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Gram-type matrices and their spectral decomposition are of central importance for numerous problems in statis-
tics, applied mathematics, physics, and machine learning. In this paper, we carefully study the non-asymptotic
properties of spectral decomposition of large Gram-type matrices when data are not necessarily independent.
Specifically, we derive the exponential tail bounds for the deviation between eigenvectors of the right Gram ma-
trix to their population counterparts as well as the Berry-Esseen type bound for these deviations. We also obtain the
non-asymptotic tail bound of the ratio between eigenvalues of the left Gram matrix, namely the sample covariance
matrix, and their population counterparts regardless of the size of the data matrix. The documented non-asymptotic
properties are further demonstrated in a suite of applications, including the non-asymptotic characterization of the
estimated number of latent factors in factor models and relate machine learning problems, the estimation and
forecasting of high-dimensional time series, the spectral properties of large sample covariance matrix such as
perturbation bounds and inference on the spectral projectors, and low-rank matrix denoising using dependent data.
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1. Introduction

Gram-type matrix or Gram matrix is fundamental in a wide range of fields including statistics (Shawe-
Taylor et al. [83]), applied mathematics (James and Murphy [58], Scholkopf et al. [81], Shawe-Taylor
et al. [82], Chen, Womersley, and Ye [39]), machine learning (Drineas and Mahoney [45], De Almeida,
Asada, and Garcia [42], Ramona, Richard, and David [79]), engineering (De Almeida, Asada, and
Garcia [43]), and physics (Stark [84]). Givena p x T datamatrix Y = (yq, ..., yr) with p-dimensional
observation y, = (y17, ...,y p,)T, the left and the right Gram matrices are YYT and Y'Y, respectively
(Horst [56], Rummel [80]). Statistically, the left Gram matrix scaled by the sample size T-lyy’
coincides with the sample covariance matrix after ignoring the sample mean. As a bilinear function of
the data matrix, Gram matrix retains important information about data. For example, the right Gram
matrix and the data matrix share the common null space while the column space of the left Gram
matrix agrees with that of the data matrix. Particularly, the spectral decomposition of Gram matrices is
a powerful and popular tool to provide a low-rank representation of the original data yet preserves the
information as much as possible. For instance, in the linear model, spectral decomposition of the Gram
matrix from the design matrix reveals the direction of space spanned by the projection matrix (Mandel
[71]); in the nonparametric regression, spectral decomposition of the Gram matrix from the spline basis
functions provides a complete reconstruction of the functional space (Bialecki and Fairweather [21]);
and in the exploratory analysis, spectral decomposition of the Gram matrix from a general data or
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feature matrix leads to the principal component analysis (PCA) (Pearson [78], Hotelling [57], Jolliffe
[65]), kernel PCA, or sparse PCA (Zou, Hastie, and Tibshirani [95], Zou and Xue [96]). In addition,
spectral decomposition of the Gram matrix has been applied to estimate large covariance matrices
(Fan, Liao, and Micheva [47], Fan et al. [49]) and to extract the latent factors that drive the correlation
structure in factor models (Bai [8], Bartholomew, Knott, and Moustaki [20], Bai and Ng [13], Fan,
Liao, and Wang [48]). By itself, the spectral decomposition has also been applied to other type of
matrices to reveal the underlying structure in data, such as the spectral method along with the graph
Laplacian or the adjacency matrix in cluster analysis or network study for the detection of clusters or
latent communities (Donath and Hoffman [44], Ng, Jordan, and Weiss [75]).

Gram matrix naturally grows along with the size of data, and not only it may incur computational
challenges but also lead to theoretical difficulties. For fixed dimensions, the scaled left Gram matrix or
the sample covariance matrix converges to its expectation when T diverges (Bai, Yin, and Krishnaiah
[17,18], Bai and Yin [16]). However, both the left and the right Gram matrices, as well as their empirical
spectral distributions may fail to converge given simultaneously divergent p and T (Bickel and Levina
[22,23], Johnstone and Lu [63], Wang and Fan [88]). Based on the asymptotic normality of sample co-
variance matrix, Anderson [5] established the joint distribution of empirical eigenvalues in the asymp-
totic regime where p remains constant and 7 diverges. For independent and identically distributed
(i.i.d.) data with divergent dimensions, which scale with the sample size linearly and vice versa, the
limiting distribution of spectral structures of the sample covariance matrix has also been widely studied
(Wachter [87], Jonsson [66], Bai, Yin, and Krishnaiah [17,18], Bai and Yin [16], Adamczak et al. [1],
Bai and Silverstein [15]). When p/ T diverges, a flexible and common approach is the spike structure
model (Johnstone [62]). That is, among the p eigenvalues of the population covariance matrix of y;,
there are K dominant eigenvalues compared to the remains so that the signal of low-rank structure out-
weighs the noise and therefore can be retrieved from the spectral decomposition. Leveraging this spike
structure, Wang and Fan [88] showed that, for divergent p/ T, the eigenvalue and corresponding eigen-
vector of the sample covariance matrix still converge to their population counterparts whenever the K
dominant population eigenvalues diverge in p with certain rate. They also showed that the convergence
rates of empirical eigenvalue and eigenvector are controlled by the divergent rate of the corresponding
population eigenvalue.

The aforementioned assumption that the first K dominant eigenvalues of the population covariance
matrix of y, have order O(p), together with the assumption that noises admit constant variance, is
known as the pervasiveness assumption or strong factor assumption from the factor model and econo-
metrics literature. Under this assumption, the spike structure can be equivalently written as a factor
model (Chamberlain and Rothschild [34], Stock and Watson [86], Bai [8], Lam and Yao [69]) for
which data satisfies

Yir =aj1 fr1 +---+aix fik +ui; (L.1)

witht=1,...,Tandi=1,..., p.Here, (fi1,..., ftK)T is a K -dimensional zero mean latent process
and u;; is an error process. Model (1.1) inherently links to a large number of widely used statistical
models and methods, such as the panel data model with unobservable interactive effects (Ahn, Lee, and
Schmidt [3], Bai [9], Bai and Li [10], Moon and Weidner [73]) and PCA (Fan et al. [49]). In matrix
form, (1.1) is

Y=AF' +U, (1.2)

where A = (a;)2 ) . F = (1, ... f0) T with £, = (fi1,.... fix) T or equivalently, F = (f1, ...,
fr) with fi, = (fik, ..., ka)T, and U= (uy,...,ur) withu, = (uy,, ..., u,,,)T. Assume that f; and
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u, are uncorrelated and E(f,flT) =1Ig foreacht =1,..., T (Chamberlain and Rothschild [34]), the
covariance of y, is then given by

T=AAT+3,, (1.3)

where ¥ = T-'E(YY'") and X, = T-'E(UUT). Model (1.2) is called the strict factor model if

1I[-E(UUT) is diagonal, i.e., uyy, .. ; are uncorrelated with each other; otherwise, it is called the
appr0x1mate factor model if 7~ IE(UUWP ) is not diagonal (Chamberlain and Rothschild [34]). Model
(1.2) provides an effective dimension reduction by approximating a p-dimensional process y, with a
K -dimensional process f; and a loading matrix matrix A. From (1.3), it is easy to see that the largest K
eigenvalues of X increase in p while the remaining eigenvalues are bounded (Bai and Ng [12]), which
mimics the spike structure model with divergent spiked eigenvalues.

For the traditional factor model with fixed p and i.i.d. normally distributed f; and u;, the column
space of loading matrix A and the diagonal entries of 7~ 'E(UUT) can be consistently estimated
through either the maximum likelihood estimator (MLE) (Lawley and Maxwell [70]) or PCA (Ander-
son and Rubin [6], Anderson [4]), both of which rely on the consistent estimation of X. Though factor
models and PCA are not identical in general, they are approximately the same for high-dimensional
problems under the pervasiveness assumption (Fan, Liao, and Micheva [47], Fan et al. [49]). Spe-
cially, the principal components Z, ..., Z; are defined as Z; = wkTY, where the projection directions
wi,...,wg € RP? are the first K eigenvectors of X. This eigen-decomposition formulation of PCA
relates PCA to the singular value decomposition (SVD) of Y as well as the spectral decomposition of
the sample covariance matrix, namely the left Gram matrix of Y scaled by sample size T.

In this paper, to carefully study the spectral decomposition of large Gram matrices, we consider
data generated from (1.1) or (1.2) so that not only the data are of high-dimensional but also allow
temporally dependence. For the right Gram matrix Y'Y, the eigenvectors corresponding to the K
largest eigenvalues are of the same direction as f, where f is the kth column of F. Therefore, the
spectral decomposition of the right Gram matrix can be investigated using the estimates to latent factor
process and loading matrix in (1.1). That is, given an estimator to f;, denoted by f k> properties of the
eigenvector corresponding to the kth largest eigenvalue of Y Y can be studied from 7~/ 27 f 1, and vice
versa. Although the consistency of estimating F has been documented in literature (Bai and Ng [13],
Fan, Liao, and Wang [48]), non-asymptotic properties of the deviation of F= (f Ir---s f k), where
f . is the eigenvector corresponding to the kth largest eigenvalue of Y'Y, from F have not been fully
investigated. Our main contribution in this paper is to study the non-asymptotic properties of F-—Fas
well as the approximated distribution of f, — f for each k. Particularly, we relax the condition on F in
the traditional factor model. Compared with Condition PC1 in Bai and Ng [13], we do not restrict F on
a subspace. Therefore, as an important application in modeling high-dimensional time series, the non-
asymptotic characterization of f; — f; shows the accuracy of f as an surrogate to f for each k so
that the parametric model of the K -dimensional latent processes, if specified in advance, can be easily
estimated and therefore can be employed to forecast y,. Compared to the traditional likelihood based
approach, this approach is computationally easier and requires very little assumptions on innovations
of processes. In addition, we obtain non-asymptotic properties of the deviation between eigenvectors
corresponding to the largest K eigenvalues of T~'YY, i.e., the sample covariance matrix, to those of
Y in (1.3). By considering T~'YY " as a perturbation of X, our result is similar to the Davis-Kahan
Theorem (Davis and Kahan [41], Yu, Wang, and Samworth [90], Fan, Wang, and Zhong [50], Zhang,
Cai, and Wu [91]) or the Wedin Theorem (Wedin [89]). Our conclusion, however, does not depend on
the consistent estimation of X. Hence, for the high-dimensional cases, our result remains valid for the
spike part of ¥ even though it cannot be consistently estimated using 7YY " without regularization.

Another important application of our results is to provide the non-asymptotic characterization of the
tail probability of correctly estimating the number of latent factors K in the factor models, without
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which recovering the latent factor processes and their loadings will be meaningless in practice. For
fixed or low dimensions, a variety of subjective methods such as scree plot of eigenvalues, distribution-
based tests including Bartlett’s test, and computational intensive methods including cross-validation
have been employed to determine K (Jolliffe [65]). For high dimensions with p/T converging to
some constant, the information criteria such as AIC and BIC has been employed (Bai and Ng [11],
Bai, Choi, and Fujikoshi [14]). If the data also follows a normal distribution, a sequential Kac-Rice
test has been introduced to select K (Choi, Taylor, Tibshirani [40]). For ultra high dimensions with
p > T, from the fact that the largest K eigenvalues of 7~'YY " grow rapidly in p while others remain
bounded or grow much slower, the consecutive-eigenvalue type estimator is widely used to determine
K. For example, Lam and Yao [69] and Ahn and Horenstein [2] proposed estimators of K based
on the ratios of consecutive eigenvalues. A similar approach is to use the difference of consecutive
eigenvalues (Onatski [76]). These early results focus on the consistency of the estimated number of
factors when p and T diverge. To better understand how the dimension and sample size affect the
probability of correctly estimating the number of latent factors using those consecutive-eigenvalue
type estimators, we first refine results regarding eigenvalues of the sample covariance matrix (Bai
and Yin [16], Johnstone [62]). Then, we obtain non-asymptotic properties of the ratio of consecutive
eigenvalues of the sample covariance matrix, which further provides the desired exponential tail bound
of the probability of correctly estimating K for factor models or related machine learning problems.

The paper is organized as follows. In Section 2, we collect the notation and discuss the preliminary
conditions to derive the main results. In Section 3, we carry out a non-asymptotic analysis of the
spectral decomposition of large Gram matrices and document the main results. In Section 4, we discuss
a variety of applications of our results to high-dimensional statistics. Section 5 presents numerical
studies to demonstrate our results in the applications. We conclude the paper in Section 6 and relegate
all the proofs and technical details to the Supplementary Materials (Zhang, Zhou, and Wang [93]).

2. Notation and preliminary conditions

We collect notation in Section 2.1 that will be used throughout the paper and discuss in detail the
preliminary assumptions in Section 2.2 to establish the main results.

2.1. Notation

For p-dimensional vector a = (ay, ..., ap)T € R?, its £,-norm is defined by ||a||, = (Zj.’:l |aj|‘1)1/‘1
with 1 < ¢ < 0o. For matrix M = (m;;)1<i, j<p € RP*P, |[M||max = max;_ ; |m;;| denotes the maximum
norm and ||M||r = (}_F_, 5.’:1 miZ/)l/ 2 is the Frobenius norm. The spectral norm of M corresponds
to its largest singular value, defined as ||M||> = sup,.s ||Mal|2, where S = {a € R? : ||a]|, = 1}.
Denote the minimum and maximum eigenvalues of M by Apin(M) and Amax (M), respectively. Let
tr(M) = Zle mj; be the trace of M. For sequences {a,} and {b,}, a, = o(by) if a,/b, — 0 as
n — oo and a, = O(b,) if limsup,_, ., |ax|/b, < 00; X, = 0p(a,) and X, = Op(ay,) are similarly
defined for a sequence of random variables X,; a, < b, if and only if a, < Cb, for some positive C
independent of n; and a, =< b, if and only if there exist positive constants C and D independent of
n such that Cb,, < a, < Db,,. Unless specified otherwise, s > 1 and C > 0 denote generic constants

independent of p, T.
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2.2. Conditions

Suppose one observes data y, = (y1r, ..., Yit, - .., Ypr) from model (1.1) or (1.2) witht =1,...,T.
We pose the following conditions throughout the paper.

Condition 2.1. Almost surely, ATAisa diagonal matrix with distinct entries; for each ¢, fi1, ..., fix
are uncorrelated with each other and have zero mean and unit variance; for each ¢, uy,, ..., u,; have
zero mean and finite variances; and f; and u, are independent with each other.

Condition 2.1 is similar to the assumption imposed on the approximate factor model (Chamberlain
and Rothschild [34]), which leads to the decomposition and identification of X in (1.3). The assumption
on A can be viewed as Condition PC1 for the traditional factor models (Bai and Ng [13]), which is also
imposed for the MLE by Lawley and Maxwell [70].

Condition 2.2. There exist constants d;, d>» > 0 such that d| < Apin ( p_lATA) < Amax ( p_lATA) <
dy.

Since the largest K eigenvalues of AT A and AA T are the same, the spiked eigenvalues of ¥ essen-
tially diverge at rate p under Condition 2.2. When the entries of A remain constants as p diverges, this
is always satisfied for a full rank A under Condition 2.1. In general, Condition 2.2 implies that, for each
k=1,..., K, the mean squared loadings of the kth factor satisfies p_l le al.zk = O(1), which can
be easily satisfied with high probability if a;; are i.i.d. copies from some non-degenerate distribution.

Condition 2.3. Denote ]—'900 and F7° the o-algebra generated by {(f;, u,) : t <0} and {(f;, u,) : t >
T}, respectively; define the mixing coefficient o (7T) = sup 4 70 BeFY® P(A)P(B) — P(A N B)|; and
denote #{S} the cardinality of the set S.

(i) Stationarity: {u;, f;},<r are weakly stationary.

(ii) Strong mixing across ¢: there exist r1, C1 > 0 such that «(s) < exp(—Cs™) for any s > 0.

(iii) Weak dependence in errors: there exist y > 1/2 and C> > 0 such that maxi<;<p Z{;l
Euirujl < Co. (pT) ™ S0 30 S S [Ewiu )] < Coz max << #{(k.m) :
p~rY < SiG,i") < (p’logp)™!} < Calogp, maxi< <, #{(k,m) : SiG,i") >
(p¥logp)~1} < Ca, where Si(i,i',k,m) = T_Zthzl ZST=1 | Cov(uirugr, ujrgims)|, and;
maxi <; i<, #{(k, k',m,m’) : PV < S(,i kK mom') < (pYlogp)~'} < Cylogp,
maxi<; i<, #k, k', m,m") : S2(i, i’ k, k' ,m,m") > (p¥ log p)~'} < Ca, where S>(i,i', k, k',
mom'y =T~y S S S [ Coviuiutipey up stmsityr it ).

(iv) Tail behavior: There exist 2, r3 > 1 with r|~ ! +ry ! +ry 'S 1and b1, br > 0 such that for each
i=1,....,p,k=1,...,K and any s > 0, P(Ju;;| > s) < exp{—(s/b1)"?} and P(| fix| > s) <
exp{—(s/b2)"3}.

Condition 2.3 extends the standard assumptions for the factor analysis of large scale panel data or
high-dimensional time series (Bai [8], Stock and Watson [86], Fan, Liao, and Wang [48]). Compared
to existing conditions in the literature, we only require {u;, f;};<r to be weakly stationary rather than
strictly stationary in (i) by carefully exploiting Davydov’s inequality (Athreya and Lahiri [7]). Fur-
thermore, in contrast to the traditional conditions for PCA (Jolliffe [65]) and factor models (Anderson
and Rubin [6], Lawley and Maxwell [70], Anderson [4]), where either uy,, ..., u,, are assumed to be
independent with each other at each 7 or no temporal dependence across ¢ is imposed on u;, (ii) and
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(iii) together allow the error process to have both cross-sectional and temporal dependence. In fact, (iii)
suggests that though the common factors explain most dependence within y,, the errors also account
for some weak cross-sectional dependence. Assumptions similar to (iii) have been widely employed in
the literature of high-dimensional statistics (Cai, Liu, and Xia [31], Fan, Liao, and Wang [48], Fan et
al. [46]). While independent u1,, ..., up, easily satisfy (iii) for C, = 2, the inequalities in (iii) also hold
under some weak dependence among uyy, ..., u .. For example, if uy;, ..., up; are independent with
each other and u; = byuy; + brus; for some non-zero constants b; and b, conditions in (iii) hold for
Cy = 3; also, if S1(i,i’,k,m) < p~27Y and $»(i,i’,k,k',m,m’) < p~2~Y for each i,i’, k, k', m,m’,
(iii) holds for C; = 2 as well. Additionally, it is easy to see ||X,||2 = O(1) from (iii), and together
with Condition 2.2 they are the well-known pervasiveness assumption.

It is interesting to notice that the well-known Condition PC1 from Bai and Ng [13] restricts F to a
subspace {F € RT*K : T=IFTF = Ix}. However, for an arbitrary K -dimensional process under Con-
dition 2.1, T~'FTF does not necessarily degenerate to its expected value E(T~'FF) = Var(f;) = Ig.
To satisfy this subspace restriction, one needs to rescale each realization of F. Since the rescaling op-
erator depends on the realization of F, the rescaled processes no longer follow the original model of f;
if we assume any. This brings extra challenges to many applications. For example, in Section 4.2, this
subspace restriction will prevent directly modeling f; in (1.1) with some parametric models to forecast
high-dimensional time series. In fact, we notice that this subspace restriction is stringent and can be re-
placed by the exponential tail bound on the difference between 7~'F 'F and its expectation I . From
the aforementioned well-known conditions, this bound can be easily established with the help of the
T-mixing coefficient as defined below.

Definition 2.1 (r-mixing coefficient (Merlevede, Peligrad, and Rio [72])). For any real random
variable X and o -algebra M, denote Py the distribution of X and IPx| ¢ the conditional distribution
of X on M. The t-mixing coefficient is defined by

)

(M, X)= sup
geL1(R)

/g(X)IP’xw(X) —/g(X)IP’X(X)

where £ (R) is the set of 1-Lipschitz functions from R to R.

Then, the t-mixing coefficient of { f;;} foreachk=1,..., K is
1
tT)=sup~  sup T (0(fikst <8) Fks-ees fo0))

j=1J 5>0,T+s<tj<-<t;

where o (fix,t < s) is the o-algebra generated from { fx, ¢ < s}. Note that, by Condition 2.3 (iv), for
eachk=1,...,Kandt=1,...,T,

Q(x) =supinf{s >0: IP’(|f,%(| >s5)<x}= b%{log(l/x)}z/“.
k,t

Thus, for r4 € (0, 1) and any x > 1,

r3(l —rq)

2a(x) 2/r3 2
T(x) 52/ O(u)du §4b§r4 {7} exp{—} {2a(x)}*,
0 2 r3(1 —rs)
which implies that f; is T-mixing by Condition 2.3 (ii). Then, following Theorem 1 in Merlevede,
Peligrad, and Rio [72], with probability at least 1 — 71,

logT
T K

IT'FTF -1 |I2 <



1230 L. Zhang, W. Zhou and H. Wang

which is the desired assumption in place of the subspace restriction on F.

3. Main results

Now we are in position to discuss the main results on non-asymptotic properties of the spectral de-
composition of lagge Gram-type matrices based on (1.1) or (1.2). Continue to let Y = AFT + U, and
we denote T~!/2f, the eigenvector corresponding to the kth largest eigenvalue of the right Gram
Qatri)g\ Y'Y fgr k=1,..., K. Then, the loading matrix A can be estimated by A= T_IYE where
F=(f,..., fx)- First, we have the following exponential tail bounds on the deviations ||F — F||%
and [|F — Flmax.

Theorem 3.1 (Exponentialtail bounds on the deviation between F and F). Under Conditions 2.1-
2.3, the deviation between F and F satisfies

(i) with probability at least 1 — e™*,
—~ 11
TUYF-FZ<(—+=)s%
l [N (p + T) s

(i) T'E(F—F|12) Sp~' +T " and T2 Var(JF — F||2) < p~2 + T2 and
(iii) with probability at least 1 — e™*,

~ 1 1
IF — Fllmax < (ﬁ + 7) (log 7)*/"s.

For the approximate factor model, it has been shown that the mean squared error (MSE) 7! ||i5 —
F||]127 converges to zero when p and T diverge, thus F converges to F in probability (Bai and Ng [13],
Fan, Liao, and Wang [48]). In Theorem 3.1, not only have we provided the non-asymptotic character-
ization on the MSE of F in the sense that the result holds for finite 7 and p, but also the convergence
of F to F is established under a weaker condition on F compared to Condition PCI1 in Bai and Ng
[13] as discussed in Section 2.2. Theorem 3.1 reveals that the deviation between F and F is due to
1) the deviation between F and its projection onto subspace {F € RT*X : T=1F'F = I}, which is of
rate p~! + T72; and 2) the error for estimating this projection, which is of rate p:z + T~ They
lead to the non-asymptotic bound on 7~ !||F — F||2 in (i). In addition, (p + T)~! p||F — F||% enjoys a
sub-exponential tail with the finite first and second moments from (ii).

Recall that both F and F have finite K columns. A by-product of Theorem 3.1 is an exponential tail
bound on the deviation between the T ~/2-scaled kth columns of f i.e., the kth eigenvector of the right
Gram matrix, and its counterpart in F. That is, with probability at least | —e™*, foreachk=1,..., K,

T fx— fil3 < (l + i) s*.
p T
Therefore, (p + T)~! p||?k — [ ||§ also admits a sub-exponential tail with the finite first and second
moments, which are similar to (ii) in Theorem 3.1.

Using the max norm, the error rate remains the same for recovering the projection since it is of
finite dimension. On the other hand, the £+,-deviation between F and its projection is of rate (p~ /% +
T~ (log T)?/™3, where log T is due to the maximum inequality to control the maximum among T K
entries in F. Result in (iii) provides a non-asymptotic entry-wise bound on the deviation between Fand
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F.Foreacht=1,...,Tandk=1,...,K, |ﬁk — f,k|(1f1/2 + T’l)’l(log T)’z/’3 displals a sub-
exponential tail. Thus, following the similar argument in (i), (p~ /2 + T~ " log T)~2/"3| fix — fix|
also has the finite first and second moments for all p and 7. By Condition 2.3, fi has the finite first
and second moments and so does f;; whenever ( p_l/ 24 T_l)(log T)2/"3 = 0(1) due to the triangle
inequality. This nontrivial result makes it possible to further model the K-dimensional latent process
parametrically; see Section 4.2 for more details.

Next, in Theorem 3.2, we establish the Berry-Esseen type bound for each of the K eigenvectors of
the right Gram matrix. It provides the approximation error rate to the distribution of the standardized
deviation between f; and f by the standard normal distribution for each k.

Theorem 3.2 (Berry-Esseen Type Bound for ||?k - f k||§). Under Conditions 2.1-2.3, for each
k=1,...,K, we have

17— F3 B = Sl _ || < loeT | 1
Va2 fe = fil) T NN

where ®(x) is the cumulative distribution function of the standard normal distribution.

sup |IP
xeR

Theorem 3.2 sheds lights on drawing inference on the leading eigenvectors of the covariance matrix
for non i.i.d. data, which is detailed in Section 4.3. For i.i.d. data, the traditional rate in the Berry-
Esseen bound for Gaussian approximation is 7~!/? (Chan and Wierman [35], Callaert and Janssen
[33]). In Theorem 3.2, p~ '/ and T~'/? are due to the uncertainty from f; and u; for computing f -
In addition, the dependence in f; leads to the extra log 7' in the bound, which has been observed in the
literature (H6rmann [55], Jirak [61]).

In the rest of this section, we will study non-asymptotic properties of the eigenvalues of Y'Y.
Although the spectral structure of the expected right Gram matrix E(Y"Y) differs from that of the
expected left Gram matrix IE(YYT), it is interesting to notice that Y'Y and YY share the common
non-zero eigenvalues. Hence, we first consider YY T, which is conveniently the sample covariance ma-
trix scaled by 7. Denote {}; }p 1 and {w; } | the eigenvalues (in decreasing order) and corresponding
eigenvectorsof X =T~ lIE(YYT), and let {A { }f’zl and {w; }z(]=1 be the eigenvalues (in decreasing order)
and corresponding eigenvectors of T =T-1YYT. We establish the non-asymptotic characterization of
’):,' relative to A; as follows.

Theorem 3.3 (Non-asymptotic characterization of /):,- ’s relative to A;’s). Under Conditions 2.1-2.3,
there exist positive constants C and c that only depend on u; such that the following results hold.

() If p < T, with probability at least 1 — e™*,

G-l <-4 -5 i=1,...K

A — 1| < — + ——=4/5, i=1,...,K,

i/ N «/T ,—pT

~ c

[Ai/Ai — 1 |<—\/_+—«/— i=K+1,...,p

JT T

(ii) If p = T, with probability at least 1 — e,

ni/hi — 1] < C_+ < /s =1 K

/A — 1| < — + ——/s, i=1,...,K,

1 1 T pT

~ p [p ¢ .

)»i/)\iZ?— T—W\/E, i=K+1,....T,
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X,-/A,-g%Jrc/p \/—f i=K+41,....T

Taking s =1log 7', Theorem 3.3 implies that the first K eigenvalues of the scaled left Gram matrices,
i.e., the sample covariance matrix, ’)tl, ...,’):K converges to the corresponding eigenvalues of X in
probability. When p < T, the relative errors of the remaining p — K eigenvalues to their population
counterparts are bounded by 7~'/2p!/2 in probability. By Condition 2.1, ; is bounded for i > K.
Thus, the bound on relative error |3:,- /Ai — 1] is the same as that of deviation |/):,- — Ai| fori > K.
That is, eigenvalues of ) converge to those of X only if p/T — 0. This agrees with the well known
convergence of T to X in low dimension for i.i.d. data (Bunea and Xiao [29], Bien, Bunea, and Xiao
[24]).

Different lessons are learned when p > T. As 3 is not of full-rank, /):[’s with i > K consist of at
most 7 — K non-zeros and at least p — T zeros. For a legitimate covariance X, at least p — T eigenval-
ues of ¥ are biased for estimating their population counterparts. In addition, the non-zero eigenvalues
of ¥ could also be biased. For i.i.d. data with unit variance and p proportional to T, it is known that
non-zero eigenvalues of the sample covariance matrix are spread out and bounded by (1 — p!/27~1/2)2
and (1 + pl/zT_l/z)2 (Stein [85], James and Stein [59], Bai and Yin [16], Johnstone and Paul [64]),
which explains the bias in non-zero eigenvalues of the sample covariance matrix compared to their
population counterparts (Bai and Yin [16], Baik, Arous, and Péché [19], Johnstone and Paul [64]).
In contrast, the low-rank structure in factor models provides better understanding on eigenvalues of
. Consider a factor model with u, assumed to be white noise, Lam and Yao [69] focused on the
cross covariance matrix M = ZZ():] X (W)X (h)", where X (h) is the autocovariance matrix of y; atlag
h. They remarked that asymptotically, spiked eigenvalues of the sample cross covariance matrix con-
verge to the corresponding population eigenvalues, while the non-spiked eigenvalues, although may
not converge, are bounded by the ratio of p and 7. Theorem 3.3 (ii) provides a non-asymptotic char-
acterization of their remarks. First, we confirm that, as expected, X fails to converge for i > K if
p/T diverges. Also, the non-asymptotic bound in Theorem 3.3 shows that the ratio between E(/): )
and %; is bounded above by 2/mep/T (2~ 1/2¢=1¢c /p) for any given p and T. Furthermore, the
non-asymptotic bound of A /A; provide a characterization on the closeness between IE(A /Ai) and 1
fori =1,...,K. It is easy to see from Theorem 3.3 that the deviation between E(k /Ai) and 1 is
bounded above by 2/mc/(pT)®(2~"/2c=1C /p). This reflects the asymptotic unbiasedness of 2; for
i=1,....K

Our focus on the non-asymptotic behavior of Xl- /A; in Theorem 3.3 is fueled in part by the efforts on
establishing the convergence rate of estimated number of latent factors in PCA using the consecutive
eigenvalues of sample covariance matrix, such as the eigenvalue-ratio test (Lam and Yao [69], Ahn
and Horenstein [2], Fan, Liao, and Wang [48]), which is detailed in Section 4.1. Parallel to the above
non-asymptotic results, in the literature, the consistency and asymptotic normality of A /A; have been
documented. For example, in Wang and Fan [88], the authors considered a noiseless factor model with
arbitrary factor strengths and sub-Gaussian factors, which allows the spiked elgenvalue to be with any
rate in p. They showed that eigenvalues of 3 are asymptotically unbiased if pT~ ‘k converge to zero
fori =1,..., K. Also, the authors established the asymptotic normality of N /A; — 1 upon removing
the bias. Lately, Cai, Han, and Pan [30] considered a p-dimensional spiked covariance model with K
spiked eigenvalues that are separated from others, where K is potentially divergent. Specifically, they
focused on data generated from (p 4+ K) x T i.i.d random variables with zero mean, unit variance,
and finite fourth moment, loaded on a p x (p + K) deterministic matrix. The authors employed the
Stieltjes transform method to study the contribution of non-spiked eigenvalues to the spiked ones, and
therefore obtained a refined characterization of bias of A; /A; — 1 as well as the asymptotic normality
of A; /Ai — 1. In terms of modeling, if u; is further modeled by C f, for some C orthogonal to A and
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S, is sub-Gaussian, (1.2) reduces to a special case that coincides with the model in Wang and Fan [88],
where the spiked eigenvalues are all at the same rate of p. Recall that A; = O (p) under Condition 2.2,
so that pT~ IA ! always converges to zero for (1.2). Thus, Theorem 3.3 gives a similar result on the
asymptotic unblasedness of A as Wang and Fan [88]. In addition, Theorem 3.3 (ii) provides a finite
sample view of i /A; by showing its non-asymptotic sub-Gaussian tail for i =1, ..., K. On the other
hand, if f;; and u;; are i.iid foreacht=1,...,K,i=1,...,p,andk=1,..., K in (1.1) while the
p X (p+ K) deterministic matrix in Cai, Han, and Pan [30] has full rank, our model agrees with the one
in Cai, Han, and Pan [30]. Hence, it is possible to establish the non-asympotitic results in Theorem 3.3
by exploring the techniques employed to establish the consistency of /):,- /A; in Cai, Han, and Pan [30],
which we will leave to future efforts.

4. Applications in high-dimensional statistics

To demonstrate results in Section 3, we consider a number of interesting and widely studied applica-
tions in high-dimensional statistics, including the estimation of the number of latent factors in factor
models and related machine learning problems, the estimation and forecasting of high-dimensional
time series, the spectral properties of large sample covariance matrix such as perturbation bounds and
inference on the spectral projectors, and the low-rank matrix denoising from dependent data.

4.1. Estimation of the number of latent factors

In high-dimensional factor models or machine learning problems such as PCA, it is necessary to choose
the number of latent factors or principal components K before recovering the loading matrix and
factors or computing the principal components and scores. Traditional methods to estimate K include,
for example, the likelihood ratio test and the scree plot (Jolliffe [65]). For the high-dimensional data
with large covariance matrix, eigenvalues of the sample covariance matrix or their variants have been
utilized and the estimation is consistent under certain separation conditions of the first K eigenvalues
from the remains. A popular approach is based on the ratio of consecutive eigenvalues (Lam and Yao
[69], Ahn and Horenstein [2], Fan, Liao, and Wang [48]),

o~

—~ A
K = argmax; ; min(p.7) ,ﬁ 4.1)
i+

where %; is the ith eigenvalue of 7~'YY"; while, other methods are based on the eigenvalue differ-
ences (Onatski [76]) or the cumulative magnitude of eigenvalues (Bai and Ng [11]).

Under the pervasiveness assumption, i.e., Condition 2.2 and (iii) in Condition 2.3, the consistency
of K has been established (Lam and Yao [69], Fan, Liao, and Wang [48]). However, the rate of the
probability of consistent estimation has not been fully explored. Theorem 3.3 sheds light on character-
izing this rate. In fact, from Theorem 3.3, AK/AK+1 is of the order O,(p) when p < T and O,(T)
when p > T. In contrast, A /A,+1 is Op(1) fori # K. As an application, Theorem 4.1 establishes the
non-asymptotic lower bound of the probab1l1ty of estimating the correct number of factors.

Theorem 4.1. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), K defined in (4.1) satisfies

P(K = K) > 1 —exp(—{Ciy/max(p, T) — Cay/min(p, T)}?), 4.2)
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where

1 max(p, T)Ag+1 oM
Ci=-|1-{—— max ,
c Thg I<i<min(p,T),i#K Aj+]

and C» = ¢~ 1C, with C and ¢ defined in Theorem 3.3.

As mentioned in Theorem 3.3, C and c are positive constants that only depend on u, so that C, > 0
is independent of p and 7. Under Conditions 2.1 and 2.2, A; = O(p) fori =1,..., K and ; = O(1)
for i > K so that C; > 0 for sufficiently large p and T'. On the right hand side of (4.2), Co/min(p, T)
is smaller than Cj./max(p,T) whenever p < T or p > T, so the lower bound is governed by
Civ/max(p, T). It is easy to see that C is large if both Ag11/Ag and max;<;<min(p,7),i£K Ai/rit1
are small. That is, it is easy to estimate K if the spiked eigenvalues A1, ..., Ak are close to each other
and so do the non-spiked eigenvalues Ag 11, ..., A,. Otherwise, if A; /)41 is large for some i # K, Cy
will be small so that the lower bound on the right hand side of (4.2) will be away from 1 and implies a
more challenging K to be estimated.

When p and T are close, Co4/min(p, T) is not negligible. Notice that the lower bound in (4.2) can
be written as 1 — exp{—Clz(l — C/pl/zT_1/2)2T} for some positive constant C’ given p < T. When
Clz(l — C'p'2T7~1/2)2 is small, a large T is preferable to drive the lower bound close to 1. If p > T,
the lower bound in (4.2) can be written as 1 — exp{—Clz(l —C'T'2p=1/2)2 p} and similarly, a large p
is preferable to make the lower bound approaching 1.

An alternative to K , proposed by Onatski [76], is to use the difference of consecutive eigenvalues.
That is, for given § > 0 and predetermined L, one defines

Kg=max{i <L: A — A1 > 8} (4.3)
Similar to Theorem 4.1, we have the following result.

Theorem 4.2. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), I?d in (4.3) satisfies

K+1

P(Ka=K)>1- Y exp(—{CLiV/T — C2/p}),

i=1

where Ci; = (2¢) "'y — dig1 —8) fori=1,..., K, Ci. k41 =c (8 — A2 + Ax41), and Cr =
¢~ LC, with C and ¢ defined in Theorem 3.3.

Under the pervasiveness assumption, Onatski [76] established the consistency of Kq when p is
proportional to 7. Theorem 4.2 relaxes the restriction on p and T and provides the non-asymptotic
characterization of the probability of consistent estimation of K by Kq. It suggests that, for carefully
selected § such that 8> Ak+2—AK+1, K 4 and K have similar rates of the probability of consistent esti-
mation. However, Ky is not tuning free compared to K. Onatski [76] proposed a data-driven procedure
to determine §. Specifically, an iterative procedure was employed to alternatively update § and K until
convergence. Note that Ag 42 = Agy1 if uyy, ..., up, are identical. In this case, an appropriate § can be
easily found. Otherwise, more numerical iterations are required. Sometimes, K; may perform better
than K in practice, which can be explained using the non-asymptotic results from Theorems 4.1 and
4.2. Consider a special case where p > T, K =1, A1 = p,and A, = --- = A, = 1. The lower bound for
K in Theorem 4.1 is 1 — exp(—{c‘l(l - T_1/4)ﬁ — ¢~ 1C/T}?) while the lower bound for fd in
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Theorem 4.2 is 1 — exp(—{(20) ' (p — 1 = )VT — ' C./P}*) — exp(—{(20) '8v/T — =1 C.yp}?).
For a divergent p and constant 7', K; outperforms K in terms of a higher rate of the probability of
consistent estimation whenever C > 1 — T~1/4,

Different from the consecutive eigenvalue based approaches, the information criterion has also been
used to estimate K . Some of them can be interpreted as a penalized cumulative magnitude of eigenval-
ues, such as

op+T rT
PC(k) = A +kG? log( ) ,
; p+T
where 52 is some consistent estimate of (pT')~! Zl Li= 1IE(uizt) (Bai and Ng [11]). Then, K is esti-

mated by Km = argmin;_; PC(k) for some predetermined L. Bai and Ng [11] suggested that &2 can
be replaced by (pT)_1 Zi>L5:,~ in practice and the penalty (pT) Y p+T) log((p + T)~!'pT) can
be replaced by (/BT)’ (p + T)log(min(p, T)) or min(p, 7)~! log(min(p, T')). They also showed the
consistency of K,, when &2 is consistent and the penalty shrinks to zero as p and T diverge. Notice
that K, m 1s entirely based on the empirical distribution of A fori =1, ..., p. Thus, its non-asymptotic
properties such as the rate of the probability of consistent estimation may also be established using
Theorem 3.3, which we leave to the future work.

4.2. Estimation and forecasting of high-dimensional time series

Making forecasts based on high-dimensional time series arises frequently in econometrics, financial
analysis, and meteorology. Suppose we observe Y € R?*7 | where each entry y;; follows (1.1) and the
zero mean K -dimensional latent process f; is governed by parametric models satisfying Conditions 2.1
and 2.3. For example, Chen, Wang, and Wu [36] considered a model similar to (1.1) with f; following
an autoregressive model whose parameters are estimated for predicting y; s with s > T'.

As an application of Theorem 3.1, we show the consistency on estimating the moments of f; using
the spectral decomposition of Y'Y, which guarantees the consistency of moment-based estimators
to parameters of a large realm of parametric models for f;. Let the sample autocovariance function
(Brockwell, Davis, and Fienberg [27]) of f; be

T—|h|

~ 1 _ -
Pnf)=— 3 @ —HE =D,
t=1

where f=T"! ZLI f;. Also, denote the sample autocovariance function of/f,, the 7th row of f, by

T—|h|

~ -~ 1 o~ PN =

Tty = ; Erm —DE =D,
where f 7! Zt 1 f, In Theorem 4.3, we show that the sample autocovariance function of f; can be
consistently recovered by that of f,

Theorem 4.3. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), f(h,f,) and ’I:(h,’f\',) defined

above satisfy, with probability at least 1 — e,

T F = 1/1 1
TG T — T )< — <; . _) S
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foreachh=—-T+1,...,0,...,T —1.

Notice that both F and F are T x K matrices. As a direct corollary of Theorem 4.3, we can establish
the concentration inequality for recovering the temporal dependence structure on each dimension of f;.
Foreachk =1, ..., K, denote the sample autocovariance function of { f;x : t > 1} as

T —|h|

P, fi) =T Y frvmix — SO — fi) T

=1
where fy =T7! Zszr fik, and let the sample autocovariance function of { ﬁk :t>1}be

T—lh|

P Fao =T 3" Fromn — fo(F = f .

t=1

where ];Ak =71 ZIT=1 ﬁk. From Theorem 4.3, with probability at least 1 — e, we have

70, Fio — 70, P S (% 4 %) s
foreachh=—-T+1,...,0,..., T — 1. Similarly, denote the sample autocorrelation function (ACF;
Brockwell, Davis, and Fienberg [27]) of {fik : ¢t > 1} by p(h, fix) = {y(O frio)} ™ 157(h ftk) and the
sample partial autocorrelatron functron (PACF) by lI/(O fir) =1 and \Il(h f,k) being the Ath entry
of W(fx) where W(fy) = R Y fudPn (fa) with Ry(fu) = (B(G — J), fio)t 'j=1 and Ph(ftk) =
(p(1, ﬁk) ..,p(h ffk))T Likewise, we denote the sample ACF of {ﬁk t > 1} by ,o(h flk)
{7, f,k)} y(h f,k) let the sample PACF of {f,k t > 1} be \I’(O ﬁk) =1, and let \IJ(h f,k) be
the /ith entry of W(fx), where W(f) = R, Y Famn (o) R_ (Fo) = 1P — ), ftk)}, j=1 and
o (ﬁk) =, fux), ..., p(h, ﬁk))T. From Theorem 4.3, we have the following results.

Theorem 4.4. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), foreachk =1, ..., K and h =
—T+1,...,T — 1, with probability at least 1 — e™%,

-~ 1 /1 1
[pCh, fue) = p(h, fudl” S (p+ T)S

B h, Fo) — B, fi)P < — (_ n _) N
T \p T

Theorem 4.4 shows that sample ACF and PACF of { f;; : ¢t > 1} can be consistently recovered by
those of { f,k 1t > 1}. In addition, Theorem 4.4 implies that the sample ACF of f;; and f,k have the
common asymptotic distribution. Similar conclusions are also true for the sample PACF. These results
will have wide applications in modeling and forecasting high-dimensional time series by (1.1) along a
broad class of parametric models on f;. For instance, for the autoregression models, the sample PACF’s
give the Yule-Walker estimator to the autoregressive coefficients; and for the moving average models,
the innovation estimator, which is computed from the sample ACF’s, can be employed to estimate the
moving average coefficients.
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4.3. Spectral properties of large sample covariance matrices

Extending results in Section 3 on eigenvectors ?k of the scaled right Gram matrix T-'YTY, we
study eigenvectors of the sample covariance matrix X, w; for i =1, ..., p. First, as an application of
Theorem 3.1, we characterize the deviation between w; and w; in Theorem 4.5.

Theorem 4.5. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), E(||w; — w; ||%) < p_1 + 77!
and Var(||w; — wiII%) <p 24T 2foreachi=1,... K.

From Theorem 4.5, the first K eigenvectors of the sample covariance matrix converge to those of
¥ in probability. Together with Theorems 3.3, we establish the consistency on estimating the spectral
structure corresponding to the first K eigenvalues of X specified by (1.3). Notice that no restrictions
on p and T are imposed on this consistency. Recall that TS = AFTFAT + AFTU+UTFAT + UU".
By Lemmas C.1, C.9, and C.11 in the Supplementary Material (Zhang, Zhou, and Wang [93]), ||f -
Tl < |A(TT'FTF—DAT |+ [T 'AF U2+ [T 'UTFAT o + | T7'OUT = Z, o ST 2 p +
T-12p./s with probability at least 1 — e~ for any s > 0. Thus, from the Davis-Kahan Theorem
(Davis and Kahan [41], Yu, Wang, and Samworth [90], Fan, Wang, and Zhong [50], Zhang, Cai, and
Wu [91]) and Condition 2.1, we have the following corollary.

Corollary 4.1. Given Y from (1.1) or (1.2), let ®(w;, w;) = cos_l(fu\;—wi) be the angle between W;
and w;. Under Conditions 2.1-2.3, for eachi =1, ..., K,

_ E(|E -3
E{sin®(w;, w;)} S ———— d I2) <172
min j; |)"j _)\.i|

Moreover, if’u\JlTw,' >0, then E(||w; — w;|2) ST™V2 foreachi=1,...,K.

Corollary 4.1 gives a similar result to the Davis-Kahan Theorem in low dimension. However, when
p > T, as shown in Theorem 3.3, not all eigenvalues of b)) necessarily converge to those of X and
neither does % converge to X. Then, the Davis-Kahan Theorem cannot be directly applied to T In-
stead, with the low-rank structure in (1.2), we can establish similar results for an alternative estimator
to X. We start with eigenvectors corresponding to the first K largest eigenvalues of Y'Y, i.e., the

PCA estimator to the latent factor matrix and loading matrix. If we further assume that uy;, ..., up, are
uncorrelated for each 7, X in (1.3) can be estimated by Xpca = AAT + X, where A is defined in Sec-
tion 3, X, is a diagonal matrix with diagonal entries 57, ... ,El%, Gr=T"" Zthl ur fori=1,...,p

and u;; is the entry in the ith row and zth column of ﬁ —Y—AF'. Then, similar to Corollary 4.1, we
have the following result.

Corollary 4.2. Given Y from (1.1) or (1.2), let ©(; pca, ;) = cos™ ' (W, p,w;) be the angle be-
tween W; pca and w;, where W; pca be the eigenvector corresponding to the ith largest eigenvalue of
Ypca. Then, under Conditions 2.1-2.3, foreachi =1, ..., K,

E(|Zpca — 2)l2) _

E{sin ® (w; pca, w;)} < Sp TRy pth

minj# |}"j — )\.i|

Moreover, if’u?;rPCAwi >0, then E(||w; pca — w;il2) S p~V2T1V2 4 p~ L foreachi=1,..., K.
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Next, analogous to Theorem 3.2, we will show the approximation error rate to the distribution
of the standardized deviation between w; and W; by the standard normal distribution, namely the
Berry-Esseen type bound. Denote P; = wi(w;wi)’lwg and ﬁ- = w; (W, 1’5,-)’11’47; the projectors onto
the spaces spanned by w; and w; respectively, we first establish the Berry-Esseen type bound for
IP; — P; |12 below.

Theorem 4.6. Under Conditions 2.1-2.3, given Y from (1.1) or (1.2), for eachi =1, ..., p,

sup

—= x¢— D
xeR Var'2(IP; - Pillp) T } ()’

{ [P — P 1§ — E(P; — Pl _

1, log7 (log T)'/?(log p)'/*
B; \/T Tl/gBi >

S

where B; = 23/2||P;EP; || Qi ZQillr and Qi = Y ;; (i — 2j)~'P;.

A similar result has been documented for independent data in literature (Koltchinskii and Lounici
[68]); while, Theorem 4.6 is more general by allowing temporal dependence in data. In fact, the third
term on the right hand side above quantifies the effect of temporal dependence, and as a result, the
convergence rate is slightly compromised compared to the rate under independence. As the Frobenius
norm and £;-norm of a vector are the same, Theorem 4.6 leads to the following corollary, which extends
the Berry-Esseen bound for random vectors (Goldstein and Shao [52], Bobkov and Chistyakov [26],
Bobkov, Chistyakov, and Gotze [25]).

Corollary 4.3. Under the same conditions in Theorem 4.6, for any matrix Candi =1,..., p,
P;C — P;C|2 —E(JP;,C — P;C||?
sup [P [IP; 11 ZIIJFA (1P ! iCllg) <l omw
xeR Var!/2(|P;C — P;C||})

1 +10gT (logT)l/z(l()gp)l/4

<
~ B JT T'8B;

Particularly, for eachi =1, ..., p,

sup
xeR

— <x;—o(x)
Var'2(||w; — w;|13) } ‘

= 2 = 2
w; —w;|5 — E(Jw; —w;
P{n i —wil3 ~ B —wil3) _

1 +10gT (logT)l/z(logp)l/4
B JT T'8B; '

S

Note that B; = O(,/p) fori =1,..., K. Thus, Corollary 4.3 provides a uniform normal approxi-
mation to standardized | w; — w; ||% fori =1,..., K. However, B; = O(1) fori > K so that the upper
bounds in both Theorem 4.6 and Corollary 4.3 do not necessarily shrink to zero. Therefore, as noted by
Koltchinskii and Lounici [67], the normal approximation to ||w; — w; ||§ fori > K may fail to hold. To-
gether with Theorem 3.3, Corollary 4.3 shows that, the spectral structures corresponding to the spiked
eigenvalues, i.e., the first K eigenvalues of the sample covariance matrix, provide good estimates to the
corresponding spectral structures of X, even for p > T for which % is no longer consistent to X.
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Remark 4.1. In practice, E(||w; — w; ||§) and Var(||w; — w; ||%) are unknown. To use Corollary 4.3 for
inference, we need to estimate them. Koltchinskii and Lounici [68] offered a data-splitting procedure
which splits the sample into three subsamples: the first for estimating the expectation, the second for
estimating the variance, and the third for building the confidence set. In addition, since T-1YYT is
naturally an empirical process, the multiplier bootstrap can be employed to build the confidence set of
w; for eachi =1, ..., K without data splitting for i.i.d data (Naumov, Spokoiny, and Ulyanov [74]).
Under Condition 2.3, y, from (1.1) is weakly temporal dependent and can be approximated by some
m-dependent time series ¥, in the following sense,

_ _ ~ . (logT)!/*(log p)!/*

IEI®; — will3]y,) — E(®: — w; 5151 < 578 :

_ _ ~ ., - (ogT)'(log p)'/*

| Var' 21 @; — wi 31y,) — Var' 2 (1; — w; [3[F)] S = Tg/gg ;

and ||W; — w; ||% based on y, and y have the similar normal approximations (Chen and Shao [37,38],
Zhang and Cheng [94]). Therefore, we can employ the following blockwise multiplier bootstrap pro-
cedure to draw inference on w; (Zhang and Cheng [94]), whose guarantee is provided by Corollary 4.3
and the above approximation using y,.

Algorithm: Blockwise multiplier bootstrap procedure for the inference of w;

Input: Observations {yi,}f;?t:l.
Step 1. Pre-specify integers by and [7 such that T = byl7 based on the nonparametric plug-in method
(Biihlmann and Kiinsch [28]), the empirical criteria-based method (Hall, Horowitz, and Jing [53]) or the
algorithm in Zhang and Cheng [94].

Step 2. Generate €js iid fromN(1,1)for j=1,...,Bands=1,...,IT.
. — ! b
Step 3. For each j, calculate E?S =71 Y es Zf:T(s—l)bT-H YiVi.
Step 4. Foreachi =1, ..., K, denote w?? the eigenvector corresponding to the ith largest eigenvalue of Z};s
and define yolfs as the 1 — « percentile of {||w5§ — w; |I%}f:1.

Output: Confidence set of w; as {w : |w — W; ||§ < yfs} fori=1,...,K.

4.4. Low-rank matrix denoising based on temporally dependent data

Low-rank matrix denoising has numerous applications such as robust video restoration (Ji et al. [60]),
hyperspectral image restoration (He et al. [54], Zhang et al. [92]), and underdetermined direction of
arrival estimation (Pal and Vaidyanathan [77]). Lately, the low-rank matrix denoising in the presence of
both heteroskedastic errors and dependent samples have attracted great attention in literature (Zhang,
Cai, and Wu [91]). Suppose we observe time series

Vit = Xir + Uit
fori=1,...,pandt=1,...,T, which can be written as

Y=X+U

where Y = {yi;}f:’Tl’tzl, X= {xit}f:’Tlle is a fixed rank-K matrix, and U= {”if}fj,t:y Assume the
noise matrix U satisfies Condition 2.3. Let X = WAV’ be the SVD, where W is a p x K orthogonal
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matrix and V is a T x K orthogonal matrix. Note that the column space of W is essentially that of
A in (1.2) under Condition 2.1. Then we can use PCA to estimate W by W = (ATA)1/2A with the
following theoretical guarantees.

Corollary 4.4. Suppose that p < Apin(A) < Amax(A) < p. Then W and w satisfy

~ 1 1
E{lsn®(W,Wr} S — + —=,
VP oNT

where || sin@(W, Wlr 4 ||WIW||]F and W1 is a p x (p — K) orthogonal matrix such that (W, W)
isa p X p orthogonal matrix.

In Corollary 4.4, we consider a spike model with potentially heteroskedastic errors. Like the approx-
imate factor model, the spiked singular values of X provide stronger signals compared to the model
used in traditional matrix denoising (Cai and Zhang [32], Zhang, Cai, and Wu [91]). To compare,
for the non-spiked signal matrix X and homoskedastic variance of U, the optimal rate of matrix de-
noising using the regular SVD is E(|| sin ®(W, W) ||r) < min(p, T)~!/? (Theorems 3 and 4, Cai and
Zhang [32]). Thus, Corollary 4.4 gives similar results to the regular SVD (Cai and Zhang [32]) and the
diagonal-deletion SVD (Florescu and Perkins [51]). In addition, Theorem 4 in Zhang, Cai, and Wu [91]
showed that the heteroskedastic PCA can obtain the optimal rate of matrix denoising for non-spiked
signal matrix X with heteroskedastic errors. It is easy to see that if the variance of u;, is bounded for
eachi and ¢, the optimal rate in Zhang, Cai, and Wu [91] is also E(|| sin ® (W, W) ) < min(p, T)~ /2.
Hence, our result also matches the heteroskedastic PCA (Zhang, Cai, and Wu [91]) in the presence of
heteroskedastic errors.

5. Numerical studies

In this section, we perform simulation studies to further illustrate results displayed in Sections 3, 4.1,
and 4.2.
We first conduct numerical experiments to demonstrate Theorem 3.3. Consider model (1.1) with

aj1,...,ap1 =1for K =1, u; - N(0,0.01), and three settings for one-dimensional latent process
fr1: (1) AR(1) with autoregressive coefficient ¢ = 0.5 and A/(0, 0.75) innovation; (2) AR(1) with au-
toregressive coefficient ¢ = 0.5 and #3/+/0.75 innovation; and (3) ARMA(1, 1) with autoregressive
coefficient ¢ = 0.5, moving average coefficient = 0.5, and A (0, 3/7) innovation. Under these set-
tings, A1 = p + 0.01 while other eigenvalues, such as A and Ajg, are all equal to 0.01 for any p.
For the ease of visualization, the variance of u;, is particularly set to be 0.01 so that the error process
does not affect much on estimating the eigenvalues of the covariance matrix. In fact, the simulation
results, especially the trends of errors versus p or T, are not sensitive to the variance of u;;. This can

be seen from the results of extra numerical experiments, where u;; Hd- N (0, 1) so that the variance of
u;y is enlarged 100 times and f; follows AR(1) process with autoregressive coefficient ¢ = 0.5 and
N (0, 0.75) innovation (see Figure S.1 in the Supplementary Material (Zhang, Zhou, and Wang [93])).
Two scenarios on p and T are considered, p = |27'/?| and T = [2p'/?]. Based on 100 replicates,
the simulation results are displayed in Figure 1. From panels (al), (bl), and (c1), we can see that ')':,-
converges to A; when p < T. The relative error |’):l- /Ai — 1] for i = 1 converges to zero faster than
those for i = 2 and 10 since A diverges in p while Ay and A1¢ remain in constants. In addition, from
panels (a2), (b2), and (c2), it is noticed that ’)':1 still converges to A; even for p > T while the deviations
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Figure 1. In the simulation, u;, Hd- N(0,0.01). In the left column, p = [2T /2| (p < T), and in the right
column, T = L2p1/2J (p > T). In panels (al) and (a2), latent process f;| follows setting (1); in panels (bl) and
(b2), latent process f;1 follows setting (2); and in panels (c1) and (c2), latent process f;; follows setting (3). In
panels (al), (bl), and (c1), the relative errors |’):l- /A; — 1| for i =1, 2,10 are displayed. In panels (a2), (b2), and
(c2), the relative errors are displayed for 1| and the sample eigenvalues are displayed for Ay and A1q to show that
they are unbounded in p.

of other eigenvalues diverge as p and T diverge. These patterns are commonly observed for all three
settings on f;1. This matches results in Theorem 3.3.

Next, we demonstrate the influence of p, T, and eigenvalues of X on the probability of estimat-
ing the correct number of factors using the ratio of consecutive eigenvalues in (4.1). Consider model

(1.1) with K = 3 factors and u;; - N (0, 25). The three components in f; = (f;1, fi2, f,3)T are in-
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Figure 2. Plots about log(1 — IP’{I? = K}) for p =100, 200, ..., 1000, T = 500, 700, 800, 900 (left column), and

=100, 200, ..., 1000, p = 500, 700, 800, 900 (right column). The diagonal entries in p~ TATA are {16, 4, 1}
(panels (al) and (a2)) {16,4,2} (panels (bl) and (b2)), and {32, 4, 2} (panels (c1) and (c2)). Points are omitted
when log(1 —]P’{K K})=—o0,ie., ]P’(K K)=1.

dependent and identical AR(1) processes with autoregressive coefficients ¢ = 0.5 and A/(0, 0.75) in-
novation. We further set A such that p~'AT A has diagonal entries {16,4, 1} (panels (al) and (a2) in
Figure 2), {16, 4, 2} (panels (b1) and (b2) in Figure 2), and {32, 4, 2} (panels (c1) and (c2) in Figure 2).
For p and T, two settings are reported: (1) T is fixed, p = 100, 200, ..., 1000; and (2) p is fixed,
T =100, 200, ..., 1000. Based on 500 replicates, results on log(1 — ]P’{I/(\ = K}) are displayed in Fig-
ure 2. In practice, the method using ratios of consecutive eigenvalues performs well to estimate the
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number of latent factors. For instance, under the setting that u;; L N (0, 1), three components in f;
are independent and identical AR(1) processes with autoregressive coefficient ¢ = 0.5 and A/ (0, 0.75)
innovation, and the diagonal entries of p~'ATA are {16, 4,2} in model (1.1), IP’(I? = K) quickly ap-
proaches 1 even for relatively small p and T (see Figure S.2 in the Supplementary Material (Zhang,
Zhou, and Wang [93])). Thus, for the ease of visualization, here we set the variance of u;; large so that
the trend of estimation errors on K versus p and T’ can be displayed clearly. In Figure 2, we notice that
log(1 — IP’{K K'}) decreases faster for greater Ag /Ag+1 and smaller max;xg Ai/Ai+1. In fact, from
Theorem 4.1, log(1 — IE”{K K1) is bounded by a quadratic function of /max(p, 7)) with C and C;
defined in Theorem 4.1. Since ¢ and C in Theorem 3.3 only depend on the distribution of u,, C is
the same for different A. On the other hand, as Ag /A 41 increases and max;.x A;/A; 1 decreases,
C increases so that the quadratic function of /max(p, T') has a smaller vertex and greater quadratic
coefficient. Thus, Figure 2 confirms the conclusion in Theorem 4.1.

Finally, we study the estimation of moments of latent factor process f; to demonstrate Theo-

rem 4.4. Still consider model (1.1) with K = 1 factor and u;; Hd. N(0,0.01). Also, we set three
models for the univariate latent factor process f;1: (1) AR(1) with autoregressive coefficient ¢ =
0.5 and N(0,0.75) innovation; (2) AR(1) with autoregressive coefficient ¢ = 0.5 and #3/+/0.75
innovation; and (3) ARMA(1, 1) with autoregressive coefficient ¢ = 0.5, moving average coeffi-
cient § = 0.5 and N(0,3/7) innovation. Two settings about p and T are considered: p = 200
with T = 100, 200, ..., 1000; and T = 200 with p = 100, 200, ..., 1000. Based on 100 replicates,
|p(h, ﬁl) — p(h, f;1)| and |\3(h, ﬁ]) —U(h, fi1)| versus T and p are displayed in log-log scale in
Figures 3 and 4. For all settings, the squared differences for both ACF and PACF shrink to zero as p
and T diverge. Also, in all settings, the slopes of the log difference of ACF or PACF versus log T or
log p are —1/2 (the red lines), which confirms the established rates of convergence in Theorem 4.4.

6. Conclusions

In this paper, we scrupulously study the non-asymptotic properties of the spectral decomposition of
large Gram-type matrices under the assumption that the data matrix Y is governed by a factor model.
As a result, we establish the exponential tail bound for the first and second moments of the deviation
between the empirical and population eigenvectors to the right Gram matrix as well as the Berry-
Esseen type bound to characterize the Gaussian approximation of these deviations. Technically, we
successfully relax the assumption upon latent factors in the factor model, so that the latent factor
processes are no longer restricted to a subspace as stated by Condition PC1 in Bai and Ng [13]. We
also obtain the non-asymptotic tail bound of the ratio between eigenvalues of the sample covariance
matrix, and their population counterparts regardless of the size of the data matrix. This extends the
works of Bai and Yin [16], Lam and Yao [69], and Wang and Fan [88].

With the derived non-asymptotic properties of eigenvalues of the sample covariance matrix, we
provide the non-asymptotic characterization of different consecutive-eigenval-ues-based methods to
estimate the number of latent factors in factor models and relate machine learning problems. The
established non-asymptotic lower bound of the probability of estimating the correct number of factors
reveal the influence of p, T and eigenvalues of X on different methods. In addition, as an application
of our main results, we provide statistical guarantees on estimating the parametric models for the latent
process in dynamic or approximate factor models, so that one can make forecast based on the factor
models and high-dimensional time series. We also obtain non-asymptotic properties of the spectral
structure of large sample covariance matrices, including the Davis-Kahan type perturbation result and
the approximation error rate to the distribution of the standardized deviation between w; and w; by the
standard normal distribution, i.e. the Berry-Esseen type bound. Based on these results, it is possible
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Figure 3. Log differences of ACF (first row) and PACF (second row) of {f;1 :# > 1} atlagh =1,lag h =5, and
lag h =25 for p =200 and T = 100, 200, ..., 1000. The latent process follows AR (1) process with autoregressive
coefficient ¢ = 0.5 and A/ (0, 1) innovation in panels (al) and (a2); it follows AR(1) process with autoregressive
coefficient ¢ = 0.5 and tg innovation in panels (b1) and (b2); and it follows ARMA(1, 1) with autoregressive
coefficient ¢ = 0.5, moving average coefficient # = 0.5, and A/(0, 1) innovation in panels (c1) and (c2). The red
solid line has slope —1/2.

to construct confidence sets for the leading eigenvectors of X using the multiplier bootstrap. Finally,
we apply our results to the low-rank matrix denoising in the presence of heteroskedastic errors and
temporal dependence in data.
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Figure 4. Log differences of ACF (first row) and PACF (second row) of {f;1 :# > 1} atlagh =1,lag h =5, and
lag h =25 for T =200 and p = 100, 200, ..., 1000. The latent process follows AR(1) process with autoregressive
coefficient ¢ = 0.5 and A (0, 1) innovation in panels (al) and (a2); it follows AR(1) process with autoregressive
coefficient ¢ = 0.5 and tg innovation in panels (b1) and (b2); and it follows ARMA(1, 1) with autoregressive
coefficient ¢ = 0.5, moving average coefficient # = 0.5, and A/(0, 1) innovation in panels (c1) and (c2). The red
solid line has slope —1/2.

in Theorems 3.1-3.3. In Section B, we show Theorems 4.1-4.6. Section C includes technical lemmas

and auxiliary results, and extra numerical results are reported in D.
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