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Check for
updates

Evaluation of individual and ensemble probabilistic
forecasts of COVID-19 mortality in the United States

Short-term probabilistic forecasts of the trajectory of the COVID-19
pandemic in the United States have served as a visible and impor-
tant communication channel between the scientific modeling
community and both the general public and decision-makers.
Forecasting models provide specific, quantitative, and evaluable
predictions that inform short-term decisions such as healthcare
staffing needs, school closures, and allocation of medical supplies.
Starting in April 2020, the US COVID-19 Forecast Hub (https://
covid19forecasthub.org/) collected, disseminated, and synthesized
tens of millions of specific predictions from more than 90 different
academic, industry, and independent research groups. A multimo-
del ensemble forecast that combined predictions from dozens of
groups every week provided the most consistently accurate proba-
bilistic forecasts of incident deaths due to COVID-19 at the state
and national level from April 2020 through October 2021. The per-
formance of 27 individual models that submitted complete fore-
casts of COVID-19 deaths consistently throughout this year
showed high variability in forecast skill across time, geospatial
units, and forecast horizons. Two-thirds of the models evaluated
showed better accuracy than a naive baseline model. Forecast
accuracy degraded as models made predictions further into the
future, with probabilistic error at a 20-wk horizon three to five
times larger than when predicting at a 1-wk horizon. This project
underscores the role that collaboration and active coordination
between governmental public-health agencies, academic modeling
teams, and industry partners can play in developing modern
modeling capabilities to support local, state, and federal response
to outbreaks.
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ffective pandemic response requires federal, state, and local

leaders to make timely decisions in order to reduce disease
transmission. During the COVID-19 pandemic, surveillance data
on the number of cases, hospitalizations, and disease-associated
deaths were used to inform response policies (1, 2). While these
data provide insight into recent trends in the outbreak, they only
present a partial, time-lagged picture of transmission and do not
show if and when changes may occur in the future.

Anticipating outbreak change is critical for optimal resource
allocation and response. Forecasting models provide quantitative,
evaluable, and probabilistic predictions about the epidemic tra-
jectory for the near-term future. Forecasts can inform operational
decisions about allocation of healthcare supplies (e.g., personal
protective equipment, therapeutics, and vaccines), staffing needs,
and school closures (3). Providing prediction uncertainty is criti-
cal for such decisions, as it allows stakeholders to assess the most
likely outcomes and plausible worst-case scenarios (3).

Academic research groups, government agencies, industry
teams, and individuals produced COVID-19 forecasts at an
unprecedented scale starting in March 2020. Publicly available
forecasts reflect varied approaches, data sources, and assump-
tions. Some models had mechanisms that allowed them to
incorporate an estimated impact of current or potential future
policies on human behavior and COVID-19 transmission.
Other models assumed that currently observed trends would
continue into the future without considering external data on
policies in different jurisdictions.

To leverage these forecasts for the COVID-19 response, the
US Centers for Disease Control and Prevention (CDC) part-
nered with the Reich Laboratory at the University of Massa-
chusetts Amherst to create the COVID-19 Forecast Hub
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(https://covid19forecasthub.org/) (4). Launched in early April
2020, the Forecast Hub facilitated the collection, archiving, evalua-
tion, and synthesis of forecasts. Teams were explicitly asked to sub-
mit “unconditional” forecasts of the future, in other words, pre-
dictions that integrate across all possible changes in future
dynamics. In practice, most individual models made predictions
that were conditional on explicit or implicit assumptions of how
policies, behaviors, and pathogens would evolve in the coming
weeks. From these forecasts, a multimodel ensemble was devel-
oped, published weekly in real time, and used by the CDC in offi-
cial public communications about the pandemic (https:/www.cdc.
gov/coronavirus/2019-ncov/covid-data/mathematical-modeling.html)

Significance

This paper compares the probabilistic accuracy of short-term
forecasts of reported deaths due to COVID-19 during the
first year and a half of the pandemic in the United States.
Results show high variation in accuracy between and within
stand-alone models and more consistent accuracy from an
ensemble model that combined forecasts from all eligible
models. This demonstrates that an ensemble model provided
a reliable and comparatively accurate means of forecasting
deaths during the COVID-19 pandemic that exceeded the
performance of all of the models that contributed to it. This
work strengthens the evidence base for synthesizing multi-
ple models to support public-health action.
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(5). Forecasts were generated for the outcomes of reported cases,
hospitalizations, and deaths due to COVID-19. This paper focuses
on evaluating forecasts of reported deaths.

Ensemble models incorporate the information and uncer-
tainties from multiple forecasts, each with their own perspec-
tives, strengths, and limitations, to create accurate predictions
with well-calibrated uncertainty (6-11). Synthesizing multiple
models removes the risk of overreliance on any single approach
for accuracy or stability. It is challenging for individual models
to make calibrated predictions of the future when the behavior
of the system being studied is nonstationary due to continually
changing policies and behaviors. Ensemble approaches have
previously demonstrated superior performance compared with
single models in forecasting influenza (12-14), Ebola (15), and
dengue fever outbreaks (16). Preliminary research suggested
that COVID-19 ensemble forecasts were also more accurate
and precise than individual models in the early phases of the
pandemic (17, 18).

Predicting the trajectory of a novel pathogen outbreak such
as COVID-19 is subject to many challenges. These include the
role of human behavior and decision-making in outbreak
trajectories, and the fact that epidemic forecasts may play a
role in a “feedback loop” when and if the forecasts themselves
have the ability to impact future societal or individual decision-
making (19). There are also a host of data irregularities, espe-
cially in the early stages of the pandemic.

It is important to systematically and rigorously evaluate fore-
casts designed to predict real-time changes to the outbreak in
order to identify strengths and weaknesses of different
approaches and to understand the extent to which the forecasts
are a reliable input to public-health decisions. Knowledge of
what leads to more or less accurate and well-calibrated fore-
casts can inform their development and their use within out-
break science and public policy. In this analysis, we sought to
evaluate the accuracy of individual and ensemble probabilistic
forecasts submitted to the Forecast Hub, focusing on forecasts
of reported weekly incident deaths.

Results

Summary of Models. Forecasts evaluated in this analysis are
based on submissions in a continuous 79-wk period starting in
late April 2020 and ending in late October 2021 (Fig. 1 and
Methods). Forecasts were evaluated at 55 locations including all
50 states, four jurisdictions and territories (Guam, US Virgin
Islands, Puerto Rico, and the District of Columbia), and the
US national level. The evaluation period captured the decline
of the spring 2020 wave, a late summer 2020 increase in several
locations, a large late-fall/early-winter surge in 2020/2021, and
the rise and fall of the Delta variant in the summer and fall of
2021 (Fig. 1B).

The number of models that submitted forecasts of incident
deaths to the Forecast Hub and were screened for inclusion in
this analysis increased from four models at the beginning of the
evaluation period to an average of 41.2 models per week during
the first 10 months of 2021 (Fig. 1C and SI Appendix, Fig. S1).
A total of 28 models met inclusion criteria, yielding 1,791 submis-
sion files with 556,050 specific predictions for unique combinations
of forecast dates, targets (horizons forecasted), and locations.

The evaluated forecasts used different data sources and
made varying assumptions about future transmission patterns
(SI Appendix, Table S1). All evaluated models, other than
CEID-Walk, the COVIDhub-baseline, the COVIDhub-
ensemble, and PSI-Draft, used case data as inputs to their fore-
cast models. A total of 10 models included data on COVID-19
hospitalizations, 10 models incorporated demographic data,
and 9 models used mobility data. Of the 28 evaluated models, 7
made explicit assumptions that social distancing and other
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behavioral patterns would change over the prediction period.
Two nave models were included. The COVIDhub-baseline is a
neutral model built with median predicted incidence equal to
the number of reported deaths in the most recent week with
uncertainty around the median based on weekly differences in
previous observations (see Methods). CEID-Walk is a random
walk model with simple outlier handling (SI Appendix, Table S1).

Overall Model Accuracy. To evaluate probabilistic accuracy, the
primary metric used was the weighted interval score (WIS), a
nonnegative metric, which measures how consistent a collection
of prediction intervals is with an observed value (20). For WIS,
a lower value represents smaller error (see Methods and SI
Appendix, SI Text).

Led by the ensemble model, a majority of the evaluated mod-
els achieved better accuracy than the baseline model in fore-
casting incident deaths (Table 1). The COVIDhub-ensemble
achieved a relative WIS of 0.61, which can be interpreted as
achieving, on average, 39% less probabilistic error than the base-
line forecast in the evaluation period, adjusting for the difficulty
of the specific predictions made. An additional seven models
achieved a relative WIS of less than or equal to 0.75. In total, 18
models had a relative WIS of less than 1, indicating lower prob-
abilistic forecast error than the baseline model, and 10 models
(including the baseline) had a relative WIS of 1 or greater
(Table 1). Patterns in relative point forecast error were similar,
with 18 models having equal or lower mean absolute error
(MAE) than the baseline (Table 1). Values of relative WIS and
rankings of models were robust to changing thresholds for sub-
mission inclusion criteria and to the inclusion or exclusion
of individual outlying or revised observations (SI Appendix,
Tables S3 and S4). When stratified by phase of the pandemic,
different models showed the highest accuracy overall (SI
Appendix, Fig. S5).

The degree to which individual models provided calibrated
predictions varied (Table 1). We measured the probabilistic cal-
ibration of model forecasts using the empirical coverage rates
of prediction intervals (PIs). Across 1- through 4-wk-ahead
horizons, 79 wk, and 50 states, only the ensemble model
achieved near-nominal coverage rates for both the 50% and
95% PIs. Eight models achieved coverage rates within 5% of the
desired coverage level for the 50% PI, and only the COVIDhub-
ensemble and UMass-MechBayes achieved coverage rates within
5% for the 95% PI. Typically, observed coverage rates were
lower than the nominal rate (Table 1 and SI Appendix, Fig. S2).
Three models had very low coverage rates (less than 50% for
the 95% PI or less than 15% for the 50% PI). In general, models
were penalized more for underpredicting the eventually
observed values than overpredicting (S Appendix, Fig. S7).

Among the top-performing models, there was variation in
data sources used, indicating that the inclusion of additional
data sources was not a sufficient condition for high accuracy.
Of the seven top individual models with a relative WIS less
than or equal to 0.75 (Table 1), four used data beyond the epi-
demiological hospitalization, case, and death surveillance data
from the Center for System Science and Engineering (CSSE)
(81 Appendix, Table S1). A total of 10 of the 18 individual mod-
els that performed better than the baseline used data other
than epidemiological surveillance data (e.g., demographics or
mobility). The top performers consisted of both models with
mechanistic components and mostly phenomenological ones.

Model Accuracy Rankings Are Highly Variable. The COVIDhub-
ensemble was the only model that ranked in the top half of all
models (standardized rank > 0.5) for more than 75% of the
observations it forecasted, although it made the single best
forecast less frequently than any other model (Fig. 2). We
ranked models based on relative WIS for each combination of
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Overview of the evaluation period included in the paper. Vertical dashed lines indicate “phases” of the pandemic analyzed separately in

SI Appendix. (A) The reported number of incident weekly COVID-19 deaths by state or territory, per JHU CSSE reports. Locations are sorted by the cumula-
tive number of deaths as of October 30th, 2021. (B) The time series of weekly incident deaths at the national level overlaid with example forecasts from
the COVID-19 Forecast Hub ensemble model. (C) The number of models submitting forecasts for incident deaths each week. Weeks in which the ensemble

was submitted are shown with a red asterisk.

1- through 4-wk-ahead horizons, 79 wk, and 55 locations, con-
tributing to 17,006 possible predicted observations for each
model (Fig. 2). All models showed large variability in relative
skill, with each model having observations for which it had the
best (lowest) WIS and thereby a standardized rank of 1. Some
models, such as JHUAPL-BUCKY and PSI-DRAFT, show a
bimodal distribution of standardized rank, with one mode in
the top quartile of models and another in the bottom quartile.
In these cases, the models frequently made overconfident pre-
dictions (SI Appendix, Fig. S6) resulting in either lower scores
(indicating better performance) in instances in which their pre-
dictions were very close to the truth or higher scores (indicating
worse performance) when their predictions were far from the
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truth. Similar patterns in ranking and relative model perfor-
mance were seen when stratifying ranks by pandemic phase (S
Appendix, Fig. S3).

Observations on Accuracy in Specific Weeks. Forecasts from indi-
vidual models showed variation in accuracy by forecast week
and horizon (Fig. 3). The COVIDhub-ensemble model showed
better average WIS than both the baseline model and the aver-
age error of all models across the entire evaluation period,
except for 3 wk during which the baseline had lower 1-wk-
ahead error than the ensemble. The COVIDhub-ensemble 1-
wk-ahead forecast for EW02-2021 yielded its highest average
WIS across all weeks (average WIS = 72.7), and 9 out of 26
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Table 1. Summary accuracy metrics for all submitted forecasts from 28 models meeting inclusion criteria, aggregated across locations
(50 states only), submission week, and 1- through 4-wk forecast horizons

Model No. forecasts 95% Pl Coverage 50% PI Coverage Relative WIS Relative MAE
BPagano-RtDriven 10,864 0.72 0.36 0.77 0.80
CEID-Walk 12,161 0.78 0.45 1.00 1.03
CMU-TimeSeries 10,456 0.77 0.42 0.78 0.80
Covid19Sim-Simulator 11,770 0.34 0.1 1.02 0.85
CovidAnalytics-DELPHI 11,064 0.82 0.46 0.99 1.01
COVIDhub-baseline 15,460 0.88 0.51 1.00 1.00
COVIDhub-ensemble 14,260 0.90 0.53 0.61 0.66
CU-select 13,710 0.72 0.43 0.92 0.89
DDS-NBDS 12,261 0.86 0.43 1.25 2.19
epiforecasts-ensemble1 12,204 0.87 0.46 3.17 2.74
GT-DeepCOVID 13,585 0.84 0.41 0.75 0.82
IHME-SEIR 11,116 0.59 0.25 0.79 0.82
JHU_CSSE-DECOM 10,190 0.80 0.35 0.75 0.80
JHU_IDD-CovidSP 14,170 0.82 0.33 0.99 1.04
JHUAPL-Bucky 11,664 0.63 0.29 1.05 1.06
Karlen-pypm 13,060 0.86 0.47 0.64 0.70
LANL-GrowthRate 13,560 0.83 0.38 0.85 0.91
MOBS-GLEAM_COVID 15,452 0.71 0.37 0.77 0.78
OliverWyman-Navigator 10,548 0.82 0.45 0.72 0.76
PSI-DRAFT 13,209 0.34 0.15 1.51 1.27
RobertWalraven-ESG 13,430 0.51 0.28 1.13 0.97
SteveMcConnell-CovidComplete 12,063 0.8 0.45 0.74 0.77
UA-EpiCovDA 13,710 0.72 0.41 0.98 0.94
UCLA-SUEIR 10,549 0.31 0.09 1.37 1.21
UCSD_NEU-DeepGLEAM 11,664 0.91 0.7 0.83 0.78
UMass-MechBayes 14,660 0.93 0.56 0.63 0.67
UMich-RidgeTfReg 11,394 0.63 0.34 1.18 1.08
USC-SI_kJalpha 9,660 0.52 0.22 0.75 0.72

The “No. forecasts” column refers to the number of individual location/target/week combinations. Empirical prediction interval (Pl) coverage rates
calculate the fraction of times the 50% or 95% Pls covered the eventually observed value. Values within 5% coverage of the nominal rates are highlighted
in boldface text. The “relative WIS” and “relative MAE"” columns show the relative mean WIS and relative MAE, which compare each model to the baseline
model while adjusting for the difficulty of the forecasts the given model made for state-level forecasts (see Methods). The baseline model is defined to
have a relative score of 1. Models with relative WIS or MAE values lower than 1 had “better” accuracy relative to the baseline model (best score in bold).

other models that submitted for the same locations outper-
formed it that week. The 4-wk-ahead COVIDhub-ensemble
forecasts were worse in EW49-2020 than in any other week
during the evaluation period (average WIS = 111.7), and 15
out of the 26 models outperformed the ensemble that week at a
forecast horizon of 4 wk.

There was high variation among the individual models in
their forecast accuracy during periods of increasing deaths and
near peaks (i.e., forecast dates in July through early August of
2020, November through March, and August through October
of 2021; Fig. 3). High errors in the baseline model tended to be
associated with large outliers in observed data for a particular
week (e.g., times when a state reported a large backfill of
deaths in the most recent week) (S Appendix, SI Text). In gen-
eral, other models did not show unusual errors in their fore-
casts originating from these anomalous data, suggesting that
their approaches, including possible adjustments to recent
observations, were robust to anomalies in how data were
reported.

Model Performance in Specific Pandemic Waves. In addition to
evaluating performance in aggregate across the entire evalua-
tion period and separate phases, we evaluated model perfor-
mance during important moments during the pandemic. To
assess the impact of rapidly changing trends on incident death
forecasting accuracy, we ran an analysis restricted to specific
locations and time periods that experienced high rates of
change during four different waves of the pandemic (Fig. 4): 1)
the summer 2020 waves in the south and southwest, 2) the late-
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fall 2020 rise in deaths in the upper Midwest, 3) the wave
driven by the Alpha SARS-CoV-2 variant in Michigan in in
March/April 2021, and 4) the Delta variant wave in summer
2021 throughout most states in the United States.

Forecast performance varied substantially in these examples.
Models in general systematically underpredicted the mortality
curve as trends were rising and overpredicted as trends were
falling. In some of the selected waves (e.g., North Dakota and
Florida), the ensemble forecast showed inappropriate levels of
uncertainty, with the 95% PIs covering the eventual observa-
tions less than 80% of the time. However, during other waves
(e.g., Louisiana and Michigan), the ensemble forecast, while
systematically biased first below and then above the eventually
reported counts of deaths, did cover the observations at or
above 95% of the time, although PIs were very wide. In gen-
eral, lower-than-expected coverage rates and bias were more
pronounced at a 4-wk horizon than a 1-wk horizon. These four
examples appeared to be representative of trends observed
when looking across a larger number of waves (Dataset S2).

Individual Model Forecast Performance Varies Substantially by
Location. Forecasts from individual models showed large varia-
tion in accuracy by location when aggregated across all weeks
and targets (Fig. 5). Only the ensemble model showed superior
accuracy when compared to baseline in all locations. Ensemble
forecasts of incident deaths showed the largest relative accuracy
improvements in New York, New Jersey, Indiana (relative
WIS = 0.4), California, Massachusetts, and at the national level
(relative WIS = 0.5) and the lowest relative accuracy in
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Fig. 2. A comparison of each model’s distribution of standardized rank of WIS for each location/target/week observation. A standardized rank of 1 indi-
cates that the model had the best WIS for that particular location, target, and week, and a value of 0 indicates it had the worst WIS. The density plots
show interpolated distributions of the standardized ranks achieved by each model for every observation that model forecasted. The quartiles of each
model’s distribution of standardized ranks are shown in different colors: yellow indicates the top quarter of the distribution and purple indicates the bot-

tom quarter of the distribution. The models are ordered by the first quartile of the distribution, with models that rarely had a low rank near the top.

Vermont, Guam, and The Virgin Islands (relative WIS = 0.9).
The COVIDhub-ensemble was the only model to outperform
the baseline in every location when eligible in a specific pan-
demic phase (SI Appendix, Fig. S6).

Forecast Performance Degrades with Increasing Horizons. Averag-
ing across all states and weeks in the evaluation period, fore-
casts from all models showed lower accuracy and higher
variance at a forecast horizon of 4 wk ahead compared to a
horizon of 1 wk ahead; however, models generally showed
improved performance relative to the nawve baseline model at
larger horizons (SI Appendix, Fig. S4). A total of 11 models
showed a lower average WIS (range: 24.9 to 34.3) than the base-
line at a 1-wk horizon (average WIS = 35.8). At a 4-wk-ahead
horizon, 19 models had a lower average WIS (range: 39.9 to 65.2)
than baseline (average WIS = 70.1). Across all models except
one, the average WIS was higher than the median WIS, indicative
of outlying forecasts impacting the mean value.

When averaging across locations and stratifying by phase of
the pandemic, there was variation in the top-performing models
(SI Appendix, Fig. S5). Four models had a lower mean WIS
than baseline for both 1- and 4-wk-ahead targets in at least three
out of four phases (COVIDhub-ensemble, GT-DeepCOVID,
Karlen-pypm, and UMass-MechBayes). Additionally, UMass-
MechBayes and COVIDhub-ensemble were the only models to
appear in the top three models in three of the four phases ana-
lyzed (SI Appendix, Fig. S5). In contrast to average WIS, PIs cov-
erage rates did not change substantially across the 1- to 4-wk
horizons for most models (S Appendix, Fig. S2).

While many teams submitted only short-term (1- to 4-wk-
ahead) forecasts, a smaller number of teams consistently sub-
mitted longer-term predictions with up to a 20-wk horizon for
all 50 states (SI Appendix, Fig. S8). Across all teams submitting
forecasts for the 50 states, 4-wk-ahead forecasts had around
76% more error (based on relative WIS) than 1-wk-ahead fore-
casts, a relationship that was consistent across the entire evalu-
ation period. Longer-term forecasts showed less accuracy on
average than 1- and 4-wk-ahead forecasts. There were no clear
overall differences in probabilistic model accuracy between
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8- and 20-wk horizons, although in early summer 2020, late
spring 2021, and fall of 2021, average WIS at 8-wk horizons
were slightly lower than at longer horizons (SI Appendix, Fig.
S8B). For the two teams who made 20-wk-ahead forecasts
for all 50 states, the average WIS was 2.9 to 4 times higher at
a 20-wk horizon than it was at a 1-wk horizon. The increased
WIS at longer prediction horizons for these models were due
to larger dispersion (i.e., wider predictive distributions repre-
senting increased uncertainty) as well as larger penalties for
underprediction and overprediction (SI Appendix, Fig. S9).
The biggest increases in WIS were from increased penalties
for underprediction, suggesting that the model forecasts did
not accurately capture the possibility of increases in inci-
dence at long horizons. Coverage rates for 95% PIs tended
to be stable or decline as the horizon increased (SI Appendix,
Fig. S8C).

Discussion

Given the highly visible role that forecasting has played in the
response to the COVID-19 pandemic, it is critical that model
consumers, such as decision-makers, the general public, and
modelers themselves, understand how reliable models are. This
paper provides a comprehensive and comparative look at the
probabilistic accuracy of different modeling approaches for
forecasting COVID-19-related deaths during the COVID-19
pandemic in the United States from April 2020 through Octo-
ber 2021. This work illustrates the tension between the desire
for long-term forecasts, which would be helpful for public-
health practitioners, and the decline in forecast accuracy at lon-
ger horizons shown by all forecasting methods.

As seen in prior epidemic forecasting projects, ensemble
forecasts simplify the information provided to model consumers
and can provide a stable, accurate, and low-variance forecast
(3, 14-16). The results presented here show high variation in
accuracy between and within stand-alone models but more con-
sistent accuracy from an ensemble forecast. This supports prior
results and confirms that an ensemble model can provide a reli-
able and comparatively accurate forecast that exceeds the per-
formance of most, if not all, of the models that contribute to it.
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Observed weekly COVID-19 deaths in the US
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Fig. 3. Average WIS by the target forecasted week for each model across all 50 states. A shows the observed weekly COVID-19 deaths based on the CSSE-
reported data as of May 25, 2021. B shows the average 1-wk-ahead WIS values per model (in gray). For all 21 wk in which the ensemble model (red triangle) is
present, this model has lower WIS values than the baseline model (green square) and the average score of all models (blue circle). C shows the average 4-wk-
ahead WIS values per model (in gray). For all 21 wk in which the ensemble model (red triangle) is present, this model has lower WIS values than the baseline
model (green square) and the average score of all models (blue circle). The y-axes are truncated in B and C for readability of the majority of the data.

The ensemble approach was the only model that 1) outper-
formed the baseline forecast in every location, 2) had better
overall 4-wk-ahead accuracy than the baseline forecast in every
week, and 3) ranked in the top half of forecasts for more than
75% of the forecasts it made. It achieved the best overall meas-
ures of point and probabilistic forecast accuracy for forecasting
deaths. However, during key moments in the pandemic, while
the ensemble outperformed many models, it often showed
lower than desired accuracy (Figs. 3 and 4). These results
strengthen the evidence base for synthesizing multiple models
for public-health decision support.
We summarize the key findings of the work as follows.

e The performance of all individual models forecasting
COVID-19 mortality was highly variable even for short-term
targets (Figs. 2 and 3). One source of variation was data
inputs. Further investigation is needed to determine in what
settings additional data can yield measurable improvements
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in forecast accuracy or add valuable diversity to a collection
of models that are combined.

A simple ensemble forecast that combined all submitted
models each week was consistently the most accurate model
when aggregating performance across forecast targets,
weeks, or locations (Fig. 3 and 5 and SI Appendix, Fig. S4).
Although rarely the “most accurate” model for individual
predictions, the ensemble was consistently one of the top
few models for any single prediction (Fig. 2). For public-
health agencies concerned with using a model that shows
dependably accurate performance, this is a desirable feature
of a model.

The high variation in ranks of models for each location/
target/week suggests that all models, even those that are not
as accurate on average, have observations for which they are
the most accurate (Fig. 2).

The post hoc evaluation of models during forecasting waves
in select states showed poor accuracy of the ensemble model’s

Cramer et al.

Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States



Downloaded from https://www.pnas.org by 24.99.67.139 on July 5, 2022 from IP address 24.99.67.139.

Forecasts, select states & waves 95% PI coverage, selected wave 95% PI coverage, all weeks

Louisiana Louisiana Louisiana

600
+ 1 week ahead forecast

+ 4 week ahead forecast

400 observed data

0.6 0.6
200 #4#% %ﬁ\{%+\¥ 044 044
* ‘|. 029 COVIDhub-baselifie 0.21
0 —
| Aug '20 | Sep 20 | Oct o —A- COVIDhub-ensemble o
North Dakota North Dakota North Dakota

2009 || pemegmmmeee g

0.8 —TA 0.8

150
/ \ 064 06
100 /

044 044
50 \H # \{
) 0.2 0.2
v g 3 3
£ o1 : : 3 8
3 | sep2q oct 20| Nov'2q Dec2d Jan 21| Fe € o] g g
s § 8
g — —
ﬁ Michigan E Michigan E Michigan
S 1000 S Py - . a g 1
£ g t-fF---FJ---J-F---F--- g L-
5 5
750 084 084
064 064
500
044 044
250 +
+ *\{ —+ 024 024
0
| Apr2t [ May21  Jun2t [ o 0
Florida Florida

Florida

2000 0.6+ AN 0.6+

+/* 0.2 0.2

[ Aug21 | sep2t | oct21

3000
* 0.8 \\ 0.8

1 2 3 4 1 2 3 4
Date Horizon Horizon

Fig. 4. Forecasts for selected states and pandemic waves, with Pls coverage. The first column shows every 1- and 4-wk-ahead forecast with 95% PIs made
by the ensemble during the selected evaluation period. The second and third columns of plots show evaluations of Pls across 1- through 4-wk horizons (x-
axis). The red line with triangle points corresponds to the coverage rates of the COVIDhub-ensemble forecasts, and green squares refer to the COVIDhub-
baseline model. The boxplots represent the distribution of coverage rates from all component models. The second column evaluates only forecasts made
for the dates shown in the first column. The third column evaluates forecasts across all weeks in the evaluation period. In the last two columns, the
expected coverage rate (95%) is shown by the dashed line.

point forecasts for 1 and 4 wk ahead. During periods of increas-  trends continue or only slightly change from previous weeks. A
ing incident deaths, the ensemble tended to underpredict while  post hoc evaluation that focuses exclusively on these “change-
tending to overpredict during periods of decreasing incident  points” may reward models that may regularly predict extreme
deaths. PIs coverage during these times varied (Fig. 4). changes even when they do not occur at other times (21).
o Forecast accuracy and calibration were substantially degraded ~ Adapting proper scoring rules to weigh good performance in
as forecast horizons increased, largely due to underestimating  both kinds of situations is difficult.
the possibility of increases in incidence at long horizons (S Rigorous evaluation of forecast accuracy faces many limita-
Appendix, Figs. S8 and S9). tions in practice. The large variation and correlation in forecast

Model performance should be assessed both in aggregate (to ~ SITOIS across targets, submission weeks, and locations makes it
compare models that showed the best overall performance) dlfﬁcult' to create rigorous comparisons of models. Fore:cast
and in specific important moments during the pandemic. It is ~ comparison is also challenging because teams have submitted
of public-health interest to evaluate how well models are able forecasts for different lengths of time, different locations, and
to predict points at which the observed trends change. How-  for different numbers of horizons (S1 Appendix, Figs. S1 and
ever, we note that a post hoc evaluation that focuses only on ~ S8). Some teams have also changed their models over time (S/
times at which a specific type of trend was observed raises con- ~ Appendix, Tables S1 and S2 and Fig. S1). To account for some
ceptual challenges. Extreme turning points in the pandemic are  of this variability, we implemented specific inclusion criteria.
relatively rare compared with the many weeks during which  However, those criteria may exclude valuable approaches that
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United States- 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.8 0.5 0.6 06 07 08 09 0.8 08 12 12 1.0 0.7 0.7 1.3 1.0 15 14 14 038
California4 0.5 0.5 0.7 0.6 0.6 0.6 0.9 0.7 0.6 0.7 0.7 0.7 0.8 0.7 1.0 0.9 0.8 0.9 0.9 1.0 0.8 1.1 0.9 1.0 1.5 1.2 1.7 1.0
Texas- 0.6 0.6 0.6 0.7 0.7 0.7 0.9 0.8 0.7 0.8 0.8 0.8 0.8 0.9 0.9 1.1 1.1 1.1 1.1 1.0 1.2 1.3 12 1.3 14 1.2 1.8 0.9
Florida- 0.6 0.6 0.9 0.7 1.0 0.7 0.8 0.6 0.7 1.0 0.7 0.6 1.0 1.1 1.2 0.9 1.7 1.3 1.2 1.0 1.2 1.1 1.3 0.8 20 1.1 1.5 0.9
New York /0.4 0.4 0.4 0.6 0.6 0.6 0.5 0.5 0.6 0.5 0.6 0.5 0.5 0.5 0.7 0.6 0.8 0.8 0.7 1.0 0.6 0.8 0.9 1.2 0.9 1.2 1.9 0.5
Pennsylvania- 0.6 05 06 0.7 0.8 0.7 0.8 0.7 0.6 0.8 0.8 0.7 1.0 0.8 0.8 0.9 0.8 1.0 1.1 1.0 1.0 0.9 1.1 1.8 1.1 1.5 1.8 [l
eorgia- 0.7 0.7 0.7 1.1 0.8 0.9 0.8 1.0 1.0 09 0.9 1.2 0.9 1.2 1.3 1.4 1.2 12 1.2 1.0 1.4 1.2 14 1.1 1.0 1.2 21 0.9
Illinois 4 0.6 0.6 0.5 0.9 0.7 0.7 0.8 0.7 0.6 0.9 1.0 0.9 0.9 0.8 0.8 0.8 0.9 1.3 1.0 1.0 1.0 1.3 1.3 14 12 12 17 1.0
New Jersey 0.4 0.6 04 06 0.7 0.8 0.6 0.6 0.6 0.5 0.5 0.6 0.6 0.6 0.8 0.9 1.0 0.8 0.8 1.0 0.6 1.1 1.0 1.6 0.8 1.1/2.1 /29
Ohio 0.6 0.4 0.4 06 0.7 0.7 0.5 0.8 0.7 0.5 0.6 0.6 0.5 0.7 0.6 0.8 0.8 0.5 1.0 1.0 0.6 0.6 0.8 0.9 0.9 1.3 0.9 [l
Michigan- 0.6 0.9 0.6 0.8 0.7 0.7 1.0 0.7 0.8 0.8 1.0 0.7 0.8 0.8 0.7 1.3 1.0 1.2 1.1 1.0 1.0 1.1 1.4 1.6 1.6 1.4 1.7 1.1
Arizona- 0.6 0.6 05 06 06 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.9 0.8 0.9 0.8 1.2 0.8 1.0 1.0 1.0 1.0 0.9 1.5 1.6 1.2 1.4 0.7
Massachusetts {05 0.8 1.1 0.7 0.9 0.8 0.7 0.9 0.7 0.7 0.8 0.8 0.7 0.9 1.1 1.0 0.7 1.0 0.8 1.0 1.2 1.0 1.3 1.2 0.7 1.2 1.7 0.8
North Carolina+ 0.6 0.8 0.6 0.7 0.7 0.7 0.9 0.9 0.8 0.9 0.9 1.1 0.9 0.9 1.2 1.2 0.9 1.2 1.1 1.0 1.2 0.8 1.4 1.1 1.4 1.8 1.6 0.8
Indiana 0.4 0.5 0.4 0.5 0.5 0.6 0.5 0.5 05 0.5 0.6 05 0.5 0.7 0.6 0.8 0.6 0.9 1.1 1.0 0.6 0.7 0.9 0.9 0.7 1.1 1.1 1.7
Tennessee - 0.6 0.8 0.7 0.8 0.8 0.8 0.8 1.0 0.9 0.7 0.8 0.8 0.7 1.2 1.1 1.3 0.9 1.0 1.0 1.0 1.1 1.3 1.2 1.3 1.0/2.1 1.3 08
Alabama- 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.8 0.9 0.9 0.8 1.2 1.0 1.0 0.9 1.0 1.0 1.1 0.9 1.0 1.1 0.9 1.2 1.4 1.2
Louisiana4 0.6 0.9 0.8 0.6 0.8 0.7 0.8 0.9 0.8 0.7 0.9 0.8 0.8 0.9 1.0 1.2 1.0 1.1 1.2 1.0 1.3 1.7 1.3 1.1 [271 1.7 2.0 1.2
Virginia4 0.7 0.7 0.7 0.7 0.8 0.7 0.8 0.9 0.9 0.8 0.8 1.0 0.8 0.8 0.9 1.0 1.0 0.9 0.9 1.0 1.6 0.8 09 1.2 0.9 1.1 1.2 13
South Carolina- 0.6 0.6 05 0.6 0.6 0.7 0.8 06 0.8 0.8 0.7 0.8 0.8 0.9 0.8 1.2 0.8 0.8 12 1.0 12 09 1.2 1.2 1.3 1.6 1.8 0.8
Missouri4 0.7 0.8 0.8 1.0 0.8 0.9 0.7 1.0 1.2 0.9 09 1.2 0.9 1.1 1.1 1.4 1.0 1.1 1.1 1.0 1320 19 1.3 1.1/21 1.6 1.0
Maryland- 0.6 06 0.7 0.9 0.7 0.8 0.7 07 0.7 0.8 0.8 0.9 0.9 0.7 0.8 0.8/26/ 1.0 0.9 1.0 1.0 0.8 1.0 1.3 0.9 1.2 1.3 38 Relative WIS
Oklahoma- 0.6 0.6 0.6 12 0.6 0.7 0.6 0.7 0.9 0.7 0.7 0.8 0.6 0.9 0.9 0.7 0.8 0.8 0.8 1.0 1.0 0.9 0.8 0.9 0.9 1.0 0.9 0.7 elative
Mississippi< 0.6 0.7 0.7 0.8 0.7 0.7 0.8 0.8 0.7 0.8 0.8 0.8 0.9 1.1 1.0 1.1 0.9 12 1.1 1.0 1.0 0.9 1.2 1.1 1.4 1.4 16 08
Kentucky 4 0.7 0.7 0.7 0.9 0.7 0.9 0.7 0.8 0.9 0.7 0.7 1.0 0.7 0.9 1.0 1.0 1.3 0.9 0.9 1.0 1.2 1.0 1.0 1.1 0.9 1.2 1.2 1.2 ! 4
Wisconsin4 0.7 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.1 0.8 1.2 1.1 1.0 1.1 0.9 1.0 1.2 1.2 0.9 1.0 0.9 1.4 21 1.4 1.0 1.3 1.7 1.1
Minnesota- 0.7 0.8 0.8 0.7 0.8 0.7 0.9 0.8 0.9 0.9 1.1 0.9 1.0 0.8 0.9 1.0 1.2 1.2 1.1 1.0 1.6 15 1.4 1.6 1.1/23 15 1.0
Connecticut-0.6 0.8 0.6 0.6 0.8 0.9 0.8 0.7 0.6 0.8 0.8 0.7 1.0 0.8 1.2 1.4 1.0 0.9 0.9 1.0 0.9 0.9 1.2 1.3 1.0 1.3 1.4 0.9 2
Washington4 0.7 1.0 0.8 0.7 0.8 0.9 0.8 0.8 0.9 1.1 0.9 0.8 1.1 0.9 1.0 1.5 1.1 1.3 1.1 1.0 1.2 1.2 1.4 1.0 1.1 12 1.7 1.8
Arkansas- 0.8 0.9 0.8 0.8 0.9 0.9 0.9 1.0 1.2 1.0 1.0 1.2 1.0 1.1 1.1 1.1 0.8 12 12 1.0 1.6 1.1 1.3 1.2 1.4 1.9 1.4 0.9 1
Colorado4 0.7 0.6 0.6 0.7 0.8 0.7 1.0 0.6 1.0 1.0 0.9 0.9 1.1 0.8 0.8 1.0 1.1 1.1 1.0 1.0 1.1 1.4 1.1 1.5 1.0 1.8 1.7 1.1
Nevada4 0.7 0.7 0.6 0.8 0.8 0.8 0.8 0.7 0.9 0.9 1.0 0.9 1.0 0.8 1.0 1.1 1.1 1.4 1.1 1.0 1.1 1.3 1.4 1.2/21 1.8 19 09
lowa-0.6 0.7 0.7 0.6 0.6 0.8 0.8 0.7 1.0 0.7 1.0 0.6 0.8 0.9 1.0 0.9 1.1 0.9 1.0 1.0 1.0 1.3 1.1 1.1 0.8 1.7 1.4 1.0 0.5
Kansas- 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.9 0.8 0.8 1.1 0.8 1.0 0.9 1.2 0.9 0.9 0.9 1.0 1.1 1.1 1.3 1.0 1.2/22 1.1 0.9
New Mexico+ 0.6 0.7 0.7 0.9 0.7 0.9 0.7 0.9 0.8 0.8 1.0 0.9 1.0 0.8 0.8 0.8 1.0 1.2 1.0 1.0 1.1 1.1 1.1 1.3 1.0 1.4 1.5 08
West Virginia- 0.7 07 0.8 0.8 0.7 0.9 0.7 0.9 0.8 0.8 0.8 1.2 0.9 0.9 1.0 0.9 0.8 1.0 1.1 1.0 13 0.9 1.1 12 1.0 1.7 14 1.0
Oregon-0.7 0.7 0.8 1.0 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.4 1.0 1.0 0.8 1.1 0.8 1.3 1.1 1.0 1.0 09 1.1 1.1 1.0 1.5 1.5 0.9
Idaho- 0.7 0.7 0.7 0.8 0.9 0.8 1.0 0.8 1.2 09 1.1 1.1 1.3 1.2 1.0 1.0 1.0 1.3 1.2 1.0 1.1 0.8 1.4 1.3 1.4 1.9 16 1.0
Puerto Rico- 0.8 0.8 1.0 0.9 1.0 1.3 0.9 1.1 0.9 18 1.1 1.0 15124 15 1322 12
Utah+0.7 0.8 0.9 0.9 0.9 0.9 1.3 1.0 12 1.0 1.6 15 1.7 1.0 12 1.3 12 1.5 1.1 1.0 1.9 1.6 1.7 1.4 1.1 1.7 1.4 1.0
Nebraska 0.8 0.7 0.7 0.8 0.9 0.9 1.0 0.8 1.2 0.9 1.2 1.1 1.1 1.0 0.9 1.0 0.9 1.1 1.0 1.0 1.2 1.1 1.5 1.5 1.0 1.4 1.4 1.0
Rhode Island 0.7 0.9 0.7 0.8 1.0 1.0 1.0 0.9 08 1.1 1.0 1.0 1.6 0.9 1.3 1.5 0.7 1.0 1.1 1.0 1.0 0.9 1.6 1.2 1.3 1.5 1.2 1.1
Montana- 0.8 0.9 1.1 1.0 0.8 1.0 09 1.1 1.0 1.1 1.0 1.3 1.5 1.1 1.2 1.2 1.0 12 1.0 1.0 14 14 16 1.3 1.1 1.6 1.4 0.9
South Dakota- 0.6 0.6 0.5 0.6 0.7 0.8 0.8 0.8 0.7 0.7 1.2 0.9 1.4 0.7 1.3 0.8 0.8 1.5 0.9 1.0 1.0 1.0 24 1.4 1.0 1.2 09 1.3
Delaware - 0.6 0.8 0.7 0.7 0.8 0.8 0.7 0.9 0.8 0.7 0.8 1.0 1.2 0.9 0.9 1.3 1.0 0.8 0.8 1.0 0.9 0.9 1.1 1.0 0.6 1.3 1.0 1.1
North Dakota4 0.7 0.7 0.8 0.8 0.9 0.8 0.9 0.8 1.2 0.8 1.3 1.0 16 0.9 1.1 1.0 0.8 1.5 09 1.0 1.1 1.1 1.8 1.8 09 1.4 09 038
New Hampshire 0.7 0.8 0.8 0.8 1.0 0.9 09 08 1.0 1.1 0.9 1.4 22 0.7 1.3 1.2 0.9 1.4 1.0 1.0 15 15 1.3 1.4 0.9 15 19 0.9
District of Columbia- 0.6 0.7 0.7 0.7 0.8 1.0 0.8 0.9 1.1 0.8 1.0 0.8 1.2 13 1.2 12 09 1.0 09 12 1.0 0.7 15 1.2
Wyoming- 0.7 0.7 0.9 1.0 1.0 0.9 0.9 0.9 1.4 0.9 1.0 1.1[23/1.2 1.2 1.6 0.9 1.0 1.0 1.0 15 1.3 1.2 1.2 [EE 1.8 1.1 0.9
Maine- 0.8 0.8 1.0 0.9 1.0 0.8 0.8 0.9 1.1 1.0 0.9 1.1 1.8 0.9 1.0 1.2 0.8 1.7 0.9 1.0 12 1.1 1.1 1.4 08 1.3 1.2 1.3
Hawaii< 0.7 0.6 0.7 0.7 0.7 0.7 0.7 1.4 0.8 0.9 0.9 22 0.8 0.9 1.0 0.8 1.1 1.0 1.0 1.0 1.1 1.1 1.0 0.9 0.9 1.2 1.0
Alaska-0.8 1.0 0.8 1.0 1.1 0.8 1.1 1.0 1.2 0.9 1.0 1.1 1.8 0.9 1.1 1.2 1.6 0.9 1.0 1.0 1.3 1.6 1.3 1.1 0.8 1.8 1.0 0.9
Vermont-0.9 0.8 1.6 1.2 1.3 1.2 1.1 1.0 1.2 1.3 1.0 1.7 Bl 1.3 1.7 23 1422 1.1 1.0 1.8 20 1.1 15 1.1 1.3 15 1.2
Guam+09 12 1.0 12 12 13 11 1.0 25| 1.3 12 14 14
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Fig. 5. Relative WIS by location for each model across all horizons and subm
from 1- to 4-wk-ahead targets available for a model at each location. Boxes ar
boxes represent teams that outperformed the baseline, and red boxes represe

ission weeks. The value in each box represents the relative WIS calculated
e colored based on the relative WIS compared to the baseline model. Blue
nt teams that performed worse than the baseline. Locations are sorted by

cumulative deaths as of the end of the evaluation period (October 30, 2021). Teams are listed on the horizontal axis in order from the lowest to highest

relative WIS values (Table 1).

were not applied to a large fraction of locations or weeks (see
Methods).

Forecast performance may be affected by ground-truth data
and forecast target. Ground-truth data are not static. They can
be later revised as more data become available (Dataset S1).
There are also instances in which data are not revised but
rather left with large peaks or dips due to reporting effects,
especially around holidays. Different sources for ground truth
data can also have substantial differences that impact model
performance. Lastly, because this evaluation focuses on inci-
dent death forecasts, it cannot speak to model performance for
incident cases or hospitalizations. Deaths may serve as a lagging
indicator of COVID-19, thus making it more predictable than
hospitalization and case targets (22).

While the Hub has provided many insights into what has and
has not been predictable in the COVID-19 pandemic, it also
has left many important questions unanswered. Due to the
operational, real-time orientation of the project, the Hub did
not collect data on experimental modeling studies for which
certain features can be included or left out to explicitly test
what features of a model increase predictive accuracy. An
observational study could be conducted with forecasts collected
by the Hub, but any such analysis would be confounded by
other factors about how the model was built and validated.
Other research in this area has shown small but measurable
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improvements in predictive accuracy by including other data
streams available in real time (23). Continued research is
needed to evaluate how behavioral, mobility, variant preva-
lence, or other data streams might enhance predictive modeling

Short-term forecasts of COVID-19 mortality have informed
public-health response and risk communication for the pan-
demic. The number of teams and forecasts contributing to the
COVID-19 ensemble forecast model has exceeded forecasting
activity for any prior epidemic or pandemic. These forecasts are
only one component of a comprehensive public-health data and
modeling system needed to help inform outbreak response.
Preparedness for future pandemics could be facilitated by cre-
ating resources for creating and maintaining model submission
formats. This project underscores the role that collaboration
and active coordination between governmental public-health
agencies, academic modeling teams, and industry partners can
play in developing modeling capabilities to support local, state,
and federal response to outbreaks.

Methods

Surveillance Data. Early in the COVID-19 pandemic, the Johns Hopkins CSSE
developed a publicly available data-tracking system and dashboard that was
widely used (24). CSSE collected daily data on cumulative reported deaths due
to COVID-19 at the county, state, territorial, and national levels and made
these data available in a standardized format beginning in March 2020.
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Incident deaths were inferred from this time series as the difference in
reported cumulative deaths on successive days. Throughout the real-time
forecasting exercise described in this paper, the Forecast Hub stated that fore-
casts of deaths would be evaluated using the CSSE data as the ground truth
and encouraged teams to train their models on CSSE data.

Like data from other public-health systems, the CSSE data occasionally
exhibited irregularities due to reporting anomalies. CSSE made attempts to
redistribute large “backlogs” of data to previous dates in instances in which
the true dates of deaths, or dates when the deaths would have been reported,
were known. However, in some cases, these anomalous observations were left
in the final dataset (S/ Appendix, SI Text). All updates were made available in
a public GitHub repository (https:/github.com/CSSEGISandData/COVID-19/
tree/master/csse_covid_19_data#data-modification-records). Weekly incidence
values were defined and aggregated based on daily totals from Sunday
through Saturday, according to the standard definition of epidemiological
weeks (EW) used by the CDC (25).

Forecast Format. Research teams from around the world developed forecast-
ing models and submitted their predictions to the COVID-19 Forecast Hub, a
central repository that collected forecasts of the COVID-19 pandemic in the
United States beginning in April 2020. The Forecast Hub submission process
has been described in detail elsewhere (26). Incident death forecasts, the focus
of this evaluation, could be submitted with predictions for horizons of 1 to 20
wk after the week in which a forecast was submitted.

A prediction for a given target (e.g., “1-week ahead incident death”) and
location (e.g., “California”) was specified by one or both of a point forecast (a
single number representing the prediction of the eventual outcome) and a
probabilistic forecast. Probabilistic forecasts were represented by a set of 23
quantiles at probability levels 0.01, 0.025, 0.05, 0.10, 0.15, ..., 0.95, 0.975,
0.99.

Forecast Model Eligibility and Evaluation Period. To create a set of standard-
ized comparisons between forecasts, only models that met specific inclusion
criteria were included in the analysis. For the 79 wk beginning in EW17-2020
and ending with EW42-2021, a model's weekly submission was determined to
be eligible for evaluation if the forecast

1. was designated as the “primary” forecast model from a team (groups who
submitted multiple parameterizations of similar models were asked to des-
ignate prospectively a single model as their scored forecast);

2. contained predictions for at least 25 out of 51 focal locations (national
level and states);
3. contained predictions for each of the 1- through 4-wk-ahead targets for

incident deaths; and
4. contained a complete set of quantiles for all predictions.

A model was included in the evaluation if it had submitted an eligible fore-
cast for at least 60% (n = 47) of the submission weeks during the continuous
79-wk period (S/ Appendix, Fig. S1). Based on the eligibility criteria, we com-
pared 28 models that had at least 47 eligible weeks during this time period.

Aggregated Forecast Evaluation of Pandemic Phases. In a secondary analysis,
forecasts were evaluated based on model submissions during four different
phases of the pandemic. A model was eligible for inclusion in a given phase if
it met the eligibility criteria listed in the Methods section: Forecast model eligi-
bility and evaluation period, and had forecast submissions for at least 60% of
the weeks during that phase. For the spring phase, models had to submit eligi-
ble forecasts for at least 6 out of 10 wk starting EW16-2020 and ending EW26-
2020. For summer eligibility, a model required submissions for at least 12 out
of 20 submission weeks between EW27-2020 and EW46-2020. For winter eligi-
bility, a model required submissions for at least 14 out of 23 submission weeks
between EWA47-2020 and EW16-2021. For delta phase eligibility, a model
required submissions for at least 16 out of 26 submission weeks between
EW17-2021 and EWA42-2021. These phases were determined based on the
waves of deaths at the national level during pandemic (Fig. 1B). Each phase
includes a period of increasing and decreasing incident deaths, although fore-
casts for the spring phase did not begin early enough to capture the increase
in many locations.

Forecasts were scored using CSSE data available as of November 16, 2021.
We did not evaluate forecasts on data first published in the 2 wk prior to this
date due to possible revisions to the data.

Disaggregated Forecast Evaluation by Pandemic Wave. In a post hoc second-
ary analysis, we evaluated forecasts made in selected locations during selected
pandemic waves. We used the following criteria in selecting locations and
waves to represent this analysis (Fig. 4 and Dataset S2).
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e We selected states that had unusually severe waves or whose waves “led”
the overall wave. Locations for which data for weekly deaths during the
wave had been substantially revised after the initial report were excluded
from consideration.

e We picked an initial date near the start of the first increase at the start of
the wave and a last date at the end of the steep decline of the wave.

To compare the forecasts during the waves, we plotted 1- and 4-wk-ahead
forecasts and calculated 95% PlIs coverage rates of forecasts made for the
given location both during the wave of interest over all weeks. Coverage rates
were computed for models that were included in the overall analysis (see eligi-
bility in Methods section: Forecast model eligibility and evaluation period)
and, for inclusion in the coverage calculations for each wave, the model addi-
tionally had to have made forecasts for at least 3 wk in the selected wave.

Forecast Locations. Forecasts were submitted for 57 locations including all 50
states, six jurisdictions and territories (American Samoa, Guam, the Northern
Mariana Islands, US Virgin Islands, Puerto Rico, and the District of Columbia),
and a US national-level forecast. Because American Samoa and the Northern
Mariana Islands had no reported COVID-19 deaths and one reported COVID-
19 death, respectively, during the evaluation period, we excluded these loca-
tions from our analysis.

In analyses for which measures of forecast skill were aggregated across
locations, we typically only included the 50 states in the analysis. Including
these territories in raw score aggregations would favor models that had fore-
casted for these regions because models were often accurate in predicting
low or zero deaths each week, thereby reducing their average error. The
national-level forecasts were not included in the aggregated scores because
the large magnitude of scores at the national level strongly influences the
averages. However, in analyses for which scores were stratified by location,
we included forecasts for all US states, including territories and at the national
level.

This evaluation used the CSSE COVID-19 surveillance data as ground truth
when assessing forecast performance. We did not score observations when
ground-truth data showed negative values for weekly incident deaths (due to
changes in reporting practices from state/local health agencies [e.g., removing
“probable” COVID-19 deaths from cumulative counts]). This occurred 11
times.

Forecast Models. For the primary evaluation, we compared 28 models that
submitted eligible forecasts for at least 47 of the 79 wk considered in the over-
all model eligibility period (Fig. 1). Teams that submitted to the COVID-19
Forecast Hub used a wide variety of modeling approaches and input data (S/
Appendix, Tables S1 and S2). Two of the evaluated models are from the
COVID-19 Forecast Hub itself: a baseline model and an ensemble model.

The COVIDhub-baseline model was designed to be a neutral model to pro-
vide a simple reference point of comparison for all models. This baseline
model forecasted a predictive median incidence equal to the number of
reported deaths in the most recent week (y;), with uncertainty around the
median based on changes in weekly incidence that were observed in the past
of the time series (details in S/ Appendix, SI Text).

The COVIDhub-ensemble model combined forecasts from all models that
submitted a full set of 23 quantiles for 1- through 4-wk-ahead forecasts for
incident deaths. The ensemble for incident weekly deaths was first submitted
in the week ending June 6, 2020 (EW23). For submission from EW23 through
EW29 (week ending July 18, 2020), the ensemble took an equally weighted
average of forecasts from all models at each quantile level. For submissions
starting in EW30 (week ending July 25, 2020), the ensemble computed the
median across forecasts from all models at each quantile level (27). We evalu-
ated more complex ensemble methods, and while they did show modest
improvements in accuracy, they also displayed undesirable increases in vari-
ability in performance during this evaluation period (28, 29).

Forecast Submission Timing. Of the 3,555 forecast submissions we included in
the evaluation, 230 (6%) were either originally submitted or updated more
than 24 h after the submission deadline. In all of these situations, modeling
teams attested (via annotation on the public data repository) to the fact that
they were correcting inadvertent errors in the code that produced the forecast
and that the forecast used as input only data that would have been available
before the original submission due date. In these limited instances, we evalu-
ated the most recently submitted forecasts.

Evaluation Methodology. We evaluated aggregate forecast skill using a range
of scores that assessed both point and probabilistic accuracy. These scores
were aggregated over time and locations for near-term forecasts (4 wk or less
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into the future) and, in a single analysis, for longer-term projections (5 to 20
wk into the future).

Point forecast error was assessed using the MAE defined for a set of obser-
vations y;v and each model’s designated point predictions y,, as
MAE — 151y~ 5, .

To assess probabilistic forecast accuracy, we used two scores that are easily
computable from the quantile representation for forecasts described in the
Methods section, Forecast Format. Briefly, the WIS is a proper score that combines
a set of interval scores for probabilistic forecasts that provide quantiles of the pre-
dictive forecast distribution (20):

S.(Fy) = (=D +2 (=y) 1y <D+ 2 (v -u) 10y > )

1 K
WiSso (Fy) = K+ij2 (Wo ly—m| +kZ1Wk : IS“(F,y))

An individual interval score for a single prediction and uncertainty level can
be broken into three additive components. These components—dispersion,
underprediction, and overprediction as they appear, respectively, in the pre-
ceding IS equation—represent contributions to the score. As an example,
say a 50% Pls (o« = 0. 5) is (40, 60) and the observation is 30. The
1S,—05({40, 60},30) = 20 + 40 + 0 = 60, where the dispersion is 20, the
penalty for underprediction is 40, and there is no penalty for overprediction.
Similarly, the WIS, which is computed as a weighted sum of interval scores
across all available uncertainty levels as shown in the preceding equation, can
be split into contributions from each of these components. These then can be
used to summarize the average performance of a model in terms of the width
of its intervals and the average penalties it receives for intervals missing below
or above the observation. Proper scores promote “honest” forecasting by not
providing forecasters with incentives to report forecasts that differ from their
true beliefs about the future (30).

We also evaluated the PIs coverage, the proportion of times a Pls of a cer-
tain level covered the observed value, to assess the degree to which forecasts
accurately characterized uncertainty about future observations. Computa-
tional details for Pls coverage are provided in S/ Appendix, SI Text.

Forecast Comparisons. Comparative evaluation of the considered models
1, ..., Mis hampered by the fact that not all of them provide forecasts for the
same set of locations and time points. To adjust for the level of difficulty of
each model’s set of forecasts, we computed 1) a standardized rank between 0
and 1 for every forecasted observation relative to other models that made the
same forecast and 2) an adjusted relative WIS and MAE.

To compute the WIS standardized rank score for model m and observation
i (srm,i), we computed the number of models that forecasted that observation
(n;) and the rank of model m among those n; models (rp, ;). The model with
the best (i.e., lowest) WIS received a rank of 1 and the worst received a rank of
n;. The standardized rank then rescaled the ranks to between 0 and 1, where
0 corresponded to the worst rank and 1 to the best (31-33), as follows:

I'm,i — 1
n;—1 ’
This metric is not dependent on the scale of the observed data. If all models
were equally accurate, distributions of standardized ranks would be approxi-
mately uniform.

A procedure to compute a measure of relative WIS, which evaluates the
aggregate performance of one model against the baseline model is described
in S/ Appendix, SI Text. To adjust for the relative difficulty of beating the

Srm,i=1—
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baseline model on the covered set of forecast targets, the chosen measure
also takes into account the performance of all other available models. The
same procedure was used to compute a relative MAE.

Data Availability. The forecasts from models used in this paper are available
from the COVID-19 Forecast Hub GitHub repository (https:/github.com/
reichlab/covid19-forecast-hub) (4, 34) and the Zoltar forecast archive (https:/
zoltardata.com/project/44) (35). These are both publicly accessible. The code
used to generate all figures and tables in the manuscript is available in a pub-
lic repository (https:/github.com/reichlab/covid19-forecast-evals). All analyses
were conducted using the R language for statistical computing (version 4.0.2)
(36). We followed the EPIFORGE 2020 guidelines for reporting results from
epidemiological forecasting studies (S/ Appendix, Table S5) (37).
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