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Abstract

Spatio-temporal data indexed by sampling locations and sampling time points
are encountered in many scientific disciplines such as climatology, environ-
mental sciences, and public health. Here, we propose a novel spatio-temporal
expanding distance (STED) asymptotic framework for studying the proper-
ties of statistical inference for nonstationary spatio-temporal models. In
particular, to model spatio-temporal dependence, we develop a new class of
locally stationary spatio-temporal covariance functions. The STED asymp-
totic framework has a fixed spatio-temporal domain for spatio-temporal pro-
cesses that are globally nonstationary in a rescaled fixed domain and locally
stationary in a distance expanding domain. The utility of STED is illus-
trated by establishing the asymptotic properties of the maximum likelihood
estimation for a general class of spatio-temporal covariance functions. A
simulation study suggests sound finite-sample properties and the method is
applied to a sea-surface temperature dataset.

AMS (2000) subject classification. Primary 62F12; Secondary 62M30.
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Random fields, Spatial statistics, Spatio-temporal statistics

1 Introduction

Spatio-temporal data are widely encountered and analyzed in many sci-
entific disciplines, such as climatology (see, e.g., Cressie 2018; Kuusela and
Stein 2018), environmental sciences (see, e.g., Liang et al. 2015; Porcu et al.
2018), and public health (see, e.g., Ludwig et al. 2017). While there are a
myriad of statistical modeling and methods for analyzing spatio-temporal
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data (see, e.g., Sherman 2011; Cressie and Wikle 2011), there appear to
be limited tools for studying the theoretical properties of these statistical
techniques. The purpose of this paper is to fill some of this void in spatio-
temporal statistics by proposing a novel asymptotic framework for data sam-
pled in space and time.

For spatio-temporal data, spatio-temporal covariance functions have been
proposed and employed to model spatio-temporal dependence. For example,
Cressie and Huang (1999) and Gneiting (2002) constructed fully paramet-
ric nonseparable spatio-temporal covariance functions using spectral den-
sity and completely monotone functions. Stein (2005) developed spatially
isotropic but asymmetric spatio-temporal models by taking the derivatives
of spatially isotropic fully symmetric models. These spatio-temporal covari-
ance models assume stationarity in both space and time, which could be
restrictive in practice. For time series data, various nonstationary mod-
els have been developed including locally stationary processes (see, e.g.,
Dahlhaus 1997; Zhou and Wu 2009; Vogt 2012; Dahlhaus 2012) and mixing
conditions (see, e.g., Fan and Yao 2003; Chang et al. 2015). For spatial
data, nonstationary covariance functions have also been developed, such as
kernel-based spatial convolution and spectral-based local stationarity (see, e.g.,
Higdon 1998; Fuentes 2002; Paciorek and Schervish 2006; Gelfand et al.
2010). More recently, Hsing et al. (2016) suggested a class of locally in-
trinsic stationary (LIS) covariance functions, which includes a variety of
nonstationary models and has sound theoretical properties. However, there
are very limited results on local stationarity for spatio-temporal processes.
Nonstationary spatio-temporal processes have been considered, such as non-
stationary models via spectral representation (Fuentes et al., 2008; Guinness
and Fuentes, 2015) and a moving-window approach to estimating a locally
stationary spatio-temporal Gaussian process (Kuusela and Stein, 2018), al-
though the asymptotic properties of model estimation and inference are un-
explored. We believe that advances are in need for studying the theoretical
properties of locally stationary processes.

Asymptotic frameworks have played an important role in establishing
the asymptotic properties of parameter estimates and their inference in spa-
tial statistics. In an increasing domain asymptotic framework, the spatial
domain expands while the smallest distance among the spatial sampling
locations remains constant (see, e.g., Mardia and Marshall 1984; Cressie
and Lahiri 1993; Yao and Brockwell 2006; Chu et al. 2011). In an infill
asymptotic framework, the spatial sampling locations become denser in a
fixed spatial domain (see, e.g., Ying 1993; Stein 1999; Zhang 2004; Loh
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2005). A mixed asymptotic framework has both an expanding spatial do-
main and denser sampling locations (see, e.g., Hall and Patil 1994; Lahiri
2003; Lu and Tjøstheim 2014; Bandyopadhyay and Rao 2017). However,
asymptotic frameworks are underdeveloped for spatio-temporal statistics,
leaving the asymptotic properties of many methods for nonstationary spatio-
temporal data unclear. Yet, it is non-trivial to extend the existing asymp-
totic frameworks for spatial processes to spatio-temporal processes due to
the uni-directionality of time and a lack of stationarity. For instance, in
an increasing domain asymptotic framework, the “local” behavior of a co-
variance function is a challenge to study, whereas in an infill asymptotic
framework, some of the parameters in the covariance function are not con-
sistently estimable. Recently, Bandyopadhyay et al. (2017) considered a
spatio-temporal domain asymptotics with the increasing temporal domain
and the mixed spatial domain for Fourier analysis in spectral domain.

Here, to incorporate the local stationarity, we propose a novel spatio-
temporal expanding distance (STED) asymptotic framework in a fixed spatio-
temporal domain. Let R denote a spatial domain of interest in R

d and T
denote a temporal domain of interest in R. In the one-dimensional space
(d = 1), the sampling locations are for example i = 1, . . . , n at the nth stage
in an increasing domain asymptotic framework, but are 1/n, . . . , (n−1)/n, 1
in an infill asymptotic framework. In nonlinear time series, a popular ap-
proach is to rescale the actual time to i/n (Fan and Yao, 2003), which we
extend to a rescaled spatio-temporal domain such that both the spatial do-
main and the temporal domain are bounded.

Besides asymptotic framework, the asymptotic properties of parameter
estimates also depends on the nature of spatio-temporal dependence. Here,
we take the LIS framework for spatial processes as impetus (Hsing et al.,
2016), and develop a class of locally stationary spatio-temporal covariance
functions that vary across space and over time within the rescaled fixed
spatio-temporal domain. The resulting spatio-temporal covariance functions
are locally stationary in a distance expanding spatio-temporal domain; that
is, they can be approximated locally by stationary covariance functions of ac-
tual distances in the spatio-temporal domain. Such a class of spatio-temporal
covariance functions is quite general and flexible as we will demonstrate. Fur-
thermore, our proposed STED asymptotic framework is not a generalization
of the mixed asymptotic framework in spatial statistics, but rather a po-
tentially useful tool for studying the properties of statistical inference for
spatio-temporal processes that are globally nonstationary in a rescaled fixed
domain and locally stationary in a distance expanding domain.
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The remainder of the paper is organized as follows. We develop a class
of locally stationary spatio-temporal processes in Section 2 and propose the
STED asymptotic framework for fixed spatio-temporal domain in Section 3.
For illustration, we consider spatio-temporal models and derive the theo-
retical properties of the corresponding maximum likelihood estimation in
Section 4. Simulation studies are conducted in Section 5.1, and our method
is applied to a sea-surface temperature data for illustration in Section 5.2.
The technical details including theorem proofs and remarks are given in
Appendices A.1, A.2, A.3 and A.4.

2 Local Stationarity in Space and Time

For the spatial domain of interest R ⊂ R
d and the temporal domain

of interest T ⊂ R, we consider a zero-mean spatio-temporal random pro-
cess {Y (s, t) : s ∈ R, t ∈ T }, and at stage n of a spatio-temporal asymp-
totic framework, the covariance function is defined as γn((s, t), (s

′, t′)) =
Cov(Y (s, t), Y (s′, t′)), where s, s′ ∈ R and t, t′ ∈ T . To draw inference for
the covariance functions, stationarity is generally assumed, which can be
restrictive and may not hold in practice. Here we consider a new class of
spatio-temporal covariance functions, allowing more flexibility than station-
ary processes to the extent of local stationarity.

We let the stage of the spatio-temporal asymptotics, n, appear as either
a left superscript or a right subscript of a quantity that depends on n. We
also let {An} and {Bn} denote two sequences of positive numbers and let ‖·‖
denote the Euclidean norm in R

d. The following are conditions for defining
locally stationary spatio-temporal covariance functions.

(LS.1). There exists a sequence of functions gn(·, ·, s, t) such that
∣

∣γn
((

s, t), (s′, t′
))

− gn
(

s
′ − s, t′ − t, s, t

)
∣

∣ = O
(

‖s′ − s‖+ |t′ − t|+ ρn
)

uniformly for all (s, t), (s′, t′) ∈ R × T , where {ρn} is a sequence of
positive numbers such that ρn → 0 as n → ∞. In addition, there exists
a function g such that

lim
n→∞

∣∣gn
(
s′ − s, t′ − t, s, t

)
− g(u1, u2, s, t)

∣∣ → 0, as n → ∞

uniformly for all (s, t), (s′, t′) ∈ R × T , where u1 = An(s
′ − s) and

u2 = Bn(t
′ − t).

(LS.2). Define g(s, t) = g(0, 0, s, t) with g(u1, u2, s, t) given in (LS.1), and
g(s, t) satisfies |g(s, t) − g(s′, t′)| ≤ C1‖s − s′‖ + C2|t − t′| for all
(s, t), (s′, t′) ∈ R× T , where C1, C2 > 0 are constants.
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(LS.3). There exist two positive nonincreasing functions
γ0 and γ1 satisfying

∫∞
0 ud−1γ0(u)du < ∞ and

∫∞
0 γ1(u)du < ∞ such

that |γn((s, t), (s+u1/An, t+u2/Bn))| ≤ γ0(‖u1‖)γ1(|u2|) for all n and
‖u1‖, |u2| ∈ [0,∞) such that (s, t), (s+ u1/An, t+ u2/Bn) ∈ R× T .

Here, (LS.1)–(LS.2) can be viewed as a generalization of (W3)–(W4) for
spatial processes in Hsing et al. (2016) to our spatio-temporal processes. In
particular, (LS.1) describes local stationarity in the sense that the covariance
function γn can be approximated by a function gn, which is allowed to vary
with location s and time t, rather than merely determined by spatial and
temporal lags. Such approximation is adequate in a neighborhood of (s, t),
provided that (s, t) and (s′, t′) are sufficiently close. Furthermore, the func-
tion g characterizes the limiting behavior of gn with respect to the scaled
spatial and temporal lags at the rates of An and Bn, respectively. (LS.2)
imposes some mild restrictions on the covariance structure at the zero lag
in space and time, whereas (LS.3) is a constraint on the decay rate of the
covariance function in space and time.

The above definition of locally stationary covariance functions is satisfied
by a variety of covariance functions. For illustration, we introduce a class
of parametric covariance functions denoted as γn((s, t), (s

′, t′);θ), where θ

is a q × 1 vector of parameters, which includes the following generalized
spatio-temporal Matérn covariance function

γn((s, t), (s′, t′);θ) =
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

D(s,t)D(s′,t′)σ2θ
d/2
3

21−ν

(θ2
1
u2
2
+1)ν(θ2

1
u2
2
+θ3)

d/2Γ(ν)
m(u1, u2;θ)νKν {m(u1, u2; θ)} , if ‖u1‖ > 0,

D(s,t)D(s′,t′)σ2θ
d/2
3

(θ2
1
u2
2
+1)ν(θ2

1
u2
2
+θ3)

d/2 , if ‖u1‖=0, |u2| > 0,

D(s, t)2σ2 + τ2, if ‖u1‖=0, |u2| = 0,

(2.1)

where m(u1, u2;θ) = θ2

(
θ21u

2
2+1

θ21u
2
2+θ3

)1/2
‖u1‖, θ = (θ1, θ2, θ3, σ

2, τ2)� is a vec-

tor of spatio-temporal parameters with a scaling parameter in time θ1 > 0,
a scaling parameter in space θ2 > 0, a separability parameter θ3 ≥ 1, and
are two variance components σ2 and τ2. In addition, u1 = �1,n(s

′−s) is the
spatial lag scaled to the spatially expanding domain, and u2 = �2,n(t

′ − t)
is the temporal lag scaled to the temporally expanding domain, where �1,n
and �2,n are two sequences of positive real numbers. Further, Kν(·) is the
modified Bessel function of the second kind of order ν, ν > 0 is a smoothness
parameter assumed to be known, and D(s, t) is a positive spatio-temporal
function such that D(0, 0) = 1 and D(s, t)2σ2+ τ2 is the variance of Y (s, t).
By Cressie and Huang (1999) and Gneiting (2002), it can be shown that (2.1)
is a positive definite function and therefore, a valid covariance function. The
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class of spatio-temporal covariance functions (2.1) is generally nonseparable
and nonstationary. In the special case of D(s, t) ≡ 1 for all s ∈ R and t ∈ T ,
(2.1) reduces to a class of stationary, but still nonseparable, spatio-temporal
covariance functions, which was introduced by Cressie and Huang (1999).
Furthermore, (2.1) is separable only when θ3 = 1 and D(s, t) is separable
for all s ∈ R and t ∈ T .

Let γn,k(·, ·;θ) = ∂γn(·, ·;θ)/∂θk and γn,kk′(·, ·;θ) = ∂2γn(·, ·;θ)/∂θk∂θk′
denote the first- and second-order partial derivatives of γn(·, ·;θ), respec-
tively, with respect to θk and θk′ for 1 ≤ k, k′ ≤ q. We consider the following
additional conditions for developing the locally stationary parametric spatio-
temporal covariance functions.

(LS.4). The covariance function γn(·, ·;θ) is bounded and is twice continu-
ously differentiable with respect to θ in an open set.

(LS.5). There exist two positive nonincreasing functions γ2 and γ3 with∫∞
0 ud−1γ2(u)du < ∞ and

∫∞
0 γ3(u)du < ∞ such that max{|γn,k((s, t),

(s + u1/An, t + u2/Bn))|, |γn,kk′((s, t), (s + u1/An, t + u2/Bn))|} ≤
γ2(‖u1‖)γ3(|u2|) for all n and ‖u1‖, |u2| ∈ [0,∞) with (s, t), (s +
u1/An, t+ u2/Bn) ∈ R× T and 1 ≤ k, k′ ≤ q.

In the above, (LS.4) is a standard assumption to ensure the smoothness of
the covariance function, whereas (LS.5) restricts the decay rates of the first-
and second-order partial derivatives of the covariance function with respect
to covariance parameters by spatial lag and temporal lag.

With An = �1,n and Bn = �2,n, we establish that the generalized spatio-
temporal Matérn covariance function (2.1) satisfies (LS.1)–(LS.5).

Proposition 1. Let D(s, t) be some positive known function with D(0, 0) =
1 and |D(s, t)−D(s′, t′)| ≤ C̃1‖s−s′‖+C̃2|t−t′| for all (s, t), (s′, t′) ∈ R×T ,
where C̃1, C̃2 > 0 are constants. Then the generalized spatio-temporal Matérn
covariance function (2.1) satisfies conditions (LS.1)–(LS.5).

The proof of Proposition 1 is given in Appendix A.1. In general, ifD(s, t)
is parametric and twice continuously differentiable with respect to the pa-
rameters, we can incorporate those parameters into θ and Proposition 1 will
still hold. In addition, it can be shown that a class of generalized exponential
covariance functions satisfies (LS.1)–(LS.5) (see details in Appendix A.2).

3 Spatio-Temporal Expanding Distance Asymptotic Framework

We now develop a novel spatio-temporal asymptotic framework under
which the asymptotic properties of statistical inference can be investigated.
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We consider a fixed spatial domain with continuous spatial indexes and a
fixed temporal domain with continuous temporal indexes. Without loss of
generality, we assume that the spatial domain isR = [0, 1]d and the temporal
domain is T = [0, 1] at all stages. We further assume that at stage n, Nn

spatio-temporal sampling points are observed at (ns1,
nt1), . . . , (

nsNn ,
ntNn),

where Nn tends to infinity as n → ∞. For ease of notation, henceforth we
suppress n in the left superscript of (nsi,

nti).
We denote the smallest distance between the jth sampling points and

the other sampling points in space and time as δj,n = min{‖si − sj‖ : 1 ≤
i ≤ Nn, si 
= sj} and ζj,n = min{|ti − tj | : 1 ≤ i ≤ Nn, ti 
= tj}, respectively.
Let δn = max1≤j≤Nn δj,n and ζn = max1≤j≤Nn ζj,n denote the maximum
smallest distance in space and in time, respectively.

We assume that, for all n,

(A.1). δn/min1≤j≤Nn δj,n ≤ c1,

(A.2). ζn/min1≤j≤Nn ζj,n ≤ c2,

(A.3). δdnA
d
nζnBn ≥ c3,

where c1, c2 and c3 are some positive constants independent of n. Here, we
refer to (A.1)–(A.3) as an (An, Bn)-rate spatio-temporal expanding distance
(STED) asymptotic framework in a fixed spatio-temporal domain.

For the STED asymptotic framework, (A.1)–(A.2) ensure bounded mesh
ratios in both the spatial and temporal domain, whereas (A.3) provides a
lower bound of δn and ζn. Together with (A.1) and (A.2), the cardinality of
a neighborhood of any sampling point is decided by the minimal distances
δn and ζn as well as An and Bn. Consequently, the sampling design is such
that δn and ζn cannot decrease too fast or too slowly. That is, the num-
ber of observations in the neighborhood cannot be too few with insufficient
information for parameter estimation or too many with too much redun-
dant information. Thus, the local stationarity in space and time given in
Section 2 is closely connected to the spatio-temporal sampling points in the
STED asymptotic framework developed here. An alternative way to ensure
a reasonable sampling design is to require the density function of spatial and
time to be bounded (Lu and Tjøstheim, 2014).

Let R̃n = AnR and T̃n = BnT denote the spatial and temporal do-
mains of interest at stage n, and the STED asymptotic framework can also
be conceptualized through R̃n and T̃n. That is, the (An, Bn)-rate spatio-
temporal expanding distance (STED) asymptotic framework includes the
following three sampling patterns. First, if δdnA

d
n = O(1) and ζnBn = O(1),
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the proposed asymptotic framework is equivalent to an increasing domain
asymptotics in both space and time. Second, if δdnA

d
n → 0 and ζnBn → ∞,

it is equivalent to an increasing domain asymptotics in time and a mixed
asymptotics in space. Third, if δdnA

d
n → ∞ and ζnBn → 0, it is equivalent

to an increasing domain asymptotics in space and a mixed asymptotics in
time.

4 Illustration of Theoretical Development

Consider the following spatio-temporal model,

y(s, t) = ε1(s, t) + ε2(s, t), s ∈ R, t ∈ T , (4.1)

where ε1(s, t) is a Gaussian spatio-temporal error process and ε2(s, t)’s are
independently and identically distributed Gaussian errors with mean 0 and
variance τ2, independent of ε1(s, t).

The spatio-temporal covariance function of y(s, t) is denoted as
γn((s, t), (s

′, t′);θ) for (s, t), (s′, t′) ∈ R × T , where θ is a q × 1 vector
of unknown parameters. Recall that the data are observed at Nn points
(s1, t1), . . . , (sNn , tNn) sampled under the STED asymptotic framework (A.1)–
(A.3) in Section 3. Let y = (y(s1, t1), . . . , y(sNn , tNn))

� denote an Nn × 1
vector of the response variables and let nΓ(θ) = [γn((si, ti), (sj , tj);θ)]

Nn
i,j=1

denote an Nn×Nn covariance matrix of y. For ease of notation, we omit the
stage n in the left superscript of nΓ. Therefore, the log-likelihood function
of θ under (4.1) is


(θ) = −(Nn/2) log(2π)− (1/2) log{detΓ(θ)} − (1/2)y�Γ(θ)−1y. (4.2)

Denote the maximizer of Eq. 4.2 as θ̂MLE. Next, we will establish the
asymptotic properties of θ̂MLE as an illustration of the STED asymptotic
framework (A.1)–(A.3) in Section 3 under local spatio-temporal stationar-
ity (LS.1)–(LS.5) defined in Section 2.

The following regularity conditions are assumed.

(C.1). Let Γk = ∂Γ/∂θk, for some ι > 0, there exist positive constants Dk

such that ‖Γk‖−2
F ≤ DkN

−1/2−ι
n for k = 1, . . . , q.

(C.2). There exists a constant C∗, such that ‖Γ−1‖2 < C∗ < ∞.

(C.3). Let tkk′ = tr(Γ−1ΓkΓ
−1Γk′), for k, k′ = 1, . . . , q. For sufficiently

large n, An = (akk′)
q
k,k′=1 is nonsingular, where akk′ = {tkk′(tkktk′k′)−1/2}.

(C.4). There exists a non-singular matrix I(θ) which satisfies N−1
n J n(θ) −→

I(θ), as n → ∞, where J n(θ) = E
{
− ∂2	(θ)

∂θ∂θT

}
.
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Here, (C.1) imposes a lower bound on the first-order partial derivatives
of the covariance matrix and (C.2) is a constraint on the smallest eigen-
value of the covariance matrix. Both (C.1) and (C.2) are requirements on
the covariance function. (C.3) ensures nonsingularity in the limit and the
elements of θ̂ are not asymptotically linearly dependent. (C.4) is a standard
condition for information matrix, and will be used together with (A.1)–(A.3)

and (C.1)–(C.3) to establish a central limit theorem of ∂	(θ)
∂θ . Additionally

in Appendix A.3, we provide sufficient conditions for (C.1) and show that
the generalized spatio-temporal Matérn and exponential covariance functions
satisfy (C.1) under a proper sampling design.

Let
p−→ and

D−→ denote convergence in probability and in distribution,
respectively, as n → ∞. We first establish a result about the spatio-temporal
sampling design, which is fundamental for establishing the asymptotic prop-
erties of locally stationary processes. The proof of Theorem 1 is given in
Appendix A.4.

Theorem 1. Under (A.1)–(A.3), (LS.1)–(LS.5), and (C.1)–(C.3), we
have,

∂
(θ)

∂θ

∣∣∣∣
θ=θ0

D−→ N(0,J n(θ0)) and
∂2
(θ)

∂θ∂θT

∣∣∣∣
θ=θ0

p−→ J n(θ0).

Theorem 1 establishes a central limit theorem of ∂	(θ)
∂θ , and the conver-

gence of ∂2	(θ)

∂θ∂θT at the true value θ0 for local spatio-temporal stationary co-
variance functions. By Theorem 1 above, Theorem 1 of Sweeting (1980), and
Theorem 2 of Mardia and Marshall (1984), we have the following asymptotic
results.

Theorem 2. Under (A.1)–(A.3), (LS.1)–(LS.5), and (C.1)–(C.4), there
exists, with probability tending to one, a local maximizer nθ̂ of 
(θ) such that

‖nθ̂ − θ0‖ = Op(N
−1/2
n ). Moreover, the local maximizer nθ̂ is asymptotic

normal; as n → ∞, N
1/2
n (nθ̂ − θ0)

D−→ N(0,I(θ0)
−1).

Theorem 2 established consistency and asymptotic normality under the
proposed spatio-temporal framework, and can be used as a guideline of pa-
rameter estimation for spatio-temporal datasets. Although spatio-temporal
data can be viewed as extending spatial data by adding a temporal domain,
the extension is usually not straightforward and a careful examination is of-
ten needed. For asymptotic framework, it is well known that there are three
asymptotic frameworks in spatial statistics: increasing domain asymptotics,
infill domain asymptotics, and mixed asymptotics. However, this division
does not apply directly to spatio-temporal data, as mentioned in Section 3.
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In fact, if the proposed spatio-temporal framework is projected to the space
domain, it can be any of the above three frameworks. To illustrate the above
point, the following example is provided.

Example. For two integers a, b, and let �a/b� and 〈a/b〉 denote the quo-
tient and reminder of a divided by b. For the nth stage, let s̄(i1, i2) =(

i1
pn+1 ,

j2
pn+1

)
and t̄(i3) = i3

qn+1 , for i1, i2 = 1, . . . , pn, and i3 = 1, . . . , qn.

The ith spatial and temporal observation is (si, ti) = (s̄(i1, i2), t̄(i3)), where
i1 =

〈
〈i/p2n〉/pn

〉
, i2 = �〈i/p2n〉�+1 , and i3 = �i/p2n�+1, for i = 1, . . . , p2nqn.

Next, we show the above spatio-temporal framework can be any of the
three spatial asymptotics framework, when it is projected to the spatial
domain. First, it can be calculated that the density of the projected spatial
locations is p2n/A

2
n. In this example, we consider the case that qn is bounded

and pn increases at the rate of N
1/2
n . If An is bounded and Bn increases at

the rate of Nn, the resulting density is Nn and the framework is the infill

domain framework. If An increases at the rate of N
1/2
n and Bn is bounded,

the resulting framework is the increasing domain. If An increases at the rate
of Nα

n with α ∈ (0, 1/2), the resulting framework is the mixed asymptotics.
It is known that some estimates of the covariance function are not con-

sistent under the infill asymptotics. Theorem 2 suggests that even for these
datasets, when the temporal dimension is added following the proposed
spatio-temporal framework, the consistency and asymptotic normality of
parameter estimates can be achieved. On the other hand, if the temporal
correlation is ignored, and the spatio-temporal data are treated as if they
were spatial data, the resulting estimates of parameter can be inconsistent.
Besides the spatio-temporal framework, it is also important to specify the
proper spatio-temporal covariance functions. Theorem 2 ensures that for
spatio-temporal covariance functions satisfying (LS.1)–(LS.5), consistency
and asymptotic normality of the parameter estimates are ensured, which
include locally stationary covariance functions, as well as stationary covari-
ance functions (Cressie and Huang, 1999; Gneiting, 2002). In particular, by
Proposition 1, Theorem 2 holds for the generalized spatio-temporal Matérn
covariance function. In the following section, we provide a simulation study
that suggests sound finite-sample properties.

5 Numerical Examples

5.1. Simulation Study We conduct a simulation study to investigate
the finite sample performance of θ̂MLE in Section 4. First, Ns sampling
locations, s1, . . . , sNs , are generated within the spatial domain [0, 1]2. At
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Table 1: Sample mean, sample standard deviation (SD), average
information-based standard deviation (SDm) of covariance parameters with
Nn = 806, 1644, 2449

Nn = 806 Nn = 1644 Nn = 2449

Truth Mean SD SDm Mean SD SDm Mean SD SDm

COV-1

σ2 9.0 8.973 0.525 0.529 9.012 0.373 0.385 8.974 0.317 0.313
c 0.2 0.205 0.078 0.077 0.197 0.047 0.049 0.193 0.044 0.041
cs 1.0 1.023 0.197 0.200 1.008 0.123 0.122 0.994 0.097 0.095
ct 1.0 1.028 0.220 0.204 1.008 0.133 0.135 0.986 0.108 0.109

COV-2

σ2 9.0 8.941 1.528 1.555 9.093 1.100 1.103 9.085 0.865 0.881
c 0.2 0.233 0.120 0.105 0.202 0.060 0.062 0.196 0.052 0.050
a 1.0 0.996 0.117 0.105 1.002 0.071 0.071 1.010 0.058 0.059
b 1.0 1.001 0.139 0.135 1.005 0.089 0.088 1.008 0.069 0.070
d 1.0 1.018 0.240 0.238 0.999 0.165 0.162 0.992 0.127 0.129

COV-3

σ2 9.0 9.066 2.358 2.357 9.272 1.715 1.704 9.264 1.392 1.419
c 0.2 0.248 0.156 0.142 0.205 0.077 0.077 0.195 0.062 0.062
a 1.0 0.997 0.115 0.102 1.000 0.068 0.068 1.009 0.055 0.057
b 1.0 1.001 0.134 0.131 1.004 0.087 0.084 1.008 0.067 0.068
d 0.5 0.511 0.220 0.224 0.500 0.157 0.151 0.491 0.116 0.120
e 0.5 0.514 0.227 0.221 0.499 0.142 0.146 0.486 0.120 0.118
f 0.5 0.526 0.196 0.201 0.491 0.153 0.152 0.495 0.116 0.115

each sampling location, we consider time points t1, . . . , tNt , where ti = (i−
1/2)/1000 for i = 1, . . . , 1000, and each time point has a 0.04 probability
of being sampled. Here, we set �1,n =

√
Ns/2 and �2,n = Nt. The spatio-

temporal sampling points are generated once and remain fixed throughout
the simulation study. We consider Ns = 20, 40, 60 sampling locations and
the corresponding sample sizes are Nn = 806, 1644, 2449, respectively.

The spatio-temporal process ε(s, t) is generated from a zero-mean Gaus-
sian process with one of three types of covariance functions. The first type
is an exponential spatio-temporal covariance function

γn{ε(si, ti), ε(sj , tj)}
=

{
σ2(1− c) exp{−�1,n‖si − sj‖/cs − �2,n|ti − tj |/ct}, if i 
= j;
σ2, if i = j,
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where, σ2 is the variance of the error process, c ∈ [0, 1] is a nugget proportion
such that cσ2 is the nugget effect, and cs and ct are the positive range
parameters in space and time, respectively. When there is only one spatial
sampling location,, the covariance function is the same as an AR(1) model
in time series. We set σ2 = 9.0, c = 0.2, cs = 1 and ct = 1. The resulting
spatio-temporal covariance function is stationary and separable in space and
time, and is referred as COV-1.

The second type is a generalized spatio-temporal Matérn covariance func-
tion given in (2.1). We let the smoothness parameter be ν = 1/2 and the
separability parameter be θ3 = 1. Then, Eq. 2.1 is simplified to

γn{ε(si, ti), ε(sj , tj)}

=

{

D(si, ti)D(sj , tj)
σ2

(a2|�2,n(ti−tj)|2+1)3/2
exp{−b�1,n‖si − sj‖}, if i 	= j;

D(si, ti)D(sj , tj)σ
2 + cσ2, if i = j.

(5.1)

Here, σ2 is the variance of the error process, c ∈ [0, 1] is a nugget proportion
such that cσ2 is the nugget effect, and the range parameters in space and
time are a and b, respectively. The nonstationarity of the covariance function
is induced by D(si, ti) = dti + 1 with a change of variance over time. We
set σ2 = 9, c = 0.2, a = 1, b = 1, and d = 1. The resulting spatio-temporal
covariance function is nonstationary but separable in space and time, and
is referred as COV-2. For the third type of covariance functions, we also
consider (5.1), but let D(si, ti) = dti + es1i + fs2i + 1. We set σ2 = 9.0, c =
0.2, a = 1, b = 1, d = 0.5, e = 0.5 and f = 0.5. The resulting spatio-temporal
covariance function is nonstationary and nonseparable in space and time,
and is referred as COV-3.

For each combination of the sample size Nn and the covariance function,
a total of 400 simulated data sets are generated. The sample mean, sample
standard deviation (SD), and averaged information matrix based standard
deviation (SDm) of covariance parameters are reported in Table 1. For all
three types of covariance functions, as the sample size increases, the sam-
ple standard deviations of parameter estimates become smaller, supporting
the consistency of the parameter estimates in Theorem 2. Moreover, the
sample standard deviations of parameter estimates are close to the average
information-based standard deviation, as indicated by the asymptotic nor-
mality in Theorem 2. For the nonstationary covariance functions (COV-2 and
COV-3), the sample mean has a significant bias for the nugget proportion pa-
rameter when the number of sampling locations is Ns = 20, likely because
the covariance functions COV-2 and COV-3 are more complex than COV-1.
As the sample size increases, the bias of the nugget proportion parameter
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Figure 1: Standard deviations of sea-surface temperature anomalies over all
locations from Nov 1989 to May 1992

becomes smaller for both COV-2 and COV-3, which suggests that in practice,
a larger sample size would be needed for more complex covariance functions.

5.2. Data Example We apply our method to a sea-surface tempera-
ture (SST) data from the National Oceanic and Atmospheric Administration
(NOAA). In particular, we use temperature anomalies (i.e., the departure
from the average) from November 1989 to May 1992, during which period
the standard deviation over all locations is increasing over time, as shown
in Fig. 1. This increasing standard deviation over time suggests that a non-
stationary covariance function might be needed. In the analysis, we use a
random sample of 1000 observations and hold out 10% for modeling evalu-
ation.

We first remove the nonzero mean trend of SST over time using a smooth-
ing spline. Three covariance functions are considered, including the exponen-
tial covariance function, referred as COV-1, and generalized spatio-temporal
Matérn covariance function with two choices of D(s, t), D1(s, t) ≡ 1 and
D2(s, t) = dt+ 1, referred as COV-2 and COV-3, respectively. The predictive
performance is evaluated by the mean squared prediction error (MSPE)

MSPE = N−1
test

Ntest∑

i=1

(yi,test − ỹi,test)
2,

where yi,test is the ith observation in the test set, ỹi,test is the predicted
value at the ith observation of the test set, and Ntest is the total number of
observations in the test set.

We rescale the time to the unit interval and use an exploratory semi-
variogram analysis to determine the order of range parameter in space and
time. The preliminary analyses suggest that SST anomalies have correlation
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Table 2: Parameter estimation and their standard deviations (SD) for models
COV-1, COV-2, and COV-3, with mean squared prediction error (MSPE)

COV-1 COV-2 COV-3

estimate SD estimate SD estimate SD

�1,n = 0.1, �2,n = 100
σ2 0.294 0.022 0.305 0.023 0.158 0.023
rs 1.266 0.156 0.755 0.09 0.761 0.089
rt 11.028 1.547 0.116 0.01 0.118 0.01
d — — — — 0.697 0.157
MSPE 0.1113 0.1076 0.1074

σ2 0.294 0.022 0.305 0.023 0.158 0.023
rs 0.633 0.078 1.51 0.179 1.521 0.179
rt 5.514 0.774 0.233 0.021 0.237 0.021
d — — — — 0.697 0.157
MSPE 0.1113 0.1076 0.1074

ranges on the order 20◦ in space and 0.01 in time. In practice, we choose
�1,n and �2,n such that the ranges of the rescaled spatio-temporal space are
in a normal range. In Table 2, we let �1,n = 0.1 and �2,n = 100. The pa-
rameter estimates of the covariance parameters and MSPE are summarized
in Table 2, showing that both COV-2 and COV-3 have better performance
compared to COV-1 in terms of prediction accuracy. Although the range pa-
rameters in COV-2 and COV-3 are similar, the nonzero coefficient d in D2(s, t)
suggests that a nonstationary covariance function might be more appropri-
ate. The second part of Table 2 gives results for a different rescaling choice
of �1,n = 0.05 and �2,n = 50. It can be seen that �1,nr̂s and �2,nr̂t stay the
same, which are actually the estimates of range parameter in the original
domain. Moreover, MSPE stays the same, and therefore, in practice, the
result is not sensitive to the choices of �1,n and �2,n.

6 Discussion

In this paper, we introduced the (An, Bn)-rate spatio-temporal expanding
distance (STED) asymptotic framework in a fixed spatio-temporal domain,
which enables us to study asymptotic property of spatio-temporal covariance
functions. The STED asymptotic framework is quite flexible and includes
three different sampling patterns as mentioned in Section 2. If the framework
is formulated in the spatio-temporal domain R̃n = AnR and T̃n = BnT , the
corresponding covariance functions are independent of the stage n. That is,
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for ns̃i,
ns̃j ∈ R̃n and nt̃i,

nt̃j ∈ T̃n, the spatio-temporal covariance function
γ((ns̃i,

nt̃i), (
ns̃j ,

nt̃j)) = Cov(Y (ns̃i,
nt̃i), Y (ns̃j ,

nt̃j)) does not depend on
the stage n. Under the STED framework, the domains of interest R and
T are fixed, while the covariance function changes across stages. Under an
alternative framework, the domains of interest R̃n and T̃n change across
stages, while the covariance functions are fixed. These two frameworks are
essentially the same, and similar theoretical results can be obtained under
the alternative asymptotic framework.

For the spatio-temporal covariance functions, a class of locally station-
ary spatio-temporal covariance functions is introduced, encompassing a wide
range of spatio-temporal dependence. The generalized spatio-temporal Matérn
covariance function serves as an example for locally stationary spatio-temporal
covariance functions, and its property is investigated here. In addition, the
proposed method can be applied to both separable and nonseparable covari-
ance functions. Tests for separability assumption are possible for spatio-
temporal data with repeated measures (Mitchell et al., 2005; 2006; Fuentes,
2006), but it remains an open question for spatio-temporal data without
replicates. Our proposed covariance functions can also feature asymmetry if
D(s, t) depends on both time and space. For spatio-temporal datasets, tests
for stationarity assumption are available (see, e.g., Jun and Genton 2012;
Bandyopadhyay et al. 2017), while testing for a particular parametric form
of the covariance function, to the best of our knowledge, is not available. We
leave these for future research.
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Appendix A.1: Proof of Proposition 1

Proof. First, it can be seen that the generalized spatio-temporal Matérn
covariance function in Eq. 2.1 is bounded and twice continuously differen-
tiable with respect to θ; thus, (LS.4) is satisfied. Next, we will show that
the generalized spatio-temporal Matérn covariance function satisfies (LS.1)
and (LS.2).
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For any u1 and u2, define

h(u1, u2) =

⎧

⎪

⎨

⎪

⎩

θ
d/2
3

21−ν

(θ2
1
u2

2
+1)ν(θ2

1
u2

2
+θ3)

d/2Γ(ν)
m(u1, u2;θ)

νKν {m(u1, u2;θ)} , if ‖u1‖ > 0,

θ
d/2
3

(θ2
1
u2

2
+1)ν(θ2

1
u2

2
+θ3)

d/2 , if ‖u1‖ = 0.

For any s and t, let

gn(s
′ − s, t′ − t, s, t) = g(u1, u2, s, t)

=

{
D(s, t)2σ2h(u1, u2), if ‖u1‖ > 0 or |u2| > 0,
D(s, t)2σ2 + τ2, otherwise.

Then, γn((s, t), (s, t)) = g(0, 0, s, t). For all (s, t), (s+u1/�1,n, t+u2/�2,n) ∈
R× T with ‖u1‖ > 0 or |u2| > 0, we have

|γn((s, t), (s′, t′))−g(u1, u2, s, t)|=D(s, t)h(u1, u2)σ
2|D(s′, t′)−D(s, t)|

≤ D(s, t)h(u1, u2)σ
2(C̃1‖s− s′‖+ C̃2|t− t′|) = O(‖s− s′‖+ |t− t′|)

uniformly since D(s, t) is bounded on R × T and |h(u1, u2)| ≤ 1. Thus,
(LS.1) is satisfied.

For g(s, t) defined in (LS.2), we have g(s, t) = g(0, 0, s, t) = D(s, t)2σ2+
τ2. Note that s′ = s + u1/�1,n and t′ = t + u2/�2,n, and we have |g(s, t) −
g(s′, t′)| = |D(s, t)2−D(s′, t′)2|σ2 = |D(s, t)+D(s′, t′)||D(s, t)−D(s′, t′)|σ2 ≤
|D(s, t)+D(s′, t′)|(C̃1‖s−s′‖+C̃2|t−t′|)σ2. Thus, (LS.2) holds by adjusting
the constants.

Further, we will show that the generalized spatio-temporal Matérn co-
variance function (2.1) satisfies (LS.3) and (LS.5). For all (s, t), (s′, t′) ∈
R× T , we have

γn((s, t), (s
′, t′)) ≤ (maxD(s, t))2(σ2 + τ2)h(u1, u2).

Thus, to show (LS.3), it suffices to find γ0(‖u1‖) and γ1(|u2|) to bound
h(u1, u2). Moreover, straightforward calculation yields that all first- and
second-order partial derivatives of γn, denoted by γn,k and γn,kk′ , can be
bounded by the partial derivatives of h(u1, u2) up to some constant scales,
which enables us to obtain γ2(‖u1‖) and γ3(|u2|) in (LS.5).

In addition, we have

∂h(u1, u2)

∂θ1
=

21−ν

Γ(ν)

(
∂h(0, u2)

∂θ1
mνKν(m)− h(0, u2)m

νKν−1(m)
∂m

∂θ1

)
,

∂h(u1, u2)

∂θ2
= −21−ν

Γ(ν)
h(0, u2)m

νKν−1(m)
∂m

∂θ2
,
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∂h(u1, u2)

∂θ3
=

21−ν

Γ(ν)

(
∂h(0, u2)

∂θ3
mνKν(m)− h(0, u2)m

νKν−1(m)
∂m

∂θ3

)
,

where m = m(u1, u2;θ) and

∂m(u1, u2;θ)

∂θ1
=

m(u1, u2;θ)θ1u
2
2(θ3 − 1)

(θ21u
2
2 + θ3)(θ21u

2
2 + 1)

,

∂m(u1, u2;θ)

∂θ2
=

m(u1, u2;θ)

θ2
,
∂m(u1, u2;θ)

∂θ3
= −m(u1, u2;θ)

2(θ21u
2
2 + θ3)

,

∂h(0, u2)

∂θ1
= −θ1u

2
2(2ν(θ

2
1u

2
2 + θ3) + d(θ21u

2
2 + 1))

(θ21u
2
2 + 1)(θ21u

2
2 + θ3)

h(0, u2),

∂h(0, u2)

∂θ3
=

dθ
d/2−1
3 θ21u

2
2

2(θ21u
2
2 + 1)ν(θ21u

2
2 + θ3)d/2+1

=
dθ21u

2
2

2θ3(θ21u
2
2 + θ3)

h(0, u2).

For (LS.3), it can be seen that m(u1, u2;θ) ≤ max
{
θ2θ

−1/2
3 , θ2

}
‖u1‖.

Thus, we have

h(u1, u2) ≤
θ
d/2
3 21−νm̃(u1)

νKν {m̃(u1)}
(θ21u

2
2 + 1)ν(θ21u

2
2 + θ3)d/2Γ(ν)

≤ 1,

where m̃(u1) = max
{
θ2θ

−1/2
3 , θ2

}
‖u1‖. We can see that, up to some con-

stant scales,

h(u1, u2) ≤ (m̃(u1)
νKν {m̃(u1)})

(
|u2|−2ν−d

)
≡ γ0(‖u1‖)γ1(|u2|)

Here, γ0(‖u1‖) is a linear combination of a polynomial of ‖u1‖ with degree ν
and a modified Bessel function of the second kind and γ1(|u2|) is a polynomial
of |u2| with degree −2ν − d.

For (LS.5), we focus on the first-order partial derivatives in detail and
omit details for the second-order partial derivatives, as similar arguments can
be applied. Straightforward calculation shows that the (absolute value of)
partial derivatives of h(u1, u2) can be bounded by products of two positive
functions, γ̃2(‖u1‖) and γ̃3(|u2|). Moreover, γ̃2(‖u1‖) is a linear combination
of a polynomial of ‖u1‖ with degree at least ν and a modified Bessel function
of the second kind, and γ̃3(|u2|) is a polynomial of |u2| with degree at most
−2ν − d.

Since the partial derivatives of h(u1, u2) with respect to θ is continuous
in ‖u1‖ and |u2|, it is bounded if ‖u1‖ and |u2| are bounded. To show (LS.3)
and (LS.5), it suffices to show that, for k, l > 0, there exists M > 0 such
that
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(i)
∫∞
M ukKl(u)du < ∞,

(ii) ukKl(u) is bounded by a nonincreasing function on (M,∞).

Since d ≥ 1 and k > 0, u−2k−d is bounded on (M,∞) and
∫∞
M u−2k−ddu =

M−2k−d+1/(2k+d−1) < ∞. The last two conditions hold. By the property
of Bessel function, Kl(u) ∝ e−uu−1/2{1+O(1/u)}, as |u| → ∞. We can find
M1,M2 such that Kl(u) ≤ M1e

−uu−1/2(1 + M2/u), when u ≥ M2. So (i)
holds since

∫ ∞

M2

ukKl(u)du ≤
∫ ∞

M2

M1u
k−1/2e−u(1 +M2/u)du

≤ 2M1

∫ ∞

M2

uk−1/2e−udu < 2M1Γ(k + 1/2) < ∞.

For (ii), we have ukKl(u) ≤ M1e
−uuk−1/2(1+M2/u) ≤ 2M1e

−uuk−1/2, when
u ≥ M2. Since e−uuk−1/2 is decreasing on (k − 1/2,∞), (ii) is satisfied.

Appendix A.2: Generalized Exponential Spatio-temporal
Covariance Function

In this section, we show that the following exponential spatio-temporal
covariance function used in a simulation study satisfies conditions (LS.1)–
(LS.5). The covariance function can be written as

γn((s, t), (s
′, t′);θ)

=

{
D(s, t)D(s′, t′)σ2 exp{−‖u1‖/cs − |u2|/ct}, if ‖u1‖ > 0 or |u2| > 0;
D(s, t)D(s′, t′)σ2 + τ2, otherwise,

where θ = (cs, ct, σ
2, τ2)� is the vector of spatio-temporal parameters with

the scaling parameter in space, cs ≥ 0, and the scaling parameter in time,
ct ≥ 0. In addition, u1 = �1,n(s − s′) is the spatial lag scaled to the spa-
tially expanding domain, and u2 = �2,n(t − t′) is the temporal lag scaled
to the temporally expanding domain, where �1,n and �2,n are positive con-
stants. Further, D(s, t) is some fixed positive spatio-temporal function with
D(0, 0) = 1. Note that D(s, t)2σ2 + τ2 is the variance of Y (s, t).

By arguments similar to Section Appendix, we show (LS.1), (LS.2) and
(LS.4). For (LS.3), we can see that, for all (s, t), (s′, t′) ∈ R× T ,

γn((s, t), (s
′, t′)) ≤ {maxD(s, t)}2(σ2 + τ2) exp{−‖u1‖/cs} exp{−|u2|/ct}

= γ0(‖u1‖)γ1(|u2|).
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Here, both γ0(‖u1‖) and γ1(|u2|) are nonincreasing positive functions. More-
over, we have

∫∞
0 e−u/csdu = 1/cs < ∞ and

∫∞
0 e−u/ctdu = 1/ct < ∞. Thus,

(LS.3) is satisfied.
Further, we have

∂γn/∂τ
2 = 1{‖u1‖=0,|u2|=0},

∂γn/∂σ
2 = D(s, t)D(s′, t′) exp{−‖u1‖/cs − |u2|/ct},

∂γn/∂cs = D(s, t)D(s′, t′)σ2‖u1‖ exp{−‖u1‖/cs − |u2|/ct}/c
2
s,

∂γn/∂ct = D(s, t)D(s′, t′)σ2|u2| exp{−‖u1‖/cs − |u2|/ct}/c
2
t ,

∂2γn/∂σ
2∂cs = D(s, t)D(s′, t′)‖u1‖ exp{−‖u1‖/cs − |u2|/ct}/c

2
s,

∂2γn/∂σ
2∂ct = D(s, t)D(s′, t′)|u2| exp{−‖u1‖/cs − |u2|/ct}/c

2
t ,

∂2γn/∂cs∂ct = D(s, t)D(s′, t′)σ2‖u1‖|u2| exp{−‖u1‖/cs − |u2|/ct}/(c
2
sc

2
t ),

∂2γn/∂c
2
s = D(s, t)D(s′, t′)σ2‖u1‖ exp{−‖u1‖/cs − |u2|/ct}(‖u1‖/c

4
s − 2/c3s),

∂2γn/∂c
2
t = D(s, t)D(s′, t′)σ2|u2| exp{−‖u1‖/cs − |u2|/ct}(|u2|/c

4
t − 2/c3t ).

Here, all the first- and second-order partial derivatives are continuous in
‖u1‖ and |u2| and hence bounded when ‖u1‖ and |u2| are bounded. In
addition, they are bounded by a product of two functions γ̃2(‖u1‖) and
γ̃3(|u2|), where γ̃2(u) and γ̃3(u) are products of a polynomial of u and an
exponential function of u. (LS.5) is satisfied, since for k > 0, uke−u is
nonincreasing on [k,∞), and

∫∞
k uke−udu < ∞.

Appendix A.3: A Remark on Assumption (C.1)

In this section, we provide two sufficient conditions for (C.1). Further,
we will demonstrate that, if θ3 > 1, the generalized spatio-temporal Matérn
covariance function (2.1) satisfies Assumption (C.1). The two sufficient con-
ditions are stated as follows:

(E.1) For 1 ≤ k ≤ q, |γn,k((s, t), (s′, t′))| satisfies one of the following two
conditions: (i) |γn,k((s, t), (s, t))| > 0; (ii) For ‖u1‖, |u2| ∈ [M,∞) for
some constant M > 0 such that (s, t), (s+u1/An, t+u2/Bn) ∈ R×T ,
we have |γn,k((s, t), (s + u1/An, t + u2/Bn))| ≥ C3 exp(−C4‖u1‖ −
C5|u2|) for all n, where C3, C4, C5 > 0 are constants.

(E.2) (i) For any two given positive constants M1, M2, there exist M ′
1 and

M ′
2 with M1 < M ′

1 < ∞ and M2 < M ′
2 < ∞ such that

∑
i

∑
j 1(‖si −

sj‖ ∈ [M1δn,M
′
1δn])1(|ti − tj | ∈ [M2ζn,M

′
2ζn]) ≥ C6N

1/2+ι1
n for some

C6 > 0 and ι1 > 0. (ii) Anδn = O(bn) and Bnζn = O(bn), where
bn = log logNn.

To see the sufficiency of (E.1) and (E.2), we first note that if Anδn = O(1)

and Bnζn = O(1), then ‖nΓk‖2F ≥ CN
1/2+ι1
n for some C > 0. Thus, (C.1) is

satisfied with ι = ι1. If Anδn → ∞ or Bnζn → ∞, by (E.1)–(E.2), we have
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‖nΓk‖2F ≥ CN
1/2+ι′1
n for some C > 0 and any ι′1 such that 0 < ι′1 < ι1, so

(C.1) is satisfied with ι = ι′1.
Next, we will show that the generalized spatio-temporal Matérn covari-

ance function (2.1) satisfies (E.1), when θ3 > 1. Since
∣∣∣∂γn((s,t),(s,t))∂σ2

∣∣∣ =

D(s, t)2 > 0 and
∣∣∣∂γn((s,t),(s,t))∂τ2

∣∣∣ = 1, ∂γn/∂σ
2 and ∂γn/∂τ

2 satisfy (E.1)(i).

Further, we show that ∂γn/∂θi satisfies (E.1)(ii) for i = 1, 2, 3. Recall
that for all (s, t), (s+u1/�1,n, t+u2/�2,n) ∈ R×T with ‖u1‖ > 0 or |u2| > 0,
we have

∣∣∣∣
∂γn
∂θ1

∣∣∣∣ =
D(s, t)D(s′, t′)σ221−νθ1θ

d/2
3 u22

Γ(ν)(θ21u
2
2 + 1)ν+1(θ21u

2
2 + θ3)d/2+1

{
(θ3 − 1)mν+1Kν−1(m)

+
(
2ν(θ21u

2
2 + θ3) + d(θ21u

2
2 + 1)

)
mνKν(m)

}
,

∣∣∣∣
∂γn
∂θ2

∣∣∣∣ =
D(s, t)D(s′, t′)σ221−νθ

d/2
3 {mν+1Kν−1(m)}

Γ(ν)θ2(θ21u
2
2 + θ3)d/2(θ21u

2
2 + 1)ν

,

∣∣∣∣
∂γn
∂θ3

∣∣∣∣ =
D(s, t)D(s′, t′)σ22−νθ

d/2−1
3 {dθ1u22mνKν(m)+θ3m

ν+1Kν−1(m)}
Γ(ν)(θ21u

2
2 + θ3)d/2+1(θ21u

2
2 + 1)ν

.

Up to some constant scale, we have

∣∣∣∣
∂γn
∂θ1

∣∣∣∣ ≥ |u2|−2ν−d−2mν+1Kν−1(m) + |u2|−2ν−dmνKν(m)

≥ |u2|−2ν−d−2
(
θ2θ

−1/2
3 ‖u1‖

)ν+1
Kν−1(θ2‖u1‖)

+|u2|−2ν−d
(
θ2θ

−1/2
3 ‖u1‖

)ν
Kν(θ2‖u1‖),

∣∣∣∣
∂γn
∂θ2

∣∣∣∣ ≥ |u2|−2ν−dmν+1Kν−1(m)

≥ |u2|−2ν−d
(
θ2θ

−1/2
3 ‖u1‖

)ν+1
Kν−1(θ2‖u1‖),

∣∣∣∣
∂γn
∂θ3

∣∣∣∣ ≥ |u2|−2ν−d−2mν+1Kν−1(m) + |u2|−2ν−dmνKν(m)

≥ |u2|−2ν−d−2
(
θ2θ

−1/2
3 ‖u1‖

)ν+1
Kν−1(θ2‖u1‖)

+|u2|−2ν−d
(
θ2θ

−1/2
3 ‖u1‖

)ν
Kν(θ2‖u1‖),

since θ2θ
−1/2
3 ‖u1‖ ≤ m(u1, u2;θ) ≤ θ2‖u1‖. In addition, by property of

Bessel function, Kl(u) ∝ e−uu−1/2{1 + O(1/u)}, as |u| → ∞. We can
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find M1,M2 such that Kl(u) ≥ M1e
−uu−1/2, when u ≥ M2; thus, (E.1)(ii)

follows.

Remark 1. It can be seen that the generalized exponential covariance

function also satisfies (E.1). Note that
∣∣∣∂γn((s,t),(s,t))∂σ2

∣∣∣ = D(s, t)2 > 0 and∣∣∣∂γn((s,t),(s,t))∂τ2

∣∣∣ = 1, and (E.1)(i) holds. Next, ∂γn/∂σ
2, ∂γn/∂cs and ∂γn/∂ct

are positive when ‖u1‖ > 2cs and |u2| > 2ct and can be written as linear
combinations of products of |u2|j exp(−a1|u2|) and ‖u1‖k exp(−a2‖u1‖) for
j, k ≥ 0 and some constants a1, a2 > 0. Hence, (E.1)(ii) follows.

Appendix A.4: Proof of Theorem 1

Proof. To prove Theorem 1, it suffices to show that ‖Γ‖2 = O(1),
‖Γk‖2 = O(1) and ‖Γkk′‖2 = O(1), for all k, k′ = 1, . . . , q (Mardia and
Marshall, 1984). Note that ‖A‖2 ≤ ‖A‖∞ for any positive definite matrix
A. We only need to show that ‖Γ‖∞ = O(1), ‖Γk‖∞ = O(1) and ‖Γkk′‖∞ =
O(1), for all k, k′ = 1, . . . , q.

For each i, let A1,i = {j : ‖si − sj‖ ≤ Cs,n} and A2,i = {j : |ti − tj | ≤
Ct,n}. Let a1 = Cs,n/δn, a2 = δnAn, b1 = Ct,n/ζn and b2 = ζnBn. Then,

‖Γ‖∞ = max
1≤i≤Nn

∑

j∈A1,i∩A2,i

Γij + max
1≤i≤Nn

∑

j∈Ac
1,i∩A2,i

Γij

+ max
1≤i≤Nn

∑

j∈A1,i∩Ac
2,i

Γij + max
1≤i≤Nn

∑

j∈Ac
1,i∩A

c
2,i

Γij

= (I1) + (I2) + (I3) + (I4),

where Γij is the (i, j)th entry of Γ.
Denote Card(A) as the cardinality of the set A, then

(I1) ≤ ‖Γ‖max · Card(A1,i ∩ A2,i) ≤ O
(
Cd
s,nCt,n

δdnζn

)
= O(ad1b1),

(I2) ≤ Card(A2,i)
∑

m=

(

Cs,nAn
b

)

�

O
(
md−1bd

δdnA
d
n

)
max

mb≤‖u1‖≤(m+1)b
γ0(‖u1‖)

≤ O
(

Ct,n

ζnδdnA
d
n

)∫ ∞

Cs,nAn

ud−1γ0(u)du = O(b1/a
d
2)

∫ ∞

a1a2

ud−1γ0(u)du,

(I3) ≤ Card(A1,i)
∑

m=

(

Ct,nBn
b

)

�

O
(

b

ζnBn

)
max

mb≤|u2|≤(m+1)b
γ1(|u2|)
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≤ O
(

Cd
s,n

δdnζnBn

)∫ ∞

Ct,nBn

γ1(u)du = O(ad1/b2)

∫ ∞

b1b2

γ1(u)du,

(I4) ≤
∑

m=

(

Cs,nAn
b

)

�

O
(
md−1bd

δdnA
d
n

)
max

mb≤‖u1‖≤(m+1)b
γ0(‖u1‖)×

∑

m′=

(

Ct,nBn
b

)

�

O
(

b

ζnBn

)
max

m′b≤|u2|≤(m′+1)b
γ1(|u2|)

≤ O
(

1

ζnBnδdnA
d
n

)∫ ∞

Cs,nAn

uγ0(u)du

∫ ∞

Ct,nBn

γ1(u)du

= O(1/ad2b2)

∫ ∞

a1a2

ud−1γ0(u)du

∫ ∞

b1b2

γ1(u)du.

To show ‖Γ‖∞ = O(1), it suffices to show that

(i) ad1b1 ∈ [C1, C2] for some constants C1, C2 > 0,

(ii) O(1/ad1a
d
2)
∫∞
a1a2

ud−1γ0(u)du = O(1),

(iii) O(1/b1b2)
∫∞
b1b2

γ1(u)du = O(1).

Let Cs,n = 1/An and Ct,n = 1/Bn. By (A.3), ad1b1 = (δdnA
d
nζnBn)

−1 ≤
c−1
3 = O(1), the above requirements are fulfilled. By (LS.5),

max{|γn,k((s, t), (s′, t′);θ)|, |γn,kk′((s, t), (s′, t′);θ)|} ≤ γ2(0)γ3(0),

uniformly for all n and 1 < k, k′ < q. Thus, we have ‖Γ‖2 = O(1), and
similar arguments can be applied to show that ‖Γk‖2 = O(1) and ‖Γkk′‖2 =
O(1).

Together with (C.1)–(C.3) and by Theorem 1 of Sweeting (1980), we
have the result of Theorem 1.
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