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Abstract. We introduce and study a one parameter deformation of the polynuclear growth
(PNG) in (1+1)-dimensions, which we call the t-PNG model. It is defined by requiring that,

when two expanding islands merge, with probability t they sprout another island on top of the
merging location. At t = 0, this becomes the standard (non-deformed) PNG model that, in

the droplet geometry, can be reformulated through longest increasing subsequences of uniformly

random permutations or through an algorithm known as patience sorting. In terms of the latter,
the t-PNG model allows errors to occur in the sorting algorithm with probability t.

We prove that the t-PNG model exhibits one-point Tracy–Widom GUE asymptotics at large

times for any fixed t ∈ [0, 1), and one-point convergence to the narrow wedge solution of the
Kardar–Parisi–Zhang (KPZ) equation as t tends to 1. We further construct distributions for

an external source that are likely to induce Baik–Ben Arous–Péché type phase transitions. The

proofs are based on solvable stochastic vertex models and their connection to the determinantal
point processes arising from Schur measures on partitions.
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1. Introduction

The process of polynuclear growth (PNG, for short) is a mathematical model for randomly grow-
ing interfaces. If the space is one-dimensional, it can be described as follows; see the book of Meakin
[42] for a broader context. The interface is represented by a continuous broken line in a plane that
consists of horizontal linear segments and height 1 up or down steps between them. As time pro-
gresses, the up and down steps move with speed 1 to the left and to the right, respectively; this
is interpreted as lateral growth of islands that form on the interface. When a left-moving up step
and a right-moving down step meet, they disappear, which corresponds to merging of neighboring
islands. In addition to that, new islands are randomly created by adding an up step and a down step
separated by infinitesimal distance (that immediately starts growing). The creation, or nucleation
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Figure 1. Snapshots of the droplet PNG in (1+1) dimensions.

events are space-time uncorrelated, which is represented by their space-time locations forming the
two-dimensional Poisson process with intensity 1.

We will be interested in the so-called droplet PNG, where initially the interface is perfectly flat,
and all nucleation events take place in the light cone of the origin

{
(x, τ) ∈ R×R+ : |x| < τ

}
. Three

successive snapshots of this process are depicted in Figure 1, where the growing interface is pictured
on top in red, and the cone below is the space-time locus of the nucleation events symbolized by dots.
The horizontal line that runs through the cones indicates the value of time τ at which the interface
is drawn, with the corner corresponding to τ = x = 0. The full animation, created by Patrik Ferrari,
can be found on his webpage https://wt.iam.uni-bonn.de/ferrari/research/animationpng.

We will view the interface of the droplet PNG as the graph of a function called the height
function, and denote it by H(x, τ); we assume that initially H(x, 0) ≡ 0. It is not difficult to
show, cf. Prähofer–Spohn [45], that for |x| < τ , H(x, τ) is equidistributed with the length of the
longest increasing subsequence of the uniformly random permutation of size n, where n is itself
an independent Poisson-distributed random variable with parameter 1

2 (τ2 − x2).1 Two decades
ago, breakthrough results by Baik–Deift–Johansson [8] on asymptotic fluctuations of the length of
the longest increasing subsequences of random permutations, and by Johansson [34] on asymptotic
fluctuations of the totally asymmetric simple exclusion process (TASEP), opened the gates towards
understanding a close relationship between such (1+1)d random growth models and random matrix
type ensembles, cf. the survey of Ferrari–Spohn [31]. The height function H(x, τ) also admits an
interpretation through an algorithm called patience sorting ; see the survey [5] of Aldous–Diaconis
(and Appendix A below).

Both PNG and TASEP belong to the so-called (conjectural) Kardar–Parisi–Zhang (KPZ) uni-
versality class of random growth models, named after the authors of seminal work [36]. Another
member of this class is the KPZ stochastic partial differential equation introduced in the same pa-
per. It is more difficult to analyze, and arguably the best known way to understanding large time
asymptotics of this equation is through two one-parameter deformations of the TASEP, namely,
the (partially) asymmetric exclusion process (ASEP) dating back to the work of Spitzer [49] and
Macdonald–Gibbs–Pipkin [39], and the more recent q-TASEP introduced by Borodin–Corwin in

1This random variable counts the number of nucleation events that affect H(x, τ), and its expectation is the area
of the rectangle with opposite corners at (0, 0) and (x, τ) and sides parallel to the cone walls.
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[14]. Remarkable analysis of the ASEP by Tracy-Widom [50] led to finding the form and asymp-
totics of certain solutions of the KPZ equation by Amir–Corwin–Quastel [6] and Sasamoto–Spohn
[48]. An alternative and non-rigorous approach to such solutions via 1d delta-interaction Bose gas
and replica by Dotsenko [30] and Calabrese–Le Doussal–Rosso [25], was regularized by means of
the q-TASEP in [14].

Despite the substantial progress in this area that ensued, no analogously simple deformation of
the PNG process has been described so far, to the best of our knowledge. The goal of this work is
to present one. It would be fitting to use the term “q-PNG” for such a deformation. However, in
what follows we choose a different letter t to denote the deformation parameter, because of its tight
connection to a similarly named parameter in the theory of symmetric functions. Correspondingly,
we will speak of a t-PNG below. The value of t = 0 corresponds to the standard (non-deformed)
PNG process that was described above.

The definition of this (droplet) t-PNG model is very similar to the non-deformed one. The only
difference is in what happens when a right-moving up step and a left-moving down step meet. We
now stipulate that, with probability 1−t, they disappear as before (in which case, the corresponding
islands simply merge). With the complementary probability t, simultaneously with the merging,
another island of infinitesimal size is created on top of the merging place. In other words, with
probability t another nucleation is added at the space-time location of the merging event. In yet
another interpretation, if we speak in the language of rays in space-time formed by the moving
up/down steps (this is the language we use in the text below), merging corresponds to annihilation
of two rays at their intersection, while merging with nucleation corresponds to those rays moving
through each other despite their intersection. See Figure 5 below for an illustration of the behavior
of these rays. There is also a concise description of the corresponding deformation of the patience
sorting – one needs to introduce independent errors occuring with probability t in choosing which
pile to place a card onto; see Appendix A below.

We prove two limiting statements about large time asymptotic behavior of the height function of
the t-PNG model at a single point. In order to state them, it is more convenient to set the intensity
of the Poisson process of the nucleation events to be 1− t. Let us denote the corresponding height
function by Ht.

First, we prove, in Theorem 5.3 below, that

lim
τ2−x2→∞

P
[
Ht(x, τ)− (τ2 − x2)1/2

2−1/3(τ2 − x2)1/6
≤ s
]

= FTW(s),

where FTW denotes the Tracy–Widom Gaussian Unitary Ensemble (GUE) distribution. At t = 0
this coincides with the (Poissonized version of the) Baik–Deift–Johansson theorem, and the only
t-dependence in the statement is in the definition of Ht.

The second claim is convergence to a solution of the KPZ equation. To that end, we choose a
small parameter ε > 0 and set t = exp(−ε). Then, assuming |x| < τ , the normalized and centered
height function

ε
(
Ht(ε

−3x, ε−3τ)− ε−3(τ2 − x2)
)
− log ε

weakly converges, as ε→ 0, to T
24−HT (0), where T = τ2−x2, and HT (X) denotes the (Cole–Hopf)

solution of the KPZ equation with narrow wedge initial data at time T and position X. This is the
subject of Theorem 5.4 below.
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We also describe a family of distributions for additional nucleation events along one of the
boundaries of the cone |x| < τ that are likely to induce what is known as the Baik-Ben Arous-
Péché type phase transition [7] for Ht. Such phase transitions for the q-TASEP, ASEP, and KPZ
equation were described by Barraquand [10], Aggarwal–Borodin [2], and Borodin–Corwin–Ferrari
[15], respectively. Additional nucleations at the two walls of the cone are often referred to as external
sources, cf. Baik–Rains [9] and Imamura–Sasamoto [32].

We expect that the t-PNG model should admit further results, such as multi-point convergence to
the Airy2 process (following the ideas of Virág [51]); multi-point convergence to the narrow wedge
solution of the KPZ equation (see, e.g., Corwin–Ghosal–Shen–Tsai [27] and references therein);
introduction of the second external source and description of the stationary growth (cf. Aggarwal
[1]); adding colors to the model in such a way that it remains integrable (cf. Borodin–Wheeler [23]);
and extending the model to multiple layers via RSK-type algorithms (cf. Prähofer–Spohn [46] in
the t = 0 case). However, we will not pursue these directions in the present text.

Our proofs are based on relatively recent techniques of solvable stochastic lattice models and
their relation to the theory of symmetric functions. The t-PNG model arises as a certain limit of

a fully fused Ut(ŝl2) stochastic vertex model in a quadrant. Such models are known to be related
to Macdonald measures on partitions [14] in two different ways: (a) the two have equal averages
of certain observables, and (b) the height function of the vertex models is equidistributed with
the length of the corresponding random partitions for the Hall–Littlewood measures; see Borodin
[12] and Borodin–Bufetov–Wheeler [13]. Applying (a) to connect to the Schur measures, we are
able to deduce our limit results from the Airy asymptotics of the determinantal point processes
related to the non-deformed PNG process (and to the Plancherel measure on partitions), which has
been well understood since the works of Baik–Deift–Johansson [8], Borodin–Okounkov–Olshanski
[18], and Johansson [35]. Applying (b) tells us that, in the language of symmetric functions, our
construction of the t-PNG model corresponds to passing from Hall–Littlewood measures to those
related to modified Hall–Littlewood polynomials and further considering Plancherel specializations
of those. This should be compared to the role of the q-Whittaker measures for the q-TASEP, see
[14], and Hall–Littlewood measures for the ASEP, see Bufetov–Matveev [24]. In fact, it is the focus
on the modified Hall–Littlewood polynomials, which played an important role in our recent work
[4], that led us to the deformed PNG.

The remainder of this text is organized as follows. In Section 2 we recall the definitions and

various properties of the Ut(ŝl2) fused stochastic higher spin vertex models and their relation to
Macdonald measures. In Section 3 we analyze certain limits of these fused weights, which will
give rise to the t-PNG model (possibly with boundary conditions) in Section 4. In Section 5
we use a matching result between the t-PNG model and the Poissonized Plancherel measure to
derive asymptotic results concerning the t-PNG model, including its large scale fluctuations and its
scaling limit to the Kardar–Parisi–Zhang (KPZ) equation. In Appendix A we provide an alternative
interpretation for the t-PNG model through patience sorting; in Appendix B we provide a careful
proof of how the t-PNG model appears as a limit of a stochastic fused vertex model; and in
Appendix C we provide an alternative proof of an expectation matching result (Proposition 2.8
below) that we use.

In what follows, we denote the q-Pochhammer symbol (a; q)k =
∏k−1
j=0 (1− qja), for any complex

numbers a, q ∈ C and integer k ≥ 0.

Acknowledgments. Amol Aggarwal was partially supported by a Clay Research Fellowship.
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2. Miscellaneous Preliminaries

In this section we collect various miscellaneous results concerning vertex models and Macdonald
measures. In Section 2.1 we recall the definition of the fused stochastic higher spin vertex models
from [29, 22] and the notion of fusion. In Section 2.2 we recall matching results from [12] between
these stochastic vertex models and certain Macdonald measures.

2.1. Fused Stochastic Higher Spin Vertex Model. The vertex models we consider will be
probability measures on ensembles of directed up-right paths2 on the positive quadrant Z2

>0 that
emanate from the x and y axes; see the right side of Figure 2 for an example. The specific forms
of these probability measures are expressed through weights associated with each vertex v ∈ Z2

>0.
These weights will depend on the arrow configuration of v, which is a quadruple (i1, j1; i2, j2) =
(i1, j1; i2, j2)v of non-negative integers. Here, i1 counts the number of paths vertically entering
through v. In the same way j1, i2, and j2 count paths horizontally entering, vertically exiting, and
horizontally exiting through v, respectively. An example of an arrow configuration is depicted on
the left side of Figure 2.

Assigning values j1 to vertices on the line (1, y) and values i1 to vertices on the line (x, 1) can be
viewed as imposing boundary conditions on the vertex model. If for some sequence J = (J1, J2, . . .)
of nonnegative integers we have j1 = Jy at (1, y) and i1 = 0 at (x, 1) for each x, y > 0, then
Jy paths enter through each site (0, y) of the y-axis, and no paths enter through any site of the
x-axis. We will refer to this particular assignment as J-step boundary data; in the special case
when J = (1, 1, . . .), it will be abbreviated step boundary data. See the right side of Figure 2 for an
example when J = (2, 2, . . .). In general, we will refer to any assignment of i1 to Z>0 × {1} and j1
to {1} × Z>0 as boundary data, which can be deterministic (like J -step) or random.

In addition to depending on the arrow configuration (i1, j1; i2, j2), the vertex weight at v ∈ Z2

will also be governed by several complex parameters. The first among them consist in two pairs
of rapidity parameters (u; r) and (ξ; s), which are associated with the row and column intersecting
to form v, respectively; these rapidities (u; r) and (ξ; s) may vary across the domain but remain
constant along rows or columns, respectively. The last is a quantization parameter3 t, which cannot
vary and is fixed throughout the model. This produces five governing parameters, but the vertex
weight will in fact only depend on u and ξ through their quotient z = u

ξ , which is sometimes referred

to as a spectral parameter. Given this notation, we can define the following vertex weights.

Definition 2.1. Fix an arrow configuration (i1, j1, i2, j2) ∈ Z4
≥0 and complex numbers z, r, s ∈

C. Assume there exists an integer J ≥ 0 such that r2 = t−J . Then, define the vertex weight

2We will later “complement” these paths in a way that changes their orientations from up-right to up-left.
3In the framework of vertex models, this parameter is typically denoted by q. However, it will eventually match

with the parameter denoted by t in the context of Macdonald polynomials, and so we use the notation t here.
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i2

i1

j1 j2 (u3, r3)

(ξ4, s4)

Figure 2. Shown to the left is a vertex with arrow configuration (i1, j1; i2, j2) =
(4, 3; 2, 5). Shown to the right is a vertex model with (2, 2, . . .)-step boundary data.

Lz(i1, j1; i2, j2 | r, s) by setting

Lz(i1, j1; i2, j2 | r, s) = 1i1+j1=i2+j21j1≤J1j2≤J · (−1)i1t(
i1
2 )+i1j1zi1sj1+j2−i2

× (s−1z; t)j2−i1(s2; t)i2(tj2−i1+1; t)i2(r−2t1−i2−j2 ; t)i2
(t; t)i2(sz; t)i2+j2(r−2t1−j1 ; t)j1−j2

×
i2∑
k=0

tk
(t−i2 ; t)k(t−i1 ; t)k(r−2sz; t)k(tsz−1; t)k

(t; t)k(s2; t)k(tj2−i1+1; t)k(r−2t1−i2−j2 ; t)k
.

(2.1)

The weights (2.1) were originally found as equation (5.8) of [41] as entries for the higher spin R-

matrix associated with the affine quantum algebra Ut(ŝl2). They were later interpreted as weights
for stochastic vertex models through Theorem 3.15 of [29] and equation (5.6) of [22]; in particular,
(2.1) matches with the latter upon equating the (q, qJ) there with (t, r−2) here. As indicated by
Theorem 3.15 of [29], the weights Lz are stochastic, meaning∑

i2,j2≥0

Lz(i1, j1; i2, j2 | r, s) = 1.(2.2)

Throughout, the parameters (z, r, s) will be selected so that the summands in (2.2) are nonnegative.
Now let us describe how to sample a random path ensemble using the Lz weights from (2.1).

We will first define probability measures Pn on the set of path ensembles whose vertices are all
contained in triangles of the form Tn = {(x, y) ∈ Z2

≥0 : x+ y ≤ n}, and then we will take a limit as
n tends to infinity to obtain the vertex models in infinite volume. The first two measures P0 and
P1 are both supported by the empty ensembles (that have no paths).

For each positive integer n ≥ 1, we will define Pn+1 from Pn through the following Markovian
update rules. Use Pn to sample a directed path ensemble En on Tn. This yields arrow configurations
for all vertices in the triangle Tn−1. To extend this to a path ensemble on Tn+1, we must prescribe
arrow configurations to all vertices (x, y) on the complement Tn \ Tn−1, which is the diagonal
Dn = {(x, y) ∈ Z2

>0 : x+ y = n}. Since any incoming arrow to Dn is an outgoing arrow from Dn−1,
En and the initial data prescribe the first two coordinates, i1 and j1, of the arrow configuration to
each (x, y) ∈ Dn. Thus, it remains to explain how to assign the second two coordinates (i2 and j2)
to any vertex on Dn, given the first two coordinates.
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This is done by producing (i2, j2)(x,y) from (i1, j1)(x,y) according to the transition probability

Pn
[
(i2, j2)(x,y)

∣∣(i1, j1)(x,y)
]

= Luxξy (i1, j1; i2, j2 | ry, sx),(2.3)

where t ∈ C is a complex number and u = (u1, u2, . . .) ⊂ C, ξ = (ξ1, ξ2, . . .) ⊂ C, r = (r1, r2, . . .) ⊂
C, and s = (s1, s2, . . .) ⊂ C are infinite sequences of complex numbers, so that r2y = t−Jy for each
y ≥ 1, for some sequence of nonnegative integers J = (J1, J2, . . .) (as in Definition 2.1). We assume
that these parameters are chosen so that the probabilities (2.3) are all nonnegative; the stochasticity
(2.2) of the Lz weights then ensures that (2.3) is indeed a probability measure.

Choosing (i2, j2) according to the above transition probabilities yields a random directed path
ensemble En+1, now defined on Tn+1; the probability distribution of En+1 is then denoted by Pn+1.
We define PFV = limn→∞ Pn.4 Then, PFV is a probability measure on the set of directed path
ensembles that depends on the parameters t, u, ξ, r (equivalently, J), and s. This measure is
called the fused stochastic higher spin vertex model ; we denote the associated expectation by EFV.

If ry = t−1/2 (that is, Jy = 1), then this model is known as the (prefused) stochastic higher spin
vertex model [29, 22]. By (2.1), Lz(i1, j1; i2, j2 | r, s) = 0 if either j1 /∈ {0, 1} or j2 /∈ {0, 1}. In
particular, horizontal edges of this model can accommodate at most one arrow (but vertical edges
may accommodate arbitrarily many).

Remark 2.2. Although we have assumed above that (t,u, ξ,J , s) are chosen to ensure that the
weights (2.3) all nonnegative, the probability under PFV of any cylinder event is a rational function
in these parameters. Therefore, the probability PFV and expectation EFV remain well-defined by
analytic continuation for any complex parameters (t,u, ξ,J , s) (with J consisting of nonnegative
integers) when this nonnegativty does not hold.

Associated with any six-vertex ensemble E on the positive quadrant Z2
>0 is a height function

h : Z2
>0 → Z, defined by setting h(x, y) equal to the number of paths in E that pass either through

or below (x, y). Observe that E is determined uniquely from its height function h.
Before proceeding, let us recall the relation between height functions for fused and prefused

stochastic higher spin vertex models. To that end, we require some terminology.

Definition 2.3. Fix sequences of real numbers u = (u1, u2, . . .) and of positive integers J =

(J1, J2, . . .). For each k ≥ 1, set J[1,k] =
∑k
i=1 Ji, and define r = (r1, r2, . . .) ⊂ R by setting

ri = t−Ji/2 for each i ≥ 1. Further set v = (v1, v2, . . .) =
⋃∞
k=0{uk, tuk, . . . , tJk−1uk}, that is,

vi = tjuk for each integer i ≥ 1, where the indices j = j(i) ∈ [0, Jk − 1] and k = k(i) ≥ 1 are such

that i = J[1,k−1] + j. Letting t−1/2 = (t−1/2, t−1/2, . . .), we call (u; r) the fusion of (v, t−1/2) with
respect to J .

Under this notation, v is a union of geometric progressions with ratio t started from entries of u,
with lengths indexed by J . The following lemma, essentially originating in [38] (though described
in the formulation below in [29, 22, 41, 11]), states that one may view the fused stochastic higher
spin vertex model with parameters (t, v, ξ, r, s) as obtained from the prefused one with parameters

(t,u, ξ, t−1/2, s) by “concatenating” (or “fusing”) each family of rows corresponding to a single
geometric progression. We refer to Figure 3 for a depiction.

Lemma 2.4 ([22, Section 5]). Consider two stochastic higher spin vertex models. The first is

prefused under step boundary data with parameters (t,u, ξ, t−1/2, s), and the second is fused under
J-step boundary data with parameters (t,v, ξ, r, s); denote their height functions by hPV and hFV,

4Here, FV stands for “fused vertex,” and below PV will stand for “prefused vertex.”
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(u1, t
−1/2)

(tu1, t
−1/2)

(t2u1, t
−1/2)

(u2, t
−1/2)

(u3, t
−1/2)

(tu3, t
−1/2)

J1

J2

J3

(u1, t
−J1/2)

(u2, t
−J2/2)

(u3, t
−J3/2)

(ξ2, s2)

(ξ2, s2)

Figure 3. Shown to the left is a path ensemble from a prefused model, which
concatenates to one for a fused model shown on the right. The joint laws of the
height function at the corresponding colored vertices coincide.

respectively. Suppose (v, r) is the fusion of (u, t−1/2) with respect to J . Then, for any vertices
(x1, y1), (x2, y2), . . . , (xm, ym) ∈ Z2

>0, the joint laws of
{
hFV(xi, yi)

}
and

{
hPV(xi, J[1,yi])

}
coincide.

2.2. Macdonald Measures and Vertex Models. We now recall a matching result between
observables for the stochastic higher spin vertex models and those for certain Macdonald measures
from [12]; we begin by recalling the latter measures.

Fix complex parameters q, t ∈ C with |q|, |t| < 1, and let x = (x1, x2, . . .) denote an infinite set
of variables. A partition λ = (λ1, λ2, . . . , λ`) is a non-increasing sequence of positive integers. The

length of any partition λ is `(λ) = `, and the size of λ is |λ| =
∑`
i=1 λi. For any integer i ≥ 1, we

let mi(λ) denote the multiplicity of i in λ, that is, it denotes the number of indices j ≥ 1 such that
λj = i. For any integer n ≥ 0, let Yn denote the set of partitions of size n, and let Y =

⋃∞
n=0 Yn

denote the set of all partitions.
Let Λq,t(x) denote the ring of symmetric functions in x, with coefficients in C(q, t). Denote

the power sum symmetric function pλ(x) and the (q, t)-deformed complete homogeneous symmetric
function gk(x; q, t) for each partition λ ∈ Y and integer k ≥ 0 by

pk(x) =
∑
x∈x

xk; pλ(x) =

`(λ)∏
j=1

pλj
(x); gk(x; q, t) =

∑
λ∈Yk

zλ(q, t)−1pλ(x),

where

zλ(q, t) =
∞∏
i=1

imi(λ)mi(λ)!

`(λ)∏
j=1

1− qλj

1− tλj
.

Under this notation,
{
pλ(x)

}
λ∈Y is a linear basis of Λq,t(x), and

{
pk(x)

}
k≥1 and

{
gk(x; q, t)

}
k≥1

are both algebraic bases of Λq,t(x); see [40].
Next, we recall the Macdonald symmetric functions Pλ(x; q, t) ∈ Λq,t(x) and Qλ(x; q, t) ∈

Λq,t(x), from (6.4.7) and (6.4.12) of [40], respectively. For any two sequences of variables x and y,
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(6.4.13) of [40] implies that Macdonald polynomials satisfy the Cauchy identity∑
λ∈Y

Pλ(x; q, t)Qλ(y; q, t) = Ωq,t(x;y),(2.4)

where

Ωq,t(x;y) =
∏
x∈x

∏
y∈y

(txy; q)∞
(xy; q)∞

= exp

( ∞∑
k=1

1

k

1− tk

1− qk
pk(x)pk(y)

)
.

To define Macdonald measures in the generality we will eventually use, we require specializations
of Λq,t(x), which are algebra homomorphisms ρ : Λq,t(x) → C. For any element f ∈ Λq,t(x), we
abbreviate f(ρ) = ρ

(
f(x)

)
; for example, Pλ(ρ; q, t) = ρ

(
Pλ(x; q, t)

)
and Qλ(ρ; q, t) = ρ

(
Qλ(x; q, t

)
.

For any two specializations ρ1, ρ2 : Λq,t(x)→ C, the Cauchy identity (2.4) implies

∑
λ∈Y

Pλ(ρ1; q, t)Qλ(ρ2; q, t) = Ωq,t(ρ1; ρ2), where Ωq,t(ρ1; ρ2) = exp

( ∞∑
k=1

1

k

1− tk

1− qk
pk(ρ1)pk(ρ2)

)
.

(2.5)

whenever both sides of (2.5) converge absolutely.
Under this notation, following Definition 2.2.5 of [14], we define the Macdonald measure PMM =

PMM;ρ1,ρ2 on Y by setting

PMM[λ] = Ωq,t(ρ1; ρ2)−1Pλ(ρ1; q, t)Qλ(ρ2, q; t),

for any partition λ ∈ Y; the associated expectation is denoted by EMM = EMM;ρ1,ρ2 . By (2.5), the
Macdonald measure is a probability measure assuming that ρ1 and ρ2 are Macdonald nonnegative,
that is, if Pλ(ρ1; q, t), Qλ(ρ2; q, t) ≥ 0 for each λ ∈ Y. Otherwise, PMM is a possibly signed measure
that sums to one, and we can still consider probabilities and expectations with respect to it.

Remark 2.5. Two special cases of the Macdonald measure will be of particular use to us. First, if
q = 0, then it is the Hall–Littlewood measure, denoted by PHL = PHL;ρ1,ρ2 . Second, if q = t, then it
is the Schur measure of [43], denoted by PSM = PSM;ρ1,ρ2 .

Let us describe certain specializations (ρ1, ρ2) that we will use. To define a specialization ρ, it
suffices to fix gk(ρ; q, t) for each k ≥ 1, since {gk}k≥1 forms an algebraic basis of Λq,t(x). For a
real number γ and (possibly infinite) sequences of nonnegative real numbers α = (α1, α2, . . .) and
β = (β1, β2, . . .) with

∑∞
j=1(αj + βj) <∞, we write ρ = (α | β | γ) if the gk(ρ) satisfy

∞∑
k=0

zkgk(ρ) = eγz
∞∏
j=1

(tαjz; q)∞
(αjz; q)∞

(1 + βjz).(2.6)

If γ = 0, then we abbreviate ρ = (α | β). Under this notation, we will in this section often set
ρ1 = (x | 0), where 0 = (0, 0, . . .) is the sequence of infinitely many entries equal to 0.

Remark 2.6. Let α = αε = (εα1, εα2, . . .) be a sequence of nonnegative real numbers, dependent on
a parameter ε > 0, and let β = (β1, β2, . . .) be a sequence of nonnegative real numbers independent
of ε. Suppose that A = ε

∑∞
i=1 αi,

∑∞
j=1 βj , and maxi≥1 αi are bounded above (independently of

ε). Then, by (2.6), the specialization (αε | β) converges to5
(
0 | β | 1−t

1−qA
)
, as ε tends to 0.

5By this, we mean that limε→0 f(αε | β) = f
(
0 | β | 1−t

1−qA
)
, for any symmetric function f ∈ Λq,t(x).
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To equate observables for the stochastic higher spin vertex model and the Macdonald measure,
we must impose how the parameters underlying these models are related. This is done through the
following definition, which originally appeared in [12].

Definition 2.7 ([12, Definition 4.1]). Fix sequences of parameters (t,u, ξ, r, s) for a fused stochastic
higher spin vertex model, such that ri = t−Ji/2 for each i ≥ 1 and some positive integer sequence
J = (J1, J2, . . .) ⊆ Z>0. Further fix an integer M ≥ 1 and nonnegative parameter sequences
(x,α,β) for a Macdonald measure, with x =

(
x1, x2, . . . , xJ[1,N]

)
and

∑∞
j=1(αi + βj) <∞. We say

that these parameter sequences match if the following conditions are satisfied.

(1) We have x =
⋃N
i=1{t1−Jiu

−1
i , t2−Jiu−1i , . . . , u−1i }.

(2) Denoting for any z ∈ R and h ∈ Z≥0 the geometric progression

G(z;h) = {z, tz, . . . , th−1z},

we may partition α and β into disjoint unions of geometric progressions

α =
m⋃
i=1

G(α̂i;hi); β =
n⋃
i=1

G(β̂i;hi),

such m+ n = M that the following holds.
(a) For each i ∈ {1, 2, . . . ,m}, there exists j = j(i) ≥ 1 such that sj = t−hi/2 and

ξj = t−hi/2α̂−1i .

(b) For each i ∈ {1, 2, . . . , n}, there exists k = k(i) ≥ 1 such that sk = −qhi/2 and

ξk = q−hi/2β̂−1i .
(c) We have that

{
j(1), j(2), . . .

}
∪
{
k(1), k(2), . . .

}
= {1, 2, . . . ,M}.

In particular, under this notation, each entry of {s1, s2, . . . , sM} is a possibly negated power of t or
q; its positive entries index the lengths of the geometric sequences comprising α, and its negative
entries index the lengths of those comprising β. Moreover, under the prefused setting where Ji = 1
for each i ≥ 1, u and x coincide as unordered sets, upon inverting each entry of the latter.

Now we have the following result, which was established in [12] (where it was stated in the
prefused setting), that equates observables of the fused stochastic higher spin vertex model with a
Macdonald measure, assuming their parameter sets match.

Proposition 2.8 ([12]). Let t ∈ C denote a complex number and u, ξ, r, s be infinite sequences
of complex parameters, such that ri = t−Ji/2 for some positive integer sequence J = (J1, J2, . . .).
Further let M ≥ 1 be an integer and (x,α,β) be parameters sequences for a Macdonald measure
with specializations ρ1 = (x | 0) and ρ2 = (α | β). Assume that these parameter sequences match
in the sense of Definition 2.7. Denoting K = J[1,N ], we have for any ζ ∈ C \ {−1,−t−1,−t−2, . . .}
that

EFV

[
1

(−ζth(M,N); t)∞

]
= EMM

[
1

(−ζ; t)∞

K−1∏
j=0

(1 + ζqλK−j tj)

]
.(2.7)

Here, the left side denotes the expectation with respect to the fused stochastic higher spin vertex
model with parameters (t,u, ξ, r, s), and the right side denotes the expectation with respect to the
Macdonald measure with specializations ρ1 and ρ2.

Proof. Corollary 4.4 of [12] establishes (2.7) in the prefused case, that is, when Ji = 1 for each
i ≥ 1. This, together with Lemma 2.4, establishes the result in general. �
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The above proof of Proposition 2.8 ends up being rather heavy as it is based on finding and
matching explicit integral representations of both sides of (2.7). In Appendix C below, we offer a
more direct and less formulaic argument that proves Proposition 2.8 in the Schur q = t case. The
general Macdonald case then easily follows as well.

By setting q = 0 in Proposition 2.8, we deduce the following corollary that states a distributional
equality between a fused stochastic higher spin vertex model and a Hall–Littlewood measure (recall
Remark 2.5). Let us mention that (a multi-dimensional extension of) this corollary could also be
derived from Theorem 4.1 of [13] (or from the framework of [3]).

Corollary 2.9. Adopt the notation of Proposition 2.8. Then, K − h(M,N) under the fused sto-
chastic higher spin vertex model with parameters (t,u, ξ, r, s) has the same law as `(λ), sampled
under the Hall–Littlewood measure with specializations (ρ1, ρ2).

Proof. By taking q = 0 in (2.7), we deduce for any ζ ∈ C \ {−1,−t−1, . . .} that

EFV

[
1

(−ζth(M,N); t)∞

]
= EHL

[
1

(−ζtK−`(λ); t)∞

]
,

where we have used Remark 2.5 and the fact that qλK−j = 0 unless j < K − `(λ). This, together
with the t-binomial theorem, implies

∞∑
j=0

ζj

(t; t)j
EFV[tjh(M,N)] =

∞∑
j=0

ζj

(t; t)j
EHL[tj(K−`(λ))].(2.8)

In particular, the coefficients of ζj on either side of (2.8) must coincide for each j ≥ 0; this implies
that all moments of th(M,N) and tK−`(λ) coincide. Since both are random variables bounded in
[0, 1], it follows that they have the same law; so, h(M,N) and K − `(λ) have the same law, from
which we deduce the corollary. �

3. Limits of the Fused Weights

In this section we analyze the fused vertex models from Section 2.1 under the limiting regime
where the Ji tend to ∞ and the si each tend to either 0 or ∞. We first explicitly evaluate the
limiting Lz vertex weights (from (2.1)) in Section 3.1 and then explain an interpretation for the
associated vertex model in Section 3.2.

3.1. Limiting Weights. In this section we consider limits of the Lz(i1, j1; i2, j2 | t−J/2, s) vertex
weights from (2.1) under the regimes where (J, s) = (∞,∞) or (J, s) = (∞, 0) (see Lemma 3.2 and
Lemma 3.3 below, respectively). These quantities will admit limits if both the spectral parameter is
of the form z = t−JsA for some fixed A ∈ C and (j1, j2) = (J −h1, J −h2) for some fixed (h1, h2) ∈
Z2
≥0. The first condition is closely related to the initial terms q1−Jiu−1i in the sequence x from the

first part of Definition 2.7, and the second to the appearance of K − h(M,N) = J[1,N ] − h(M,N)
in Corollary 2.9. Observe that the second condition corresponds to horizontal edges being “almost
saturated” with arrows (as (2.1) implies Lz(i1, j1; i2, j2 | t−J/2, s) 6= 0 only if j1, j2 ≤ J). In what
follows, for any complex numbers A, t ∈ C and integers i1, h1, i2, h2 ≥ 0 we define the quantities

ΨA(i1, h1; i2, h2) = A−i2ti2(i2+h1)
(A−1ti2+h1+1; t)∞(th2−i2+1; t)i2(t; t)h1

(t; t)i2(t; t)h2

× 1i1−h1=i2−h2

i2∑
k=0

(At)k
(t−i2 ; t)k(t−i1 ; t)k
(t; t)k(th2−i2+1; t)k

,

(3.1)
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and

ΘA(i1, h1; i2, h2) = t(
i2+1

2 )+i2h1A−i2
(th2−i2+1; t)i2(t; t)h1

(−th2−i2+1A−1; t)∞(t; t)i2(t; t)h2

× 1i1+j1=i2+j2

i2∑
k=0

tk
(t−i1 ; t)k(t−i2 ; t)k(−A; t)k

(t; t)k(th2−i2+1; t)k
.

(3.2)

Remark 3.1. Observe for any real numbers t ∈ (0, 1) and A > 0, and any integers i1, h1, i2, h2 ≥ 0,
that ΨA(i1, h1; i2, h2) ≥ 0. Indeed, for ΨA, the only possibly negative factors on the right side of
(4.1) are given by (th2−i2+1; t)i2(th2−i2+1; t)−1k = (th2−i2+k+1; t)i2−k and (t−i2 ; t)k(t−i1 ; t)k. The
first is nonzero only if h2 − i2 + k ≥ 0, in which case it is positive; the second is also nonnegative
since (t−i1 ; t)k and (t−i2 ; t)k are both nonzero only if k ≤ min{i1, i2}, in which case they are of the
same sign (−1)k. Similar reasoning indicates that ΘA(i1, h1; i2, h2) ≥ 0 under the same conditions.

Lemma 3.2. For any complex numbers A, t ∈ C and integers i1, h1, i2, h2 ∈ Z≥0, we have

lim
J→∞

(
lim
s→∞

LAs/tJ (i1, J − h1; i2, J − h2 | q−J/2, s)
)

= ΨA(i1, h1; i2, h2),

where ΨA is defined by (3.1).

Proof. Throughout, we abbreviate L = LAs/tJ (i1, J − h1; i2, J − h2 | q−J/2, s). If i1− h1 6= i2− h2,
then L = 0 due to the factor of 1i1+j1=i2+j2 in (2.1), in which case the lemma holds.

Thus, we will assume in what follows that i1−h1 = i2−h2. Then, setting (u, j1, j2) = (Ast−J , J−
h1, J − h2) in the definition (2.1) of the Lz weights gives

L = (−1)i1t(
i1
2 )−i1h1

Ai1s2J−2h2(At−J ; t)J−h2−i1
(t; t)i2(As2t−J ; t)i2+J−h2

(th1+1; t)h2−h1

(tJ−h2−i1+1; t)i2

× (s2; t)i2(th2−i2+1; t)i2

i2∑
k=0

tk
(t−i2 ; t)k(t−i1 ; t)k(As2; t)k(tJ+1A−1; t)k

(t; t)k(s2; t)k(tJ−h2−i1+1; t)k(th2−i2+1; t)k
,

where we have used the fact that i1 + j1 + j2− i2 = 2j2 = 2J − 2h2. Letting s tend to ∞ and using
the facts that

lim
s→∞

(As2t−J ; t)i2+J−h2

(As2t−J )i2+J−h2t(
i2+J−h2

2 )
= 1; lim

s→∞

(s2; t)i2

(−s2)i2t(
i2
2 )

= 1; lim
s→∞

(As2; t)k
(s2; t)k

= Ak,

we find

lim
s→∞

L = (−1)i1+J+h2t(
i1
2 )+(i2

2 )−i1h1
Ai1−i2−J+h2(At−J ; t)J−h2−i1(th2−i2+1; t)i2

tJ(h2−i2−J)+(i2+J−h2
2 )(t; t)i2(th1+1; t)h2−h1

× (tJ−h2−i1+1; t)i2

i2∑
k=0

(At)k
(t−i2 ; t)k(t−i1 ; t)k(tJ+1A−1; t)k

(t; t)k(tJ−h2−i1+1; t)k(th2−i2+1; t)k
,

(3.3)

Next, we let J tend to ∞. Since for any k ≥ 0 we have

(At−J ; t)J−k = (−A)J−kt(
k+1
2 )−(J+1

2 )(A−1tk+1; t)J−k,

we have

lim
J→∞

(At−J ; t)J−h2−i1

(−A)J−h2−i1t(
i1+h2+1

2 )−(J+1
2 )(ti1+h2+1A−1; t)∞

= 1.
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Inserting this into (3.3) gives

lim
J→∞

(
lim
s→∞

L
)

= A−i2t(
i1
2 )+(i2

2 )−i1h1
t(

i1+h2+1
2 )−(J+1

2 )(A−1ti1+h2+1; t)∞(th2−i2+1; t)i2

tJ(h2−i2−J)+(i2+J−h2
2 )(t; t)i2(th1+1; t)h2−h1

×
i2∑
k=0

(At)k
(t−i2 ; t)k(t−i1 ; t)k
(t; t)k(th2−i2+1; t)k

.

Since

J(i2 − h2 + J)−
(
J + 1

2

)
−
(
i2 + J − h2

2

)
= −

(
i2 − h2

2

)
= −

(
i1 − h1

2

)
;(

i1
2

)
− i1h1 −

(
i1 − h1

2

)
= −

(
h1 + 1

2

)
; i1 + h2 = i2 + h1,

it follows that

lim
J→∞

(
lim
s→∞

L
)

= A−i2t(
i2
2 )+(i2+h1+1

2 )−(h1+1
2 ) (A−1ti1+h2+1; t)∞(th2−i2+1; t)i2

(t; t)i2(th1+1; t)h2−h1

×
i2∑
k=0

(At)k
(t−i2 ; t)k(t−i1 ; t)k
(t; t)k(th2−i2+1; t)k

.

(3.4)

By the equalities(
i2
2

)
+

(
i2 + h1 + 1

2

)
−
(
h1 + 1

2

)
= i2(i2 + h1); (th1+1; t)h2−h1

=
(t; t)h2

(t; t)h1

,

(3.4) implies the lemma. �

Lemma 3.3. We have that

lim
J→∞

(
lim
s→0

L−A/stJ (i1, J − h1; i2, J − h2 | q−J/2, s)
)

= ΘA(i1, h1; i2, h2),

where ΘA is defined by (3.2).

Proof. Similarly to in the proof of Lemma 3.2, we abbreviate L = L−A/stJ (i1, J − h1; i2, J − h2).
Again, if i1 − h1 6= i2 − h2, then L = 0 due to the factor of 1i1+j1=i2+j2 in (2.1), so the lemma
holds.

Thus, we assume in what follows that i1−h1 = i2−h2. Then, setting (u, j1, j2) = (−As−1t−J , J−
h1, J − h2) in (2.1), we deduce

L = t(
i1
2 )−i1h1Ai1s2J−2i1−2h2

(−s−2t−JA; t)J−h2−i1(th2−i2+1; t)i2
(t; t)i2(−t−JA; t)J−h2+i2(th1+1; t)h2−h1

× (s2; t)i2(tJ−i1−h2+1; t)i2

i2∑
k=0

tk
(t−i1 ; t)k(t−i2 ; t)k(−A; t)k(s2tJ+1A−1; t)k
(t; t)k(s2; t)k(tJ−i1−h2+1; t)k(th2−i2+1; t)k

,

where we have used the fact that i1 − h1 = i2 − h2. Letting s tend to 0 and using the fact that

lim
s→0

s2J−2i1−2h2(−s−2t−JA; t)J−h2−i1 = tJ(i1+h2−J)+(J−h2−i1
2 )AJ−h2−i1 ,
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we obtain

lim
s→0

L = t(
i1
2 )−i1h1+J(i1+h2−J)+(J−i1−h2

2 )AJ−h2
(th2−i2+1; t)i2

(t; t)i2(−t−JA; t)J−h2+i2(th1+1; t)h2−h1

× (tJ−i1−h2+1; t)i2

i2∑
k=0

tk
(t−i1 ; t)k(t−i2 ; t)k(−A; t)k

(t; t)k(tJ−i1−h2+1; t)k(th2−i2+1; t)k
.

Next letting J tend to ∞ and using the facts that

lim
J→∞

A−J tJ(J−h2+i2)−(J−h2+i2
2 )(−t−JA; t)J−h2+i2 = Ai2−h2(−th2−i2+1A−1; t)∞;(

i1
2

)
+

(
J − i1 − h2

2

)
−
(
J − h2 + i2

2

)
=

(
i2 + 1

2

)
+ h1(i1 + i2)− J(i1 + i2),

where the first holds since

(−t−JA; t)J−k = tJ(k−J)+(J−k
2 )AJ−k(−tk+1A−1; t)J−k,

for any integer k, and the second holds since i1 − h1 = i2 − h2, we deduce

lim
J→∞

(
lim
s→0

L
)

= t(
i2+1

2 )+i2h1A−i2
(th2−i2+1; t)i2

(−th2−i2+1A−1; t)∞(t; t)i2(th1+1; t)h2−h1

×
i2∑
k=0

tk
(t−i1 ; t)k(t−i2 ; t)k(−A; t)k

(t; t)k(th2−i2+1; t)k
.

Since

(th1+1; t)h2−h1
=

(t; t)h2

(t; t)h1

,

this implies the lemma. �

3.2. Corresponding Vertex Model. In this section we explain how to interpret the vertex model
associated with the limiting fused vertex weights derived in Section 3.1. In what follows, for any
complex numbers A, t ∈ C and integers i1, h1, i2, h2 ≥ 0, we recall the quantities ΨA(i1, h1; i2, h2)
and ΘA(i1, h1; i2, h2) from (3.1) and (3.2), respectively. We further fix sequencesA = (A1, A2, . . .) ⊂
C; ω = (ω1, ω2, . . .) ⊂ C; and s = (s1, s2, . . .) with si ∈ {0,∞} for each i ≥ 1, such that each
ΨAyωx

∈ [0, 1] if sy =∞ and each ΘAyωx
∈ [0, 1] if sy = 0.

The vertex models discussed here will be obtained as follows. Let J ≥ 1 be a large integer
and s ∈ (0, 1) be a small real number. We first consider a fused stochastic higher spin vertex
model, as in Section 2.1, with rapidity parameters (uy, ry) = (t−JAy, t

−J/2) in the y-th row. The
rapidity parameters (ξx, sx) in the x-th column depend on whether sx = ∞ or sx = 0; if sx = ∞
then set (ξx, sx) = (s−1ωx, s

−1), and otherwise if sx = 0 then set (ξx, sx) = (−s−1ωx, s). Next, we
horizontally complement this vertex model, that is, we replace any arrow configuration (i1, j1; i2, j2)
with (i1, h1; i2, h2) = (i1, J − j1; i2, J − j2). Then, we let s tend to 0 and J tend to ∞.

Observe under the above complementation that (J, J, . . .)-step boundary data on the quadrant
becomes empty boundary data, in which no arrows enter through either the x-axis or y-axis. Still,
paths can exist in this model within the interior of the quadrant Z2

>0. Indeed, due the complemen-
tation, the form of arrow conservation satisfied by this model will be i1 − h1 = i2 − h2 (instead
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Figure 4. Shown to the left is a vertex model with J = (2, 2, . . .) and J -step
boundary data. Shown to the right is its horizontal complementation.

of i1 + h1 = i2 + h2). As such, vertices admit the possibility to “create” two exiting arrows or
“destroy” two entering ones6; see Figure 4 for an example.

Using the weights ΨA and ΘA, we can explicitly sample this limiting complemented path ensemble
as in Section 2.1, namely, by randomly assigning arrow configurations to vertices in triangles of the
form Tn =

{
(x, y) ∈ Z2

>0 : x + y = n}. As previously, to extend an assignment from Tn to Tn+1,
we must explain how to sample the last two coordinates (i2, h2)(x,y) of an arrow configuration at

any vertex (x, y) ∈ Dn =
{

(x, y) ∈ Z2
>0 : x+y = n+ 1

}
, given the first two coordinates (i1, h1)(x,y).

This is done by producing (i2, h2)(x,y) from (i1, h1)(x,y) according to the transition probabilities

P
[
(i2, h2)(x,y)

∣∣(i1, h1)(x,y)
]

= ΨAyωx
(i1, h1; i2, h2), if sx =∞;

P
[
(i2, h2)(x,y)

∣∣(i1, h1)(x,y)
]

= ΘAyωx
(i1, h1; i2, h2), if sx = 0.

That we use ΨAyωx as a probability if sx = ∞ and ΘAyωx as one if sx = 0 is in accordance with
the limits considered in Lemma 3.2 and Lemma 3.3, respectively.

Letting n tend to ∞ then yields a random (horizontally complemented) path ensemble on all of
Z2
>0, which is the vertex model corresponding to the limit weights derived in Section 3.1.

4. A t-Deformed Polynuclear Growth Model

In this section we apply a further limit, as the Ai parameters to∞, to the vertex model described
in Section 3.2. By further taking sx = ∞ for each x, we will see in Section 4.1 this gives rise to a
t-deformation of the polynuclear growth (PNG) model. Then, in Section 4.2, we will explain how
one can incorporate boundary conditions in this growth model by taking the first several sx to be
0. Throughout this section, we fix parameters t ∈ [0, 1) and θ > 0.

4.1. The t-PNG Model. In this section we analyze a limit of the model considered in Section 3.2
as the Ay tend to ∞, which will give rise to a t-PNG model. Here, we take sx =∞ for each x ≥ 1.
To implement this limit, let ε ∈ (0, 1) denote some parameter (which we will eventually let tend to
0), and set

Ay =
t

1− t
(εθ)−1, for each integer y ≥ 1; ωx = (εθ)−1, for each integer x ≥ 1.(4.1)

6The arrow conservation i1 + h2 = i2 + h1 can alternatively be interpreted as directing paths up-left, instead of
up-right.
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Further set

A = Ayωx =
t

1− t
(εθ)−2.(4.2)

Let us analyze the weights ΨA under (4.2) for small ε.

Lemma 4.1. The following statements hold for ΨA(i1, h1; i2, h2) under (4.2).

(1) For (i1, h1) = (0, 0), we have

ΨA(0, 0; 0, 0) = 1−O(ε2); ΨA(0, 0; 1, 1) = (εθ)2 −O(ε4);
∞∑
k=2

∣∣ΨA(0, 0; k, k)
∣∣ = O(ε4).(4.3)

(2) For (i1, h1) = (1, 0) or (i1, h1) = (0, 1), we have

ΨA(1, 0; 1, 0) = 1−O(ε2);
∞∑
k=2

ΨA(1, 0; k + 1, k) = O(ε2);

ΨA(0, 1; 0, 1) = 1−O(ε2);
∞∑
k=2

ΨA(0, 1; k, k + 1) = O(ε2).

(4.4)

(3) For (i1, h1) = (1, 1), we have

ΨA(1, 1; 0, 0) = 1− t−O(ε2); ΨA(1, 1; 1, 1) = t−O(ε2);
∞∑
k=2

ΨA(1, 1; k, k) = O(ε2).(4.5)

Proof. Let us show (4.3). To that end, we insert (i1, h1) = (0, 0) into (3.1) to obtain

ΨA(0, 0; i2, h2) = A−i2ti
2
2

(A−1ti2+1; t)∞
(t; t)i2

1h1=h2−i2 ,(4.6)

where we have used the facts h1 = h1 − i1 = h2 − i2 for i1 = 0; that the sum on the right side
of (3.1) is supported on the term k = 0, due to the factor of (t−i1 ; t)k there; and the fact that
(th2−i2+1; t)i2(t; t)h1 = (t; t)h2 , since h2 = h2 + i1 = i2 + h1. Setting i2 = 0 or i2 = 1, we find

ΨA(0, 0; 0, 0) = (A−1t; t)∞ = 1−O(A−1) = 1−O(ε2);

ΨA(0, 0; 1, 1) = A−1
t

1− t
(A−1t2; t)∞ = (εθ)2 −O(A−2) = (εθ)2 −O(ε4),

where for both statements we used the expression (4.2) for A. This verifies the first and second
statements of (4.3). To verify the last, observe by (4.6) that ΨA(0, 0; k, k) = O

(
A−k(t; t)−1k

)
(where

the implicit constant only depends on t and not on k), yielding by the t-binomial theorem that
∞∑
k=2

ΨA(0, 0; k, k) =
∞∑
k=2

O
(
A−k

(t; t)k

)
= O

(
A−2

(A−1; t)∞

)
= O(A−2) = O(ε4).

This establishes (4.3); the proofs of (4.4) and (4.5) are very similar and therefore omitted. �

Next, fix real numbers χ, η > 0 and define the integers X = Xε and Y = Yε by

X = dε−1χe; Y = dε−1ηe.(4.7)

Let us use Lemma 4.1 to interpret the small ε limit vertex model from Section 3.2 on the rectangle
[1, X]× [1, Y ] ⊂ Z2

>0, under empty boundary data, with (ξx, sx) = (ωx,∞) for each x ≥ 1 and Ay
defined by (4.1). Since A = Ayωx, the first statement of (4.3) implies that, if (i1, h1) = (0, 0), then
with probability about 1− ε2θ2 we have (i2, h2) = (0, 0). In view of the empty boundary data, this
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Figure 5. Shown above is a possible sample of the t-PNG model. The nucleation
events are the black points; the red cross is a location where two paths annihilate
each other; and the green cross is a location where two paths cross through each
other.

indicates that most vertices in [1, X ] × [1, Y ] have arrow configuration (0, 0; 0, 0). However, with
probability about ε2θ2, we have (i2, h2) = (1, 1); in this case, a pair of exiting arrows is created, or
nucleates. Since [1, X ] × [1, Y ] constitutes O(ε−2) vertices, there are O(1) such nucleation events;
in the limit as ε tends to 0, they become distributed according to a Poisson point process with
intensity θ2.

If (i1, h1) = (1, 0), then (4.4) implies that (i2, h2) = (1, 0) almost deterministically. In particular,
whenever a vertical exiting arrow is created it proceeds vertically until h1 6= 0, that is, until it meets
a horizontal arrow. Similarly, if (i1, h1) = (0, 1) then (i2, h2) = (1, 0) almost deterministically,
meaning that any created horizontal arrow proceeds horizontally until it meets a vertical arrow.

The event (i1, h1) = (1, 1) corresponds to the collision of a horizontal and vertical arrow. Then,
(4.5) implies that (i2, h2) = (0, 0) with probability about 1−t; in this case, the two arrows annihilate
each other. With the complementary probability of about t, we have (i2, h2) = (1, 1), in which case
the arrows pass through each other. This description gives rise to the following growth model.

Definition 4.2. The t-deformed polynuclear growth (t-PNG) model on the rectangle R = Rχ;η =
[0, χ]× [0, η] ⊂ R2, with intensity θ2, is described as follows.

(1) Sample a Poisson point process with intensity θ2 on R, denoted by V = {v1, v2, . . . , vK},
where vi = (xi, yi) ∈ R for each index i ∈ [1,K].

(2) For each point v ∈ V , draw two rays emanating from v, one directed north and the other
directed east. Whenever two rays emanating from different vertices meet, the following
occurs.
(a) With probability 1− t, they annihilate each other.
(b) With probability t, they pass through each other.

We refer to Figure 5 for a depiction.

Remark 4.3. Observe for χ > χ′ > 0 and η > η′ > 0 that the t-PNG models on Rχ;η and Rχ′;η′
are consistent in the following sense. The restriction to Rχ′;η′ of the t-PNG model on Rχ;η is the
t-PNG model on Rχ′;η′ . Therefore, one may take the limit as χ and η tend to∞ to obtain a t-PNG
model on the (infinite) nonnegative quadrant R2

≥0.
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Under the t-PNG model for t = 0, two colliding rays must always annihilate each other. In this
case, the model coincides with the standard PNG model analyzed in [46]; see also Section 4 of [16].
This t = 0 model is known to admit an interpretation through patience sorting [5]; we will provide
an analogous interpretation for the more general t-PNG model in Appendix A below.

The following proposition more precisely states the convergence of the vertex model from Sec-
tion 3.2 to the t-PNG model. A heuristic for it was provided above Definition 4.2; we will give a
more careful proof in Appendix B below.

Proposition 4.4. Fix real numbers χ, η > 0, and define X,Y ∈ Z>0 as in (4.7). Consider the
vertex model described in Section 3.2 on the rectangle [1, X]× [1, Y ] ⊆ Z2

>0, under empty boundary
data, with sx =∞ for each x ≥ 1 and Ay chosen according to (4.2). When both its coordinates are
multiplied by ε, this model converges, as ε tends to 0, to the t-PNG model with intensity θ2 on Rχ;η
from Definition 4.2.

Although we will not pursue this here, it should also be possible to introduce a multi-layer version
of this t-PNG model through Dynamics 8 of [21] and a colored variant of this model (along the
same lines of the colored particle systems analyzed in [23]). Let us also mention that it should
be possible to derive this t-PNG model as a limit of either the t-Push TASEP [21, 28] or a more
intricate version of the t-PNG model defined in Section 4.2 of [44].

4.2. Boundary Conditions. In this section we fix an integer m ≥ 1 and a sequence of m positive
real numbers β = (β1, β2, . . . , βm); further let ε > 0 be a small real parameter. We then consider
the vertex model as described in Section 3.2, with parameters given by

(sx, ωx) = (0, β−1j ), for each x ∈ [1,m]; (sx, ωx) =
(
∞, (εθ)−1

)
for each x > m,(4.8)

and

Ay =
t

1− t
(εθ)−1, for each integer i ≥ 1.(4.9)

In particular, for x > m, we have Ayωx = A from (4.2). Thus, the dynamics of this model to the
right of its m-th column are governed by the ΨA weights, whose small ε asymptotics are given by
Lemma 4.1 (and give rise to the t-PNG model as in Definition 4.2, under scaling by ε).

For x ≤ m, we have sx = 0 so, at and to the left of the m-th column, this model is governed by
the Θ weights defined by (3.2). We will see these different sx parameters in the leftmost m column
of the model will give rise to a boundary condition for the t-PNG model; a similar phenomenon
in the context of the asymmetric simple exclusion process (ASEP) and stochastic six-vertex model
was observed in [2].

The below lemma analyzes the asymptotics of the Θ weights as ε tends to 0.

Lemma 4.5. Fix a real number β > 0 and an integer i ≥ 0. Denoting B = t(1− t)−1(εθβ)−1, we
have the following.

(1) For (i1, h1) = (i, 0), we have

ΘB(i, 0; i, 0) = 1−O(ε); ΘB(i, 0; i+ 1, 0) = εθβ +O(ε2);
∞∑
k=2

ΘB(i, 0; i+ k, k) = O(ε2).
(4.10)
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(2) For (i1, h1) = (i, 1), we have

ΘB(i, 1; i− 1, 0) = 1− ti −O(ε); ΘB(i, 1; i, 1) = ti −O(ε);
∞∑
k=2

ΘB(i, 1; i+ k − 1, k) = O(ε).
(4.11)

Proof. By the choice of B, we have

(−th2−i2+1B−1; t)∞ = 1 +O(ε); B−i2(B; t)k1k≤i2 = 1k=i2t
(i2

2 ) +O(ε),

which when combined with the identity t(
i2
2 )+i2(t−i2 ; t)i2 = (−1)i2(t; t)i2 gives

B−i2

(−th2−i1+1B−1; t)∞

i2∑
k=0

tk
(t−i1 ; t)k(t−i2 ; t)k(−B; t)k

(t; t)k(th2−i2+1; t)k
= (−1)i2

(t−i1 ; t)i2
(th2−i2+1; t)i2

+O(ε).

Inserting this into (3.2) yields

ΘB(i1, h1; i2, h2) = (−1)i2t(
i2+1

2 )+i2h1
(t; t)h1

(t; t)h2

(t−i1 ; t)i2
(t; t)i2

+O(ε).(4.12)

Next, observe that

(−1)i2
(t−i1 ; t)i2

(t; t)i2
= t(

i1−i2+1
2 )−(i1+1

2 ) (t; t)i1
(t; t)i2(t; t)i1−i2

1i1≥i2 ;(
i2 + 1

2

)
+

(
i1 − i2 + 1

2

)
−
(
i1 + 1

2

)
+ i2h1 = i2(i2 − i1 + h1) = i2h2,

where in the last equality we used the fact that i1 − h1 = i2 − h2. This, together with (4.12) yields

ΘB(i1, h1; i2, h2) = ti2h2
(t; t)h1

(t; t)h2

(t; t)i1
(t; t)i2(t; t)i1−i2

1i1≥i2 +O(ε).(4.13)

By inserting (i1, h1; i2, h2) ∈
{

(i, 0; i, 0), (i, 1; i − 1, 0), (i, 1; i, 1)
}

into (4.13), we deduce the first
statement of (4.10) and the first two statements of (4.11).

To deduce the second statement of (4.10), we insert (i1, h1; i2, h2) = (i, 0; i + 1, 1) into (3.2) to
obtain

ΘB(i, 0; i+ 1, 1) =
t(

i+2
2 )B−i−1

(−t1−iB−1; t)∞(t; t)i+1(1− t)

i∑
k=0

tk
(t−i; t)k
(t; t)k

(t−i−1; t)k(−B; t)k(tk−i+1; t)i−k+1,

(4.14)

where we have used the facts that the summand in (4.14) corresponding to k = i+ 1 is equal to 0
(since (t−i; t)i+1 = 0) and that (th2−i2+1; t)i2(th2−i2+1; t)−1k = (th2−i2+k+1; t)i2−k. Since

(−t1−iB−1; t)∞ = 1 +O(ε); B−i−1(−B; t)k1k≤i = t(
i
2)B−11k=i +O(ε2);

(−1)it(
i+1
2 )(t−i; t)i = (t; t)i; (−1)it(

i+2
2 ) (t−i−1; t)i

(t; t)i+1
=

t

1− t
it follows that

ΘB(i, 0; i+ 1, 1) =
t

1− t
B−1 +O(ε2) = εθβj +O(ε2),

which yields the second statement of (4.10). The proofs of the third statements of (4.10) and (4.11)
are very similar to those of the analogous estimates in Lemma 4.1 and are therefore omitted. �
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Now, as in Section 4.1, we fix real numbers χ, η > 0 and define the integers X = Xε = dε−1χe
and Y = Yε = dε−1ηe as in (4.7). Let us use Lemma 4.5 to interpret the behavior in the first m
columns of the vertex model from Section 3.2 on the rectangle [1, X ]× [1, Y ], under empty boundary
data with the parameter choices (4.8) and (4.9), in the limit as ε tends to 0.

If h1 = 0 at some vertex in the k-th column, then by the first statement of (4.10) we have h2 = 0
with probability about 1 − εθβk. In the leftmost column of the vertex model we have h1 = 0 at
all sites due to the empty boundary data; so, most vertices will also have h2 = 0. However, with
probability about εθβ1, we have (i2, h2) = (i1 +1, h1 +1), that is, a pair of a horizontal and vertical
arrow nucleates (is created). Since any column of the model has Y = O(ε−1) vertices, there are
O(1) such nucleation events along the leftmost column. In the limit as ε tends to 0, they become
(after scaling the vertical coordinate by ε) distributed according to a Poisson point process with
intensity θβ1.

A similar effect occurs in the k-th column, for any k ∈ [2,m]; the first statement of Lemma 4.5
again implies that pairs of horizontal and vertical paths nucleate along this column according
to a Poisson process with intensity θβk. However, now there may be some sites with h1 = 1,
corresponding to locations where a horizontal arrow enters the column. Letting i denote the number
of vertical arrows in the column at such a site, the second statement of (4.11) implies that with
probability ti we have (i2, h2) = (i, 1), meaning that this arrow “passes through” the column.
The first statement of (4.11) implies that with the complementary probability 1 − ti we have
(i2, h2) = (i − 1, 0), meaning that this arrow is annihilated, along with one vertical arrow in the
column.7

These dynamics proceed in the first m columns of the model. Since m is uniformly bounded in
ε, when we scale the horizontal coordinate by ε and let ε tend to 0, these m columns all converge
to the y-axis, that is, the west boundary of the rectangle R = Rχ;η = [0, χ]× [0, η]. This boundary
therefore acts as an “external source” for paths, releasing a horizontal ray into the interior of R at
every site along the m-th column at which h2 = 1. In view of the choice (4.9) and Proposition 4.4,
the t-deformed PNG model then occurs in the interior of R. This gives rise to the following
definition.

Definition 4.6. Fix an integer m ≥ 1 and a sequence of positive real numbers β = (β1, β2, . . . , βm).
The t-PNG model on Rχ;η with intensity θ2, under (β; θ; t)-boundary conditions, is the t-PNG
model as described in Definition 4.2, with additional horizontal rays entering at points along the
east boundary of Rχ,η, given by

{
(0, κ1), (0, κ2), . . . , (0, κr)

}
⊂ {0} × [0, η]. Here, the sequence

κ = (κ1, κ2, . . . , κr) ⊂ [0, η] is random and sampled as follows.

(1) Consider m columns C1, C2, . . . , Cm, where Cj = {j −m} × [0, η] ⊂ R2. For each j ∈ [1,m],
sample a Poisson point process on [0, η], denoted by Yj = (y1, y2, . . . , yK(j)). Define Vj =
(v1, v2, . . . , vK(j)) ⊂ Cj by setting vh = (j −m, yh) for each 1 ≤ h ≤ K(j).

(2) For each point v ∈ V1 ∪V2 ∪ · · · ∪ Vm, draw two rays emanating from v, one directed north
and the other directed east. Whenever a horizontal ray intersects a column Cj containing
i = i(v) vertical rays, the following occurs.
(a) With probability 1 − ti, this horizontal ray and one of the vertical rays in Cj (that it

intersects) are annihilated.
(b) With probability ti, the horizontal ray passes through Cj .

7An equivalent interpretation is that the entering horizontal arrow attempts to pass through each of the i vertical

arrows in the column, one at a time. As in the t-PNG model, with probability t this horizontal arrow successfully
passes through the vertical arrow, and with probability 1 − t they annihilate each other.
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C1 C2 C3 C4

κ2

κ6
κ5

κ1

κ3

κ4

Figure 6. Shown to the left is the procedure described by Definition 4.6 used to
sample κ = (κ1, κ2, . . . , κr), where here r = 6. Shown to the right is a sample of
the t-PNG model with the corresponding boundary data.

(3) Define κ = (κ1, κ2, . . . , κr) by setting (0, κ1), (0, κ2), . . . , (0, κr) to be the vertices at which
a horizontal ray exits through Cm.

We refer to Figure 6 for a depiction.

Remark 4.7. Suppose m = 1, and denote β = θβ1. Then, the t-PNG model with (β; θ; t)-boundary
data is the t-PNG model in which horizontal paths additionally enter through the y-axis according
to a Poisson point process with intensity β. In the case t = 0, this model was studied in [9, 32] (see
also [20] for the general m ≥ 1 case of a last passage percolation model slightly different from, but
closely related to, the t = 0 PNG model).

The following proposition then states convergence of the vertex model from Section 3.2 to the
t-PNG model with (β; θ; t)-boundary data. A heuristic for it was provided above; a careful proof
for it is very similar to that of Proposition 4.4 and is thus omitted.

Proposition 4.8. Fix real numbers χ, η > 0, and define X,Y ∈ Z>0 as in (4.7). Consider the
vertex model described in Section 3.2 on the rectangle [1, X]× [1, Y ] ⊆ Z2

>0, under empty boundary
data, with parameters choices as in (4.8) and (4.9). When both its coordinates are multiplied by
ε, this model converges, as ε tends to 0, to the t-PNG model with intensity θ2 on Rχ;η, under
(β; θ; t)-boundary data, from Definition 4.6.

5. Asymptotics

In this section we describe asymptotic results for the t-PNG model. We begin in Section 5.1 by
explaining a matching result between an observable of the t-PNG model with that of a Schur and
of a Hall–Littlewood measure. We then analyze the large scale asymptotics for the t-PNG model
in Section 5.2 and a limit to the KPZ equation in Section 5.3.

5.1. Matching With Schur and Hall–Littlewood Measures. In this section we describe
matching results between the t-PNG model and both the Schur and Hall–Littlewood measures,
given by the following theorem. In the below, the height function H(x, y) for the t-PNG model
is defined to be the number of horizontal rays in the model that intersect the vertical interval
{x} × [0, y] ⊂ R2.
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Theorem 5.1. Fix an integer m ≥ 0; real numbers t ≥ 0 and χ, η, θ > 0; and a sequence of real
numbers β = (β1, β2, . . . , βm) ⊂ R>0. Let H(x, y) denote the height function for the t-PNG model
on R2

>0 with intensity θ2, under (β; θ; t)-boundary data, from Definition 4.6 (or Definition 4.2, if

m = 0). Further let β̃ =
⋃m
j=1{βj , tβj , . . .}. Define the specializations

ρ1 = (0 | 0 | ηθ); ρ′1 =
(
0 | 0 | (1− t)ηθ

)
; ρ2 =

(
0 | β̃ | (1− t)−1χθ

)
; ρ′2 = (0 | β | χθ).

Then, the following two statements hold.

(1) We have that

E

[
1

(−ζt−H(χ,η); t)∞

]
= ESM

[
1

(−t−`(λ)ζ; t)∞

`(λ)∏
j=1

(1 + ζtλj−j)

]
,(5.1)

where the expectation on the left side is with respect to the t-PNG model, and the right side
is with respect to the Schur measure with specializations ρ1 and ρ2.

(2) Let λ denote a random partition sampled under the Hall–Littlewood measure with special-
izations ρ′1 and ρ′2. Then, H(χ, η) has the same law as `(λ).

Proof. In what follows, we let q ∈ [0, 1) be a real number. By Proposition 4.8, the t-PNG model
is the limit as ε tends to 0 of the vertex model described in Section 3.2, with parameters given by
(4.8) and (4.9). The latter is the horizontal complementation of the fused stochastic higher spin
vertex model with parameters (t,u, ξ, r, s) given by setting

(uy, ry) =

(
t1−J

1− t
(εθ)−1, t−J/2

)
, for any integer y ≥ 1;

(ξx, sx) =
(
− (s′βj)

−1, s′
)
, for any integer x ∈ [1,m];

(ξx, sx) =
(
s(εθ)−1, s

)
, for any integer x ≥ m,

first letting (s, s′) tend to (∞, 0), and then letting J tend to∞. Let J ≥ 1 remain an arbitrary inte-
ger for the moment, and denote the height function for the associated vertex model by hFV(J)(x, y).
The height function for its horizontal complementation is then hCV(J)(x, y) = Jx− hFV(J)(x, y).

Next, set X = Xε = dε−1χe and Y = Yε = dε−1ηe. Define the parameter (multi-)sets

x = xε =
Y⋃
i=1

{
(1− t)εθ, t(1− t)εθ, t2(1− t)εθ, . . . , tJ−1(1− t)εθ

}
;

ψ = ψε =
X⋃
i=1

{εθ, tεθ, t2εθ, . . .}; ϕ =
m⋃
j=1

{βj , qβj , q2βj , . . .},

where the geometric progressions with ratio t do not depend on i (meaning that x and ψ contain
Y and X copies of them, respectively). Then, the above parameter sets (t,u, ξ, r, s) for FV(J) and
(x,α,ψ) match in the sense of Definition 2.7, by taking (N,M) there to be (X,Y ) here; x there
to be x here; u there to constitute Y copies of t1−J (1 − t)−1(εθ)−1 here; r to constitute J copies

of t−J/2; each α̂i there to be εθ here; each β̂j there to be βj here; and each hi there to be ∞ here.
We may therefore apply Proposition 2.8, with (K, ζ) there equal to (XJ, q−XJζ) here to deduce

ECV(J)

[
1

(−ζt−hCV(J)(X,Y ); t)∞

]
= EMM

[
1

(−t−`(λ)ζ; t)∞

`(λ)∏
j=1

(1 + ζqλj t−j)

]
,(5.2)
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where the expectation on the right side is with respect to the Macdonald measure with specializa-
tions (xε | 0) and (ψε | ϕ), and we used the fact that 1 + ζqλj tj = 1 + ζtj for j > `(λ).

Now let us take the limit of both sides of (5.2) as first J tends to ∞, and then ε tends to 0.
By Proposition 4.8, the left side converges to E

[
(−ζt−H(χ,η); t)−1∞

]
, where the expectation is with

respect to the t-PNG model. To analyze the right side, observe by Remark 2.6 that under this limit
(xε | 0) and (ψε | β) converge to ρ1 =

(
0 | 0 | 1−t

1−q (1− tJ)ηθ
)

and ρ3 =
(
0 | ϕ | χθ

1−q
)
, respectively.

Thus, taking the limit first as J tends to ∞ and next as ε tends to 0 in (5.2) gives

E

[
1

(−ζt−H(χ,η);t)∞

]
= EMM

[
1

(−t−`(λ)ζ; t)∞

`(λ)∏
j=1

(1 + ζqλj t−j)

]
,(5.3)

where the expectation on the left side is with respect to the t-PNG model, and the expectation on
the right side is with respect to the Macdonald measure with specializations ρ1 and ρ3. Applying
(5.3) with q = t then yields (5.1) (since at q = t we have ρ3 = ρ2), by Remark 2.5; this establishes
the first statement of the theorem.

To establish the second, we apply Corollary 2.9. This implies that hCV(J)(X,Y ) has the same
law as `(λ), where λ is distributed according to a Hall–Littlewood measure with specializations
(xε | 0) and (ψε | β) (where we used the fact that at q = 0 we have ϕ = β). Again taking the
limits as first J tends to∞ and then as ε tends to 0, and applying Proposition 4.8 and Remark 2.6,
we deduce the second statement of the theorem. �

5.2. Large Scale Asymptotics. In this section we analyze the large scale asymptotics for the
height function H(χ, η) of the t-PNG model, as χ and η tend to∞. To that end, we use Theorem 5.1
to compare H(χ, η) with a Schur measure (which will correspond to the standard PNG model at
t = 0).

To implement this, we recall from Definition 5.2 of [12] that two sequences of real-valued random
variables {an} and {bn} are called asymptotically independent if the following two conditions hold.

(1) We have

lim
n→∞

sup
z∈R

P[z < an ≤ z + 1] = 0, if and only if lim
n→∞

sup
z∈R

P[z < bn ≤ z + 1] = 0.(5.4)

(2) If both limits in (5.4) hold, then limn→∞ supz∈R
(
P[an ≤ z]− P[bn ≤ z]

)
= 0.

The below lemma, which quickly follows from Theorem 5.1 with results from [12], states an
asymptotic equivalence between the height function H(χ, η) and the length of a partition sampled
from a Schur measure.

Lemma 5.2. Recall the notation of Theorem 5.1; let N ≥ 1 be an integer; assume that (χ, η) =
(χN , ηN ) = (xN, yN); and sample a partition λ ∈ Y under the Schur measure with specializations
ρ1 = (0 | 0 | yθN) and ρ2 =

(
0 | β | (1− t)−1xθN

)
. Then H(χ, η) = H(xN, yN) is asymptotically

equivalent to `(λ) (where N ≥ 1 is the index variable for both sequences).

Proof. Throughout this proof, we say that a sequence of random variables {an} is asymptotically
equivalent to a sequence of cumulative distribution functions {Fn} if the following holds. Letting
bn denote the random variable such that P[bn ≤ z] = Fn(z), the random variable sequences {an}
and {bn} are asymptotically equivalent.
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Now, for any real number z ∈ R, set

FN (x) = E

[
1

(−tz−H(χN ,ηN ); t)∞

]
; GN (z) = E

[
1

(−tz−`(λ); t)∞

`(λ)∏
j=1

(1 + tλj−j+z)

]
.(5.5)

By the ζ = tz case of (5.1), we have FN (z) = GN (z) for each x ∈ R. It is quickly verified that FN
and GN are nondecreasing in z, and further satisfy limz→−∞ FN (z) = 0 = limz→−∞GN (z) and
limz→∞ FN (z) = 1 = limz→∞GN (z).

Corollary 5.7 of [12] implies that the random variable H(xN, yN) is asymptotically equivalent to
the function FN , and that `(λ) is asymptotically equivalent to GN . The lemma then follows from
the fact that FN = GN . �

When m = 0, the sequence β is empty, and the Schur measure considered in Lemma 5.2 reduces
to the Poissonized Plancherel measure. The latter was analyzed in detail in [8, 18, 35] relating
to the longest increasing subsequence of a random permutation and to the t = 0 PNG model. Its
asymptotics are therefore well understood, which gives rise to the following result for the asymptotic
behavior of the t-PNG model without boundary conditions.

Theorem 5.3. Fix positive real numbers x, y, θ ∈ R>0 and t ∈ [0, 1). Let H denote the height
function for the t-PNG model with intensity θ2 on R2

>0 (without boundary conditions) from Defini-
tion 4.2. Then,

lim
N→∞

P
[
H(xN, yN)− µN

σN1/3
≤ s
]

= FTW(s),

where FTW denotes the Tracy–Widom Gaussian Unitary Ensemble (GUE) distribution, and µ =
µ(t, θ, x, y) and σ = σ(t, x, y, θ) are defined by

µ = 2θ(xy)1/2(1− t)−1/2; σ = θ1/3(xy)1/6(1− t)−1/6.

Proof. Under the Schur measure with specializations
(
0 | 0 | (1 − t)yθN

)
and (0 | 0 | xθN),

Theorem 5 of [18] or Proposition 1.5 and Theorem 1.7 of [35] (see also Remark 2 of the survey [16])
gives

lim
N→∞

P
[
`(λ)− µN
σN1/3

≤ s
]

= FTW(s).

This, together with Lemma 5.2, implies the theorem. �

The m ≥ 1 case of Lemma 5.2 corresponds to the t-PNG model with boundary conditions, as in
Definition 4.6. Although we will not pursue this here, the associated Schur measure can be analyzed
to access the large scale asymptotics for this model. For example, if β1 = β2 = · · · = βm = β (or
are more generally within N−1/3 of one another), then the height function H(x, y) will exhibit a
Baik–Ben Arous–Péché transition [7] across a characteristic line. To the left of this line, it will
exhibit N1/2 fluctuations scaling to the largest eigenvalue of an m ×m GUE matrix; to the right
of this line, it will exhibit N1/3 fluctuations scaling to the Tracy–Widom GUE distribution; and
along this line it will converge to an interpolation between the two, known as a level m Baik–Ben
Arous–Péché distribution. For m = 1, this was established for the t = 0 PNG model in [9].
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5.3. Limit to the KPZ Equation. The fact that our PNG model is dependent on a parameter
t ∈ [0, 1) enables us to consider its scaling limit as t tends to 1. In this section we explain how,
under this scaling limit, the t-PNG height function converges to the Cole–Hopf solution of the
Kardar–Parisi–Zhang (KPZ) equation with narrow wedge initial data. The latter is defined as
Ht(x) = − logZt(x), where Zt(x) is the solution of the stochastic heat equation with multiplicative
noise, given by

∂tZt(x) =
1

2
∂2xZ(x) + Zt(x) · Ẇt(x), with initial data Z0(x) = δ(x),

where Ẇt(x) denotes space-time white noise, and δ(x) denotes the delta function; we refer to [26, 47]
for surveys on the KPZ equation and universality class.

Given this notation, we have the following theorem stating convergence of a (normalization)
of the t-PNG height function H(χ, η) (recall Section 5.1) to the solution H of the KPZ equation,
in the limit as t tends to 1. Observe in this theorem that we also let the intensity of the model
simultaneously tend to ∞, while keeping the coordinates (χ, η) fixed. We only outline the proof
of the below theorem, since it follows from Theorem 5.1 and results of [18, 17] in a similar way to
what was done in the proof of Theorem 11.6 (and Remark 11.7) of [19].

Theorem 5.4. Fix real numbers χ, η > 0, let ε > 0 be a parameter, and denote

T = 2
√
χη; t = tε = e−ε; θ = θε = ε−3.(5.6)

Consider the t-PNG model with intensity (1 − t)θ2 on R2
>0, as in Definition 4.2, and define the

normalization n(χ, η) of its height function by

nε(χ, η) = ε
(
H(χ, η)− ε−3T

)
− log ε.(5.7)

Then, as ε tends to 0, the random variable nε(χ, η) converges weakly to T
24 −HT (0).

Proof (Outline). By the discussion at the end of the proof of Theorem 11.6 of [19], it suffices
to verify that the limit as ε tends to 0 of the Laplace transform of enε(χ,η) is given by that of
eT/24−HT (0) = eT/24ZT (0).8 So, for a fixed ζ0 ∈ R>0 we will show that

lim
ε→0

E
[

exp
(
− ζ0enε(χ,η)

)]
= E

[
exp

(
− ζ0eT/24ZT (0)

)]
.(5.8)

The right side of (5.8) is expressible in terms of the Airy point process9 A = (a1, a2, . . .). In
particular, Theorem 2.1 of [17] states that

E
[

exp
(
− ζ0eT/24ZT (0)

)]
= E

[ ∞∏
j=1

1

1 + ζ0 exp(2−1/3T 1/3aj)

]
,

so it suffices to establish

lim
ε→0

E
[

exp
(
− ζ0nε(χ, η)

)]
= E

[ ∞∏
j=1

1

1 + ζ0 exp(2−1/3T 1/3aj)

]
.(5.9)

8Indeed, it is quickly verified from (5.8) that the sequence of random variables {enε(χ,η)} is tight. Since any

probability distribution is uniquely characterized by its Laplace transform, (5.8) also implies that any limit point

must converge to eT/24ZT (0). Thus, by taking the logarithm, we deduce that nε(χ, η) converges to T
24
−HT (0).

9This is the determinantal point process on R with correlation kernel given byKAi(x, y) =
∫∞
0 Ai(x+u)Ai(y+u)du,

where Ai(x) : R→ R denotes the Airy function.
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To that end, set ζ = ζ0t
2θ
√
χη = tθT . Observe for any partition λ = (λ1, λ2, . . . , λ`) ∈ Y with

conjugate (transpose) λ′ = (λ′1, λ
′
2, . . . , λ

′
`′) that {λi − i}i≥1 ∪ {j − λ′j − 1}j≥1 = Z (where λi = 0

and λ′j = 0 for i ≥ ` and j ≥ `′, respectively). This implies

1

(−ζ−`(λ); t)∞

`(λ)∏
j=1

(1 + ζtλj−j) =
∞∏
j=1

1

1 + ζtj−λ
′
j−1

.

This, together with (5.1) (with the θ there replaced by (1− t)−1/2θ here), yields

E

[
1

(−ζt−H(χ,η); t)∞

]
= E

[ ∞∏
j=1

1

1 + ζtj−λ
′
j−1

]
,(5.10)

where the expectation on the left side is with respect to the t-PNG model with intensity θ2(1− t)
and that on the right side is with respect to the Schur measure with specializations ρ1 = (0 | 0 | ηθ)
and ρ2 = (0 | 0 | χθ).

We will show that, as ε tends to 0, the left and right sides of (5.10) converge to those of (5.9),
respectively. We begin with the right sides, which will follow from results of [18]. In particular,
from the choices ζ = ζ0t

2θ
√
χη, t = e−ε, and ε = θ−1/3 (recall (5.6)), we find that

E

[ ∞∏
j=1

1

1 + ζtj−λ
′
j−1

]
= E

[ ∞∏
j=1

(
1 + ζ0 exp

(
λ′j − j − 2θ

√
χη + 1

θ1/3

))−1]
.(5.11)

Next, Theorem 4 of [18] states that
{

(χη)−1/6θ−1/3(λ′j − 2θ
√
χη)
}
j≥1 converges weakly to A as ε

tends to 0. A slightly stronger form of this convergence, given by Proposition 4.3 of [18] (see also
the proof of Theorem 11.6 of [19]), quickly implies that

lim
ε→0

[ ∞∏
j=1

(
1 + ζ0 exp

(
λ′j − j − 2θ

√
χη + 1

θ1/3

))−1]
= E

[ ∞∏
j=1

1

1 + ζ0 exp
(
(χη)1/6aj

)].(5.12)

By the choice of T = 2
√
χη, (5.11), and (5.12) together imply that the right side of (5.10) converges

to that of (5.9) as ε tends to 0.
Next, we analyze the left side of (5.10). The t-binomial theorem, (5.6), and (5.7) together give

1

(−ζt−H(χ,η); t)∞
=
∞∑
j=0

(−ζ)jt−jH(χ,η)

(t; t)j
=
∞∑
j=0

(1− t)j

(t; t)j

(
ζ0
t− 1

exp

(
1

θ1/3
(
H(χ, η)− 2θ

√
χη
)))j

=
∞∑
j=0

(1− t)j

(t; t)j

(
ζ0e

nε(χ,η)

ε(t− 1)

)j
.

Since

lim
ε→0

(1− t)j

(t; t)j
=

1

j!
; lim

ε→0
ε(t− 1) = −1,

it follows that

lim
ε→0

1

(−ζt−H(χ,η); t)∞
=
∞∑
j=0

1

j!

(
− ζ0en(χ,η)

)j
= exp

(
− ζ0en(χ,η)

)
.(5.13)

This indicates that the left side of (5.10) converges to (5.9) as ε tends to 0. Hence, (5.10), (5.13),
(5.11), and (5.12) together imply (5.9) and thus the theorem. �
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Although we will not pursue this here, let us mention that a similar scaling limit as considered
in Theorem 5.4, for the t-PNG model with (β; θ; t)-boundary conditions should give rise to the
solution of the KPZ equation with spiked initial data, as considered in [15].

Appendix A. The t-PNG Model and Patience Sorting

In this section we provide an interpretation for the t-PNG model through patience sorting “with
errors.” Before explaining this in more detail, we first recall the standard patience sorting algorithm;
see Section 1.1 of [5]. Starting with a deck of N cards labeled {1, 2, . . . , N}, one begins drawing
cards from it and sorting them into piles as follows.

(1) Suppose the card drawn has label i, and search for the pile with the smallest top card that
is greater than i.
(a) If such a pile exists, then place card i on top of that pile.
(b) If no such pile exists, create a new pile consisting of card i.

(2) Repeat this procedure until all cards are sorted into piles.

Observe in particular that, if these piles are ordered according to their time of creation, then
their top cards are increasing. Thus, the search from part 1 of this algorithm scans through the
piles in order and stops upon reaching one whose top card exceeds i.

Example A.1. Suppose N = 6 and the deck is ordered (5, 2, 1, 3, 4, 6) from top to bottom. Then,
after the first card is drawn, the set of piles is

{
(5)
}

; after the second, it is
{

(2, 5)
}

; after the third,

it is
{

(1, 2, 5)
}

; after the fourth, it is
{

(1, 2, 5), (3)
}

; after the fifth, it is
{

(1, 2, 5), (3), (4)
}

; and

after the sixth, it is
{

(1, 2, 5), (3), (4), (6)
}

.

The t = 0 PNG model with intensity θ2 is known to be closely related to patience sorting,
applied to a uniformly randomly shuffled deck of N cards, where N is selected according to an
independent exponential distribution with parameter θ2. In particular, the total number of piles
created under the patience sorting algorithm (equivalently, the longest increasing subsequence of
the deck) has the same law as the height function H(1, 1) (recall the beginning of Section 5.1) for
the t = 0 PNG model. The analogous equivalence for the t-PNG model will be with the following
variant of patience sorting that allows for random “errors” to occur with probability t.

Definition A.2. Starting with a deck of N cards labeled {1, 2, . . . , N}, the patience sorting algo-
rithm with error probability t draws cards from the deck and sorts them into piles as follows.

(1) Suppose the card drawn has label i, and consider all piles P1,P2, . . . ,Pg whose top cards
are greater than i; denote their top cards by c1, c2, . . . , cg, respectively, where c1 < c2 <
· · · < cg. Set k = 1.
(a) Suppose k ≤ g.

(i) With probability 1 − t, place card i on top of pile Pk.
(ii) With probability t, “miss” this pile by changing k to k + 1 and repeating step

1a.
(b) If k > g, then create a new pile consisting of card i.

(2) Repeat this procedure until all cards are sorted into piles.

Observe in the case t = 0 (corresponding to no “misses”), Definition A.2 reduces to the original
patience sorting algorithm described above.

Example A.3. Again suppose N = 6 and the deck is ordered (5, 2, 1, 3, 4, 6) from top to bottom.
After the first card is drawn, a pile (5) is deterministically formed. After the second card is drawn,
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with probability 1 − t it is placed on top of this pile (forming (2, 5)); with probability t, pile (5) is
“missed,” and card 2 is placed in its own pile (forming

{
(2), (5)

}
). Suppose that the latter event

occurs. The third card is then placed on pile (2) with probability 1− t; on pile (5) with probability
t− t2; and in its own pile with probability t2. One continues in this way until all cards are placed.

The following proposition explains a relation between the t-PNG height function and the number
of piles created under applying this variant of patience sorting to a random permutation; its proof
more generally explains that broken lines in the former directly correspond to piles in the latter.

Proposition A.4. Fix parameters t ≥ 0 and θ > 0; let N be a θ2-exponentially distributed random
variable; and apply the patience sorting algorithm with error probability t (from Definition A.2) to
a uniformly randomly shuffled deck with N cards. The number of piles created under this algorithm
has the same law as the height function H(1, 1) of the t-PNG model with intensity θ2 on [0, 1]×[0, 1],
under empty boundary conditions (from Definition 4.2).

Proof. Sample the t-PNG model on [0, 1]× [0, 1] through Definition 4.2, and denote the associated
Poisson point process (corresponding to the locations of nucleation events) by V = (v1, v2, . . . , vN ) ⊂
[0, 1] × [0, 1]; then N is a θ2-exponentially distributed random variable. Order V so that vi =
(xi, yσ(i)), where x1 < x2 < · · · < xN and y1 < y2 < · · · < yN . Then, σ is a uniformly random
permutation on {1, 2, . . . , N}; we associate it with the order of the deck to be sorted.

A broken line in the t-PNG model is defined to be a maximal increasing sequence (i1, i2, . . . , ik) ⊆
{1, 2, . . . , N} such that the horizontal ray emanating from vij annihilates with the vertical one
emanating from vij+1

, for each j ∈ [1, k − 1]. For example, in the sample depicted in Figure 5,
σ = (6, 3, 4, 2, 1, 5) and there are three broken lines given by (1, 3, 5), (2, 4), and (6). We associate
with any broken line (i1, i2, . . . , ik) a pile of cards

(
σ(ik), σ(ik−1), . . . , σ(i1)

)
(ordered from top to

bottom). When a nucleation occurs at some point vi = (xi, yσ(i)), the vertical ray emanating from
vi can collide with a horizontal ray along a broken line; the latter corresponds to some pile P, with
top card greater than i. With probability 1 − t, the two rays annihilate each other, meaning that
card σ(i) is appended to the top of P. With probability t, the two rays pass through each other,
meaning that pile P is “missed” when sorting σ(i), and we repeat the procedure on the next broken
line that intersects the vertical ray emanating from vi.

These sorting dynamics induced by the t-PNG model coincide with those of the patience sorting
algorithm with error probability t. Thus, the family of broken lines sampled under the former
has the same law as the family of piles created under applying the latter to σ. This implies the
proposition, since H(1, 1) counts the number of such broken lines. �

Appendix B. Proof of Proposition 4.4

In this section we establish Proposition 4.4. Let E denote a (complemented) path ensemble
on Z2

>0, sampled under the vertex model described in Proposition 4.4. We will couple E with
an ensemble F sampled from a slightly different vertex model that can be more directly seen to
converge to the t-PNG process. The weights of this latter vertex model are Φ(i1, h1; i2, h2), defined
by setting

Φ(0, 0; 0, 0) = 1− (θε)2; Φ(0, 0; 1, 1) = (θε)2; Φ(1, 0; 1, 0) = 1; Φ(0, 1; 0, 1) = 1;

Φ(1, 1; 0, 0) = 1− t; Φ(1, 1; 1, 1) = t,
(B.1)

and Φ(i1, h1; i2, h2) = 0 for all other integer quadruples (i1, h1; i2, h2).
It is quickly verified that a random ensemble F sampled under the vertex model with weights

(B.1), under empty boundary data, converges to the t-PNG model, as ε tends to 0. Indeed, by
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the first two probabilities in (B.1), upon scaling the rectangle [1, X ] × [1, Y ] by ε, the law for the
set of locations with arrow configuration (0, 0; 1, 1) converges to a Poisson point process on Rχ;θ
with intensity θ2. Under the t-PNG model, these correspond to nucleation events when a vertical
and horizontal ray are created. By the second two probaiblities in (B.1), these rays proceed until
meeting another ray. By the last two probabilities in (B.1), when a horizontal ray collides with
a vertical one, they are annihilated with probability 1 − t and continue through each other with
probability t. This description matches with that of the t-PNG model provided in Definition 4.2.

Thus, it remains to couple E and F on [1, X] × [1, Y ] off of an event with probability o(1),
as ε tends to 0. To that end, it suffices to establish lemma. In the below, for any vertex v ∈
[1, X]× [1, Y ] and path ensemble G ∈ {E ,F}, we let

(
i1(v;G), h1(v;G); i2(v;G), h2(v;G)

)
denote the

arrow configuration at v under G.

Lemma B.1. The following two statements hold as ε tends to 0.

(1) Let A denote the event that there exist at most ε−3/2 = o(ε−2) vertices v ∈ [1, X] × [1, Y ]
with

(
i1(v; E), h1(v; E)

)
6= (0, 0). Then, P[A] = 1− o(1).

(2) Let B denote the event that there does not exist any vertex v ∈ [1, X] × [1, Y ] with arrow
configuration satisfying max

{
i1(v), h1(v)

}
≥ 2. Then, P[B] = 1− o(1).

Proof of Proposition 4.4 Assuming Lemma B.1. For any v ∈ [1, X] × [1, Y ] such that we have(
i1(v; E), h1(v; E)

)
=
(
i1(v;F), h1(v;F)

)
∈
{

(0, 0), (1, 0), (0, 1), (1, 1)
}

, Lemma 4.1 and (B.1) to-

gether yield a coupling between E and F so that
(
i2(v; E), h2(v; E)

)
=
(
i2(v;F), h2(v;F)

)
with prob-

ability at least 1−O(ε2). By the first part of Lemma 4.1 and the first two statements of (B.1), this
coupling probability is improved to 1 −O(ε4) if

(
i1(v; E), h1(v; E)

)
= (0, 0) =

(
i1(v;F), h1(v;F)

)
.

Since the empty boundary conditions for E and F coincide, we may apply a union bound to
couple E and F with probability at least 1− (V + 1)O(ε2), where V denotes the number of vertices
v ∈ [1, X]× [1, Y ] such that i1(v; E)+h1(v; E) ≥ 1. Restricting to the event A∩B from Lemma B.1,
we have V = o(ε−2), meaning that we may couple E and F to coincide on [1, X] × [1, Y ] with
probability at least P[A∩B]− o(1) = 1− o(1). As mentioned above, this gives the proposition. �

To verify the bounds P[A] = 1 − o(1) and P[B] = 1 − o(1), for any integer D ≥ 0 we define the
set Vd ⊂ Z2

>0, the integer VD, and event Bd by

VD =
{
v = (x, y) ∈ Z2

>0 : x+ y = D, i1(v; E) + h1(v; E) ≥ 1
}

; VD = |VD|;

BD =

D⋂
d=0

⋂
v∈Vd

{
max

{
i1(v; E), h1(v; E)

}
≤ 1
}
.

The following lemma provides inductive estimates on VD and on the probability of BD.

Lemma B.2. There exists a constant C = C(t, θ) > 1 such that

E
[
1BD
|VD+1 − VD|

]
≤ CDε2; P[BD+1] ≥ P[BD]− C

(
ε2 E

[
1BD

VD
]

+Dε4
)
.(B.2)

Proof. To verify the first statement of (B.2), observe on the event BD that the quantity VD+1−VD =
|VD+1|−|VD| is bounded from above by the number of vertices v = (x, y) ∈ Z>0 with x+y = D such
that we either have

(
i1(v; E), h1(v; E); i2(v; E), h2(v; E)

)
= (0, 0; 1, 1) or max

{
i2(v; E), h2(v; E)

}
≥ 2.

By Lemma 4.1, there exists a constant C > 1 such that the probability of any v satisfying either
event is at most Cε2. Applying a union bound over all v = (x, y) with x + y = D yields the first
statement of (B.2).
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To verify the second, we again restrict to the event BD. Observe that the event BD+1 does not
hold only if there exists some vertex v ∈ Z2

>0 with x+ y = D such that max
{
i1(v; E), h1(v; E)

}
≤ 1

and max
{
i2(v; E);h2(v; E)

}
≥ 2. By Lemma 4.1, there exist a constant C > 1 such that the

probability of any v satisfying this event is at most Cε2. Moreover, by the first statement of
Lemma 4.1, this probability at most Cε4 if

(
i1(v), h1(v)

)
= (0, 0). Applying a union bound over

at most D vertices satisfying the latter statement and at most VD remaining ones then yields the
second statement of (B.2). �

Now we can establish Lemma B.1.

Proof of Lemma B.1. Let us use (B.2) to bound P[A] and P[B]. To that end, observe for any integer
D ≥ 1 that

E
[
1BD

VD
]

=
D−1∑
d=0

E
[
1Bd+1

Vd+1 − 1Bd
Vd
]
≤
D−1∑
d=0

E
[
1Bd

(Vd+1 − Vd)
]
≤ CD2ε2,(B.3)

where to deduce the second bound we used the fact that Bd+1 ⊆ Bd and Vd+1 ≥ 0, and to deduce
the third we used the first statement of (B.2). By (B.3) and the second statement of (B.2), we
obtain

1− P[BD] = P[B0]− P[BD] =

D−1∑
d=0

(
P[Bd]− P[Bd+1]

)
≤ C

D−1∑
d=0

(
ε2E
[
1Bd

Vd
]

+Dε4
)

≤ Cε4(D3 +D2) ≤ 2Cε4D3.

(B.4)

By taking D = X + Y = O(ε−1), it follows from (B.4) that

P[B] ≥ P[BX+Y ] ≥ 1− 2Cε4(X + Y )3 = 1−O(ε) = 1− o(1).(B.5)

Moreover, denoting the complement of any event E by Ec, we have

P[Ac] ≤ P

[
X+Y−1∑
D=0

VD ≥ ε−3/2
]
≤ P

[{X+Y∑
D=0

VD ≥ ε−3/2
}
∩BX+Y

]
+ P[BcX+Y ]

≤ ε3/2E

[
X+Y∑
D=0

1BD
VD

]
+ P[BcX+Y ]

= ε3/2
X+Y∑
D=0

E
[
1BD

VD
]

+O(ε)

≤ C(X + Y )3ε7/2 +O(ε) = O(ε1/2) = o(1).

(B.6)

Here, to deduce the first bound we used the definitions of A, VD, and VD; to deduce the second we
applied a union bound; to deduce the third, we used with the fact that BX+Y ⊆ BD for D ≤ X+Y ,
together with a Markov estimate; to deduce the fourth we applied (B.5); to deduce the fifth we
applied (B.3); and to deduce the sixth we used the fact that X + Y = O(ε−1).

Since (B.6) and (B.5) imply P[A] = 1− o(1) and P[B] = 1− o(1), they yield the proposition. �
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Appendix C. Matching Expectations

In this appendix we provide an alternative, direct proof of Proposition 2.8 in the case of Schur
measures (q = t), when all parameters ri = si = t−1/2, and for M = N . The proof is carried out by
noticing that a certain partition function (C.7) in the quadrant is equal to the expectation on the
left hand side of (2.7), and that this partition function may be evaluated as an N ×N determinant,
borrowing a result from [52]. Performing the expansion of this determinant over the Schur basis
via the Cauchy–Binet identity, we then obtain the right hand side of (2.7), with q = t.

Extending this result to generic Macdonald measures, generic higher spin weights, and M 6= N ,
as in (2.7), is then straightforward. The passage to generic Macdonald measures is achieved by
noting that the right hand side of (2.7) is in fact independent of q, and therefore equal to the
Schur expectation; this is an easy consequence of acting with Macdonald difference operators on
the Macdonald Cauchy kernel. Passing to the general spin setting, with arbitrary ri and si, is
achieved by performing fusion of the partition function (C.7). Finally, the case M 6= N may be
accessed by certain reductions of the match (C.16), as we briefly mention in Section C.6.

C.1. Reduction to t-Boson Model. Fix integers j1, j2 ∈ {0, 1} and i1, i2 ∈ Z≥0. We define

lim
s→0

Lx(i1, j1; i2, j2 | t−1/2, s)(−s)−j2 = Lx(i1, j1; i2, j2).(C.1)

We denote these weights graphically by

Lx(i1, j1; i2, j2) = x j1 j2

i1

i2

, j1, j2 ∈ {0, 1}, i1, i2 ∈ Z≥0.(C.2)

The vertex (C.2) vanishes unless i1 + j1 = i2 + j2; when this constraint is met, we obtain the
following table of nonzero weights:

0 0

i

i

0 1

i

i− 1

1 0

i

i + 1

1 1

i

i

1 x(1− ti) 1 x

(C.3)

C.2. Reduction to Stochastic Six-Vertex Model. Fix integers i1, i2, j1, j2 ∈ {0, 1}. We define

Lt−1/2·x/y(i1, j1; i2, j2 | t−1/2, t−1/2) = Ry/x(i1, j1; i2, j2).(C.4)
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We denote these weights graphically by

Ry/x(i1, j1; i2, j2) =
x

y

j `

i

k

, i1, i2, j1, j2 ∈ {0, 1}.(C.5)

The vertex (C.5) vanishes unless i1 + j1 = i2 + j2; when this constraint is met, we obtain the
following table of nonzero weights:

0 0

0

0

0 0

1

1

0 1

1

0

1
t(1− y/x)

1− ty/x
1− t

1− ty/x

1 1

1

1

1 1

0

0

1 0

0

1

1
1− y/x
1− ty/x

(1− t)y/x
1− ty/x

(C.6)

Observe that these weights are stochastic, that is,

∑
i2,j2

Ry/x(i1, j1; i2, j2) = 1.
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C.3. Partition Function Z(x1, . . . , xN ; y1, . . . , yN ; k). Fix two alphabets (x1, . . . , xN ) ∈ CN and
(y1, . . . , yN ) ∈ CN , and an integer k ∈ Z≥0. Define the following partition function in the quadrant:

Z (x1, . . . , xN ; y1, . . . , yN ; k) =

11111

k00000

yN· · ·· · ·y1

1

1

1

1

1

k

x1

...

...

xN

0

0

0

0

0

(C.7)

Vertices in the topmost row and the rightmost column are of the form (C.2); all other vertices
are given by (C.5). The variables associated to horizontal lines are reciprocated; namely, we set
xa = 1/xa, for all 1 ≤ a ≤ N . Partition functions of the form (C.7) were originally studied in [52],
where they appeared in connection with Cauchy identities and as a one-parameter generalization
of domain wall partition functions [33, 37].

We now show that (C.7) admits a nice probabilistic interpretation. Fix parameters t, (x1, . . . , xN )
and (y1, . . . , yN ) such that each vertex (C.5) within (C.7) has real weight in the interval [0, 1]. We
may then associate to any configuration C in the (finite) quadrant [1, N ] × [1, N ] (that does not
include the thick arrow along the northeast boundary in (C.7)) a probability weight P6v(C), defined
as the product of weights of all vertices within C.

Proposition C.1. Let h(N,N) denote the height function assigned to the vertex (N,N) within the
stochastic six-vertex model. We have that

Z(x1, . . . , xN ; y1, . . . , yN ; k) =
N∏
a=1

ya · E6v

[
(tk+1; t)∞

(tk+1+h(N,N); t)∞

]
,(C.8)

where the expectation is taken with respect to the measure P6v defined above.

Proof. We begin by decomposing the partition function (C.7) along the edges where vertices of the
types (C.2) and (C.5) meet. This produces the equation

(C.9) Z(x1, . . . , xN ; y1, . . . , yN ; k)

=
∑

{i1,...,iN}∈{0,1}N

∑
{j1,...,jN}∈{0,1}N

P6v(i1, . . . , iN ; j1, . . . , jN )Hk(j1, . . . , jN ; i1, . . . , iN ),
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where we have defined two new partition functions. The first is given by

P6v(i1, . . . , iN ; j1, . . . , jN ) =

iN· · ·· · ·· · ·i1

00000

yN· · ·· · ·y1

1

1

1

1

1

x1

...

...

xN

j1

...

...

...

jN

(C.10)

where all vertices are of the type (C.5); this quantity is the probability that a random configuration
C in the quadrant [1, N ]× [1, N ] has state ia ∈ {0, 1} exiting vertically from vertex (a,N) and state
ja ∈ {0, 1} exiting horizontally from vertex (N, a), for all 1 ≤ a ≤ N . The second is a tower of
vertices of the type (C.2) (which one may also view as a straightened version of the thick arrow
along the northeast boundary in (C.7)):

Hk(j1, . . . , jN ; i1, . . . , iN ) =

k

k

j1

...

jN

iN

...

i1

x1

...

xN

yN

...

y1

0

0

0

1

1

1

(C.11)

In view of the arrow conservation property of the vertices (C.2), it is easy to see that each internal
vertical edge within (C.11) admits a unique state such that the tower has non-vanishing weight.
This allows us to compute Hk(j1, . . . , jN ; i1, . . . , iN ) explicitly:

Hk(j1, . . . , jN ; i1, . . . , iN ) =
N∏
a=1

Lxa
(k + Ja−1, ja; k + Ja, 0)Lya(k + Ia, ia; k + Ia−1, 1),(C.12)
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where we have defined the partial sums J0 = I0 = 0, Ja =
∑a
b=1 jb, Ia = a−

∑a
b=1 ib for 1 ≤ a ≤ N ,

and where we note that JN = IN . From the table (C.3), the weights Lxa(k + Ja−1, ja; k + Ja, 0)
are all equal to 1; the remaining terms in the product (C.12) are given by

Lya(k + Ia, ia; k + Ia−1, 1) = ya ·

 1− tk+Ia , ia = 0,

1, ia = 1.

The product (C.12) then simplifies to

Hk(j1, . . . , jN ; i1, . . . , iN ) =
N∏
a=1

ya ·
IN∏
b=1

(1− tk+b) =
N∏
a=1

ya ·
JN∏
b=1

(1− tk+b).

In particular, Hk(j1, . . . , jN ; i1, . . . , iN ) depends on (i1, . . . , iN ) and (j1, . . . , jN ) only via IN = JN =∑N
b=1 jb. In fact, returning to the quadrant (C.10), we see that JN = h(N,N); accordingly, one has

Hk(j1, . . . , jN ; i1, . . . , iN ) =
N∏
a=1

ya ·
h(N,N)∏
b=1

(1− tk+b)

=

N∏
a=1

ya ·
∞∏
b=1

1− tk+b

1− tk+b+h(N,N)
=

N∏
a=1

ya ·
(tk+1; t)∞

(tk+1+h(N,N); t)∞
.

Coming back to (C.9), we then find that

Z(x1, . . . , xN ; y1, . . . , yN ; k)

=
N∏
a=1

ya ·
∑

{i1,...,iN}∈{0,1}N

∑
{j1,...,jN}∈{0,1}N

P6v(i1, . . . , iN ; j1, . . . , jN )
(tk+1; t)∞

(tk+1+h(N,N); t)∞
.

Conditioning on the possible values of h(N,N), this may be written as

Z(x1, . . . , xN ; y1, . . . , yN ; k) =
N∏
a=1

ya ·
N∑
m=0

(tk+1; t)∞
(tk+1+m; t)∞

P6v(h(N,N) = m),

which proves the claim (C.8). �

C.4. Determinant Evaluation. Following Section 4.2 and Appendix B of [52], the partition func-
tion (C.7) may be computed in closed form:

Proposition C.2. For any N ≥ 1 and k ≥ 0, one has

Z(x1, . . . , xN ; y1, . . . , yN ; k) =

∏N
i=1 yi

∏
1≤i,j≤N (1− xiyj)∏

1≤i<j≤N (xi − xj)(yi − yj)
det

1≤i,j≤N

[
1− tk+1 − t(1− tk)xiyj

(1− xiyj)(1− txiyj)

]
.

(C.13)

Proof (Outline). The proof relies on finding a list of properties of Z(x1, . . . , xN ; y1, . . . , yN ; k) that
determine it uniquely; one then shows that the right hand side of (C.13) obeys the same properties.
We list these properties below without derivation; for more information, we refer the reader to [52,
Lemma 5].

(1) Z(x1, . . . , xN ; y1, . . . , yN ; k) is symmetric in the alphabet (x1, . . . , xN ) and separately in the
alphabet (y1, . . . , yN );

(2)
∏

1≤i,j≤N (1− txiyj) · Z(x1, . . . , xN ; y1, . . . , yN ; k) is a polynomial in xN of degree N ;
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(3) Setting xN = 1/yN we have

Z(x1, . . . , xN ; y1, . . . , yN ; k)
∣∣∣
xN=1/yN

= yN · Z(x1, . . . , xN−1; y1, . . . , yN−1; k);

(4) Setting xi = 0 for all 1 ≤ i ≤ N , we have

Z(0, . . . , 0; y1, . . . , yN ; k) =
N∏
b=1

(1− tk+b);

(5) For N = 1, there holds

Z(x1; y1; k) = y1 ·
(

1− tk+1 − t(1− tk)x1y1
1− tx1y1

)
.

�

C.5. Schur Expectation. Having computed (C.7) in determinant form, it is now easy to pass to
its Schur expansion.

Proposition C.3. Define the following Schur measure with respect to two alphabets (x1, . . . , xN )
and (y1, . . . , yN ):

PSM(λ) =
∏

1≤i,j≤N

(1− xiyj) · sλ(x1, . . . , xN )sλ(y1, . . . , yN ).(C.14)

For fixed N ≥ 1 and k ≥ 0 we then have the identity

Z(x1, . . . , xN ; y1, . . . , yN ; k) =

N∏
i=1

yi · ESM

[
N∏
i=1

(1− tk+1+λi−i+N )

]
,(C.15)

where the expectation is taken with respect to the measure (C.14).

Proof. We begin by manipulating the determinant present in (C.13). One has

det
1≤i,j≤N

[
1− tk+1 − t(1− tk)xiyj

(1− xiyj)(1− txiyj)

]
= det

1≤i,j≤N

[
1

1− xiyj
− tk+1

1− txiyj
.

]
,

Replacing the two fractions on the right hand side by their corresponding geometric series, we
obtain the identity

det
1≤i,j≤N

[
1− tk+1 − t(1− tk)xiyj

(1− xiyj)(1− txiyj)

]
= det

1≤i,j≤N

[ ∞∑
a=0

(1− tk+1+a)(xiyj)
a

]
.

To the latter we apply the Cauchy–Binet identity, which yields

det
1≤i,j≤N

[
1− tk+1 − t(1− tk)xiyj

(1− xiyj)(1− txiyj)

]
=

∑
0≤a1<···<aN

N∏
i=1

(1− tk+1+ai) det
1≤i,j≤N

[
x
aj
i

]
det

1≤i,j≤N

[
yaij
]

;
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including Vandermonde factors on both sides of the equation, and making the change of summation
indices ai = λN−i+1 + i− 1, we then find that∏

1≤i<j≤N

1

(xi − xj)(yi − yj)
· det
1≤i,j≤N

[
1− tk+1 − t(1− tk)xiyj

(1− xiyj)(1− txiyj)

]

=
∑

λ1≥···≥λN≥0

N∏
i=1

(1− tk+1+λi−i+N )sλ(x1, . . . , xN )sλ(y1, . . . , yN ).

This recovers the claim (C.15), after multiplying through by
∏N
i=1 yi ·

∏
1≤i,j≤N (1− xiyj). �

C.6. Final Match. Comparing (C.8) and (C.15), we have proved that

E6v

[
(tk+1; t)∞

(tk+1+h(N,N); t)∞

]
= ESM

[
N∏
i=1

(1− tk+1+λi−i+N )

]
.(C.16)

Both sides of (C.16) are polynomial in tk; since (C.16) holds for all integer values k ∈ Z≥0 and
the set {tk}k≥0 has a point of accumulation for |t| < 1, we may extend the equality to all complex
values by the analytic continuation tk+1 = −ζ ∈ C. This yields

E6v

[
(−ζ; t)∞

(−ζth(N,N); t)∞

]
= ESM

[
N∏
i=1

(1 + ζtλi−i+N )

]
,

which is precisely the result (2.7) in the case q = t, ri = si = t−1/2 and M = N .
Extending this result to M < N may be achieved by taking yM+1 = · · · = yN = 0 in (C.16).

On the side of the six-vertex model, this choice trivializes the contribution of the final N − M
thin vertical lines in the picture (C.7) (as no arrows can enter them through the left), leading to a
rectangular domain; on the side of the Schur expectation, this choice does not damage the measure
(C.14) in view of the stability property of Schur polynomials. A similar reduction is possible in the
case M > N .
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