieces successfully.

Spatial skills are especially important in learning science, technology, engineering, and
mathematics (STEM) subjects [1-6]. In their recent widely-cited paper, Uttal et al. [3] conducted

an extensive meta-analysis of studies on spatial training. They showed a positive correlation



between spatial skills and academic achievements. They found that statistically, high academic
achievements of a student when learning a STEM subject are positively correlated to his/her strong
spatial skills. Wai, Lubinski and Benbow [6] analyzed the data drawn from a massive longitudinal
study that tracked 400,000 U.S. high school students for more than 11 years. They found that
spatial abilities assessed during adolescence are “a salient psychological attribute among those
adolescents who subsequently go on to achieve advanced educational credentials and occupations
in STEM.” They suggested including spatial abilities in modern talent searches to “identify many
adolescents with potential for STEM who are currently being missed.”

Spatial skills are essential for learning and developing expertise in engineering, an essential
“E” in STEM. For example, mechanical engineers create free-hand sketches and computer
graphics of complex machines and components. Civil engineers create free-hand sketches and
computer graphics of buildings, bridges, and structures. Manufacturing engineers make 3D prints
of complex mechanical or electrical parts and components. Solid spatial skills or abilities are
required in all these examples in order to complete the work tasks involved.

Studies have also been conducted to identify important factors affecting students’ spatial skills,
such as individual differences [7, 8] and gender [9]. Mataix, Ledén and Reinoso [7] recently
conducted a study involving 750 college students from three majors: Civil Engineering, Chemical
Engineering, and Industrial Electronic Engineering. A spatial test and a questionnaire survey were
administered at the beginning and the end of the semester. They found that the factors affecting
students’ spatial skills included general intelligence, problem-solving ability, gender, construction
games, and experience in technical drawing [7].

1.2 Interventions developed to improve students’ spatial skills

Training of students’ spatial skills, nevertheless, have not yet received sufficient attention in STEM



education because it is not a subject explicitly taught in the classroom [10-12]. To develop and
improve students’ spatial skills, various educational interventions have been developed, e.g. virtual
reality [ 13, 14], augmented reality [ 15, 16] and digital sketching [17]. Herrera, Pérez, and Ordonez
[16] developed various virtual technologies including augmented reality. They reported that as
the result of their interventions, the course grades (on a 0-100 point scale) of the experimental
group were seven points higher than those of the control group.

Spatial training is often embedded in a computer-aided design (CAD) course [18-21] or other
courses and workshops that last for either a semester or several weeks [22-24]. Novoa, Spencer,
Hazlewood and Ortiz [21] provided a series of face-to-face, 2-hour training sessions for 34
freshman STEM students over six weeks in a semester. The results from their pre- and post-test
showed that 85% of student participants improved test scores by nearly 18% on average. The
change in test scores was found to be statistically significant.

Sorby, Casey, Veurink and Dulaney [24] developed a spatial intervention for freshman
engineering students that consisted of weekly meetings over the semester in a 1-credit freshman
orientation course. A total of 675 students participated in their study and were divided into an
intervention group (n = 84) and a comparison group (n = 592). Their results showed that for
students in the intervention group, the average score increased from 16 points on the pre-test to
22.5 points on the post-test. For students in the comparison group, there was only a 1.5-point
increase from the pre-test score to the post-test score [24].

1.3 The innovation and contribution of the present study
In the previous effort to improve middle school students’ spatial skills, Ha and Fang [25] developed
the earliest version of an education technology called virtual and physical manipulatives (VPM).

Unlike other technologies using either virtual manipulatives alone or physical manipulatives alone,



VPM technology integrates virtual manipulatives with physical manipulatives in a concurrent and
interactive manner, so that students can simultaneously use multiple senses to help the brain
process a series of dynamic mental images while performing spatial tasks. This technology works
by having a student hold a 3D concrete physical object (i.e., a physical manipulative) in their hands
while sitting at a computer. An electrical sensor board, which contains an attitude heading
reference system and an embedded microcontroller, is connected to the computer via a USB cable.
Any physical movement of the object is captured by the sensor board, which sends orientation
signals to the computer for real-time image processing.

The earliest version of VPM technology [25], which is referred to as the old VPM technology
in this paper, has two major limitations. First, the manipulatives employed in spatial training were
those with artificially created geometrical features with no real-world engineering applications.
Figure 1 shows two example manipulatives employed in spatial training in the previous work (the
old VPM technology) [25]. Students often asked what those manipulatives were and what purpose
they served. It is necessary to develop authentic manipulatives with real-world engineering

applications to increase student interest and motivation to learn engineering.

[Figure 1 here]

Second, students could play with the manipulatives only on school computers, where the VPM
computer program had been installed. This limited the chances for students to use the VPM
computer program outside the classroom, e.g., at home.

The present study overcomes these two limitations of the old VPM technology and is

significantly different from the previous work [25] in the following four regards. First, a new set



of manipulatives that have real-world engineering applications has been developed in the present
study to motivate and inspire student interest. By contrast, the manipulatives employed in the
previous work [25] were those with artificially created geometrical features with no real-world
engineering applications.

Second, a new computer program for VPM technology has been developed in the present
study, enabling students to use the VPM anywhere with the Internet, anytime, and at their own
pace. By contrast, the computer program developed in the previous work [25] was outdated and
did not have this functionality.

Third, student participants in the present study and the previous work [25] are completely
different in terms of age and exposure to engineering. The present study focuses on engineering
undergraduates (adults) aged 21-25 years old. The previous work [25] focused on middle school
8"_grade students (adolescents) aged 15-16 years old.

Fourth, research design in the present study and the previous work [25] is completely different.
The present study has involved two groups of student participants: an intervention group who was
trained with the new version (rather than the earliest version) of VPM technology and a control
group who was not trained with VPM technology. The previous work [25] only involved a single
group of student participants who were trained with the old VPM technology. No control group
was involved in the previous work. Therefore, in terms of research design, the present study is
more rigorous than the previous work.

To differentiate from the old VPM technology developed in the previous work [25], the VPM
technology developed in the present study is referred to as the new VPM technology. In the
remaining sections of this paper, the development of the new VPM technology is described,

including the development of ten manipulatives and a computer program for connecting virtual



and physical manipulatives. Then, research questions, overall research design, student
participants, as well as data collection and analysis are described. Next, the research results are
presented and analyzed, followed by discussions and the description of the limitations of the

present study. Conclusions are made at the end of the paper.

2. Development of the new VPM technology
2.1 Design and manufacture of ten manipulatives
A total of ten manipulatives with real-world applications were designed via Autodesk Inventor
Professional 2020 (a computer-aided design software package). The Autodesk Inventor-designed
manipulatives were virtual manipulatives that students could see on a computer screen. Based on
these virtual manipulatives, physical manipulatives were subsequently manufactured via 3D
printing. Students then held and rotated physical manipulatives with their hands during spatial
training. The ten virtual and physical manipulatives developed in the present study include Geneva
wheel, spinner flasks, component grip, door lock, pulley, wheel bearing inside a hub, crankshaft,
shaft arm valve, compressor wheel, and vacuum pump.

These manipulatives have a variety of levels of geometrical complexity, ranging from
relatively simple and symmetric to complex and asymmetric. Figure 2 shows two example
manipulatives, including a Geneva wheel (Fig. 2a) with geometrically symmetric geometry and a

vacuum pump (Fig. 2b) with complex geometry.

[Figure 2 here]



Each manipulative has real-world applications. For example, a Geneva wheel (Fig. 2a) is the
rotating wheel of a gear mechanism called a Geneva drive, which translates a continuous rotation
movement into intermittent rotary motion. Geneva drives have numerous engineering
applications, e.g., in automated sampling devices, banknote counting machines, and film movie
projectors. The Geneva wheel was selected as a manipulative for the new VPM technology due
to its geometrically symmetric features. It requires low to medium cognitive effort for students to
mentally rotate this manipulative. An additional advantage is that while students were trained with
this manipulative, students could also understand how the mechanism works in a Geneva Drive in
terms of fundamental science and engineering concepts like rotational motion, intermittent motion,
angular speed, and angular acceleration.

A vacuum pump (Fig. 2b) removes the molecules of air and other gases from a sealed container
or volume. It has numerous engineering applications, such as in the automotive and aerospace
industries. The vacuum pump was selected as a manipulative for the new VPM technology due to
its complex geometry. It requires medium to high cognitive effort for students to mentally rotate
this manipulative. While students were trained with this manipulative, students could visualize
the geometrical complexity of vacuum pumps, understand reasons, and develop an initial
understanding of internal systems inside a vacuum pump.

2.2 Development of a computer program for connecting virtual and physical manipulatives

A computer software package called Processing (a new version with P5 Serial Control written for
JavaScript) was employed to develop a computer program to enable the new VPM technology.
This computer program communicated with a key hardware component to convert the motion of
physical manipulatives in the real world to the motion of virtual manipulatives on a computer

screen. The key hardware component was an Inertial Measurement Unit (IMU) board 9DoF



(Degrees of Freedom) Razor IMU MO0 manufactured by SparkFun Electronics. This key hardware
component combines a SAMD21 microprocessor with an MPU-9250 9DoF sensor to create a
reprogrammable IMU. The MPU-9250 9DoF sensor includes three 3-axis sensors to sense linear
acceleration, angular rotation velocity and magnetic field vectors.

The IMU board was connected to a computer with a serial connection over USB with the baud
rate set to 115,200 bits per second. The IMU board could also be connected using serial over
Bluetooth with the use of a Li-Po cell and a Bluetooth adapter. The data sent by the IMU board
with its default firmware and Euler angles toggled on was formatted as follows: Time stamp:
milliseconds; Accelerometers X, Y, and Z: m/s*/9.8; Gyroscopes X, Y, and Z: Micro Tesla; Euler
angles X, Y, and Z: Degrees. The send rate was set to be 20 HZ in the new VPM technology.

As an example, Fig. 3 shows a physical manipulative and its corresponding virtual
manipulative (compute image) developed in the present study. A student can rotate the physical
manipulative in three directions around the x-, y-, and z-axes. When the student rotates the
physical manipulative to observe it from different orientations, for example, 45 degrees clockwise
or 180 degrees upside down, the student can observe how the image of the exact same virtual

manipulative simultaneously rotates and changes its orientation on the computer screen.

[Figure 3 here]

3. Research design and data collection

3.1 Research questions and overall research design



This paper focuses on the assessment of the new VPM technology. Therefore, the research
questions of the present study are: Does the new virtual and physical manipulatives (VPM)

technology enhance undergraduate engineering students’ spatial skills? If yes, to what extent?

Quasi-experimental research design [26, 27] was adopted to answer the above research
questions. Two groups of student participants were involved: an intervention group who was
trained with the new VPM technology and a control group who was not trained with any VPM
technology. Both groups completed a pre- and post-test using the same assessment instrument
called the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised
PSVT:R) [28]. Section 3.3 (data collection) will describe some details of the revised PSVT:R

instrument.

3.2 Student participants

A total of 71 undergraduate students from the College of Engineering at Utah State University, a
public research university in the Mountain West area of the U.S., were recruited to participate in
the present study. Student participants were recruited through emails and classroom visits. Those
who responded and showed interest in participating in the present study were contacted to find out
if they could devote a sufficient amount of time to complete necessary tasks designed in the present
study. All student participants signed on the Informed Consent form approved by the University’s
Institutional Review Board before they participated in the present study.

All 71 student participants were second-year undergraduates majoring in mechanical
engineering, civil engineering, biological engineering, or other engineering fields such as
aerospace and environmental engineering. The intervention group had 37 students. The control
group had 34 students. Table 1 shows student demographics of each group. Among 71 student

participants, 56 (79%) were males, and 15 (21%) were females. Engineering schools across the
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U.S. typically have 10-25% of female students in their engineering programs. Therefore, the
percentage of female students involved in the present study was representative. In addition, the
majority of student participants involved in the present study majored either in mechanical

engineering (44 students or 62%) or in civil engineering (17 students or 24%).

[Table 1 here]

3.3 Data collection
Each of the 71 student participants completed a pre- and post-test using the same measurement
instrument called the Revised Purdue Spatial Visualization Test: Visualization of Rotations
(Revised PSVT:R) [28]. The instrument consists of 30 multiple-choice items corresponding to 13
symmetrical and 17 non-symmetrical 3D objects, and quantifies changes in spatial skills in student
participants. The revised PSVT:R instrument corrected ten figure errors in the original PSVT:R
instrument [29]. With an internal consistency reliability of 0.86, the revised PVST:R instrument
is frequently cited as the strongest measurement of students’ mental rotation skills and has been
widely used in research involving undergraduate education [30, 31].

Student participants in the intervention group were trained with the new VPM technology over
a five-week period in the semester. On average, two physical manipulatives were provided to each
student per week. Student participants were provided access to the new VPM technology over the
Internet, so they could run all manipulatives remotely on their own computers. To ensure students
complete their training, each student participant was also provided a comprehensive workbook to
use while they were trained with the new VPM technology. The workbook contains a set of

multiple-choice questions corresponding to each of the ten manipulatives developed in the present
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study. While students were using the new VPM technology, they were required to answer those
multi-choice questions, which enhanced the effectiveness of spatial training. Figure 4 shows one

representative example of worksheets included in the workbook.

[Figure 4 here]

To help student participants in the intervention group get started, we provided them initial
guidance on how to use virtual and physical manipulatives. We also helped them solve computer
hardware and software issues. After this initial assistance, student participants in the intervention
group trained themselves with the VPM technology over the five-week period in the semester.
Each week, they were exposed to two manipulatives. The training with 10 manipulatives was
completed at the end of the fifth week.

In addition to pre- and post-test scores, the cumulative grade point average (GPA) data of each
student participant was also collected. The purpose was to determine if GPA was statistically
significantly different between student participants in the intervention and control groups. If GPA

were significantly different between the two groups, the two groups were not comparable.

4.  Data analysis and results

4.1 Normality tests

Normality tests on the data collected in the present study were first conducted to determine if
parametric or non-parametric statistics should be employed. If the data had a normal distribution,
parametric statistics would be employed. Otherwise, non-parametric statistics would be employed.

Table 2 summarizes the results of normality tests for grade point average (GPA), pre-test scores,

12



post-test scores, and normalized learning gains for the intervention and control groups. The
normality tests conducted in the present study included both Kolmogorov-Smirnov tests and

Shapiro-Wilk tests [27].

[Table 2 here]

In Table 2, based on the pre- and post-test scores of each student participant, the normalized

learning gain was calculated as [32]:

Posttest score (%) — Pretest score (%)
100% — Pretest score (%)

Normalized learning gain (%) =

In his widely-cited paper [32], Hake proposed the term of normalized learning gain in which
both pre- and post-test scores are expressed in percentages, rather than absolute numbers.
Although this term includes the word “normalized,” it does not mean data distribution is always
“normal.” The “normalized” learning gain is a non-statistical term defined by Hake [32]. A
“normal” distribution is a statistical term.

In Table 2, a p-value (i.e., the Sig. value in columns 4 and 7) less than 0.05 indicates a non-
normal distribution of data. From Table 2, it can be seen clearly that GPA, pre- and post-test
scores are not in a normal distribution for both intervention and control groups. The p-value for
normalized learning gains is 0.2 (greater than 0.05) for the intervention group based on
Kolmogorov-Smirnov tests, and 0.172 (greater than 0.05) for the control group based on Shapiro-
Wilk tests. Further observations of normal Q-Q plots and analysis of homogeneity of variances

[27] demonstrated that normalized learning gains do not have a normal distribution. Therefore,
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non-parametric statistical analysis was subsequently conducted for all data involved in the present
study.

4.2  Descriptive analysis

Table 3 summarizes the results of descriptive analysis, including mean, median, standard
deviation, minimum, maximum, interquartile range, skewness, and kurtosis. Median and
interquartile range are typically involved in non-parametric statistical analysis. Although mean
and standard deviation are typically involved in parametric statistical analysis, they are still
included in Table 3 because they have been most widely employed in the literature to describe and

explain the results of a statistical analysis.

[Table 3 here]

As can be seen from Table 3, all the values of mean, median, standard deviation, and
interquartile range values of GPA are close for the intervention and control groups. For pre-test
scores, the mean value is 23.62 for the intervention group and 1.5 points greater (25.12) for the
control group. The median value is the same (26) for the two groups. For post-test scores, the
mean value is nearly the same (25.97 and 26) for the two groups. However, the median value is
28 for the intervention group and 2 points less (26) for the control group.

For normalized learning gains, the mean value is 41.2% for the intervention group, which is
33% higher than that for the control group (8.2%). The median value is 50% for the intervention
group, which is 41.6% higher than that for the control group (8.4%). The values of standard
deviation and interquartile range for the control group are higher than those for the intervention

group.
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4.3 Correlation analysis
Spearmen’s correlation coefficients [27] were calculated for non-parametric statistical analysis in
the present study. Table 4 shows how student groups (intervention or control) correlate to GPA,

pre-test scores, post-test scores, and normalized learning gains.

[Table 4 here]

Based on p-values (i.e., Sig. values listed in the third row of Table 4), student groups
(intervention or control) are not statistically significantly correlated to GPA, pre- and post-test
scores. However, student groups (intervention or control) are statistically significantly correlated
to normalized learning gains (P = 0.003). Student participants in the intervention group were
trained with the new VPM technology; whilst those in the control group were not trained with the
new VPM technology. Therefore, it can be concluded that whether or not the new VPM
technology was employed in spatial training is statistically significantly correlated to normalized
learning gains.

4.4 Median tests and Mann-Whitney U tests

Median tests and Mann-Whitney U tests [27] for non-parametric statistical analysis were
conducted to determine if there exists a statistically significant difference between the intervention
and control groups in terms of GPA, pre-test scores, post-test scores, and normalized learning
gains. Table 5 shows the results of independent-samples median tests. Table 6 shows the results
of independent-samples Mann-Whitney U tests.

[Table 5 here]
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[Table 6 here]

As can be seen from p-values in Tables 5 and 6 (i.e., asymptotic sig. values in the fourth
column), there exists no statistically significant difference between the intervention and control
groups in terms of GPA and pre-test scores. This implies that the intervention and control groups
are comparable. There exists no statistically significant difference between the intervention and
control groups in terms of post-test scores either.

However, Tables 5 and 6 show that there exists a statistically significant difference between
the intervention and control groups in terms of normalized learning gains (P = 0.005 in median
tests and P = 0.004 in Mann-Whitney U tests). Based on the data shown in Table 6, the effect size

of the new VPM technology was further calculated as [33]:

Standardized test statistic score

VN

Effect size =

where N is the number of student participants, which is 71 in the present study. The results of
calculations show the effect size of the new VPM technology is 0.34, which represents a medium

effect [33].

5. Discussions

The results described in the above section have demonstrated the effectiveness of the new VPM
technology on improving students’ spatial skills. One might ask how the new VPM technology
compares to the old VPM technology in terms of students’ learning gains. In the previous work

[25], the old VPM technology was employed and the results showed that the group-average
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normalized learning gain was 21.3%. In comparison, the new VPM technology developed in the
present study led to a group-average normalized learning gain of 41.2%, nearly doubling the
learning gain achieved by using the old VPM technology.

One might also ask how the new VPM technology compares to other existing technologies or
methods that have been developed to improve students’ spatial skills. To make the comparison
reasonable, the same assessment instrument must be employed in the studies involved. This is
because learning gains measured by different assessment instruments can be quite different [6].
The assessment instrument employed in the present study was the Revised Purdue Spatial
Visualization Test: Visualization of Rotations (Revised PSVT:R) [28]. Extensive literature
reviews using popular literature database, such as Scopus and Google Scholar, show that the vast
majority of existing research involving the use of the Revised PSVT:R instrument have not
provided relevant learning gain data because no post-tests were involved. The Revised PSVT:R
instrument was employed to measure students’ spatial skills and correlate them to student’s
academic performance or gender [28, 31, 34].

One exception is a recent study in which the Revised PSVT:R instrument was employed in
two undergraduate engineering courses - computer-aided design (CAD) and computer-aided
manufacturing (CAM) [35]. In these two courses, students rotated and visualized 2D and 3D
objects from different orientations, which involved a significant amount of training and
development of students’ spatial visualization skills. A pre- and post-test using the Revised
PSVT:R instrument was administered to measure students’ spatial skills before and after these two

courses in two semesters.
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Student participants in the above study [35] were undergraduates in the Manufacturing and
Mechanical Engineering Technology program at a public research university in the U.S. Table 1
of the paper [35] provided students’ average pre- and post-test scores in the two courses:

e Students’ average pre-test scores in semester 1: 26.1 (CAD) and 24.2 (CAM)

e Students’ average post-test scores in semester 1: 25.2 (CAD) and 23.0 (CAM)

e Students’ average pre-test scores in semester 2: 24.3 (CAD) and 24.7 (CAM)

e Students’ average post-test scores in semester 2: 23.7 (CAD) and 24.5 (CAM)

Based on the above data, the class-average normalized learning gain in semester 1 was -48.7%
for the CAD course and -45.8% for the CAM course. The learning gains were negative because
the post-test score was less than the pre-test score. The class-average normalized learning gain in
semester 2 was positive: 7% for the CAD course and 12.7% for the CAM course. These two
percentage numbers, however, are significantly lower than the 42.1% of the normalized learning
gain achieved by the new VPM technology developed in the present study. This comparison
further demonstrates the effectiveness of the new VPM technology.

It is also worth mentioning that the students in the intervention group were trained with the
new VPM technology for only five weeks between the pre- and post-test. This short time span (5-
weeks) also demonstrates the effectiveness of the new VPM technology. According to relevant
literature [3], spatial training with different techniques or methods involves a wide range of time
frames from several weeks to several semesters. Few research studies have discussed how long is
sufficient for spatial training to be effective. The results of the present study imply that as long as
techniques for spatial training are powerful, the period of training can be reduced to just a few

weeks.
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The limitations of the present study need to be discussed. First, the sample size (n = 71 for
two groups) is not large. Because each student participant in the intervention group must be
committed to spending a significant amount of time over a five-week period, among their busy
school schedules, in receiving spatial training with the new VPM technology, student recruitment
turned out to be challenging. Some students did not participate in the present study because they
could not make sufficient time commitment to receiving the training and completing pre- and post-
tests.

Second, although the results of the present study have shown the effectiveness of the new VPM
technology on enhancing undergraduate engineering students’ spatial skills, it is unclear why the
effectiveness of training (i.e., normalized learning gains) varies to different extents among
different students. In the future work, each student participant’s background and experience as
well as the way in which he or she employs the new VPM technology during training will be
examined. Qualitative research through interviews would also be helpful to explain why the

effectiveness of training varies from one student to another.

6. Conclusions

In spite of the importance of spatial skills in learning and developing expertise in engineering, the
training of students’ spatial skills have not received sufficient attention. Except for computer
graphic and computer-aided design courses, few engineering courses teach students how to
develop spatial skills. This paper has described the new VPM technology that we recently
developed to enhance undergraduate engineering students’ spatial skills. Quasi-experimental

research involving an intervention group (n = 37) and a control group (n = 34) has also been
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conducted. The following paragraphs summarize major research findings made in the present
study:

1) The mean value of normalized learning gains is 41.2% for the intervention group, which is
33% higher than that for the control group (8.2%). The median value of normalized
learning gains is 50% for the intervention group, which is 41.6% higher than that for the
control group (8.4%).

2) Whether or not the new VPM technology was employed in spatial training is statistically
significantly correlated to normalized learning gains (P < 0.01).

3) There exists no statistically significant difference between the intervention and control
groups in terms of GPA, pre- and post-test scores.

4) A statistically significant difference exists between the intervention and control groups in
terms of normalized learning gains (P < 0.01).

5) The new VPM technology has a medium effect size (0.34) on improving students’ spatial

skills.
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Example manipulatives employed in spatial training in the previous work [25].

New manipulatives developed in the present study: example (a) Geneva wheel and
example (b) vacuum pump.

The new VPM technology: a manipulative at (a) its initial orientation and (b) another
orientation after rotation. The virtual manipulative shown on the computer screen
rotates simultaneously with the physical manipulative held in the hand.

An example worksheet developed for student participants to use during training with

the new VPM technology.
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Table 1. Student demographics

Student Number Male Female Mechanical Civil Biological Other

groups of engineering engineering engineering engin-
students major major major eering

major

Intervention 37 29 8 21 9 3 4

group

Control 34 27 7 23 8 2 1

group

Two-group 71 56 15 44 17 5 5

total
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Table 2. Results of normality tests

Variables Kolmogorov-Smirnov* Shapiro-Wilk
Statistic df Sig." Statistic df Sig.’
Grade point
average
(GPA)
Intervention 0.151 37 0.034 0.904 37 0.004
Control 0.158 34 0.031 0.864 34 0.001
Pre-test scores
Intervention 0.284 37 0.000 0.832 37 0.000
Control 0.154 34 0.039 0.888 34 0.002
Post-test
scores
Intervention  0.204 37 0.000 0.849 37 0.000
Control 0.158 34 0.031 0.919 34 0.015
Normalized
learning gains
(o)
Intervention 0.111 37 0.200 0.939 37 0.044
Control 0.174 34 0.010 0.955 34 0.172

# Lilliefors significance correction.
® A p-value less than 0.05 indicates a non-normal distribution of data.



Table 3. Results of descriptive analysis

Variables Mean Median SD? Min. Max. IQR" Skewness Kurtosis
Grade point

average

(GPA)

Intervention 3.56 3.69 0.38 2.55 4.00 0.54 -0.94 0.16
Control 3.67 3.76 0.33 3.00 4.00 0.48 -0.88 -0.36
Pre-test scores

Intervention 23.62 26 4.83 14 29 8.50 -0.77 -0.98
Control 25.15 26 3.29 18 29 430 -0.92 0.01
Post-test

scores

Intervention 25.97 28 4.08 14 30 550 -1.37 1.64
Control 26 26 2.87 18 30 3.00 -0.98 0.86
Normalized

learning gains

(%)

Intervention 41.2 50 41.6 -66.7 100 51.1 -0.59 0.33
Control 8.2 8.4 53.1 -100 100 684 -0.34 -0.03

4SD stands for standard deviation.
® IQR stands for interquartile range.
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Table 4. Spearmen’s correlation coefficients between student groups (intervention or control)

and other variables

Grade point Pre-test Post-test Normalized
average (GPA) scores scores learning gains
Correlation coefficients  0.166 0.123 -0.082 -0.344"
Sig. (2-tailed) 0.167 0.308 0.494 0.003
N 71 71 71 71

* Correlation is statistically significant at the 0.01 level (2-tailed).
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Table 5. Results of independent-samples median tests (N = 71)

Variables Median Test statistic Asymptotic sig.”
Graduate point average (GPA)  3.71 0.347 0.556
Pre-test scores 26.00 0.024 0.877
Post-test scores 27.00 1.857 0.173
Normalized learning gains 33.30 7.839 0.005

4 A p-value less than 0.05 indicates the statistically significant difference between the
intervention and control groups.
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Table 6. Results of independent-samples Mann-Whitney U tests (N = 71)

Variables Mann-Whitney Standardized test Asymptotic sig.”
U statistic

Graduate point average (GPA)  749.500 1.389 0.165

Pre-test scores 717.500 1.027 0.304

Post-test scores 569.500 -0.690 0.490

Normalized learning gains 380.000 -2.881 0.004

* A p-value less than 0.05 indicates the statistically significant difference between the

intervention and control groups.
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Figure 1. Example manipulatives employed in spatial training in the previous work [25].
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(@) (b)

Figure 2. New manipulatives developed in the present study: example (a) Geneva wheel and

example (b) vacuum pump.
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(2) (b)

Figure 3. The new VPM technology: a manipulative at (a) its initial orientation and (b) another
orientation after rotation. The virtual manipulative shown on the computer screen rotates

simultaneously with the physical manipulative held in the hand.
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5) After resetting the manipulative, rotate it at x-axis for 45 degrees on positive direction. After
then from this position, once again rotate y-axis for 45 degrees on negative direction. Then

please choose the correct image from the following:

&

(b)

(d)

Answer:

Figure 4. An example worksheet developed for student participants to use during training with

the new VPM technology.
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