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The shallow (~50 m deep), narrow (~85 km wide) Bering
Strait is the sole marine link between the Pacific and Arctic
Oceans and represents a critical northward throughflow of
freshwater, nutrients, and heat into Arctic waters from lower
latitudes (Woodgate and Peralta-Ferriz, 2021). Three water
masses enter the Chukchi Sea through the Bering Strait
from the Pacific: Anadyr Water (AW), Bering Shelf Water
(BSW), and Alaskan Coastal Water (ACW) (Coachman et al.,
1975). The western Bering Strait in particular has long been
known to be a region of consistently high primary produc-
tivity throughout the spring and summer open-water season
(Sambrotto et al., 1984; Springer and McRoy, 1993; Brown
et al., 2011). This productivity is sustained through the deliv-
ery of high-nutrient AW waters via the northern branch of
the bifurcated Bering Slope Current (Clement Kinney et al.,
2009, 2022; Lowry et al., 2015; Pickart et al., 2016) that also
causes the Chukchi Sea to the north to be one of the most
productive shelves in the Arctic (Hill et al., 2018). Western
Bering Strait waters are clearly differentiated from lower
productivity waters observed in the eastern Bering Strait
that are characterized by relatively low-nutrient, freshwater-
dominated ACW (Woodgate and Aagaard, 2005; Lee et al.,
2007). However, time series of satellite observations over
the last two decades have revealed statistically significant
early season (June) declining trends in chlorophyll-a con-
centrations and primary productivity in the western Bering
Strait. In particular, June chlorophyll-a concentrations
have declined by ~58%, and June primary productivity
has declined by ~34% over the 2003-2020 period. These
declining trends appear to be associated with reductions in
sea ice cover and increases in primary production upstream
in the Gulf of Anadyr during May, with potential implications
for decreased nutrient availability downstream in the west-
ern Bering Strait during June.

To investigate recent biological change in the Bering Strait,
we compiled a satellite-based time series of chlorophyll-a
concentrations derived from Aqua-Moderate Resolution
Imaging Spectroradiometer (Aqua-MODIS) calibrated radi-
ances using two algorithms: the OC3m algorithm that was
developed at NASA Goddard Space Flight Center (GSFC)
and makes use of band ratios and in situ measurements
(O’Reilly et al., 1998) and the Cl algorithm that makes use
of reflectance differences in conjunction with a model (Hu
et al, 2012). The data are made available by the Ocean
Biology Processing Group and were downloaded from
the GSFC Distributed Active Archive Center (DAAC) at
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/
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Daily/4km/chlor_a/. Chlorophyll-a concentration data were
also combined with sea surface temperature data and addi-
tional data sets to derive net primary productivity using a
broadly utilized algorithm (Behrenfeld and Falkowski, 1997)
that has previously been employed to report changes across
the Arctic region (Frey et al.,, 2021). Monthly chlorophyll-a
and primary productivity data were only utilized where sea
ice concentrations were <10% and were otherwise reported
as missing data. For further context, we investigated sea
ice concentration data obtained from the Special Sensor
Microwave/Imager (SSM/I) and Special Sensor Microwave
Imager/Sounder (SSMIS) passive microwave instruments,
calculated using the Goddard Bootstrap (SB2) algorithm
(Comiso et al., 2017a,b). Modeled surface nitrate concentra-
tions were obtained from the Regional Arctic System Model
(RASM; e.g., Clement Kinney et al., 2020). For all data sets
(chlorophyll-a, primary productivity, sea ice, and surface
nitrate), monthly time series were compiled for May and
June, and the Theil-Sen median decadal trends for each
month (2003-2020) were calculated, with statistically sig-
nificant (p <0.1) trends identified using the non-parametric
Mann-Kendall test for monotonic trend (Mann, 1945; Kendall,
1975). The Theil-Sen median trend uses a robust non-
parametric trend operator that is particularly well suited
for assessing the rate of change in noisy and/or short time
series (Hoaglin et al., 2000), which in this study is 18 years.
For those data sets that include missing data (chlorophyll-a
and primary productivity), we show only those trends for pix-
els that had at least 71% of the time series present (or in the
case of this study, 13 of the 18 time steps). This requirement
ensures that only robust trends are reported, given that the
“breakdown bound” for the Theil-Sen trend is 29% (meaning
that unknown or potentially “wild” values would have to per-
sist for more than 29% of a time series in order to affect the
overall trend values; Hoaglin et al., 2000).

Increasing trends in marine primary productivity across the
Arctic owing to shifts in sea ice cover, seawater temperatures,
and nutrient availability have been widely reported (Arrigo
et al., 2008; Pabi et al., 2008; Arrigo and van Dijken, 2015;
Clement Kinney et al., 2020; Lewis et al., 2020; Frey et al.,
2021). In contrast to those reports of large-scale increases
in primary productivity, Figure 1 identifies an important and
unusual regional location of early season (June) declines in
productivity, with potential implications for nutrient and car-
bon delivery downstream (northward) across the Chukchi Sea
shelf. During May (over the 2003-2020 period), we observe
strong declines in sea ice concentration in the Gulf of Anadyr
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(Figure 1a) with increases in surface nitrate
concentrations (Figure 1c), and these are in
turn associated with increasing trends in both
chlorophyll-a (Figure 1e) and primary produc-
tivity (Figure 1g). However, during June, we
observe (and model with RASM, not shown)
strikingly strong and spatially cohesive
declines in chlorophyll-a (Figure 1f) and pri-
mary productivity (Figure 1h) downstream of
the Gulf of Anadyr in the western Bering Strait
along the coast of the Chukotka Peninsula. By
June, sea ice has typically already exhibited
seasonal breakup in the Bering Strait region
(Frey et al., 2015), and we see no trends in
sea ice cover in the western Bering Strait
(Figure 1b). Significant declining trendsin June
surface nitrate concentrations (Figure 1d)
geographically mirror the observed declines
in chlorophyll-a (Figure 1f) and primary pro-
ductivity (Figure 1h). It is important to note
that the potential for increased presence of
subsurface chlorophyll maxima (as a result of
deepening nutriclines) may be challenging
to quantify seasonally via satellite data in the
Chukchi Sea (Arrigo et al., 2011; Ardyna et al.,
2013; Brown et al.,, 2015). Nonetheless, we
hypothesize that because of the May declines
of sea ice in the Gulf of Anadyr and result-
ing increases in May chlorophyll-a/primary
production in that region, available nutrients
downstream in the western Bering Strait
during June are depleted, and chlorophyll-a/
primary productivity therefore have declined
over time there as well. In particular, in the
western Bering Strait (within the region des-
ignated as statistically significant for June
chlorophyll-a concentrations; Figure 1f), June
chlorophyll-a concentrations have changed
by approximately —58% (from 4.2 mg/m? to
1.8 mg/m3), and June primary productivity
has changed by approximately —34% (from
2,418 mg C/m?/day to 1,606 mg C/m?/day).
These shifts represent chlorophyll-a trends
of —1.52 mg/m3/decade and primary produc-
tivity trends of —477.8 mg C/m?/day/decade.
However, increases in chlorophyll-a and
primary productivity in the western Bering
Strait primarily during September (not shown)
counteract these June decreases, so over-
all annual primary productivity rates in this
region are not significant. Thus, while annual
productivity may not have changed substan-
tially, observed shifts in the seasonal dis-
tribution of productivity may indeed have
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FIGURE 1. Decadal Theil-Sen median trends for May/June over the years
2003-2020 in (a,b) sea ice concentrations, (c,d) surface nitrate concentrations,
(e,f) chlorophyll-a concentrations, and (g,h) primary productivity. Hatched regions
indicate statistically significant (p < 0.1) trends, determined using the Mann-Kendall
test for trend. Distributed Biological Observatory (DBO) sites 1, 2, and 3 (Grebmeier
et al., 2019) are shown for geographic context.
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profound consequences for marine ecosystem functioning
across this region.

Despite measurements of overall, large-scale increases
in primary productivity across the Arctic Ocean over recent
decades, heterogeneity in shifts of nutrient availability to
upper ocean waters across the region has also led to a spa-
tial mosaic of both increases and decreases in productivity
(Juranek, 2022, in this issue). For example, while earlier sea
iceretreat canresultin stronger bloomsin Arctic shelfregions,
increased sea ice melt can also result in reduced production
in portions of the central Arctic owing to enhanced stratifica-
tion (Song et al., 2021). Furthermore, moored sensor-based
measurements of dissolved inorganic nitrogen (DIN) in bot-
tom waters in the northern Bering Sea indicate high inter-
annual variability but an overall decline of ~50% over the
2005-2017 period, with strong correlations of late summer/
early fall DIN resulting in primary productivity downstream
on the northern Chukchi shelf the following May (Mordy
et al.,, 2020). Likewise, the early season declines in primary
productivity in the western Bering Strait found in this study
should undoubtedly have important consequences for the
further downstream delivery of carbon and otherwise excess
nutrients to the Herald Canyon and western/central Chukchi
Shelf regions, important hotspots for biological productivity
in the Arctic (Arrigo et al., 2012, 2014; Linders et al., 2017; Li
et al,, 2019). Changes in the seasonal and spatial distribution
of spring phytoplankton blooms in the Pacific Arctic will also
likely have important effects on pelagic-benthic couplingin a
region with historically high benthic biomass and large pop-
ulations of seabirds and marine mammals that depend upon
benthic prey for survival (Grebmeier et al., 2006, 2018).

The observations of change in the western Bering Strait
reported here provide an important example of the hetero-
geneity of ecosystem responses to climate change, where
primary productivity does not always increase with declines
in sea ice cover. Moreover, it is important to consider how
environmental changes such as sea ice decline can have
vital impacts on ecosystem functioning not only locally but
also through resulting impacts on nutrient delivery down-
stream along a conveyor belt system of ocean currents.
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