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ABSTRACT

For many decades now, Bayesian Model Averaging (BMA) has been a popular framework to systematically
account for model uncertainty that arises in situations when multiple competing models are available to
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describe the same or similar physical process. The implementation of this framework, however, comes with

a multitude of practical challenges including posterior approximation via Markov chain Monte Carlo and
numerical integration. We present a Variational Bayesian Inference approach to BMA as a viable alternative
to the standard solutions which avoids many of the aforementioned pitfalls. The proposed method is “black
box”in the sense that it can be readily applied to many models with little to no model-specific derivation.
We illustrate the utility of our variational approach on a suite of examples and discuss all the necessary
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implementation details. Fully documented Python code with all the examples is provided as well.

1. Introduction

The existence of several competing models to solve the same or
similar problem is a common scenario across scientific appli-
cations. One typically encounters a slew of candidate models
during standard regression analysis with multiple predictors.
Another widely familiar example is a numerical weather pre-
diction with multitudes of forecasting models available. The
routine practice in this situation is to select a single model and
then make inference based on this model which ignores a major
component of uncertainty—model uncertainty (Leamer 1978).
Bayesian model averaging (BMA) is the natural Bayesian frame-
work to systematically account for uncertainty due to several
competing models.

For any quantity of interest A, such as a future observation
or an effect size, the BMA posterior density p(A|d) corresponds
to the mixture of posterior densities of the individual mod-
els p(A|d, M) weighted by their posterior model probabilities
p(MId):

p(Ald) = Y p(Ald, M)p(M]|d), (1)

MeM
where M denotes the space of all models, d = (di,...,d,)
are given datapoints, and d; = (x;,y;) fori = 1,...,n are

input-observation pairs. Note, if the space of models is M =
{My,..., Mk}, then the formula in (1) can be equivalenty writ-
ten as p(Ald) = Z,If:lp(Md,Mk)p(MHd) which is a more
commonly used notation for BMA. We stick to the notation in
(1) to facilitate the developments in Section 2.2.

The posterior probability of a model M is given by a simple
application of the Bayes’ theorem:

p(d|M)p(M)
Y mrea PEAM)p(M)

Due to the mixture form of the density (1), determining these
probabilities is the key to successful implementation of the BMA
framework. To do so, one first needs to assign a suitable prior
probability p(M) that M is the true model (assuming there is one
such, among the models considered). Hoeting et al. (1999) notes
that,

pMld) = ()

When there is little prior information about the relative plausi-
bility of the models considered, the assumption that all models
are equally likely a priory is a reasonable “neutral” choice.

One can, nevertheless, choose informative prior distributions
when prior information about the likelihood of each model is
available. Eliciting an informative prior is a nontrivial task, but
Madigan, Gavrin, and Raftery (1995) provide some guidance
in the context of graphical models that can be applied in other
settings as well.

The second component of model’s posterior probability is the
model’s marginal likelihood, also known as model evidence,

p(dIM) = / (1030, M)p(6r1|M)dBs, 3)

where 6 is the set of model-specific parameters (03 = (8,0)
in regression problems), p(6)|M) is their prior distribution,
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and p(d|0p, M) is the model’s data likelihood. The evalua-
tion of model evidence is one of the main reasons why BMA
becomes computationally challenging in practice, because a
closed form solution is available only in special scenarios for the
exponential family of distributions with conjugate priors, and
thus the integral (3) requires approximation. Some problem-
specific algorithms have been developed for direct sampling
from BMA posterior density (1) such as the Markov chain
Monte Carlo (MCMC) model composition for linear regression
models (MC?) (Raftery, Madigan, and Hoeting 1997).

A vast body of literature was produced over the past 30
years on the topic of model evidence approximation, with the
simplest approach being the Monte Carlo (MC) integration.
The advantage of MC integration is in the method’s ease of
implementation, however, one typically needs to generate a large
number of samples from prior distribution to achieve reason-
able convergence. A popular improvement to the simple MC
integration is the harmonic mean estimator which makes the
use of samples from posterior distribution of model parameters
and therefore converges more quickly. On the other hand, it
can be unstable, and it tends to overestimate the evidence (see
Raftery et al. 2007; Lenk 2009). A large class of statistically
efficient estimators is based on importance sampling that relies
on draws from an importance density which approximates the
joint posterior density of model parameters. However, a poor
choice of importance density may lead to a huge loss of effi-
ciency. See Neal (2001), Friel and Pettitt (2008), and Pajor (2017)
for some examples of estimators with importance sampling.
Another classical method is the Laplace approximation. This
corresponds to a second order Taylor expansion of the log-
likelihood around its maximum, which makes the likelihood
normal. Laplace method is efficient for well-behaved likeli-
hoods. We refer the reader to Kass and Raftery (1995), Ardia
et al. (2012) and Friel and Wyse (2012) for a complete survey
of popular approximation methods for the model evidence.
Additionally, the more recently proposed Nested Sampling algo-
rithm by Skilling (2006) and expanded by Feroz, Hobson, and
Bridges (2009) provides another alternative to the aforemen-
tioned approaches.

Here we want to point out that the definition of BMA relies
on the assumption that the true model which represents the
physical reality is within the models being considered (i.e., M-
closed setting). BMA can lead to misleading results when the
true model is not included (i.e., M-open setting). For instance,
a scenario with two models—one mediocre and one “perfect”
almost everywhere with a large deviation from the truth at a sin-
gle point of the input space—will typically result in the selection
of the mediocre model. Similarly, BMA can also lead to a subop-
timal performance under model misspecification (Clarke 2003;
Masegosa 2020). Using BMA in the M-open setting addition-
ally creates a logical tension between interpreting p(M|d) and
p(M) as probabilities of M being the true model and knowing
that the true model is not in M. One can perhaps reconcile this
tension by considering p(M|d) and p(M) as the probabilities of
M being a useful description of physical reality. In what follows,
we will assume that the reader is comfortable with assigning a
prior over M, even in the M-open setting. We refer to Bernardo
and Smith (1994) for a detailed discussion about the conceptual
differences between the M-closed and M-open settings and

to Fragoso, Bertoli, and Louzada (2018) for a recent survey of
BMA methodology. A decision-theoretic approach to account
for model uncertainty in M-open setting is presented in Clyde
and Iversen (2013). Recently, Phillips et al. (2021) proposed a
model-mixing approach for the case when the list of models
considered does not contain the true model. Both of these
methods address the inadequacy of BMA in M-open setting by
not considering models as an extension of the parameter space.

Despite its conceptual and computational challenges, BMA
has a long history of use in both natural sciences and humanities
because of a superior predictive performance that is theoret-
ically guaranteed (Bernardo and Smith 1994). Geweke (1999)
introduced BMA in economics and later in other fields such
as political and social sciences. See the recent review on the
use of BMA in Economics by Steel (2020). BMA has also been
applied to the medical sciences (Balasubramanian et al. 2014;
Schorning et al. 2016), ecology and evolution (Silvestro et al.
2014; Hooten and Hobbs 2015), genetics (Wei, Visweswaran,
and Cooper 2011; Wen 2015), machine learning (Clyde, Ghosh,
and Littman 2011; Herndndez et al. 2018; Mukhopadhyay and
Dunson 2020), and lately in nuclear physics (Neufcourt et al.
2019; Neufcourt et al. 2020a; Kejzlar et al. 2020).

In this article, we present a Variational Bayesian Inference
(VBI) approach to BMA. VBI is a useful alternative to the
sampling-based approximation via MCMC that approximates
a target density through optimization. Statisticians and com-
puter scientists (starting with Peterson and Anderson 1987;
Jordan et al. 1999) have been widely using variational techniques
because they tend to be faster and easier to scale to massive
datasets. Our method is based on the variational inference
algorithm with reparameterization gradients developed by Tit-
sias and Lazaro-Gredilla (2014) and Kucukelbir et al. (2017)
which can be applied to many models with minimum additional
derivations. The proposed approach, which we shall call the
black box variational BMA (VBMA), is a one step procedure that
simultaneously approximates model evidences and posterior
distributions of individual models while enjoying all the advan-
tages (and disadvantages) of VBI. Here we note that this is not
the first time a VBI is used in the context of BMA. For instance,
Latouche and Robin (2016) developed a variational Bayesian
approach specifically for averaging of graphon functions, and
Jaureguiberry, Vincent, and Richard (2014) use VBI and BMA
for audio source separation. However, the VBMA is a general
algorithm that can be applied directly to a wide class of models
including Bayesian neural networks, generalized linear models,
and Gaussian process models.

1.1. Outline of this Article

In Section 2, we provide a brief overview of VBI and derive
our proposed VBMA algorithm. Then, in Section 3, we present
a collection of examples that include standard linear regres-
sion, logistic regression, and Bayesian model selection. To fully
showcase the computational benefits of VBMA, we consider
Gaussian process models for residuals of separation energies
of atomic nuclei. We compare VBMA with direct sampling
BMA via MC? and with MCMC posterior approximation and
evidence computed using MC integration. A fully documented
Python code with our algorithm and examples is available at



https://github.com/kejzlarv/BBVBMA. Finally, in Section 4, we
discuss the pros and cons of VBMA and provide a list of sensible
machine learning applications for the proposed methodology.

2. BMA via Variational Bayesian Inference
2.1. Variational Bayesian Inference

VBI strives to approximate a target posterior distribution
through optimization. One first considers a family of distri-
butions q(#|)), indexed by a variational parameter A, over the
space of model parameters and subsequently finds a member
of this family g* closest to the posterior distribution p(8|d).
The simplest variational family is the mean-field family which
assumes independence of all the components in @ but many
other families of variational distributions exist; see Wainwright
and Jordan (2008), Hoffman and Blei (2015), Ranganath,
Tran, and Blei (2016), Tran, Blei, and Airoldi (2015), Tran,
Ranganath, and Blei (2017), Rezende and Mohamed (2015),
Kingma et al. (2016), Kucukelbir et al. (2017), Fortunato,
Blundell, and Vinyals (2017), Papamakarios, Pavlakou, and
Murray (2017), Papamakarios et al. (2021), Kobyzev, Prince, and
Brubaker (2021), and Weilbach et al. (2020). The recent work
of Ambrogioni et al. (2021) and the references therein provide
a detailed discussion of these classes of variational families and
their associated implementation challenges. The approximate
distribution g* is chosen to minimize the Kullback-Leibler (KL)
divergence of g(#|1) from p(8|d):

q" = argmin KL(q(6[1)||p(0|d)). “4)
a6 1)

Finding ¢* is done in practice by maximizing an equivalent
objective function (Jordan et al. 1999), the evidence lower bound
(ELBO):

L(q) = Eq010) [logp(d,O) —log q(0|)»)i|. (5)

The ELBO is the sum between the negative KL divergence
of the variational distribution from the true posterior distribu-
tion and the log of the marginal data distribution p(d). The
term log p(d) is constant with respect to g(@|A). It is also a
lower bound on log p(d) for any choice of g(@|A). ELBO can be
optimized via standard coordinate- or gradient-ascent methods.
However, these techniques are inefficient for large datasets, and
so it has become common practice to use the stochastic gradient
ascent (SGA) algorithm. SGA updates A at the tth iteration
according to

A1 < A+ pd(hy), (6)

where 7(1) is a realization of the random variable £() which is
an unbiased estimate of the gradient V3 L()).

Let us now assume that logp(d,#) and logq(@|1) are dif-
ferentiable functions with respect to @, and that the random
variable @ can be reparameterized using a differentiable trans-
formation #(z, A) of an auxiliary variable z so that z ~ ¥ (z) and
0 = t(z,)) imply @ ~ q(@|1). It is assumed that 1/ (z) existsin a
standard form so that any parameter mean vector is set to zero
and scale parameters are set to one. For example, if we consider
a real valued 6 with normal variation family q(6|u,0?), then
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t(z,(4,0)) = zo + p and z ~ Normal(0, 1). Note that the
variational parameters are part of the transformation and not
the auxiliary distribution. The gradient of the ELBO can be
then expressed as the following expectation with respect to the
auxiliary distribution v (z) (Titsias and Lazaro-Gredilla 2014;
Kucukelbir et al. 2017):

Vi L(g) = Eyn |:V9(logp(d,0) —logq(@|1)) x Vit(z, k)].
(7)

The expectation (7) does not have a closed form in general,
nevertheless, one can use S samples from ¥ (z) to construct its
unbiased MC estimate for the SGA (6)

S
~ 1
1) = 3 > [Vo(IOgP(d, t(z[s], 1)) — logq(t(z[s], M)[A))

s=1

X th(Z[S],X)], (8)

where z[s] ~ ¥ (z). Since the differentiability assumptions
and the reparameterization trick allows the use of autodiffer-
entiation to take gradients, the method is black box in nature
(Kucukelbir et al. 2017). The disadvantage of reparameterization
gradient is that it requires differentiable models, that is, models
with no discrete variables. One can use the so called score
gradient (Ranganath, Gerrish, and Blei 2014) for models with
discrete variables which is also black box in nature, however,
the variance of the gradient estimates can be large and lead to
unreliable results (Ruiz, Titsias, and Blei 2016). The estimate (8)
can be conveniently used in the SGA algorithm which converges
to a local maximum of £(1) (global for £(X) concave (Bottou,
Le Cun, and Bengio 1997)) when the learning rate p; follows the
Robbins—Monro conditions (Robbins and Monro 1951)

o] oo
> o =00, > pi < oo ©)
t=1 t=1

Choosing an optimal learning rate p; can be challenging in
practice. Ideally, one would want the rate to be small in situations
where MC estimates of the ELBO gradient are erratic (large
variance) and large when the MC estimates are relatively stable
(small variance). The elements of variational parameter A can
also differ in scale, and the selected learning rate should accom-
modate these varying, potentially small, scales. The ever increas-
ing abundance of stochastic optimization in machine learning
applications spawned development of numerous algorithms for
element-wise adaptive scale learning rates. We use the Adam
algorithm (Kingma and Ba 2014) which is a popular and easy-
to-implement adaptive rate algorithm. However, there are many
other frequently used algorithms such as the AdaGrad (Duchi,
Hazan, and Singer 2011), the ADADELTA (Zeiler 2012), or the
RMSprop (Tieleman and Hinton 2012). The step size associated
with Adam is kept constant throughout the article. However,
as pointed out in Shazeer and Stern (2018), one may achieve a
better performance by making use of linear ramp-up followed
by some form of decay (Vaswani et al. 2017). In the supple-
mentary material, we provide the results based on RMSprop for
comparison. We did not observe significant differences between
RMSprop and Adam for the examples in Section 3.
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Below, we extend the standard VBI that approximates a dis-
tribution of model parameters to a scenario where a distribution
over the model space needs to be also approximated.

2.2. Black Box Variational BMA

For any quantity of interest A, such as a future observation or
an effect size, the BMA posterior density p(A|d) corresponds
to the mixture of posterior densities of the individual mod-
els p(A|d, M) weighted by their posterior model probabilities
p(M|d) as in Equations (1)-(3).

In order to facilitate variational inference, we reformulate the
problem of BMA as follows

p(Ald) :fP(A|d>M>0M)P(Ms0M|d)dM(Ms0M) (10)

where pt is the product measure of counting and Lebesgue. Note,
the expression (10) indeed summarizes the Equations (1)-(3)
in one step. In practice, the most difficult quantity to compute
is p(M, 0 pr|d). We shall now consider the joint posterior distri-
bution of the model M and its corresponding parameter 6 as
our parameter of interest. Note, the above notation allows for
the dependence of 6 on the model M. This is needed as the
indexing parameter of each model could differ in dimension,
distribution, etc. As explained in Section 2, there has been a
plethora of literature in using variational inference to obtain the
posterior distribution @ for a given model. In this section, we
adapt the variational inference to obtain the joint distribution
of the model and the parameter together in one stroke.

We next assume a variational approximation to the pos-
terior distribution p(M, @y |d) of the form q(M, 0y |Apy) =
q(M)q(@ | M, Apr), where (M) is the variational model weight
of model M and q(@p|Ap) is the variational distribution of
0 under model M and is indexed by its corresponding vari-
ational parameter A ;. Note that we treat (M, 6s) as a random
variable which takes on the values (m,8,,) for varying values
of m € M = {M,,...,Mk}. The density of this random
variable is given by p(m, 0 ,,|d) under the true posterior, and
by q(m)q(0m|A,,) under the variational posterior. Here g(m)
for m € M can be any categorical distribution satisfying
Y mem 4(m) = 1. For each m € M, q(0,,|1,,) can be any
parameteric distribution indexed by the parameters A . Possible
choices of q(0,,|A ) include but are not restricted to mean field
variational family of the form q(0,,|A,,) = []; q(0i|xl). We
additionally assume that 6, can be reparameterized using a
differentiable transformation t(zps, Apr) of an auxiliary variable
zyp so that zyr ~ Y (zy) and 0 = t(zpy, Apr). We avoid the
inherent dependence of t(-) on M to simplify the notation.

Thus, the optimal variational distribution g* is given by

g* = argmin KL(g(M, 0 }a0)|lp(M, Oprld)). (1)
q

Again, in the KL expression above, we assume that M is a
random variable whose values are the individual models in
the model space M. As explained in Section 2, finding g*
is obtained in practice by maximizing an equivalent objective
function (Jordan et al. 1999), the ELBO

L(g) = Eq(M,0M|xM)|:10gp(d> M, 05) — log q(M, 0M|)~M)],
(12)

this time, subject to constraint .1, q(M) = 1. Since
q(@np|Apr) is a parameteric family indexed by the parameters
A, it is indeed a valid density function. However, since the
categorical distribution q(M) has freely varying parameters, the
constraint ) ;.. 1, q(M) = 1is imposed. To accommodate the
constraint, using Lagrange multipliers, we optimize

L(q) = Eqr,0yr1 log p(d, M, 0 )

—logq(M, 0 m|Aa)] — 0 < Z qM) — 1) .
MeM
The ELBO can be simplified further

Ega1,6, 1) og p(d, M, 0 p1) — log q(M, 0 3|1An)]

—Q<Z q(M)—l)

MeM
= Eqm0y 1) [log p(dIM, 0 1) + log p(0y|M) + log p(M)

— log g(0uIM, Ayr) — log g(M)] — ¢ ( 3 g - 1)
MeM

= > qDE g, mau og p(d|M, 051) + log p(B | M)
MeM
+ log p(M) — log q(@ | M, Apr) — log q(M)]

—g(Z q(M)—l).
MeM
Since the parameters g(M) for M € M do not depend on the
variational parameters Ay, therefore, Vy, 03 e nq M) —
1) = 0. Thus, one obtains Vy,, £(q) = q(M)Gy where

M = Ey(z))[ Ve, (log p(d|M, 0 1) + log p(0 p|M)

—log q(@m|M, Ap)) x Vi t(zm, )]

To estimate the quantity Gy, we can generate multiple samples
from the distribution v (z7) and then use the MC estimate

S
~ 1
G = 5 ) _[Vay (og p(dIM, t(zals], han))
s=1
+ log p(t(zmls], Aa) IM) — log q(t(zm[s], Aa) M, )
x Vaut@mlsl Aa)].
To derive the update of g(M), note that
E [(log p(d|M, 1) + log p(6.|M)
\V/ L — HqOpmIMAn)
100 E@D = og q@ulM, M)
Lym
+logp(M) — logq(M) — 1 — o,
where £y is nothing but the ELBO under a fixed model M.
Equating the above derivative to 0, we get a closed form expres-
sion for qg(M) as
q(M) = exp(Ly +logp(M) — 1 — o) x exp(Ly + log p(M)).
It only remains to generate the quantity £y, which we get

again by multiple samples from the distribution ¥ (z»r) and then
use the MC estimate
S
-~ 1
L=y > “llog p(dIM, t(zy[s], har)) + log p(t(zmlsl, Aar) |M)
s=1
— log q(t(zmls], Aan) IM, Aar)].
This allows us to get Algorithm 1 for VBMA.




Algorithm 1 Black Box Variational BMA

Start with an initial choice of (Apr, ¢(M))se A and alearning
rate p.
repeat

By generating zm[1], ...

,Z2Mm[S] from v (zp1), calculate

N
~ 1
Gu = 5 D _[Vay (ogp(d|M, t(zuls], k)

s=1
+ log p(t(zmlsl, Ay) M)
— log q(t(zmls], Am) M, Anm))

X Vaut(@mlsl, Ayl

Update A as

Ayt = Ay + pg(M)Gy

Using the already generated zy[1], . . ., zm[S], calculate

N
-~ 1
Ly = 3 ) llogp(d|M, t(zuls], kn))

s=1
+log p(t(zusT, han)|IM)
— log q(t(zulsl, Ag) M, Ap)]

Update q(M) as
G(M) = exp(Lys + log p(M))

and q(M) = q(M)/ ZMEM q(M).
until Convergence of £(g) where

L= )Y MLy
MeM

2.2.1. Implementation Details and Variational Families
The general form of VBMA algorithm allows the user to select
the variational family that is most appropriate for the problem at
hand. As we noted in Section 2, there is a vast pool of candidate
families that vary by their expressiveness and ability to cap-
ture complex structure of unknown parameters many of which
can be used in reparameterization gradients. In the subsequent
applications, we shall consider mean-field variational families
with normal distributions for real valued variables and log-
normal distributions for positive variables. Despite its simplicity,
the mean-field variational family can approximate a wide class
of posteriors and is good enough to achieve consistency for
the variational posterior for a wide class of models (Wang and
Blei 2018; Zhang and Gao 2020; Bhattacharya and Maiti 2021).
Moreover, all the strictly positive variational parameters A will
be transformed as

A= log(e}‘ ) (13)

to avoid constrained optimization. See Appendix A for the
details on the reparameterization of normal and log-normal
mean-field families.
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Besides the choice of suitable variational family for VBMA,
another practical consideration needs to be made regarding
the updates of variational parameter given by Ay = Ay +
pq(M)Gyr. Since each step directly depends on the variational
approximation of the posterior model probabilities g(M), the
updates can be computationally unstable unless the ELBO of
each individual model is close to convergence. We therefore
recommend setting g(M) := 1/K, where K is the number
of models considered, until the variational approximation of
the posterior model probabilities stabilizes. Additionally, we
recommend to compute the final values of §(M), and q(M),
respectively, as an average of the last several hundred iterations
of the Algorithm (1) for a greater reliability of the estimates.

3. Examples

Below, we provide a suite of illustrative real data examples
to demonstrate how VBMA serves as a viable alternative to
approximate the BMA posterior distribution. First, we analyze
the U.S. crime data under the standard linear regression model.
Second, we consider a logistic regression model for a heart
disease dataset. We also show that VBMA provides a conve-
nient solution to Bayesian model selection with Bayes factors.
To fully showcase the computational benefits of VBMA, we
study Gaussian process models for the residuals of separation
energies of atomic nuclei where the standard MCMC-based
implementation is challenging in practice. Each of the examples
looks at a situation with several competing models without
any prior knowledge of which is better; thus, we set the prior
model weights to be uniform over the model space. All the
reparameterization gradients in the following applications were
obtained using the autodifferentiation engine in Python pack-
age PyTorch (Paszke et al. 2019).

3.1. Bayesian Linear Regression

In this example, we compare VBMA with the MCMC algo-
rithm MC? using the aggregated crime data on 47 U.S. states of
Vandaele (1978) which has been considered by Raftery, Madi-
gan, and Hoeting (1997) to illustrate the efficiency of BMA in
regression scenario with a multitude of candidate models. For
simplicity, we concentrate only on a minimal subset of 3 out of
15 predictors of the crime rate and following Raftery, Madigan,
and Hoeting (1997), we log transformed all the continuous
variables (predictors were also centered).

Given the response variable y, we consider models of the
form

14
)’=/30+Z,3jxj+e, (14)

j=1

where x1,...,x, is a subset of a set of candidate predictors
X1, . . . Xk. In this specific example, we consider three predictors:
x1 corresponding to the percentage of males age 14-24, x;
corresponds to the probability of imprisonment, and x3 con-
tains the mean years of schooling in the state. We assign €
a normal distribution with mean zero and precision ¢. The
€’s are assumed to be independent for distinct cases. For the
parameters in each model (14), we use Zellner’s g-prior (Zellner
1986; Raftery, Madigan, and Hoeting 1997)



6 V.KEJZLARET AL.

1.0+
< 0.81
0.6

P(B=0ly

0.4
0.2

—— VBMA

0.0

1.0
S 0.8
o
I 0.6
2
a 0.4
0.2

-—- MC3

0.0 =
=2 0 2 —-1.0

B1

—0.5

B2 B3

Figure 1. Posterior distributions for predictor slopes based on VBMA (first row) and MC3 (second row). Namely, 1 corresponds to the percentage of males 14-24, B to
the probability of imprisonment, and 3 to the mean years of schooling. The density is scaled so that the maximum of the density is equal to P(8 # 0|d). The spike

corresponds to P(8 = 0|d).

¢ x1/9,
Bo x 1,

Bi,...Bp X N(O,gX X)"}/¢),

where ¢ = 7 and X is the design matrix. Zellner’s g-prior
is one of the most popular conjugate Normal-Gamma prior
distributions for linear models that is convenient and provides
Bayesian computation with marginal likelihoods that can be
evaluated analytically.

3.1.1. Results

Table 1 shows the estimates of model posterior probabilities
obtained with VBMA and through the MCMC algorithm MC?
for the top four models. The VBMA results are based on a
pretraining sequence of 500 iterations with the model proba-
bilities set to 1/8 and 200 iterations of updating according to
Algorithm 1. Ten MC samples from the variational distribu-
tions were used to estimate the ELBO gradient. The displayed
probabilities were determined as the average over the last 100
iterations of the algorithm to ensure stability of the estimates.
The MC? results were computed with R package BAS (Clyde,
Ghosh, and Littman 2011). Clearly, the VBMA based values
closely match the MC? with small deviations for the models with
lower posterior probabilities. However, this difference does not
dramatically impact the data analysis.

Table 1. The top four linear regression models of the crime data according to their
posterior model probabilities.

Inclusion p(M|d)
Model Intercept X1 X2 X3 mc3 VBMA
0 * * 0.58 0.57
1 * * * 0.17 0.15
2 * * * 0.11 0.11
3 * * * * 0.07 0.05

NOTE: The star indicates the inclusion of predictor in the model and the model ID
is provided for easier referencing. Comparison between the VBMA and the MC3
based averaging is shown.

Besides the model posterior probabilities, one can asses the
fidelity of VBMA using the posterior distributions of regres-
sion coefficients based on the model average. Figure 1 shows
the posterior distributions for the coeflicients of the percent-
age of males 14-24, the probability of imprisonment, and the
mean years of schooling based on the model averaging results.
The figure additionally displays (8 = 0|d) obtained by first
summing the posterior model probabilities across the models
for each predictor and then subtracting the value from one.
We can see that the posterior distributions based on VBMA
coincide with those obtained with MC®. On the other hand,
and somewhat expectantly, the computational overhead needed
to compute the reparameterization gradients is unnecessarily
large for the simple case of linear regression. The pretraining



sequence took 4-10 sec per model and the averaging of all
eight models took approximately 27 sec on a mid-range laptop.
Contrary to that, the MC? estimates were instantaneous for all
the practical purposes. We shall start seeing the computational
efficiency of VBMA in the subsequent applications.

Predictive Performance. Similar to Raftery, Madigan, and
Hoeting (1997), we asses the predictive ability of VBMA
by randomly splitting the U.S. crime data into a training
and a testing dataset. A 50-50 split was chosen here due to
a relatively small size of the dataset. We subsequently re-
run the VBMA (and MC?) using the training dataset. The
predictive performance was measured through coverage of
Bayesian predictive intervals (equal-tails) with the credibility
level ranging from 10% to 90% with 10% increments. A
(1—ar) X 100% prediction interval is a posterior credible interval
within which a (predicted) observation falls with probability
(I — ). An equal-tail interval is chosen so that the posterior
probability of being below the interval is as likely as being
above it (Gelman et al. 2013). Figure 2 shows the predictive
coverage of the two methods plotted against each other with the
diagonal dashed line indicating a perfect agreement between
the methods. We can see that the coverages for the procedures
match in general with small discrepancies at lower quantiles.
Additionally, we compare the model averaging predictions with
those obtained by the best models according to the adjusted R?
and Mallows’ C, under both VBMA and MC?. Adjusted R* and
Mallows’ C, are commonly used model selection and evaluation
criteria in a regression setting. Adjusted R?> measures quality
of the model in terms of total variability explained, whereas
Mallows” C,, estimates the size of the bias that is introduced
into the predicted responses by having a model that is missing
one or more important predictors (James et al. 2013). Both of
these model selection strategies lead to M3 as the best model.
However, M3 generally under-performed the model averaging
and underestimated the declared coverage. We can see that by
the general shift of the respected curve in comparison to the
averaging results.

3.2. Bayesian Logistic Regression

Unlike the standard linear regression, generalized linear models
such as logistic regression exemplify the slew of challenges that
one can encounter when implementing BMA. First, the evalua-
tion of the evidence integral does not have an analytic form and
the integration can be high-dimensional. Additionally, direct
sampling from the BMA posterior through MC? algorithm is
not available. One therefore needs to approximate the evidence
integral and consequently approximate the BMA posterior with
MC samples from the mixture of the posteriors of each of the
individual models.

Here we illustrate the utility of VBMA on the analysis of
heart disease data (Dua and Graff 2017) to asses the factors
that contribute to the risk of heart attack. The models used are
logistic regression models with logit link function of the form

Py =1) P
log <—]P’(y — 0)) = fo + FZI ﬂjxj,

where y = 1 corresponds to subjects with higher chance of
heart attack, and y = 0 to those with a smaller chance of heart

(15)
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Figure 2. Comparison between coverages of Bayesian predictive interval (equal-
tails) on a testing set of 22 observations. The horizontal axis corresponds to the
predictive coverage of MC3 based intervals and the vertical axis to the coverage
of VBMA. The diagonal line corresponds to the perfect agreement between the two
methods.

attack. In this example, we shall consider five predictors, namely
x1 is the serum cholestoral in g/dl, x; is their resting blood
pressure on admission to the hospital, x3 is the biological sex,
x4 is the age, and x5 is the maximum hear rate achieved during
examination. This gives the total of 32 candidate models. All the
continuous variables were again log transformed and centered.
For the parameters in each model (15), we use independent
normal prior distributions.

3.2.1. Results
Table 2 shows the estimates of model posterior probabilities
obtained with VBMA as compared to those computed using
MC integration for the top eight models. The VBMA results
are based on a pretraining sequence of 500 iterations with the
model probabilities set to 1/32 and 100 iterations of updating
according to Algorithm 1. Ten MC samples from the variational
distributions were used to estimate the ELBO gradient. The
MC-based posterior model probabilities are based on 7.5 x 10°
samples. This large number of samples was necessary in order to
achieve reasonable convergence. We again observe a close match
of the VBMA model posteriors with the MC model posteriors.
Figure 3 shows the posterior distribution of regression coef-
ficients based on the model average. The MCMC results were
obtained with No-U-Turn sampler (Homan and Gelman 2014)
implemented in Python package for Bayesian statistical mod-
eling PyMC3 (Salvatier, Wiecki, and Fonnesbeck 2016). Ana-
logically to the linear regression example, VBMA algorithm
with reparameterization gradients captures the posterior dis-
tributions well including the parameter uncertainties. When it
comes to the computation times, we start seeing the benefits
of VBMA for nonconjugate models. The pretraining sequence
took 3-4 sec per model and the averaging of all 32 models took
approximately 20 sec on a mid-range laptop. On the other hand,
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Figure 3. Posterior distributions for predictor slopes based on VBMA (first row) and MCMC (second row). Namely, 1 corresponds to the serum cholestoral in g/dl, 8, to
the resting blood pressure on admission to the hospital, 83 to the biological sex, 84 to the age, and S5 is the maximum hear rate achieved during examination. The density
is scaled so that the maximum of the density is equal to P(8 # 0|d). The spike corresponds to P(8 = 0|d).

Table 2. The top eight logistic regression models of the heart rate data according
to their posterior model probabilities.

Inclusion p(M|d)

Model Intercept X1 X2 X3 X4 X5 MC VBMA
1 * * * * * 0.45 0.43
2 * * * * * * 0.28 0.28
3 * * * * * 0.09 0.09
4 * * * * 0.06 0.06
5 * * * * * 0.05 0.06
6 * * * * 0.04 0.05
7 * * * * 0.01 0.02
8 * * * < 0.01 < 0.01

NOTE: The star indicates the inclusion of predictor in the model and the model ID
is provided for easier referencing. Comparison between the VBMA and the MC
based averaging is shown.

the MC estimates of evidence integrals required 20 min per
model, and 20-50 sec was needed to obtain 3 x 10* samples
via No-U-Turn sampler.

3.3. Bayesian Model Selection

Here, we demonstrate that the VBMA algorithm can be con-
veniently applied in the generalization of Bayesian hypotheses
testing, that is, model selection with Bayes factors. Instead of
averaging, suppose that we wish to compare the two Bayesian
models,

My :d ~ p(d|o),00 ~ p(00), My :d~p(d|61),01 ~ p(61),

where the definition of the parameter § may differ between
models. Then, the Bayes factor By; in support of model M) is

given by

_ p(d|My) _ p(Mp|d)p(My)
p(dIMy)  p(Mi|d)p(My)’

where p(M;|d) for i € {0,1} is the model’s posterior proba-
bility defined in Equation (2). The quantity By, is the ratio of
the posterior odds of model M to its prior odds and repre-
sents the information about the evidence provided by the data
in favor of model My as opposed to M; (Kass and Raftery
1995). It should be clear from the definition of (16) that the
Bayesian model selection suffers from exactly the same com-
putational challenges as BMA. To this extent, VBMA directly
approximates posterior probabilities of individual models and
Bayes factors can be conveniently computed as a byproduct of
the algorithm without the need of approximating the model
evidence (3).

01 (16)

3.3.1. Linear and Logistic Regression Examples

To illustrate the Bayesian model selection via VBMA, we
consider the following hypotheses for both linear and logistic
regression examples above and compare the VBMA based
results with their MC counterparts:

H;: B #0.

For the linear regression case, this corresponds to comparing
models M; and Mj3. For the logistic regression example, we need
to compare models Ms and M,. Table 3 presents the respec-
tive Bayes factor approximations. For both linear and logistic
regression examples, VBMA approximations qualitatively agree
with the MC based approximations. The results show that the
U.S crime data favor the linear regression model with 8; = 0,

Hy: p1 =0, (17)



Table 3. Bayes factors obtained via VBMA approximation and MC methods.

Bayes factor
Example MC VBMA
Linear regression 243 3.00
Logistic regression 0.18 0.21

NOTE: Models My and M3 are considered for the linear regression example and
models M5 and M, for the logistic regression example. Bayes factor larger than
1 indicates selection of the model with 81 = 0 and vice versa.

and the heart disease data favor logistic regression model with

p1 # 0.

3.4. Nuclear Mass Predictions

As an illustration of VBMA in a scenario where application of
standard MCMC-based inference is challenging in practice, we
study the separation energies of atomic nuclei which were the
subject of various recent machine learning applications (Gaus-
sian process modeling) in the field of nuclear physics (Neufcourt
et al. 2018, 2019, 2020b). Namely, our focus is the two-neutron
separation energy (S»,) which is a fundamental property of
atomic nucleus and is defined as the energy required to remove
two neutrons from the nucleus. The S,, values can be obtained
through a nuclear mass difference. The knowledge of separa-
tion energies determines the limits of nuclear existence and
predictions of these quantities can help guide the experimental
research at future rare isotope facilities.

In this example, we shall consider 6 state-of-the-art nuclear
mass models based on the nuclear density functional theory
(DFT) (Nazarewicz 2016): the Skyrme energy density function-
als SkM™* (Bartel et al. 1982), SkP (Dobaczewski, Flocard, and
Treiner 1984), SLy4 (Chabanat et al. 1995), SV-min (Klipfel
et al. 2009), UNEDFO Kortelainen et al. (2010), and UNEDF1
(Kortelainen et al. 2012). These are global nuclear mass mod-
els, because they are capable of reliably describing the whole
nuclear chart. Our analysis closely follows that of Neufcourt
et al. (2020b), where we consider the statistical model for the
differences y; = S;ip (x) — Sg;, (x;) between the observed
experimental data and the predictions given by the theoretical
models of the form

yi=f(x) +oe, (18)

where x; = (Z;,N;) corresponds to the proton number Z;
and the neutron number N; of a nucleus. The function f(-)
represents the systematic discrepancy between the underlying
physical process and the theoretical mass model. The quantity
o¢€; is the scaled experimental error which is assumed to be
iid normal with mean zero. For the systematic discrepancy,
Neufcourt et al. (2020b) take a Gaussian process (GP) on the
two dimensional space x = (Z, N):

fx) ~ GP(B, k(x,x)), (19)

where B is the constant mean and k is the squared exponential
covariance function characterized by the scale n and character-
istic correlation ranges vz and vy:

B (Z—Z’)z _ (N—N’)z
202

k(x,x') = n’e ¥z vy (20)
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Figure 4. The nuclear chart of even-even and odd-even nuclei divided into the
training and testing datasets for the GP modeling of the residuals of two-neutron
separation energies S,p,. Z corresponds to the proton number and N is the neutron
number.

The GP with covariance (20) is a sensible nonparameteric model
for the systematic discrepancy as it is expected to be relatively
smooth and stationary (Neufcourt et al. 2020a). Since neither of
the six Skyrme energy functionals a-priory stands out on the full
nuclear domain, using BMA for averaging or model selection
is a logical approach here that will allow for predictions with
realistically quantified uncertainties.

As the experimental observations, we take the most recent
measured values of two-neutron separation energies from the
AME2003 dataset (Audi, Wapstra, and Thibault 2003) as train-
ing data (n = 1029) and keep all additional data tabulated in
AME2016 (Wang et al. 2017) for a testing dataset (n = 120).
The domains of these datasets are depicted in Figure 4. Note that
we use both even-even (meaning both Z and N are even) and
odd-even nuclei jointly for the training to fully account for the
correlations between systematic discrepancies unlike Neufcourt
et al. (2020b) who fitted independent GPs on the two domains
separately to make the computations manageable. Using the
proposed VBMA approach, we are able to do computations in
matter of minutes which would take dozens of hours using the
standard MCMC approximation.

3.5. Results

The performance of VBMA in averaging of the GP enhanced
nuclear mass models was compared with BMA based on the
posterior approximation by No-U-Turn sampler and the MC
estimates of evidence integrals. Similarly to the previous exam-
ples, the VBMA results are based on a pretraining sequence of
300 iterations with the model probabilities set to 1/6. This pre-
training sequence lead to the selection of UNEDF1 (p(M|d) =
1) with stable ELBOs and so no further training was needed.
Ten MC samples from the variational distributions were used to
estimate the reparameterization gradient gradient. The resulting
root-mean-square error (RMSE) on the testing dataset of 120
nuclei was 0.406 MeV as compared to the RMSE of 0.419 MeV
given by the MCMC approximation. These RMSE values are
consistent with those obtained by Neufcourt et al. (2020b). The
MCMC results are based on 2 x 10* posterior samples (10*
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burn-in) and the MC posterior model probabilities are based on
2 x 10° samples which also lead to the selection of UNEDFI.

The MCMC implementation proved to be significantly more
time consuming. It required 15-20 hr per model to generate the
posterior samples and about 6 hr for the MC integration. On
the other hand, the variational approach required between 20
and 25 min per model which clearly demonstrates the utility
of VBMA in more complex modeling scenarios. The fidelity of
Bayesian predictive intervals was equivalent between the VBMA
and MCMC similarly to the linear regression example. We refer
the reader to the supplementary materials for additional results
containing the study of predictive coverage.

4. Discussion

We presented a VBI approach to BMA that avoids some of
the practical challenges that burdens the standard MCMC
based approaches to approximate the BMA posterior, especially
numerical evaluation of the evidence integral and long sampling
times of MCMC sampler. The fidelity of the method was
demonstrated on a series of pedagogical examples including
the averaging of linear and logistic regression models and
Bayesian model selection via Bayes factors. To fully showcase the
computational benefits of VBMA, we applied our methodology
to nuclear mass models with GP model for systematic discrep-
ancies. The observed speed-up in the case of GP modeling was
at least 50-fold compared to the standard MCMC approaches.

The proposed procedure is “black box” in the sense that it
can be readily applied to wide range of models with minimal
additional derivations needed. For instance, VBMA can be con-
veniently applied to nonconjugate models including generalized
linear models, Bayesian neural networks, and Deep latent Gaus-
sian models (Blei, Kucukelbir, and McAuliffe 2017).

Additionally, VBMA is a general VBI algorithm and the
presented implementation with the Adam learning rate and
the mean-field variational family is just one of many imple-
mentations. One can consider any adaptive learning rate and
other variational family available in the literature. VBMA can
also be simply modified for greater scalability in the scenarios
with complex machine learning models that need to be fitted
to massive datasets. First, one can subsample from the data
to construct computationally cheap noisy estimates of ELBO
gradients. Second, the nature of VBMA allows for immediate
parallelization across the models. To achieve a faster conver-
gence of the algorithm, VBMA can be augmented with Rao-
Blackwellizaiton (Casella and Robert 1996), control variates
(Ross 2006), and importance sampling (Ruiz, Titsias, and Blei
2016) to even further reduce the variance of noisy gradient
estimators.

Of course, the use of VBI comes at a cost and one cannot
avoid the general pitfalls of variational methods. Using mean-
field families can lead to posterior distributions with under-
estimated uncertainties in cases of highly correlated parame-
ters. One can improve the fidelity of posteriors by using more
complex variational family that does not assume independence
of unknown parameters (Blei, Kucukelbir, and McAuliffe 2017;
Wang and Blei 2018). The choice of adaptive learning rate can
be sometimes challenging in practice, and one may observe
significant differences among the adaptive learning rates, and a

careful sensitivity analysis must be performed. For the models
considered in this work, we do not observe significant differ-
ences between the RMSprop and the Adam (see the supplemen-
tary materials). The reparameterization gradient used in Algo-
rithm 1 works only for differentiable models with no discrete
variables. One can use the score gradient (Ranganath, Gerrish,
and Blei 2014) for models with discrete variables which is also
black box in nature, however, the variance of the gradient esti-
mates is larger than that of reparameterization gradients. Finally,
the computational overhead of VBMA for simple models (such
as linear regression) can be too high to achieve any meaningful
advantage, however, the use of VBMA in complex models can
lead to significant computational gains.

Appendix A. Parameterization of Variational Families
A.1. Normal Variational Family

Let us consider a real valued parameter 6 with normal variation family
q(6| w,02) parameterized by the mean p and variance o2. Under
the transformation (13), we get the following expressions for the log
likelihood of the variational distribution

1 1 1 0—p?
10gq(9|lla )\.O') = _E log[log(e)‘“ + 1)] — E 10g27T — Em
@1

The reparameterization gradient is then obtained with z ~ Normal
(0, 1) so that

0 = t(z, (j1, As)) = z X y/log(ero + 1) + p.

A.2. Log-Normal Variational Family

For a positive-valued parameters, we shall consider a log-normal vari-
ational family q(6|m, t2) parameterized by the mean m and variance
2
_ 1 i 1 1 (log6 — w)>
logq(@|m, A¢) = —log6 — Elog[log(e T+ 1] - 3 log2m — Em
The reparameterization gradient is then obtained with z ~
Normal(0, 1) so that

0 = t(z, (11, Ar)) = >V I0BETHDFI

Supplementary Materials

The supplementary material contains some additional numerical results
for the VBMA of linear regression models, logistic regression models, and
nuclear mass models. The results were obtained using the RMSprop adap-
tive learning rate as compared to the Adam learning rate results presented
in the main article.
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