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ABSTRACT
Compiler fuzzing tools such as Csmith have uncovered many bugs
in compilers by randomly sampling programs from a generative
model. The success of these tools is often attributed to their ability
to generate unexpected corner case inputs that developers tend to
overlook during manual testing. At the same time, their chaotic
nature makes fuzzer-generated test cases notoriously hard to in-
terpret, which has lead to the creation of input simpli�cation tools
such as C-Reduce (for C compiler bugs). In until now unrelated
work, researchers have also shown that human-written software
tends to be rather repetitive and predictable to language models.
Studies show that developers deliberately write more predictable
code, whereas code with bugs is relatively unpredictable. In this
study, we ask the natural questions of whether this high predictabil-
ity property of code also, and perhaps counter-intuitively, applies
to fuzzer-generated code. That is, we investigate whether fuzzer-
generated compiler inputs are deemed unpredictable by a language
model built on human-written code and surprisingly conclude that
it is not. To the contrary, Csmith fuzzer-generated programs are
more predictable on a per-token basis than human-written C pro-
grams. Furthermore, bug-triggering tended to be more predictable
still than random inputs, and the C-Reduce minimization tool did
not substantially increase this predictability. Rather, we �nd that
bug-triggering inputs are unpredictable relative to Csmith’s own
generative model. This is encouraging; our results suggest promis-
ing research directions on incorporating predictability metrics in
the fuzzing and reduction tools themselves.

Index Terms—entropy, predictability, generation-based fuzzing,
neural language modeling
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1 INTRODUCTION
Fuzz testing is an e�ective method for automatic software testing,
commonly used to �nd bugs in tools such as compilers, parsers,
interpreters, and web browsers. These tools, often just called com-
piler fuzzers, generate vast numbers of programs using randomized
algorithms often triggering real bugs in the software that processes
such programs [7, 9, 10, 12, 19]. However, due to the random na-
ture in the input generation process, the resulting bug-triggering
programs are often di�cult to interpret. As a response, test-input
minimization techniques have been proposed to aid in the inter-
pretability of fuzzer-generated programs [17, 20], which reduce
these inputs to much smaller programs while still triggering the
original bug. The reduced programs are often orders of magnitude
smaller, highlighting that the vast majority of fuzzer-generated
code is not relevant for triggering the found bug.

In a thus far unrelated area of research, researchers have discov-
ered that human-written source code is surprisingly predictable to
models designed to capture repetition in natural languages [8]. As a
consequence, this high predictability of code is often referred to as
“naturalness". Languagemodels have since demonstrated that buggy
code is relatively less predictable than correct code [13], and that
predictability tends to correlate with readability [5]. The con�uence
of studies of fuzzing with this line of work suggests using these
same models to answer the natural question: are fuzzers e�ective
at triggering bugs because their inputs are highly unpredictable
(hence why programmers might miss these in their test cases)? And
does reducing such bug-triggering programs yield more predictable
(and thus perhaps more readable) programs?

In this paper, we present the �rst empirical study of the “natural-
ness” of fuzzer-generated code, speci�cally in the context of compiler
bug triggering C/C++ programs generated with Csmith [19]. Our
initial hypothesis is that fuzzer-generated programs ought to be
unpredictable, due to their random input generation process and
anecdotally chaotic outputs. Paradoxically, we �nd these programs
to be rather predictable – more so than C code written by real devel-
opers. Yet these fuzzer-generated programs are from what anyone
would call natural! More surprisingly, bug-triggering inputs were
not any less predictable, nor did input reduction using C-Reduce
[17] improve code predictability consistently or substantially.

In response to these counter-intuitive �ndings, we conjecture
that Csmith produces remarkably repetitive programs by nature
and train a new “language" model entirely on fuzzer-generated pro-
grams. This model predicts new Csmith programs with high accu-
racy and discriminated much more clearly between bug-triggering
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and ine�ective inputs, with the former being substantially less pre-
dictable to this model. Our �ndings suggest that fuzzers (at least
Csmith) produce highly repetitive programs and that bug-triggering
inputs tend to emerge in programs that these tools are unlikely to
generate, which explains why many generated programs do not
trigger bugs. These results may inform both generation-based fuzz
testing and test case minimization tool design, the former of which
may want to explicitly optimize for unpredictable programs, and
the latter for the reverse.

2 BACKGROUND
While code readability is subjective and requires human reviewers
to measure, user studies have shown it to be connected to pre-
dictability according to well-equipped language models [5]. Our
empirical study builds on previous work that highlights that buggy
code is less predictable [13], as well as on the observation that
fuzzer-generated programs tend to appear particularly chaotic to a
human reader, which is often conjectured to be the reason behind
their bug-revealing capability. This empirical study combines these
two observations into the conjecture that fuzzer-generated code
ought to be highly unpredictable to a language model trained on
human-written code. To measure predictability, we use a neural
language model trained on publicly available C code.

2.1 Compiler Fuzzing with CSmith
Generation-based fuzzing is a methodology for �nding software
bugs by randomly sampling program inputs using a model of input
format. The program under test is executed with each sampled
input; a program crash or other unexpected behavior reveals a bug.
In this paper, we focus on Csmith [19], a generation-based fuzz
testing tool for �nding bugs in C compilers. Csmith specializes in
randomly sampling C programs that have well de�ned behavior
as per the C99 standard. It identi�es compiler bugs by checking if
the generated C program produces the same result when compiled
by various C compilers such as GCC, LLVM/Clang, Intel CC, etc.
If these compilers produce di�erent results (a miscompilation bug),
or if that compiler crashes while performing compilation (a crash
compile bug), Csmith has revealed a C compiler bug. Csmith has
been successful in discovering dozens of previously unknown bugs
in compilers such as GCC [3] and LLVM/Clang [4]. The success of
compiler fuzzing is sometimes attributed to its ability to generate
arti�cial programs that are unlikely to appear in the wild [11]; that
is, the bug-trigger programs are corner cases that do not �t the
pattern of common human-written C programs.

2.2 Test-Case Minimization with C-Reduce
Fuzzer-generated programs typically grow very large before they
trigger bugs. The resulting programs can often be hundreds of
lines of code, even though most of the code is not responsible for
triggering the compiler bug. These programs become burdensome
for developers as identifying the bug-triggering root because of their
large-scale and complexity. To make these inputs easier to debug,
minimization tools such as C-Reduce [17] have been developed.
C-Reduce is an automated minimization tool for C/C++ programs.
It implements a greedy algorithm, similar to delta debugging [20],
which iteratively removes code fragments that do not a�ect the
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Figure 1: Outline of the methodology. We investigated the
entropy of two corpora: the Csmith fuzzer-generated pro-
grams and C-Reduced minimized programs.

existence of a given property of that �le (e.g., triggering a compiler
crash). Since C-Reduce helps in improving the debuggability of bug-
triggering programs, we also expect the results of minimization
to be more readable, and correspondingly, more similar to human-
written programs.

2.3 Language Models of Code
Statistical language models learn generative probabilities of text.
Highly predictable code yields low entropy values, a metric tied to
the average probability of a phrase. We use the term cross-entropy
when the model is trained on a distinct corpus (body of text) from
the one it provides predictability scores for [6]. In this setting, cross-
entropy captures the amount of information transferred from the
training corpus to the tested one.

Our evaluation focuses on predictability as computed by lan-
guage models. Empirical studies have shown that this predictability
tends to correlate with source code readability in certain settings [5],
but it is not a given that more predictable code is more readable.
Similarly, the high degree of predictability that is typical of code
under such models has often been referred to as its naturalness
[8], but naturalness does not have a precise de�nition based on
predictability—indeed, this work shows highly predictable code that
is decidedly unnatural and unreadable. Language models trained
on software artifacts have been used for applications such as code
completion [15], idiom mining [2], and de-obfuscation [14]. Studies
have also shown that buggy code has relatively higher entropy
compared to non-buggy code [13]. However, to the best of our
knowledge, statistical language models have not been previously
employed on fuzzer-generated programs.

3 MOTIVATION AND METHODOLOGY
Our research is thus motivated by three main questions: (1) Is
fuzzer-generated code really unpredictable compared to human-
written programs? (2) Do fuzzer-generated bugs possess higher
cross-entropy? (3) Does test-caseminimization reduce cross-entropy?

Figure 1 shows our approach: we focus on the Csmith com-
piler fuzzer, collecting both a modest corpus of 98 reported bug-
triggering programs and a much larger corpus of randomly gener-
ated programs. We contrast the former with their C-Reduce’d coun-
terparts.1 We then collected a large corpus of developer-written
C/C++ programs from GitHub, on which we train a Transformer
language model [18]. Once trained, we compute the (cross-)entropy

1Such reduction is not an option for the randomly generated programs because they
obey no obvious property for the reduction process to preserve.
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of our test corpora: the bug-triggering Csmith programs, their C-
Reduce’d counterparts, randomly generated Csmith programs, and
a test set of human-written C programs.

3.1 Csmith-Generated Program Corpus
We �rst collected a corpus of 98 compiler-bug-triggering programs
that were known to be generated by Csmith. These programs come
from a GitHub repository [16] and the evaluation dataset from
the PLDI’12 paper by Regehr et al. [17]. For each of these C pro-
grams, we also obtained corresponding minimized test cases after
processing with C-Reduce. Thus, we have an additional 98 auto-
generated-and-minimized C programs. Finally, we used Csmith
with its default con�guration to randomly sample 1,000 additional
C programs; we do not expect these programs to trigger any com-
piler bugs. We refer to the programs in this corpus as “random" or
“non-buggy" Csmith programs.

3.2 Training Corpora
In order to learn a model of human-written code, we collected
a corpus of C programs from GitHub. We mined the 1,217 most
starred GitHub repositories that primarily use the C programming
language. This amounted to 745K C, 56K C++, and 602K H/H++
(header) �les. We used Pygments2 to tokenize these �les, discarding
comments, which do not appear in automatically generated code.
This produced a corpus of slightly over 3 billion tokens. We next
used the SentencePiece encoder3 to construct a sub-token vocabu-
lary of the 25,000 most common tokens using byte-pair encoding,
and encoded our inputs accordingly.

3.3 Model Training
We trained a standard size Transformer model [18], with 6 layers
and 512-dimensional attention across 8 attention heads. We chose
to use Transformers over perhaps N-gram based models because
they consider substantially longer contexts and are therefore more
accurate at program prediction. Our language model processes
entire �les in chunks of 512 tokens (roughly 20-40 lines) due to
memory limitations of attention. We processed these in batches
of 256 chunks across four RTX8000 GPUs. The model took about
one week to converge. We split the collected repositories by their
containing organization into a training data set, validation data
set, and test data set on a 90%/5%/5% distribution spread. The test
corpus was de-duplicated both internally and against the training
corpus at the �le level [1]. A separate Transformer with the same
architecture was trained on a randomly generated Csmith corpus
of the same size.

3.4 Metrics
To judge the predictability of C/C++ �les in our work, we compute
the per-token average entropy [6] for each train/test pair. We in-
vestigate the contrast between the GitHub model’s entropy, which
is presumably “natural" to developers [8], relative to both other
GitHub data and (cross-entropy) our Csmith/C-Reduce corpora. Af-
ter entropy scoring each �le within a corpus given a speci�c trained
model, the average entropy of the entire corpus can be calculated
2https://pygments.org/
3https://github.com/google/sentencepiece

Table 1: Entropy results on each test corpus under both a
model trained on developer data (�⌘D<0=) and on Csmith
generated �les (�⇠B<8C⌘)

Files Tokens/�le �⌘D<0= �⇠B<8C⌘

GitHub 52,041 2,086 6.02 9.38
Csmith Random 1,000 38,431 5.20 1.35
Csmith Bugs 98 23,686 4.88 2.37
C-Reduce’d Bugs 98 76 4.66 4.72

using either simple averaging of �le-level scores or weighting these
by �le length. We opted for the former, but found the results to
di�er little.

4 RESULTS
Our primary result concerns the relative predictability of fuzzer-
generated programs given a language model trained on human
code. Table 1 shows summary stats of our evaluation corpora and
corresponding entropy values. For now, the rightmost column can
be ignored. The second-to-last column in Table 1, labelled �⌘D<0= ,
shows a comparison of the average per-token entropy of each test
corpus. Most surprisingly, the developer corpus is the least pre-
dictable one here, having the largest average entropy value of 6.02.
Randomly generated Csmith programs have an average entropy of
5.20, which is lower than the human written code corpus by a small
margin,4 despite the model being trained on a corpus resembling
the human-produced programs, not Csmith ones! In other words,
even to a model based on human-produced code, automatically
generated C test cases are more statistically predictable than
human-wri�en code. We reason that while CSmith code might
appear to be easier to reason about, the auto-generated variable
names are generally highly unusual. This surprising result is likely
because of the high degree of repetition present in CSmith code.

The next two rows in Table 1 show results for bug-triggering
programs. As explained in Section 3.1, these appear in two forms:
the originally generated C �le that �rst exposed a new compiler
bug, and the smallest reduced snippet of code that triggers the
same bug. We �nd these programs to be more entropic still, having
entropy of 4.88 initially and 4.66 when reduced. This is surprising.
In regular source code, buggy programs tend to be less predictable
than bug-free code, which echos the intuition that bugs tend to
appear in code that is more complex and harder to read [13]. This is
not the case here. In fact, the reduced programs are a full (base-4) bit
lower—and substantially smaller—than human-written programs.

4.1 From the Fuzzer’s Perspective
Our results so far have focused on cross-entropy measures based
on a language model of human-written code. To improve our under-
standing, we also decided to train a language model that learns the
distribution of fuzzer-generated code. The �nal column in Table 1,
labelled �⇠B<8C⌘ , shows the same evaluations as before, but from
the perspective of a model trained on a similar volume of Csmith
code, using the same con�guration and resources. The contrast is

4The di�erence is ca. 0.82 base-4 bits (called ‘nats’), which corresponds to about a 2.3x
di�erence in (geometric) mean predictability.
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Figure 2: Average entropy of several bug-triggering pro-
grams as they get minimized by C-Reduce [17].

stark. This model �nds developer-written code far more surpris-
ing than vice versa. It is also far more accurate at predicting new
Csmith programs. This partly explains why the human-based model
found Csmith programs so predictable: they are inherently tremen-
dously repetitive. The human-written code model only scratched
the surface of how much, presumably because it was looking for
developer-like repetitive patterns.

Here, the bugs do follow a more expected trend. The original
(unreduced) bug-triggering programs are nearly twice as entropic
(and thus unpredictable) as the randomly generated programs. This
suggests that such programs are still relatively rare and complex
compared to randomly sampling valid programs from the C99 gram-
mar, which may explain why most Csmith programs do not trigger
bugs. Once reduced, this entropy climbs signi�cantly, though still
well below that of human-written programs, likely due to the elim-
ination of many highly predictable parts of the program. This �nal
entropy is most similar between the two models, perhaps re�ecting
that these programs are not particularly representative of either
corpus, but simple enough to be recognizable to both.

4.2 Entropy Changes During Reduction
Table 1 indicated that the test case reduction tool C-Reduce tends
to decrease the (GitHub-based) entropy of bug triggering programs.

Figure 3 summarizes this trend more speci�cally, in terms of the
distribution of entropy changes. This re�ects a substantial spread.

Because C-Reduce operates by steadily deleting snippets of code,
we can also compute the cross-entropy of intermediate solutions
during its minimization process. We wondered whether entropy
decreased monotonically as C-Reduce chops away redundant code,
assuming that each intermediate step is more debuggable than the
previous one. Figure 2 plots the entropy during this process for four
buggy programs; the horizontal axis corresponds to iterations in the
reduction algorithm. Overall, we found no consistent trend; while
C-Reduce tends to reduce the average entropy, individual reduction
steps rarely have a consistent e�ect either way, and entropy mostly
changes in large jumps when a signi�cant chunk of code is removed
(often, but not always early on). In the case of test case reduction,
it is important to keep in mind that low average entropy alone is
not a goal: highly predictable but irrelevant code should always be
removed.

Figure 3: Entropy di�erences between original and reduced
�les, according to a model trained on human-written code.

5 IMPLICATIONS
Our �nding that fuzzer-generated C �les are more predictable to a
language model than human-written code has potentially signi�-
cant rami�cations for future research, which we discuss here.

For Bug-Detection:
A key aspect of our motivation for studying this intersection of
methods was the established �nding that buggy code is more en-
tropic [13].We expected this to hold evenmore for fuzzer-generated
programs, but to the contrary, the latter were more predictable both
with and without reduction. This echoes the �nding that supports
CReduce itself: while fuzzers discover bugs through large-scale ran-
dom generation that tends to be chaotic, the actual bug-triggering
parts are often very small. For the Csmith fuzzer, fuzzer-generated
programs are clearly highly repetitive, which perhaps explains why
they can be reduced so easily.

This raises two natural questions: why did humans not trigger
these bugs seen in ostensibly “natural" programs; and, why does
Csmith not constantly produce bug-triggering examples, given that
those appear to be at least as simple as its typical programs? The
latter �nding might lead one to conclude that entropy and buggi-
ness do not correlate for fuzzer-generated code, but our analysis
involving a model trained on Csmith code supports a more nuanced
conclusion: bug-triggering programs aremuch less predictable
from this fuzzer’s perspective. Evidently, discovering bugs requires
it to generate programs that are about twice as improbable (across
10Ks of tokens) as its typical programs. The answer to the �rst
question above is not as obvious. From anecdotal inspection, these
bugs often contain at least one highly unusual construct, plus a
substantial amount of fairly repetitive boilerplate. Perhaps trigger-
ing bugs primarily requires the presence of statements with a high
“peak entropy". We believe that this is worth investigating further.

For the Future of Fuzzers:
Generating valid C programs as Csmith does requires satisfying
a large number of constraints. This likely contributes to generat-
ing very repetitive program, as does the frequent application of
hand-crafted rules (e.g., we often saw speci�c integers, like 128).
Generating random ASTs in this way may somewhat paradoxically
result in more repetitive programs; for instance, we often saw this
lead to very long if-conditions with near-identical clauses. Our ex-
ploratory study opens a new research direction at the intersection
of fuzzers and language models. Other fuzzers may exhibit di�erent
behavior: some leverage a similar AST-expansion approach but
involve far fewer constraints, while others use a di�erent approach



On the Naturalness of Fuzzer-Generated Code MSR ’22, May 23–24, 2022, Pi�sburgh, PA, USA

entirely—e.g., mutation-based fuzzers, protocol-based fuzzers. It is
not yet clear how this would a�ect their outputs’ predictability.

Given the lack of variety in automatically generated program
statements, including bug-triggering ones, it seemsmore than likely
that a very large portion of the program space has yet to be explored.
While we cannot guarantee that discovering less predictable test
cases will lead to �nding more bugs, our results clearly indicate
that bugs may reside there. This strongly suggests that a future for
generation-based fuzzing tools could be to incorporate language
modeling to create test cases that are highly unpredictable by design,
rather than random sampling from a predictable distribution.

6 CONCLUSION
An analysis using a large language model strongly indicates that
Csmith fuzzer-generated test cases, including bug-triggering ones
and their C-reduced counterparts, produce programs that are more
predictable than human-written code. This holds both from the
perspective of a model trained exclusively on “natural" developer-
written programs, thereby challenging the equivocation of “natu-
ralness” with highly predictable programs, and (far more so) from a
model trained on fuzzer-generated programs. The latter evidences
that these programs are in fact tremendously repetitive, defying
conjecture that fuzzers expose new bugs through emitting highly
chaotic code. Instead, bug-triggering programs (reduced or not) are
more predictable than the average C program, although they do
appear relatively surprising to a model trained on random, non-bug
triggering fuzzer-generated code. This �nding informs our vision
of guiding fuzzers directly with entropy, and highlights the need for
similar investigations of other types of fuzzers as well as test-case
minimization tools.
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