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ABSTRACT

Probabilistic time-series forecasting enables reliable decision mak-
ing across many domains. Most forecasting problems have diverse
sources of data containingmultiple modalities and structures. Lever-
aging information from these data sources for accurate and well-
calibrated forecasts is an important but challenging problem. Most
previous works on multi-view time-series forecasting aggregate
features from each data view by simple summation or concatena-
tion and do not explicitly model uncertainty for each data view. We
propose a general probabilistic multi-view forecasting framework
CAMul, which can learn representations and uncertainty from
diverse data sources. It integrates the information and uncertainty
from each data view in a dynamic context-specific manner, assign-
ing more importance to useful views to model a well-calibrated
forecast distribution. We use CAMul for multiple domains with
varied sources and modalities and show that CAMul outperforms
other state-of-art probabilistic forecasting models by over 25% in
accuracy and calibration.
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•Computingmethodologies→Machine learning; • Informa-

tion systems → Data mining; Web mining.
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1 INTRODUCTION

Time-series forecasting is a classic machine learning problem with
applications covering wide-ranging domains including retail, mete-
orology, economics, epidemiology and energy. For many of these
applications, we have a wide variety of datasets representing dif-
ferent views or perspectives of the phenomena to forecast. These
views may differ in their structure and modality, and also in the
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Figure 1: CAMul models and integrates view-specific infor-
mation and uncertainty.

quality and reliability due to collection and processing differences.
Due to the high-stakes decisions that these forecasts may inform
(e.g., hospital resource allocation for COVID-19, planning energy
infrastructure for cities), designing ML models that can leverage
these multiple data sources to provide not only accurate but also
well-calibrated forecast distributions is an important task.

State-of-the-art time series forecasting methods employ sequen-
tial neuralmodels that can naturally integratemultiple time-varying
exogenous features [35, 42, 47]. However, they are not suitable to
ingest multiple modalities of data such as networks, sequences
and fixed sized features together. Further, effective integration of
information from multiple views is challenging because informa-
tion from individual views may be noisy, conflicting, redundant or
sometimes unreliable. Recent works that seek to integrate multi-
source and multi-modal data for accurate sequence forecasting by
using architectures like Graph Neural networks and Convolutional
networks (such as for disease [41] and sales forecasting [11], multi-
modal sentiment analysis [53]) do not comprehensively address
this challenge. They propose to combine embeddings from multi-
ple data sources either through direct concatenation [19, 50, 56]
or simple summation [41]. Other recent methods [5] learn a view-
specific importance parameter and use it to combine embeddings
in a weighted manner. However, these weights are learned over all
data points and are not context-sensitive: they do not account for
temporal variation in the importance of each view and variance
across time series.

Moreover, these multi-modal time-series forecasting methods
do not focus on learning a well-calibrated forecast distribution.
This is especially challenging in a multi-view setting since the
ambiguity and reliability of views has to be integrated to better
inform forecast uncertainty. Redundancy and high confidence in
beliefs across multiple data views could inform a more confident
forecast whereas conflicting information and lower confidence from
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some data sources may suggest higher uncertainty. Past works on
multi-view probabilistic forecasting [54] do not integrate stochastic
information about beliefs from individual data views and instead use
a deterministic embedding from fusion of view-specific embeddings
to learn distribution parameters. As a result, these methods do
not model the view-specific uncertainty which may result in mis-
calibrated forecasts.

Hence in this paper, our work tackles the challenge of modelling
as well as integrating information and uncertainty from each data
view to provide accurate and well-calibrated time-series forecasts
(Figure 1). We introduce a general multi-view probabilistic time-
series forecasting framework, CAMul (Calibrated and Accurate
Multi-view Forecasting), that jointly models uncertainty from mul-
tiple views independently using a latent embedding distribution.
It then combines the views in a context-sensitive mechanism by
accounting for their reliability specific to the given sequence, thus
providing well-calibrated and accurate forecasts. To learn a view-
specific distribution capturing relevant information for each data
source, we use a non-parametric modelling framework. We directly
use latent embeddings of the data points in the training set of each
view in the functional space to allow flexible representation of the
predictive distribution that rely on similar patterns seen before.
Our main contributions are:
a) Probabilistic Neural Framework jointly modeling multi-

view uncertainty: We propose a general framework CAMul for
probabilistic time series forecasting on multi-modal and multi-
source data making no assumptions on the structure of data. Our
non-parametric probabilistic model leverages probabilistic relations
learned between latent representations of data points for each data
view to account for uncertainty from each view.
b) Integratingmulti-viewuncertainty towards calibrated fore-

casts: CAMul leverages the latent information and uncertainty
from each view and carefully integrates the beliefs from multiple
views together, dynamically weighting each view’s importance
based on input data, to learn well-calibrated predictive distribution.
b) Evaluation of CAMul on multiple domains: We use the
CAMul framework to design models for multi-view time-series
forecasting tasks from different domains using diverse data sources
and modalities (static features, sequences, networks). We compare
CAMul against state-of-art domain-specific as well as general fore-
casting baselines and show that CAMul models clearly outperform
all baselines by over 25% in accuracy and calibration. We also show
both empirically and using case studies, that our method of model-
ing and integrating uncertainty from individual data sources indeed
causes these improvements.

2 RELATEDWORK

Probabilistic Time-series ForecastingClassical time-series fore-
casting like exponential smoothing and ARIMA-based models [21]
focus on univariate time-series with a small number of exogenous
features and learn model parameters independently for each se-
quence. Recent probabilistic forecasting models leverage the rep-
resentation power of neural sequential modules like DeepAR [47]
which directly models the mean and variance parameters of the
forecast distribution, Bayesian Neural Networks [57] which require

assigning useful priors to parameters and require high computa-
tional resources for learning. Some recent works inspired from the
space-state models explicitly model the transition and emission
components with deep learning modules such as in the case of
Deep Markov Models [29], and recent Deep State Space models
[35, 42]. Others introduce stochasticity into state dynamics of recur-
rent neural networks such as Stochastic RNN [12], Variational RNN
[8] and State Space LSTM [55]. Neural Process (NP) [14] models a
global latent variable for entire dataset to capture uncertainty with
is used with input data’s embedding to model the distribution pa-
rameters. Recurrent neural Process [40] leverages NP for sequence
data. Functional Neural Process (FNP) captures stochastic correla-
tions between input data and datapoints from training distribution
to provide a flexible non-parametric mechanism to model output
distribution using related training data points in functional space.
EpiFNP [24] a state-of-art calibrated disease forecasting model,
is closest to our work and leverages Functional Neural Process
(FNP) [38], which uses stochastic correlations between input data
and datapoints to model a flexible non-parametric distribution for
univariate sequences. Our work leverages FNP for uncertainty mod-
eling of each of the individual views before we jointly model the
forecast distribution combining distributions from different views.
Multi-view time-series forecastingRecent advances is deep learn-
ing architectures has allowed us to extract representations from
variety of data sources such as images [36], sequences [46], graphs
[16], text [10], etc., and combine these modules’ representation
for training in a end-to-end fashion. In order to integrate these
representations, most methods employ simple summation or con-
catenation methods [31, 37, 50, 54, 56] either at the inital layers
of model (early fusion) or last layers (late fusion) [13, 32, 39, 53].
For instance DeepCovidNet [41] uses spatio-temporal and static
features using simple summation for Covid-19 prediction. Ekam-
baram et al. [11] similarly integrate images, text and static features
for predicting consumer sales. Moreover, most of these methods do
not focus on probabilistic forecasting unlike [5] which uses EHR
sequence data, static demographic and location data and learn a
data-source specific weight by pre-training the aggregated embed-
dings on prediction task of deciding if patient requires a treatment.
Then, they employ a Gaussian Process approach to learn forecast
probability on these embeddings to capture uncertainty. In contrast,
we model data-view specific uncertainty by learning a latent distri-
bution for each view which allows the model to reason about source
specific uncertainty as it integrates uncertainty-aware stochastic
representations of all views towards the forecast distribution.

3 PROBLEM FORMULATION

We describe the Multi-view probabilistic forecasting problem, a
generalization of the probabilistic forecasting problem to multi-
modal and multi-source data. We denote the time-series dataset
as Y = {Yi }

N
i=1 where individual time-series is a univariate se-

quence, Yi = {y[t]i : y[t]i ∈ R, 1 ≤ t ≤ T }. At each time-step t ,
we also have exogenous data sources that can be used to forecast
future values in Y. We divide these features from multiple sources
and modalities into views. Assume we have K views for a specific
problem representing K sources/modalities of data. The dataset for
a view j is denoted by X(j) = {X

(j)
i }Ni=0. We do not assume any
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Figure 2: Pipeline of our method CAMul describing all the components of the generative process.

specific data type for each view. However, all datapoints of a view
are assumed to have the same type. We can also have static views
whose values do not change across time: ∀t ,x[t](j)i = x[1](j)i . In
some cases, we also denote as X [1 : t](j)i all the data till week t :
X [1 : t](j)i = {x[t ′]

(j)
i : 0 ≤ t ′ ≤ t}.

Given the time-series values {Y [1 : t]i }Ni=0 and exogenous fea-
tures from all views {X [1 : t](j)i }i=1...N , j=1...K till current time t ,
our goal is to model a well-calibrated forecast probability distribu-
tion

P ({y[t + τ ]i }Ni=1 | {Y [1 : t ]i }
N
i=1, {{X [1 : t ](j )i }i=1. . .N }j=1. . .K )

for forecasting time-series values {y[t + τ ]i }Ni=1, τ steps in future.
We also assume that the view 1 is the sequence dataset, i.e, ∀i,Yi =
X
(1)
i and refer to it as the default view.

4 METHODOLOGY

We first give an overview of CAMul and then describe each of its
modules in more detail.
Model Overview: CAMul tackles the challenges related to jointly
modeling useful information and uncertainty from multiple data-
sources. It jointly models the predictive uncertainty by integrating
information and uncertainty for each view. It dynamically considers
the importance of each view based on input sequence to leverage
the more important views and learn the output distribution. We
use the functional neural process (FNP) [38] framework to learn a
non-parametric latent embedding distribution for each view which
enables a flexible method to model complex distribution by lever-
aging latent similarity with past training data-points from each
data view. In contrast to related approaches that use FNP for uni-
variate sequences [24], CAMul solves a more general and harder
problem of leveraging stochastic uncertainty from multi-source,

multi-modal data and tackles the challenge of jointly modeling and
integrating stochastic representations from each view.

At a high level, CAMul accomplishes our goals by performing
the following steps in an end-to-end manner: A) learn latent rep-
resentations for each view using Multi-view Latent Probabilistic

Encoders to capture information and uncertainty from each data
source, B) leverage stochastic similarity between data-points in
latent space to learn relations between time-series for each view via
View Specific Correlation Graph and leverage these relations to de-
rive a view-aware embedding distribution, C) integrate information
and uncertainty captured by latent embedding distributions from
multiple views using learned importance of each view based on
input sequence via Context-sensitive Dynamic View Selection Module

to derive the output distribution. Figure 2 shows the full pipeline.
For each view j, the set of data-points on which we learn the

stochastic similarity w.r.t input point is a subset of the training
set X(j) of the view j that comprehensively represents the entire
training data. This set is called the reference set, denoted by R(j).
For example, for a view that represents sequence data from the past,
we consider each of the complete time-series sequences X [1 : t](j)i
from past training data as a single data-point in the reference set.
Similarly consider views that represent static time-specific data such
as months. Each training point for a given month contains the same
static features. Therefore, the reference set contains a datapoint for
each unique month. Note that, during inference, we retain these
reference sets and use them to derive the output distribution.

4.1 Multi-view Probabilistic Latent Encoders

To capture useful information and uncertainty from each view,
we learn a latent embedding distribution for datapoints of a spe-
cific view. We leverage appropriate neural encoders for each view
based on the modality to learn latent distribution parameters. The
probabilistic encoder дθ j for each view j derives the parameters
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of latent embedding distribution for each of the reference points
R(j) = {R

(j)
k }

Nj
k=1 and input training point X (j)

i parameterized by a
Gaussian Distribution:

µ
(j)
k ,σ

(j)
k = дθ j (R

(j)
k ), z

(j)
k ∼ N(µ

(j)
k ,σ

(j)
k ). (1)

дθ j , a neural network module parameterized by θ j , is chosen based
on the modality of view j. For example, we use GRU for views
with sequence data, Graph Convolutional Network [28] to encode
relational data and Feed-Forward networks for static fixed-sized
features. The Supplementary contains detailed discussions of en-
coder architectures for different views used in this paper. The set
of all latent encodings of reference set R(j) and training set X(j) is
denoted as ZR,(j) and ZX ,(j) respectively.

4.2 View Specific Correlation Graph

The latent embedding for input data z(j)i ∈ ZX ,(j) captures the
probabilistic information of input data in view j whereas latent
variables of ZR,(j) capture stochastic information from entirety of
the data view j. To capture the information from entire the data
view j conditioned on datapoint i , we use the non-parametric FNP
framework that allows modeling a flexible data-view aware latent
distribution for given input data by leveraging related reference
points of the view.

We first learn probabilistic relations between input datapoint
and reference points in latent space using a similarity metric to
create a View Specific Correlation Graph (VSCG) and then use the
reference points connected to input’s embedding in VSCG to learn
the view-aware latent embedding.

We choose the radial basis function (RBF) as the similarity metric
to relate reference set R(j) to training set X(j):

k(z
(j)
i , z

(j)
k ) = exp(−ρ | |z(j)k − z

(j)
i | |2). (2)

for all z(j)k ∈ ZR,(j) and z(j)i ∈ ZX ,(j).
Next, we sample the VSCG G(j) as a bipartite graph between

R(j) and X(j), modeling each edge as a Bernoulli distribution pa-
rameterized by RBF similarity

p((i,k) ∈ G(j)) = Bern(k(z(j)i , z
(k )
k )). (3)

Note that during training, we approximate sampling from the dis-
crete Bernoulli using a Gumbel-softmax distribution [22]. Finally,
we aggregate the sampled neighbouring reference points N (i) for
each training point i to construct the view-aware latent variable
u
(j)
i (refer Figure 2) as:

µ(u
(j)
i ), σ̂ (u

(j)
i ) =

∑
k ∈N (i)

(l
µ
j (z

(j)
k ), lσj (z

(j)
k ))

u
(j)
i ∼ N(µ(u

(j)
i ), exp(σ̂ (u(j)i ))),

(4)

where l µj and lσj are linear layers. Thus, the view-aware embed-
ding’s latent distribution is derived from sampled reference points
to capture view-specific information. The stochastic process of
VSCG also models view-specific uncertainty.

4.3 Context-Specific Dynamic Views Selection

Not all views are equally useful to learn a well-calibrated forecast
distribution. The importance of each view for predictive distribu-
tion also varies for each time-series and across time. For instance,
for disease prediction, views representing features related to time
(like months) may be useful for predicting seasonal changes but
its importance may decrease during highly volatile and uncertain
weeks near the peak where short-term sequence history and real-
time exogenous features are more important. The importance of a
view may also change dynamically when the features are corrupted
for a small period of time during collection or measurement.

Thus, we need a dynamic mechanism to weigh the importance of
each view based on the input sequence. We propose the View Selec-

tion module to learn importance weights for each view conditioned
on input sequence and then aggregate embeddings from multiple
views in proportion to learned weights. Given the view-aware la-
tent variables of all K views for each datapoint i as {u(j)i }Kj=1, we
combine these multiple views’ knowledge towards the construction
of final functional for predictive distribution. We leverage the cross-
attention mechanism [52] to learn the importance of each view but
also condition the weights on input sequence’s representation from
default view 1 that encodes the time-series sequence z(1)i as:

{α
(j)
i }Kj=1 = Softmaxj ({h1(z

(1)
i )Th2(u

(j)
i )}Kj=1), (5)

where h1 and h2 are linear layers to transform both embeddings
to same dimensions. {α (j)i }Kj=1 denotes the importance of all views
for sequence i . Finally, we use the weights to combine the latent
representations for each view as

ũi =
K∑
j=1

α
(j)
i u

(j)
i . (6)

Thus, ũi , called the combined view embedding represents combined
knowledge from correlations learned by all views weighted by their
importance for final prediction distribution. We denote the set of
combined view embeddings for all sequences as U = {ũi }

N
i=1.

4.4 Forecast Distribution Decoder

Having extracted stochastic representations from each of the views
leveraging latent encoders, VSCGs and the View selection mod-
ule, we learn the output distribution via the Decoder module. The
decoder module uses the combined view embeddings U and the
sequence embedding of default viewZX ,(1) to learn the parameters
of output distribution. WhileU directly uses only the selectively
aggregated embeddings of reference sets, ZX ,(1) leverages local
historical patterns of input sequence including novel information
that can be used to extrapolate beyond information from reference
sets of multiple views. The final decoder process is described as:

ei = z
(1)
i ⊕ ũi

µ(yi ),σ(yi ) = d1(ei ), exp(d2(ei ))

ŷ
(t+τ )
i ∼ N(µ(yi ),σ (yi )),

(7)

where d1 and d2 and feed-forward layers and ⊕ is the concatenation
operator. Here, we used a multivariate Gaussian distribution to pa-
rameterize P(y(t+τ )i |ei ) since our target sequence has real numbers.
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However, this framework can be extended to discrete and integer-
valued output by carefully choosing the appropriate distribution
and their relevant statistic to predict.

4.5 Model Training and Inference

The generative process of CAMul can be summarized as

P ({yt+τi }Ni=1 |X, R) =

∫ K∑
j=1

[P (ZX , (j ) |X(j ))P (ZR, (j ) |R(j ))︸                                   ︷︷                                   ︸
Stochastic latent encoders

P (G (j ) |ZX , (j ), ZR, (j ))P (U(j ) |G (j ))︸                                            ︷︷                                            ︸
VSCG

]

P (U | {U(j ) }Kj=1)︸                ︷︷                ︸
View selection

P ({yt+τi }Ni=1 |U, ZX , (1))︸                            ︷︷                            ︸
Output distribution

d {Z (j ) }jdU .

Our objective is to increase the log-likelihood of above equation
which is intractable due to integrals over real-valued random vari-
ables. Therefore, we use variational inference by approximating
the posterior

∏K
j=1 P(Z

(j),U(j),G(j) |X(j),R(j))P(U|{U(j)}j )with
the variational distribution :

qj (U
(j),Z(j),G(j) |X(j) = P(ZX ,(j) |X(j))P(ZR,(j) |R(j))

P(G(j) |ZX ,(j),ZR,(j)qj (U
(j) |X(1)),

for each view j, where qj is a 2-layer network that parametrizes
the Gaussian distribution qj (U[j]|X(1)) with input sequences X(1).
The ELBO is derived to be:

L = −Eqj (Z(j ),G (j ),U(j ) |X(j ))[log P({y
t+τ
i }Ni=1 |U,Z

X ,(1))

+

K∑
j=1

log P(U(j) |G(j),Z(j)) − logqj (U(j) |X(1))].

The parameters of the inference distributions qj and the compo-
nents of the generative process are jointly learned via Stochastic
Gradient Variational Bayes to minimize the ELBO loss [27]. We use
the reparametrization trick for all sampling processes. The pseudo-
code for training is available in Appendix. During inference, we
sample from the joint distribution P({yt+τi }Ni=1, {Z

(j),

G(j)}j ,U|X,R) to generate samples for the forecast distribution.

5 EXPERIMENTS

We evaluated our models on a workstation that runs on Intel Xeon
64 core processor with 128 GB memory on a Nvidia Tesla V100
GPU. Our model takes less than 6 GB of memory and takes 20-
40 minutes of training time for each of the benchmarks. We have
released the code and datasets publicly 1 and describe in detail
the hyperparameters in Appendix. Next, we describe the baselines,
benchmark datasets and tasks as well as the evaluation metrics.
5.1 Setup

Baselines. We compare our model against the state-of-art prob-
abilistic forecasting baselines along with some domain-specific
baselines. The chosen forecasting baselines have shown state-of-art
performance on a wide set of probabilistic forecasting tasks such

1https://github.com/AdityaLab/CAMul

as power consumption, air quality, traffic forecasting, health risk
assessment, data center load estimation, etc. • SARIMA [21]: A clas-
sic time-series forecasting baseline based on ARIMA that accounts
for seasonal shifts. • DeepAR [47]: A state-of-art, widely used
RNN based probabilistic forecasting model that learns a paramet-
ric distribution. • Deep State Space Model (DSSM) [35]: A space
state based model that uses neural networks to model transition
and emission distribution of state space. • Deep Graph Factors

(GraphDF) [6]: A deep probabilistic forecasting model that inte-
grates relational information from graphs across time-series. In
absence of explicit relational information, [6] proposes to use RBF
kernel over the euclidean distance as edge weights over pairs of
time-series, which we use as theGraphDF-RBF baseline. If explicit
relational data in form of adjacency graph is available (in case of all
benchmarks except power), we also evaluate using this adjacency
graph as the GraphDF-Adj baseline. • Recurrent neural pro-

cess (RNP) [40]: Neural Process based method for temporal data
which uses attention over reference points as part of the generative
process. • Multi-modal Gaussian Process (MMGP): Similar to
[5] we first pre-train a deterministic model combining determin-
istic embeddings from the encoders and aggregating embeddings
with fixed learned weights to predict the output. Then we aggre-
gate the embeddings as features to train a Gaussian Process to get
probabilistic predictions.

For disease forecasting benchmarks, we also evaluate against
state-of-art domain-specific forecasting models that use the same
set of exogenous features as CAMul. We choose top perform-
ing deep learning models for flu-forecasting google-symptoms
task: EpiDeep [1] and EpiFNP [24]. For the covid19 task, we
also choose CMU-TS [9] and DeepCovid [45] as baselines; these
leverage the CovDS dataset [25] and are top performing statistical
models at the Covid-19 Forecast Hub organized by CDC [9]. We also
evaluate against variants of CAMul which enable us to examine
the importance of Context-Specific View Selection and utility of
our view-specific probabilistic modeling approach over the widely
used method of probabilistic modeling on the fused deterministic
embedding of view-specific representations (see Q2 of Section 5.2).
Benchmarks. We evaluate CAMul framework on time-series fore-
casting problem from a variety of domains involving diverse data
views. For each benchmark, we describe the datasets used and the
views corresponding to the features used from datasets.
1. google-symptoms (Flu forecasting fromGoogle symptoms):

We use aggregated and anonymized search counts of flu-related
symptoms web searches by Google2 from each US state to predict
incidence of influenza from 1 to 4 weeks ahead in future.
Dataset: The flu incidence rate is represented by wILI (weighted
Influenza related illness) values released weekly by CDC for 8 HHS
regions of USA3. The aggregate symptom counts for over 400 symp-
toms are anonymized and publicly released for each week since
2017 at county and state level by Google [17]. We choose to extract
14 symptoms related to influenza referred to in the CDC website4.
We aggregate these counts for each HHS region and use it as ex-
ogenous features. We also use spatial adjacency data between HHS
regions and time-related data (month and year) as features. For

2https://pair-code.github.io/covid19_symptom_dataset
3https://predict.cdc.gov/post/5d8257befba2091084d47b4c
4https://www.cdc.gov/flu/symptoms/symptoms.htm
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forecasting wILI values for a given year, we use the training set
from all past years for model training and hyperparameter tuning.
Views: We use following diverse views for this benchmarks: 1. De-
fault Historical wILI view: This view contains reference points of
symptoms features for all previous forecasting seasons for all HHS
regions. We use the GRU encoder for this view. 2. HHS adjacency
view: This is a graph feature view. We have 8 reference points cor-
responding to HHS regions. We aptly use the GCN based latent
encoder where the features F (j) are one-hot encodings and the
adjacency matrix A(j) encodes the neighbourhood information be-
tween HHS regions that share a border. 3. Month view: This is a
static feature view. We have 12 reference points for each month. We
use an embedding layer to learn encodings for each reference point
from one-hot embedding and use the feed-forward latent encoder.
2. covid19 (Covid-19 mortality forecasting): We evaluate our
model on the challenging task of forecasting COVID-19 mortality
for each of the 50 US states.
Dataset: We use the mortality data and exogenous features of
CovDS data used in [25, 45]. The exogenous features contain multi-
ple kinds of data including hospital records, mobility, exposure and
web-based survey data. We evaluate for duration of 7 months from
June 2020 to December 2020 and again use only past weeks’ data
to train before forecasting for 1 to 4 weeks ahead mortality. We
follow the real-time forecasting setup of [45] and train the model
separately for each week over all states using data available up to
past week as training set.
Views: 1. Default Mortality view: This is a sequence view where
each reference point is a time-series of past mortality. 2. Line-list
view This is a multivariate sequence view that contains 7 weekly-
collected features from traditional surveillance including hospital-
ization and testing. 3. Mobility and exposure view Similarly we use
the digitally collected signals measuring aggregate mobility and
individuals collected from smartphones. For views 1,2 and 3 we
use a GRU based encoder. 4. Demographic view This is a static view
where we encode each of the 50 states using 8 demographic features
including average income, unemployment, population, average age
and voting preferences. We use a feed-forward network for encoder.
5. State adjacency view: We construct a graph view of 50 states and
encode spatial adjacency states. We use a GCN-based encoder.
3. power (Power consumption forecasting):Weevaluate on power
consumption data which is a standard forecasting benchmark.
Dataset: The dataset [18] contains 260,640 measurements of power
consumption of a household for a year using measurements from 3
meters with a total of 7 features. Our goal is to forecast the total
active power consumption for 1 minute in future. We use the data
from the first 9 months of measurement as training set and last 3
months as test set for forecasting.
Views: 1.Default Past sequence viewWe randomly sample single day
sequence from each of the past months as reference sets. 2. Month

view: Similar to Month view for google-symptoms benchmark. 3.
Time of Day view: This is a static view. We divide the 24 hours of
a day into 6 equal intervals and assign each of 6 reference point
an interval. Similar to Month view we use a embedding layer on
one-hod encodings to represent each reference point.

4. tweet (Tweet Topics prediction): The goal for this task is to
evaluate the topic distribution of tweets in the future given topic
distributions of past weeks similar to Shi et al. [48].
Dataset: We collect Covid-19 related tweets for 15 weeks that have a
geographical tag to identify US state of the user. From the tweet text,
we extract 30 topics using LDA [2] and allocate each tweet from a
given week to each of the 30 topics it is most likely related for each
state. Thus, we have a multivariate sequence dataset where for each
of the 50 states, we have sequences containing topic distribution
of tweets for each week. Similar to google-symptoms, for each
forecasting for each year, we use data from past year as training
set. We train a separate decoder module for each of the 30 topics
and report the scores averaged over all topics.
Views: 1. Default Past sequence view: Similar to other task the first
view contains the past sequences for each state. 2. State adjacency
view: We construct a state adjacency view similar to covid19 task. 3.
Month view: Similar toMonth view of power and google-symptoms.
4. Demographics view: Similar to Demographic view of covid19.
Evaluation metrics. Given the large set of evaluation metrics
proposed for both point-prediction and probabilistic predictions
[20, 23, 51], we evaluate our model and baselines using carefully
chosen metrics that are widely used in machine learning literature,
relevant to our benchmarks and comprehensively evaluate both
accuracy and calibration of models’ forecasts.
Root Mean Squared Error (RMSE) is a popular metric used to
evaluate accuracy of point prediction and is a better measure of
robustness of model over metrics like MAE or MAPE since it is
sensitive to instances of large errors.
Interval Score (IS) is a standard score used in evaluation of accu-
racy of probabilistic forecasts in epidemiology [43]. IS measures the
negative log likelihood of a fixed size interval around the ground
truth under the predictive distribution:

IS(p̂y ,y) = −

∫ y+L

y−L
log p̂y (ŷ)dŷ.

Confidence Score (CS) introduced in [24] measures the overall
calibration of predictions of a model M similar to [30]. We first
calculate the fraction km (c) of prediction distributions that cover
the ground truth at each confidence interval c . A perfectly calibrated
model has km (c) very close to c . Therefore, CS is defined as:

CS(M) =

∫ 1

0
|km (c) − c |dc .

which is approximated by summation over small intervals [24].
Cumulative Ranked Probability Score (CRPS) is a widely used
standard metric for evaluation of probabilistic forecasts that gener-
alizes mean average error to probabilistic forecasting [15]. Since it
is a proper scoring rule that is minimized if the prediction distribu-
tion matches, on expectation, the true distribution, CRPS measures
both accuracy and calibration. Given ground truth y and the pre-
dicted probability distribution p̂(Y ), let F̂y be the CDF. Then, CRPS
is defined as:

CRPS(F̂y ,y) =

∫ ∞

−∞

(F̂y (ŷ) − 1{ŷ > y})2dŷ.

5.2 Results

Q1: Does CAMul provide well-calibrated accurate probabilistic fore-

casts across all benchmarks?

3179



CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

covid19 google-symptoms
RMSE CRPS CS IS RMSE CRPS CS IS

SARIMA 91.3±3.7 69.1±4.2 0.41±0.015 6.67±0.034 SARIMA 1.72±0.021 1.62±0.016 0.4±0.005 5.04±0.32
DeepAR 49.1±6.9 48.5 ± 7.1 0.19±0.015 3.72± 0.043 DeepAR 0.68±0.024 0.97± 0.021 0.15±0.006 2.89±0.21
DSSM 54.7±5.7 58.6±3.5 0.19±0.006 4.13±0.013 DSSM 0.78±0.026 1.03±0.015 0.15±0.007 3.08±0.16
RNP 52.9±5.3 71.8±6.5 0.32±0.015 5.31±0.042 RNP 0.82±0.043 0.95±0.035 0.41±0.004 3.87±0.18
MMGP 48.7±4.2 42.3±2.4 0.23±0.015 4.27±0.022 MMGP 1.24±0.077 1.02±0.031 0.26±0.003 2.28±0.42
GraphDF-RBF 51.3±3.7 43.2±2.1 0.19±0.013 3.41±0.035 GraphDF- RBF 0.73±0.031 1.05±0.019 0.11±0.003 1.83±0.27
GraphDF-Adj 48.5±4.2 49.1±3.4 0.23±0.021 3.79±0.023 GraphDF- Adj 0.91±0.027 1.10±0.042 0.12±0.005 2.64±0.53
DeepCovid 38.3±5.2 39.8±6.6 0.22±0.013 3.63±0.046 EpiDeep 0.98±0.053 1.07±0.062 0.29±0.006 5.55±0.84
CMU-TS 32.4±5.3 30.1±5.2 0.21±0.014 3.31±0.062 EpiFNP 0.64±0.048 0.52±0.057 0.05±0.004 0.67±0.12
CAMul 27.3 ± 3.5 23.8±4.1 0.14±0.011 2.08±0.015 CAMul 0.49±0.072 0.34±0.053 0.04±0.006 0.54±0.05

CAMul-C 34.2±-4.2 27.7±3.2 0.18±0.006 2.83±0.025 CAMul-C 0.53±0.048 0.44±0.031 0.06±0.008 0.6±0.07
CAMul-S 31.7±4.6 26.8±3.1 0.17±0.005 2.75±0.042 CAMul-S 0.62±0.082 0.42±0.058 0.06±0.003 0.6±0.03
CAMul-D 43.8 ±5.3 39.2±6.1 0.28±0.012 4.06±0.032 CAMul-D 1.32±0.067 0.99±0.072 0.19±0.005 2.24±0.05

power tweet
RMSE CRPS CS IS RMSE CRPS CS IS

SARIMA 1.51±0.021 1.16 ± 0.018 0.23 ± 0.002 3.49 ±0.021 SARIMA 0.33±0.031 1.41 ± 0.262 0.37± 0.007 3.87 ± 0.74
DeepAR 1.01±0.008 0.72 ± 0.002 0.04 ± 0.003 1.57 ± 0.046 DeepAR 0.11±0.054 1.06 ± 0.152 0.15 ± 0.003 1.35 ± 0.31
DSSM 0.91±0.024 0.59 ± 0.018 0.02 ± 0.002 1.32 ± 0.054 DSSM 0.08±0.036 0.92 ± 0.173 0.07 ± 0.002 0.96 ± 0.34
RNP 1.11±0.014 0.85 ± 0.015 0.19 ± 0.005 3.31 ± 0.018 RNP 0.11±0.065 1.16 ± 0.045 0.22 ± 0.006 3. 05 ± 0.52
MMGP 1.28±0.036 1.19 ± 0.041 0.15 ± 0.001 3.03 ± 0.013 MMGP 0.21±0.052 1.31 ± 0.162 0.13 ± 0.0026 1.65 ± 0.49
GraphDF-RBF 0.94±0.031 0.92 ± 0.03 0.13 ± 0.004 1.45 ± 0.033 GraphDF-RBF 0.12±0.073 0.62 ± 0.052 0.08 ± 0.010 1.91 ± 0.76

GraphDF-Adj 0.18±0.025 0.91 ± 0.031 0.14± 0.009 2.39 ± 0.26
CAMul 0.85±0.027 0.46 ±0.02 0.02 ± 0.001 0.93 ± 0.021 CAMul 0.07±0.005 0.42 ± 0.015 0.05 ± 0.004 0.68 ± 0.21

CAMul-C 1.03±0.035 1.13±0.04 0.08±0.001 2.88± 0.014 CAMul-C 0.08±0.053 0.84±0.027 0.07±0.002 1.03±0.17
CAMul-S 0.99±0.036 0.68±0.05 0.04±0.002 1.27±0.027 CAMul-S 0.19±0.048 0.58±0.081 0.05±0.006 1.41±0.25
CAMul-D 1.31±0.057 1.36±0.07 0.14±0.001 2.96±0.012 CAMul-D 0.18±0.077 1.15±0.020 0.19±0.001 1.14±0.15

Table 1: Evaluation scores (over 20 runs) for CAMul and baselines for all benchmarks. We performed t-test with α = 1%. Best
scores are in bold and are statistically significantly better than other models. CAMul consistently performs the best with over
24% improvement in accuracy and over 35% improvement in calibration over the best baselines.

We evaluate our model and baselines on the four diverse bench-
marks described in Section 5.1. We ran the experiments 20 times
for each of the models for all tasks and reported the mean scores.
Specifically, for covid19 and google-symptoms we performed a
comprehensive evaluation across all regions in US for 1-4 weeks
ahead forecasts and reported the average results. The results are
summarized in Tables 1. CAMul models significantly outperform
the baselines in both accuracy and calibration scores. Specifically
for the hard disease-forecasting tasks we consistently see over 25%
improvement in RMSE and CRPS score, and over 50% improve-
ment in interval score over best baselines. In case of power and
tweet, we observe 28% and 24% improvement in CRPS scores over
second-best model and 56% and 35% improvement in interval score.
Performing significance test (t-test) with α = 1% shows that CA-
Mul is significantly better than other models in all scores except
those highlighted in bold in Table 1. Further, applying post-hoc
calibration methods [30, 49] on baselines also does not affect the
significance of our results (Table 4 in Supplementary).
Q2 : Effect of multi-source stochastic modelling and context-sensitive

dynamic view selection on CAMul’s performance

We evaluate the efficacy of 1) Context-Specific Dynamic Views
Selection and 2) probabilistic modeling of each data view via Multi-
view Latent Probabilistic Encoders and VSCG. We compare the
attention based dynamic view selection of CAMul with two other
variants a)CAMul-C concatenates VSCG-based latent embeddings
from all views, b) CAMul-S learns a static weight w(j) for each
view j and combines the VSCG-based embeddings: ũi =

∑
j w

(j)u
(j)
i ,

c) To test the efficacy of stochastic modelling of latent embeddings,

the variant CAMul-D uses deterministic view-specific latent vari-
ables: We use the latent encoders’ mean rather than sampling from
Gaussian as Eqn. 1 and use a cross-attention layer over reference
points instead of VSCG to derive the view specific latent variables
as a weighted summation of reference points. The evaluation scores
of the variants are shown in Table 1. We see that the original config-
uration of CAMul with dynamic view selection and multi-source
probabilistic modeling outperforms the variants in all benchmarks.
Using deterministic multi-source latent embeddings, in particular,
drastically decreases the scores emphasizing the efficacy of uncer-
tainty modeling.
Q3: Does CAMul handle information and uncertainty from multiple

views to provide better performance?

power tweet covid19 google-symptoms

All Views 0.46 0.42 27.3 0.34

Default view 1.03 0.95 37.2 0.58
Two Best Views 0.63 0.77 33.1 0.46
Best Baseline 0.59 0.62 32.4 0.64

Table 2: Comparison of CRPS score of CAMul with all views,
the default view, two best views and the best baseline.

CAMul models useful patterns and uncertainty for each of the
diverse set of data views independently before combining them.
This is in contrast to most baselines that use simple aggregation at
feature level or latent embedding level where noisy or reliable data
from some views may hinder performance. CAMul however learns
to weigh the importance of each view before combining them for
prediction. To test the efficacy of CAMul’s handling of multiple
data views, we evaluated the model with a single default view, two
best views and compared it with the original CAMul with all views
and the best performing baseline as shown in Table 2. Note that for
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all benchmarks, the best view is always the default view. We see
that model with all views is clearly the best performing. Moreover,
using only the best view sometimes leads to lower performance
compared to the best performing baseline which has access to data
from all views. Therefore, we conclude that CAMul can handle

multiple views that in turn lead to significantly better performance.
Q4: Do the weights of each view from View Selection module corre-

spond to predictive utility of the view?
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Figure 3: CRPS is inversely correlated with attention weights
of View selection module.

The attention weights learned by the view selection module in
Eqn. 5 informs the learned importance of views that are used for
aggregating view-aware latent embeddings. We observed that the
default view 1 containing time-series sequences was almost always
the most highly weighted views and was necessary for model to
perform reasonably. Next, we study the correlation between atten-
tion weights of other views and the efficacy of the views. We assess
the efficacy of a view by training variant of CAMulwith two views:
the default view and view we are interested in. We compare the
CRPS scores of these variants to the attention weights (Figure 3)
and see that the CRPS scores are inversely proportional to the view
selection module weight. This further shows that the view selection
module, indeed, selects the most informative views on average to
improve the performance of our CAMul models.
Q5: Does the dynamic view-selection module adapt across time to

select informative views?

We provide specific case-studies to show the efficacy of the view
selection module in selecting useful views specific to the input
sequence by studying the attention weights. We describe a case-
study related to covid19 and one related to google-symptoms.
Obs 1: For the covid19 task, weights of mobility view are higher than

default sequence view during early pandemic (June and July) for

many highly populous US states.

The average attention weight on the default view is over 40%
for all months over all states. However, during the initial 2 months
of the dataset (June and July), 12 states observed higher weight
for mobility view including populous states such as TX, GA, MA
and NY (Supplementary Table 3). CAMul’s view selection module
adapted by relying more on the mobility view data during the initial
months for mortality forecasting. This concurs with studies that at
the initial stages of the pandemic, decrease in mobility was highly
correlated with decrease in the disease spread [4], but later on, this
changed [45]. In addition, line-list data was error-prone during the

initial months of the pandemic because the reporting systems were
not yet in place [44] whereas the mobility features extracted from
digital sources were more accurate in real-time [3].
Obs 2: In relation to google-symptoms task, for the weeks around the
peak week, the weights of views other than sequence view decreases

by over 30% on average for all HHS regions.

The month and HHS adjacency view capture information about
seasonal and average region-specific patterns. However, near the
peak weeks where wILI values are more volatile, CAMul relies
on the past wILI sequence patterns including values from past
weeks for interpolation which is observed by the sudden decrease in
attentionweights of other views. Therefore, we observed an average
decrease of 32.4% in attention weights of Month and Adjacency
view during the 4 weeks around the peak week.
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Figure 4: Sequence view is more important during peak weeks

An example is shown in Figure 4 for the 2018 flu season. We
see that the peak week is at week 40. The weights corresponding
the past sequence view sees an increase on weeks 38 - 42 whereas
weights of other views decrease.

6 CONCLUSION

We introduced CAMul, a general non-parametric generative frame-
work for multi-source, multi-modal probabilistic forecasting. Our
framework successfully tackles the challenge of modeling prob-
abilistic information and uncertainty from diverse data views of
multiple modalities across multiple domain benchmarks. CAMul
outperformed both state-of-art general probabilistic baselines as
well as top domain-specific baselines, resulting in over 25% improve-
ment in accuracy and calibration metrics. Our case-studies also em-
pirically showed the importance of joint probabilistic modeling and
context-sensitive integration from multiple views. It automatically
adapts to select more useful data views as seen in the covid19 and
google-symptoms case studies.

CAMul can easily be applied to any multi-source and multi-
modal forecasting task by using appropriate encoders to encode
a variety of data where capturing multi-source uncertainty is im-
portant. Analysis of view selection for specific tasks can also help
understand data reliability, the disparity in data quality across sen-
sitive parameters. As future work, our work can also be extended to
tasks such as anomaly detection, change point detection and time-
series segmentation where drastic variation in confidence intervals
and view selection weights can be a useful predictive indicator of
important behaviors.
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Supplementary for the paper "CAMul: Calibrated

andAccurateMulti-viewTime-Series Forecasting"

We have released the code for CAMul models and anonymized
datasets at: https://github.com/AdityaLab/CAMul.

A EXAMPLES OF MULTI-VIEW

PROBABILISTIC LATENT ENCODERS

We provide examples of Probabilistic Latent Encoders for data views
of different modalities that are used in the paper. Due to generality
of our framework, variety of neural encoders can be used specific
to data view and type of task.

Static features: We encode the static features of fixed dimensions
of form R

(j)
k ∈ Rd . We employ a feed-forward network to capture

the parameters of distribution.

Sequences: To capture the latent embedding of sequence R(j)k =

{R[0](j)k ,R[1]
(j)
k , . . . ,R[T ]

(j)
k }, such as in the default view, we lever-

age neural sequence encoders GRU [7] as:

{z̃[t]
(j)
k }Tt=0 = GRU ({R[t]

(j)
k }Tt=0) (8)

where {z̃[t](j)k }Tt=0 are the intermediate states of GRU.
In order to capture capture long-term relations and prevent over-

emphasis on last terms of sequence we employ self-attention layer
introduced in [52]:

{α[0]d ,α[1]d , . . . ,α[T ]d } = Self-Atten({z̃[t](j)k }Tt=0)

µ
(j)
k ,σ

(j)
k = д

′
j (

T∑
t=0

α[t]dz[t]
(j)
d )

(9)

where д′j is a single feed-forward layer.

Graph data: If the data type of view j contain relations, i.e, the ref-
erence sets have an inherent graph structure denoted by (A(j), F (j)),
where A(j) ∈ RNj×Nj is the adjacency matrix (potentially with
weights) and F (j) = { f

(j)
i }

Nj
i=1 are feature vectors of fixed dimen-

sions, then we can use a Graph Neural network architecture [28]

to encode the relations in A(j):

{z̃
(j)
i }

Nj
i=1 = GCN (A(j), { f

(j)
i }

Nj
i=1) (10)

Then, we use feed forward layer to derive the distribution pa-
rameters:

µ
(j)
i ,σ

(j)
i = д

′
j (z̃

(j)
i ) (11)

B IMPLEMENTATION DETAILS

We used numpy for data processing and PyTorch for model training
and inference. We use the properscoring library [33] to implement
the CRPS evaluation.

B.1 Data pre-processing

Scaling values: Since time-series and exogenous features can have
wide range of values, we normalize the values of of each features
with mean 0 and variance 1. We derive the scaling factors for train-
ing dataset and apply the transformation to test set during inference.
Chunking time-series for training: The long training sequences are
split using the shingling technique [34, 35] where we fix a window
sizeW = 10 and randomly sample chunks ofW size from the full
sequence over the interval [1, t −W − 1] and record the τ ahead
value as ground truth. Note that the reference set of default view 1
still contains the full length sequence of training set, we only use
the split sequence as input for training set.

B.2 Hyperparameters

We describe the hyperparameters for CAMul for all benchmarks.
Multi-view probabilistic encoders

For the feed-forward networks of static view, we used a 3 layer
network with 60 hidden units. We also used 60 hidden units for
GRU of sequence views and used a bi-directional version of GRU.
For graph views, we used a 2-layer GCN network with 60 hidden
units. The final layer outputs 120 dimensional vector which we split
into mean and variance. We apply exponentiation on the variance
vector to make it positive. The latent embeddings z(j)i for all views
thus have dimension of 60.
View specific correlation graph The networks l µj and lσj is a 2 layer
feed forward network with 60 hidden units. Thus, the dimension
of view-aware latent embedding is 60.
Dynamic view-selection module We pass the view-aware latent em-
beddings and z(1)i each through a single 60-hidden unit feed forward
layer (h1, h2) before computing the cross attention weights. The
combined-view embedding ũi is a 60 dimensional vector.
Forecast decoder We use a 3 layer feed forward layer that inputs the
latent embedding of sequence z(1)i and ũi and has 60 hidden units in
each hidden layer with final layer outputting 2 scalars µ(yi ),σ (yi ).
Throughout all layers of CAMul we apply exponentiation to vari-
ance vector/scalar to make it positive. We also use ReLU activation
for hidden layers unless specified otherwise. We also use ADAM
optimizer [26] for parameter updates.

Note on hyperparameter selection. We sampled a validation set
containing 10% of randomly selected chunks of sequences from
training set. This was used for model hyperparameter tuning. We
describe splitting of dataset into training and test set in Section 5.1
below for each benchmark.
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Algorithm 1: Training Algorithm for CAMul

Input :Training sequences {YN }Ni=1 = {X
(1)
i }Ni=1, target

labels {y[t + τ ]i }Ni=1, view data sources {X (j)
i }Ni=1

for each view j ∈ {2, . . . ,K}, reference points
{R

(j)
i }

Nj
i=1 for each view j

1 for i ∼ {1, . . . ,N } do

2 for j ∈ {1, . . . ,K} do

/* Stochastic embeddings from latent

stochastic encoder */

3 Sample z(j)i as Eqn 1 using encoder дθ j ;

4 for R
(j)
k ∈ R(j)

do

5 Sample z(j)k using encoder дθ j ;
6 end

/* Sample edges for SVCG */

7 for R
(j)
k ∈ R(j)

do

8 Add (k, i) to G(j) with probability k(z(j)k , z
(j)
i );

9 end

10 Derive µ(u(j)i ),σ (u
(j)
i ) from sampled edges

{k : (k, i) ∈ G(j)} as Eqn 4;
/* Sample from Variational distribution */

11 Sample û(j)i from variational distribution qj ;
12 end

/* Aggregate all view-aware embeddings using

Dynamic view-selection module */

13 Compute importance weights {α (j)i }Kj=1 using

cross-attention as Eqn 5 from {û
(j)
i }Kj=1;

14 Compute the combined view embedding
ũ
(j)
i =

∑K
j=1 α

(j)
i û

(j)
i ;

/* Final output distribution */

15 Derive µ(yi ),σ (yi ) from z
(1)
i and ũ(j)i via the decoder

(Eqn 7);
/* Sample ELBO Loss */

16 Compute L1 = log P(y[t + τ ]i |µ(yi ),σ (yi ));
17 Compute

L2 =
∑K
j=1 log P(û

(j)
i |µ(u

(j)
i ),σ (u

(j)
i ))−logqj (û

(j)
i |X

(j)
i );

18 Accumulate gradient for loss L = −(L1 + L2);
19 end

20 Periodically update the weights of all modules of CAMul
from accumulated gradients using ADAM;

State Month Seq. Line-list Mobility Adj. Demo.

TX June 0.32 0.22 0.37 0.03 0.06
July 0.37 0.23 0.31 0.05 0.04

GA June 0.21 0.34 0.31 0.01 0.13
July 0.24 0.40 0.26 0.02 0.08

MA June 0.32 0.19 0.36 0.04 0.09
July 0.39 0.29 0.23 0.02 0.07

NY June 0.25 0.24 0.32 0.04 0.15
July 0.26 0.34 0.27 0.01 0.12

Table 3: Avg. Attention weight of View selection module dur-
ing June and July for some populous US states.

Algorithm 2: Training Algorithm for CAMul

Input :Training sequences {YN }Ni=1 = {X
(1)
i }Ni=1, target

labels {y[t + τ ]i }Ni=1, view data sources {X (j)
i }Ni=1

for each view j ∈ {2, . . . ,K}, reference points
{R

(j)
i }

Nj
i=1 for each view j

1 for i ∼ {1, . . . ,N } do

2 for j ∈ {1, . . . ,K} do

/* Stochastic embeddings from latent

stochastic encoder */

3 Sample z(j)i as Eqn 1 using encoder дθ j ;

4 for R
(j)
k ∈ R(j)

do

5 Sample z(j)k using encoder дθ j ;
6 end

/* Sample edges for SVCG */

7 for R
(j)
k ∈ R(j)

do

8 Add (k, i) to G(j) with probability k(z(j)k , z
(j)
i );

9 end

10 Derive µ(u(j)i ),σ (u
(j)
i ) from sampled edges

{k : (k, i) ∈ G(j)} as Eqn 4;
/* Sample from Variational distribution */

11 Sample û(j)i from variational distribution qj ;
12 end

/* Aggregate all view-aware embeddings using

Dynamic view-selection module */

13 Compute importance weights {α (j)i }Kj=1 using

cross-attention as Eqn 5 from {û
(j)
i }Kj=1;

14 Compute the combined view embedding
ũ
(j)
i =

∑K
j=1 α

(j)
i û

(j)
i ;

/* Final output distribution */

15 Derive µ(yi ),σ (yi ) from z
(1)
i and ũ(j)i via the decoder

(Eqn 7);
/* Sample ELBO Loss */

16 Compute L1 = log P(y[t + τ ]i |µ(yi ),σ (yi ));
17 Compute

L2 =
∑K
j=1 log P(û

(j)
i |µ(u

(j)
i ),σ (u

(j)
i ))−logqj (û

(j)
i |X

(j)
i );

18 Accumulate gradient for loss L = −(L1 + L2);
19 end

20 Periodically update the weights of all modules of CAMul
from accumulated gradients using ADAM;

We found that the performance was not significantly sensitive to
model architecture, batch size or learning rate.We searched over the
space of {30, 60, 120, 250} for hidden units and mostly optimized for
faster convergence. We also searched over {10, 20, 50, 80} for batch-
size and found 20, 20, 10, 50 to bemost optimal for tweet, covid19,
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(a) power

Isotonic DC
Model CRPS CS IS CRPS CS IS
SARIMA 1.32 0.14 3.28 1.7 0.23 3.95
DeepAR 0.67 0.04 1.55 0.71 0.08 1.64
DSSM 0.62 0.04 1.62 0.81 0.09 1.84
RNP 0.87 0.17 2.55 0.93 0.16 2.58
GP 1.03 0.12 2.78 1.03 0.12 2.78
GraphDF-RBF 0.92 0.13 1.45 1.04 0.18 1.31
CAMul 0.43 0.02 0.91 0.47 0.04 1.02

(b) tweet

Isotonic DC
Model CRPS CS IS CRPS CS IS
SARIMA 1.18 0.22 3.39 1.27 0.33 3.25
DeepAR 1.02 0.18 1.24 1.17 1.15 1.36
DSSM 1.19 0.08 1.15 1.21 0.17 1.83
RNP 1.09 0.15 1.89 1.17 0.13 2.05
GP 1.25 0.15 1.86 1.27 0.15 2.38
GraphDF-RBF 0.7 0.1 1.61 0.75 0.08 1.92
GraphDF-Adj 1.15 0.18 2.63 1.17 0.18 2.39
CAMul 0.55 0.06 0.68 0.67 0.07 0.86

(c) covid19

Isotonic DC
Model CRPS CS IS CRPS CS IS
SARIMA 110.4 0.34 8.66 106.0 0.39 8.93
DeepAR 57.9 0.16 3.72 58.2 0.21 3.80
DSSM 84.1 0.2 3.08 91.9 0.28 4.41
RNP 74.7 0.31 5.52 67.1 0.34 7.30
GP 44.0 0.26 5.45 40.4 0.29 5.63
GraphDF-RBF 68.7 0.23 5.25 62.8 0.27 5.54
GraphDF-Adj 73.8 0.29 4.10 65.8 0.29 4.12
DeepCovid 55.9 0.16 4.40 49.7 0.16 4.34
CMU-TS 40.9 0.13 4.81 36.0 0.13 5.23
CAMul 27.6 0.12 2.28 23.7 0.12 2.20

(d) google-symptoms

Isotonic DC
Model CRPS CS IS CRPS CS IS
SARIMA 1.12 0.42 2.63 1.28 0.35 2.71
DeepAR 0.81 0.15 1.53 0.89 0.14 1.63
DSSM 0.72 0.15 2.30 0.85 0.14 2.44
RNP 0.89 0.23 2.42 0.93 0.27 1.73
GP 0.86 0.10 1.90 0.99 0.1 1.92
GraphDF-RBF 0.78 0.11 1.21 0.92 0.12 1.32
GraphDF-Adj 0.81 0.09 2.98 0.96 0.1 2.81
EpiDeep 1.53 0.12 2.62 1.15 0.14 2.19
EpiFNP 0.57 0.11 0.59 0.65 0.07 0.64
CAMul 0.45 0.05 0.52 0.49 0.06 0.56

Table 4: Evaluation scores of CAMul and baselines after ap-
plying post-hoc calibration. We use Isotonic regression [30]
and Distribution calibration [49] methods. The evaluation
scores of CAMul is statistically significantly better and does
not change much due to post-hoc methods, implying that our
approach produces well-calibrated forecasts without need for
such post-hoc correction methods.

google-symptoms, power respectively. We used 0.005 as learning
rate. We also used early stopping with patience of 150 epochs for
faster training. For power and google-symptoms we observed that
CAMul took less than 700 epochs to converge whereas it took 2000
and 1000 epochs for covid19 and tweet. Regarding seed selection,
we initialized random seeds to 0 to 19 for numpy and pytorch for
the 20 trials done for each benchmarks and didn’t observe any
significant variation in scores.
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