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Abstract—We are motivated by the problem of performing
failure prediction for safety-critical robotic systems with high-
dimensional sensor observations (e.g., vision). Given access to a
black-box control policy (e.g., in the form of a neural network)
and a dataset of training environments, we present an approach
for synthesizing a failure predictor with guaranteed bounds
on false-positive and false-negative errors. In order to achieve
this, we utilize techniques from Probably Approximately Correct
(PAC)-Bayes generalization theory. In addition, we present novel
class-conditional bounds that allow us to trade-off the relative
rates of false-positive vs. false-negative errors. We propose
algorithms that train failure predictors (that take as input the
history of sensor observations) by minimizing our theoretical
error bounds. We demonstrate the resulting approach using
extensive simulation and hardware experiments for vision-based
navigation with a drone and grasping objects with a robotic
manipulator equipped with a wrist-mounted RGB-D camera.
These experiments illustrate the ability of our approach to (1)
provide strong bounds on failure prediction error rates (that
closely match empirical error rates), and (2) improve safety by
predicting failures.

I. INTRODUCTION

How can we guarantee the safety of a control policy for a
robot that operates using high-dimensional sensor observations
(e.g., a vision-based navigation policy for a drone; Fig. 1)?
This is particularly challenging for policies that have learning-
based components such as neural networks as part of the
perception and control pipeline; state-of-the-art approaches for
synthesizing such policies (e.g., based on deep reinforcement
learning) do not provide guarantees on safety, and can lead to
policies that fail catastrophically in novel environments.

Motivated by this challenge, we consider the following
problem in this paper. Given access to a black-box control
policy (e.g., one with neural network components), our goal is
to train a failure predictor for this policy. This failure predictor
acts as a °‘safety layer’ that is responsible for predicting
(online) if the given policy will lead to a failure as the robot
operates in a novel (i.e., previously unseen) environment. Such
a predictor could enable the robot to deploy a backup policy
(e.g., transitioning to hover) in order to ensure safety. In
certain settings (e.g., factories with robotic manipulators), the
triggering of a failure predictor could also allow the robot
to seek help from a human supervisor. We envision that the
addition of a failure predictor could substantially improve the
safety of the overall robotic system.
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Fig. 1. We train a failure predictor which guarantees (with high probability)
detection of a failure ahead of time. A policy is tasked with avoiding obstacles
in a novel environment using a first-person depth image (top). The bottom
images show the entire environment, including multiple obstacles which are
occluded from view. Since it is operating in a novel setting, the policy alone
fails to avoid occluded obstacles and crashes (left). When the failure predictor
is deployed, the policy stops safely before a crash (right).

In order to be deployed in safety-critical settings, a failure
predictor should ideally have associated formal guarantees on
its prediction performance. More precisely, we would like to
upper bound the false negative and false positive rates of the
predictor. Here, a false negative corresponds to a case where
the policy leads to a failure, but the failure predictor does not
predict this in advance. Similarly, a false positive is a case
where the failure predictor triggers, but the policy remains
safe. In addition to bounding these error rates, one would
also ideally like to trade-off the relative proportion of false
negatives vs. false positives. For example, ensuring a low false
negative rate is generally more crucial in safety-critical settings
(potentially at the cost of a higher false positive rate).

Statement of contributions. Our primary contribution is
to develop an approach for learning a failure predictor with
guaranteed bounds on error rates, given a black-box control
policy that operates on a robotic system with high-dimensional
sensor observations (e.g., vision or depth). Assuming access to
a dataset of environments on which we can execute the black-



box policy for training purposes, we present a reduction of
the failure prediction problem (which involves non-i.i.d. data
in the form of sensor observations) to a standard supervised
learning setting based on the reduction presented in [1]. This
allows us to utilize techniques from Probably Approximately
Correct (PAC)-Bayes generalization theory in order to obtain
bounds on error rates. In addition, we develop novel class-
conditional bounds that allow us to trade-off the relative rates
of false negative vs. false positive errors. Our algorithmic
approach is then to train a failure predictor (e.g., in the form
of a neural network that takes as input a history of sensor
observations) by minimizing the theoretical error bounds. We
demonstrate our approach on two examples in simulation and
hardware including vision-based navigation with a drone and
grasping objects with a robotic manipulator equipped with a
wrist-mounted RGB-D camera. These experiments illustrate
the ability of our approach to (1) provide strong bounds on
failure prediction error rates, and (2) improve the safety of a
robotic system by applying our failure prediction scheme.

II. RELATED WORK

Anomaly Detection. There is a long line of work on
anomaly detection in the signal processing literature (see [2]
for a review). The goal is to identify events or inputs (e.g.,
sensor observations) that deviate significantly from nominal
inputs (and may thus cause failures). In recent years, there
have been efforts to develop anomaly detection techniques
for supervised learning problems with high-dimensional inputs
such as images [3-8] (see [9] for a recent review). This line
of work is also closely related to the literature on uncertainty
estimation in deep learning [10]. Recent techniques also al-
low for anomaly detection in reinforcement learning settings
using streams of sensor inputs [11-14]. Within the robotics
literature, there has been work on performing uncertainty
estimation [15, 16] or anomaly detection [17] specifically for
the problem of collision avoidance (which is an example we
consider in this paper). In contrast to our goal of failure
prediction, the methods highlighted above are generally aimed
at detecting anomalies/outliers in environments that the robot
is operating in. While anomalies may result in failures, this
is not necessarily the case (e.g., for an extremely unlikely yet
benign environment). In addition, the methods above do not
generally provide guarantees on false positive or negative rates
of detection, or the improvement in the robot’s performance
that results from applying the anomaly detector.

Failure Prediction. A different line of work foresees fail-
ure by explicitly forward-propagating the robot dynamics in
the environment. For instance, if the environment map is
available (either given or estimated online), and the robot
dynamics are known (e.g., car), the robot can check if it
falls into a failure state in the next step before executing the
action. Typical methods include Hamilton-Jacobi reachability
analysis [18, 19], control barrier functions [20], and formal
methods [21]. However, these approaches typically assume
an explicit description of the uncertainty affecting the sys-
tem (e.g., bound on actuation noise) and/or the environment

(e.g., minimum distance between obstacles), which are often
unrealistic to describe with real-world environments. They also
work with low-dimensional systems, and are generally unable
to provide guarantees for policies trained with rich sensing
like vision. Work in safe reinforcement learning [22, 23]
approximates the outcome of robot dynamics from data and
allows high-dimensional image input; however, they do not
provide guarantees on the robot’s safety.

Recently, techniques from conformal prediction [24, 25]
have been used to perform failure prediction with error
bounds [26]. This method provides single-episode generaliza-
tion with the milder assumption of training data exchangeabil-
ity, as opposed to the i.i.d. assumption on the training data for
PAC learning (see e.g. [27] for reference). However, because
the resulting guarantee fundamentally operates on a ‘centroidal
measure’ of the performance distribution, it does not generally
provide high-probability guarantees over the predictors syn-
thesized from the training data. A modification of conformal
prediction that does give high-probability guarantees, however,
is computationally intractable except for very simple settings
[28]. We provide a comparison of our approach with conformal
prediction in Sec. IV-D.

PAC-Bayes Learning Theory. Generalization bounds based
on PAC-Bayes theory [29-31] have recently been shown to
provide strong guarantees for a variety of large-scale super-
vised learning settings [32-38]. Since their original develop-
ment, there has been significant work on strengthening and
extending PAC-Bayes bounds [39—-44]. Previous work has also
extended PAC-Bayes theory in order to learn control policies
for robots with guarantees on generalization to novel environ-
ments [1, 45, 46]. This work requires implementing a specific
training pipeline for learning a policy (by optimizing a PAC-
Bayes generalization bound). In contrast, we seek to perform
failure prediction for any given (black-box) policy. PAC-Bayes
theory allows us to provide guarantees on the false positive
and negative rates of failure prediction. Our method can thus
be used in a ‘plug-and-play’ manner to improve the safety of
an existing policy. One recent work [47] also improves safety
of the policies trained using PAC-Bayes theory and detects
failure by learning a safety value function using Hamilton-
Jacobi reachability-based reinforcement learning, but it does
not explicitly provide guarantees on failure prediction.

III. PROBLEM FORMULATION
A. Notation

In this paper, general spaces are denoted by capitalized
Greek letters and calligraphic lettering. As examples, II rep-
resents the space of black-box policies and F represents the
space of failure prediction hypotheses. The only exception,
D, instead denotes probability distributions. A subscript on a
distribution denotes the (assumed measurable where needed)
space over which the distribution acts; e.g. Dg denotes the
distribution over the space of environments. Unless otherwise
noted, samples from a distribution are always assumed to be
ii.d.. Let N denote the joint event of a predicted class and
a true class. For example, pon; denotes the probability of the



joint event ‘predict class 0 and true class is 1,” which is exactly
the probability of false negative. Class-conditional prediction
probabilities follow the same convention. For example, po
is the conditional probability of ‘predicting class O given the
true class is 1. The indicator function 1(z) = 1 if z is true
and 1(z) = 0 if = is false.

B. Problem Setting

Environment and Task Policy. We consider a setting where
environments F are drawn from an underlying distribution
D¢ over environments. Here, ‘environment’ refers to factors
that are external to the robot (e.g., an obstacle field for drone
navigation, or objects for robotic grasping). We do not assume
any knowledge of or structure on Dg, and only assume indirect
access to the distribution via a dataset S = {FE1, Es, ..., Ex}
of ii.d. samples from Dg. At test time, we must perform
failure prediction in new environments drawn from Dg. In all
environments, we assume the robot has a sensor that provides
an observation o € O (e.g., RGB-D image) at each time step.
We consider a deterministic, black-box task policy 7 : O — A
that maps (potentially a history of) observations to a control
input. Deploying the policy in an environment induces a label
y € {0, 1} indicating the robot’s failure (e.g., 0 if it reaches a
target and 1 if not).

Failure Predictor. Given a fixed policy, our goal is to train
a failure predictor using the dataset S of environments. The
predictor hypothesis f : O — ) maps a fixed horizon of past
observations to a predicted class § € {0, 1}. We consider that
the predictor has two possible outputs: class 0 for predicting
success and class 1 for predicting failure. Thus there are four
possible outcomes: (1) true positive (1N1), predicting 1 at least
once before failure; (2) true negative (0N 0), never predicting
1 during the entire successful rollout; (3) false positive (1 N
0), incorrectly predicting 1 at least once during a successful
rollout; and (4) false negative (0N 1), incorrectly predicting 0
at all steps of a failed rollout. The rates of the four outcomes
sum to 1: p1n1+pono+Ppino+pon1 = 1. The misclassification
error refers to the sum of the rate of false positive and false
negative, pino + pon1. In addition, we define false positive
rate (FPR) as the ratio between false positive and sum of false
positive and true negative, FPR := p1n0/(p1no+Pono) = P1jo;
similarly, false negative rate (FNR) is the ratio between false
negative and sum of false negative and true positive, FNR :=
pont/(Pon1 + P1n1) = Poj1-

Letry:ExIT— X T % YT denote the function that ‘rolls
out’ the system with the given policy and the predictor f for
T steps, i.e., 7y maps an environment I to the trajectory
of states x; (resulting from applying the policy) and failure
predictions ¢, fort € {1,...,T}. To evaluate the performance
of the failure predictor, we introduce the error of applying the
predictor f in an environment £ where a policy 7 is running:

Clre(E,m)) = Il[(trg%ﬁ 9t) #yl, (1)

where Tg,; is the step when failure occurs; if the whole
rollout is successful, T,; = T + 1. This misclassfication error

describes if the prediction is misclassified (false positive or
false negative). As shown in Sec. IV-C, it is often useful
to consider the class-conditional misclassfication error that
allows us to trade-off false positives and false negatives:

m)= Y, Adl(maxg) #yl, @

C
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where )\, weighs the relative importance of false positives and
false negatives (e.g., Ap = 0.3 and \; = 0.7 considers false
negatives to be more costly).

Goal. Our goal is to use the training environments S to
learn failure predictors that minimize the errors and provably
generalize to unseen environments drawn from the distribution
De. We also employ a slightly more general formulation
where a distribution Dx over predictors f instead of a single
predictor is used. Below we present the two optimization
problems corresponding to misclassification error and class-
conditional misclassification error:

B o5, 5,100 ;
inf E E [C(ry(E,m))]. “4)

Dr E~Deg f~Dr

We emphasize that we do not have direct access to the
distribution D¢ over environments. We must thus train failure
predictors that will generalize beyond the finite training dataset
S of environments we assume access to.

IV. FAILURE PREDICTION WITH GUARANTEED ERROR
BOUNDS

Our approach for learning failure predictors with guaranteed
error bounds relies on a reduction to results from the PAC-
Bayes generalization theory from supervised learning; in order
to present this reduction, we first provide a brief background
of PAC-Bayes in the standard supervised learning setting [34].

A. PAC-Bayes Theory for Supervised Learning

Consider Z the input space, and Dz the (unknown) true
distribution on Z. We assume access to Sz = {z1, 22, ..., 2N }
N iid. samples of data z; € Z from Dz. To each z;
there corresponds a class label y; € {0,1}. Let X be a
class of hypotheses consisting of functions h : Z — {0,1},
parameterized by some w € W C R? (e.g., neural net-
works parameterized by weights w). Consider a loss function
l:HxZ —[0,1]. Now let W denote the space of probability
distributions on the parameter space R?. We assume there is
a ‘prior’ distribution Dy, € VW before observing the N
samples; and afterwards, we choose a posterior distribution
Dyy € W. Denote the training loss of the posterior Dyy as:

=N ZMNDW w; z)] 5)

The following theorem allows us to bound the true expected
loss (over unknown data from Dz) achieved by any Dyy.

Theorem 1 (Supervised Learning PAC-Bayes Bound [29]).
For any ¢ € (0,1) and ‘prior’ distribution Dy o over w, the

Is(Dyy) :



following inequality holds with probability at least 1 — 0 over
training sets S ~ DY for all posterior distributions Dyy:

E E [i(w;2)] < Is(Dw) + R(Dw, Do, 6),

ZNDZ wNDW

Dxw(Dw || Dw,0) + log(2X)
2N ’
(6)

where Dk, (-||-) is the Kullback-Leibler (KL) divergence.

R(DWa DW,07 6) = \/

Note that the prior distribution Dy o may be chosen arbitrar-
ily, but random or poorly chosen priors may negatively affect
the guarantee. We elaborate on how we select the prior (and
posterior) in Sec. IV-E.

B. Bound on Misclassification Error

We now present a result that tackles (3) for learning failure
predictors with bounds on the expected misclassification error.
Assume there is a prior distribution Dz on the failure
predictors, and then denote the training error of the posterior
Dy on the training dataset S of environments as:

Cs(Dr) =5 Y B [Cls(Bm)]. @)
EeS

Analogous to results in Sec.IV-A, we present the following
theorem that upper bounds the true expected misclassification
error.

Theorem 2 (PAC-Bayes Bound on Misclassification Error).
For any ¢ € (0,1) and any prior distribution over failure pre-
dictors Dr o, the following inequality holds with probability
at least 1 — § over training sets S ~ Dév for all posterior
distributions Dr:

<
EPDng]EDy [C(rf(E7 ﬂ—))] = CS’(D]—') + R(D]—', D]—‘,O, (5)7

R(Dr,D — Dr|Dro) + log( 2
(Dr,Dr0,0) \/DKL( I 2,]0\; og (%% )
®)

Proof: We apply a reduction of failure prediction to the
supervised learning setting, from which the results follow
immediately. An outline of the reduction is presented in Table
I. See [1] for a similar proof construction.

TABLE I
REDUCTION OF FAILURE PREDICTION TO SUPERVISED LEARNING IN
PAC-BAYES THEORY

Supervised Learning < Failure Prediction

Environment E € £
Rollout vy : € x T = XT x YT
Error C(ry(E,m))

Input Data z € Z
Hypothesis hqyy 1 Z — 2/
Loss l(w; 2)

Remark. It is worth noting that the use of trajectories does
not violate the i.i.d. data assumption required for PAC-Bayes
theory. While, for example, the states visited along the multi-
step trajectory are not i.i.d., the error and guarantee are defined
for each rollout, and thus are i.i.d. Our guarantee holds over
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Fig. 2. Continuum of optimal predictors (red) for varying class population
ratios (successes and failures). The failure predictor can perform badly (i.e.,
on the bottom part of the curve) even with infinite data.

the course of the entire rollout; each trajectory ‘collapses’ into
a single ‘datum,” and the independence of these ‘data’ (each
environment/rollout) is preserved. [ ]

In training, we try to minimize the right-hand side of
the PAC-Bayes bound in order to find a posterior distribu-
tion Dx that provides a tight bound on the expected error
Efwp,C(rs(E,m)). This corresponds to the probability that
the predictor will be incorrect when deployed in a new
environment from the unknown distribution Dg. Thus, on
a new environment, the resulting Dr will only make an
unsuccessful prediction with probability less than the upper
bound; a small upper bound guarantees a small probability of
incorrect prediction.

While this approach provides a clean upper bound on the
misclassification error of the failure predictor, for certain prac-
tical cases, this can be insufficient. In the next subsection we
construct a simple example to illustrate that misclassification
error can lead to poor prediction. The natural solution to this
problem is to use a weighted (class-conditional) misclassifica-
tion error and bound FNR and FPR instead (Sec. IV-D).

C. Motivating Class-Conditional Misclassification Error

Consider a single-step setting where the true state x is the
sum of the observation o and an unobserved noise € associated
with an environment ' ~ Dg. The observation and noise are
drawn uniformly on the interval [—1, 1] (i.e., 0,€ ~ U(—1,1)).
Define the true success-failure label y; for a policy m and
environments F; as:

yi = 1[[a; £ 0 + €] > ], )]

where ¢ € [—2,2] is a known failure threshold. This threshold
allows us to vary the expected fraction of 1-labels (failures)
from the underlying distribution Dg¢. If the predictor is aware
of the uncertainty in observation and noise, then the optimal



predictor in expectation under Eq. (1) is,
§"=f"(0) = 1o =d.

However, this implies that for the case |c| > 1, the optimal
prediction is always the more-likely class, since o € [—1,1].
But even for |¢|] = 1, the less-likely class can still occur
up to 12.5% of the time (see Appendix B for calculations).
Then the predictor always predicts success and misses all
failures; the misclassification error is 0.125. This shows the
misclassification error biases the failure predictor towards the
more common class. If that class is benign, the predictor
under-detects failures.

This simple problem motivates us to instead minimize the
conditional probability of misclassification of the predictor,
which is the weighted sum of the FNR and FPR. Fig. 2 shows
conditional failure probabilities of the optimal predictors (red
curve) as the parameter ¢ varies in [—1, 1]. Although varying
c only changes the true proportion of classes 0 and 1 among
training samples, the conditional performance of the predictor
can degrade considerably depending on c. Even with infinite
data, the optimal predictor will never predict a failure when at
least 87.5% of training samples are successes. For analytical
details regarding the policy and predictor, see Appendix B.

D. Bound on Class-Conditional Misclassification Error

The example above shows that minimizing the total mis-
classification error can fail to perform well when the relative
importance of each class does not match its prevalence in the
data (i.e., failures are important but rare). Our direct approach
to generalize the method therefore utilizes a weighted mis-
classification error. Interpreting the total misclassification error
as the class-weighted sum of conditional error probabilities,
the following shows the desired generalization to an arbitrary
weight A € [0, 1]:

Perror = Pon1 + P1n0
= Po|1P1 + P1joPo

= pojt(1 = A") +p1jo(A")
— generalize to = po|1 (1 — ) + p1jo(N),

(10)

where py and p; are true proportions of successes and
failures in environments from Dg. Since the true FNR and
FPR, po|; and py|o, are unknown, we use the empirical FNR
and FPR, po|; and pyjo, present in the dataset S instead and
propose the following error function as the empirical mean
over environments in S:

Cs(ry(E,m),8) = (1 - A)Doj1 + Ab1jo- (11)

However, these empirical proportions are random variables
over the draw of S, and thus C's(r(E, w), S) will not admit a
PAC-Bayes bound. Instead, we need an alternate error function
that holds with high probability over dataset S and is a
provably tight over-approximation of (11). Defining p. to be
high-probability lower bounds for p; (found via Bernstein’s

Inequality), the necessary error function is (12).

C E = 1 y;) =1Ny=0
(re(E,m)) Cor, [(max g:) y =0
+1_)\1[(ma J) = 0Ny =1] 12
X = = s
Cop, 1<t Y (12)
A 1-A
where O\ & = + — =
BO Bl

The cost function is bounded in [0, 1] and does not rely on
quantities that are random variables over the draw of S. Now,
we can present the class-conditional bound.

Theorem 3 (Class-Conditioned PAC-Bayes Bound). For any
d € (0,1) and any prior distribution Dy o over failure
predictors, the following inequality holds with probability at
least 1 — § over training samples S ~ D‘ng for all posterior
distributions Dr:

EiEpngEDf [C(re(E,m))] < Cs(rs(E,7),8) + Ry,
2 (13)

(1—p)log;
Nip + C)\R(D]:, ’D]:70, 5)

)
R)\Zg

A key result is that the regularizer Ry remains O(ﬁ)
Proof: A detailed proof is deferred to Appendix A. In
summary, we utilize a union bound to ensure that all necessary
events hold with high probability, and then combine the new
error functions into the PAC-Bayes framework to obtain the
new ‘regularizer’ term R). [ ]

Remark. This framework achieves two principal benefits.
First, the bounds meaningfully hold for settings where failures
and successes are not balanced in the sample dataset. Addi-
tionally, for a given confidence level, only a fixed number of
instances of the less-common class is necessary to achieve
a bound. This reflects the intuition that the fundamental
information constraint is the number of instances of the class
that have been seen.

Remark. Without the class-conditional bound, estimating
the conditional accuracy of the detector (e.g., ‘what fraction
of failures are being predicted?’) can only be done loosely
(dividing p1~1 by pi1, the latter of which is assumed to be
small). Further, without the class-conditional objective, the
predictor itself will be optimized to predict the more common
class; that is, the objective function will implicitly be biased
against its intended application (finding failures).

Comparison to Conformal Prediction. Recently, tech-
niques based on conformal prediction have been proposed
for learning failure predictors with error bounds [26]. Here,
we illustrate the fundamental differences between the guar-
antees provided by conformal learning and our PAC-Bayes
approach. The conformal prediction framework allows for
guarantees with better sample efficiency (O(1/N), compared
to O(y/1/N) for PAC-Bayes bounds) that hold in expectation
over both the test sample and training datasets. PAC-Bayes-
style guarantees, on the other hand, hold in expectation over
the test sample but with high probability over training datasets.
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Fig. 3. Results of conformal prediction on the toy problem in Sec. IV-C,
which hold in expectation over training samples S and a test case (red dots).
Empirical performance is better than the safety guarantee of €* = 0.05 (black
dashed line), as expected. However, the variance over predictors illustrated in
the 1-o error bars indicates that many predictors fail the guaranteed safety
bound.

The expected performance of conformal prediction, shown
in the red dots of Fig. 3 meets the guaranteed bound (dashed
black line) at O(1/N) sample complexity. However, many of
the synthesized failure predictors (the decision rules learned by
conformal prediction using different training datasets) do not
meet the desired safety levels of performance. The 1-o error
bars in Fig. 3 represent variance over the predictors, indicating
that many predictors themselves will violate the guaranteed
safety bound. Thus, if the policy designer has access to a single
training dataset to learn a failure predictor, conformal predic-
tion does not guarantee that the expected error of the resulting
policy will be below the desired threshold. This highlights a
key difference between the approaches: the fraction of ‘bad’
decision rules can be made arbitrarily small in the PAC-Bayes
approach by reducing the parameter J; in conformal prediction,
reducing the fraction of ‘bad’ predictors is non-trivial.

E. Algorithmic Implementation

In the experimental setups, we parameterize failure pre-
dictors using neural networks and specify distributions over
failure predictors using multivariate Gaussian distributions
over the weights of the networks. We set the covariance matrix
to be diagonal; thus, we can write the prior as Drog =
N (o, diag(sg)), and posterior as D = N (u, diag(s)). We
train the posterior D by optimizing the bounds on error rates
provided by our theory. We present the training algorithm
along with further implementation details in Appendix C. Be-
fore training the posterior, we first train the prior Dz ¢ on held-
out data to improve performance and resulting guarantees.
After training is complete, we can use the posterior to compute
PAC-Bayes bounds on error rates. The PAC-Bayes bound on
the misclassification error can be computed directly with (8).
To compute PAC-Bayes bounds on the FNR and FPR, we can
use A = 0 and A = 1 respectively in (13).

V. EXPERIMENTAL RESULTS

Through extensive simulation and hardware experiments,
we aim to demonstrate strong guarantees on (class-conditional)
misclassification error of trained predictors. We also validate

the guarantees by evaluating the predictors on test environ-
ments in both simulation and on hardware.

A. Obstacle Avoidance with a Drone

Overview. In this example, we train a failure predictor for
a drone executing an obstacle-avoidance policy. The failure
predictor uses depth images taken from the perspective of
the drone. We train the failure predictor in simulation and
apply it on a hardware platform with a Parrot Swing drone
(Fig. 1); this is an agile quadrotor/fixed-wing hybrid drone that
is capable of vertical takeoff/landing, and hovering in place.
We consider a failure to be any instance in which the drone
collides with an obstacle. If the failure predictor indicates that
a crash will occur, we trigger an emergency policy that causes
the drone to stop and land safely. In this section, we evaluate
our bounds and failure prediction performance in simulation
and also present extensive hardware expriments.

Policies and Environment Distributions. The drone’s
obstacle avoidance policy consists of a deep neural network
(DNN) classifier which uses a depth image to select one
out of a set of open-loop motion primitives for the drone to
execute. We use a Vicon motion capture system to locate all
obstacles in the environment as well as the drone’s position
to generate artificial depth images from the perspective of the
drone. It is important to note that neither the policy nor the
failure predictor has access to any other information about the
environment besides the first-person depth images.

In order to match our simulation setup to the hardware
system, we generate a set of motion primitives for the drone by
applying sequences of open-loop control actions on the hard-
ware platform. We then record the resulting trajectories using
a Vicon motion capture system and use these trajectories for
our simulation experiments (in order to emulate the hardware
implementation). Thus these motion primitives capture noise
in the hardware dynamics and help to bridge the sim-to-real
gap.

We use two distinct policies and environment distributions
in order to demonstrate our approach. In the first (‘standard’)
setting, obstacles are placed (uniformly) randomly in the
environment; the drone’s policy then selects from a set of
motion primitives which cause the drone to travel in mostly
straight paths (Fig. 4 left). In the second (‘occluded’) setting,
the environment is generated in two stages. First, a number
of obstacles are (uniformly) randomly placed. Second, we
generate additional obstacles that are placed exclusively in
locations that are occluded by obstacles generated in the first
stage. The drone’s policy then uses the depth image captured
from its starting location to select a motion primitive from the
set shown in Fig. 4 (right). These primitives cause the drone to
travel in curved paths (which may intersect initially-occluded
obstacles). Since obstacles in this setting are specifically
placed in portions of the environment that are occluded, this
setting is adversarial in nature and leads to a large number of
failures. The policy for the standard setting results in a failure
rate of 25.3%, while the policy for the occluded setting results
in a failure rate of 51.4%. Our approach allows for the use of a
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Fig. 4. (Left) Representative motion primitives for the policy used in

the standard setting in the navigation task. (Right) Representative motion
primitives from the policy used in the occluded obstacle settings.
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Fig. 5. The dashed lines show the resulting failure predictor’s FNR and
FPR when the importance of a false negative is varied. The solid lines and
markers show the associated PAC-Bayes guarantee on the FNR and FPR using
the class-condition guarantees introduced in Sec. IV-D.

black-box policy which is not necessarily deployed in settings
where it was trained nor where it would perform well. We aim
to examine the improvement in safety of the policy with the
addition of the failure predictor; thus, we test in settings that
are challenging and even adversarial to the policy.

Failure Predictor and Training. The failure predictor
consists of a DNN which takes as input depth images from the
perspective of the drone. The network receives a new image at
a frequency of 20Hz and stacks the four most recent images
as input to predict failure or no failure at some point in the
future (i.e. 2-classes), with a Softmax layer at the end. If at any
time step, the failure class is largest, we say it is a prediction
of failure; otherwise, it is a prediction of success. We use
10,000 training environments to train the prior distribution
Dy, over failure predictors and an additional 10,000 training
environments to optimize the PAC-Bayes upper bound in (8).
We use Algorithm 1 to obtain a posterior distribution D and
the associated PAC-Bayes generalization guarantee. We note

TABLE II
RESULTS FOR FAILURE PREDICTION ON NAVIGATION TASK

Setting Standard ~ Occluded Obstacle
True Expected Failure (Sim) 0.253 0.514
Misclassification Bound 0.128 0.154
True Expected Misclassification (Sim) 0.101 0.125
True Expected Misclassification (Real) 0.067 0.133

that the physical drone takes approximately 0.5s to slow to a
stop; thus, the failure predictor needs to predict collisions 10
time-steps ahead (since the frequency of the input is 20Hz).

After training, we compute the bound on the misclassifi-
cation error with (8), in addition to the bounds on the FNR
and FPR with (13). At test time, we sample a failure predictor
f ~ Dz and fix it for a particular test environment.

Simulation Results. We first verify our failure predictors
in simulation before testing them on the hardware setup. As
shown in Sec. IV-C, there is an intrinsic trade-off between the
false-positive and false-negative rates in general. To validate
our theoretical framework, we plot the bounds on the FNR
and FPR given by (13) (solid lines in Fig. 5). We compare
these bounds with the empirical FNR and FPR (estimated with
20000 held out environments) of the predictor with varied
false-negative importance during training; these are plotted
using dashed lines in Fig. 5. We obtain strong bounds on
the failure predictors’ errors, with closely-matching empirical
performance along all points along the curve.

Hardware Results. We select a single predictor for each
of the settings (standard and occluded) to use in the hardware
experiments. We choose the failure predictors with the tightest
guaranteed total error rate (i.e. tightest upper bound from (8)).
When the failure predictor stops the rollout due to a prediction
of failure, we re-run the trial without the failure predictor to
determine the true label. See Fig. 1 for an example of the
obstacle placement for the occluded obstacle setting. Addi-
tionally, a video with representative trials from both settings is
available at https://youtu.be/z4UwQzT jhgo. We run
15 trials in each of the settings and show the misclassification
error of the failure predictors along with the guarantee on the
misclassification in Table II. In the standard setting, p1n1 =
T25’ Pono = %, Pino = %5, pon1 = 0, and in the occluded
obstacle setting p1n1 = 1%, Pono = 15, P1no = 1%:,, pon1 = 0.
The misclassification bounds are validated by results from
both the standard and occluded obstacle settings. Additionally,
in all trials where the failure predictor was used, the drone
never crashed due to a missed failure (i.e., there were no false
negatives). These experiments demonstrate the power of the
failure predictor to maintain the robot’s safety in novel and
even adversarial settings.

B. Grasping Mugs with a Robot Arm

Overview. In this example, we consider a robot arm per-
forming the task of grasping a mug (Fig. 6). There are three
mugs on the table and the arm needs to lift one of them off
the table. We use the PyBullet simulator [48] for training the
policy and failure predictor, and then test these on a hardware
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setup with a Franka Panda 7-DOF arm equipped with a wrist-
mounted Intel RealSense D435 camera (Fig. 6). Failure is
defined as either (1) the arm failing to lift the mug from the
table or (2) the gripper contacting the mug with excessive force
before grasping (e.g., if the bottom of the gripper finger hits
the rim of the mug). In simulation, we check the force readings
at the end-effector joint of the arm, and set the threshold to be
20N for (2). We use the same threshold on the physical arm.

Policy and Environment Distributions. We consider a
multi-view grasping setting: with a fixed horizon of five steps,
the robot starts at a fixed pose and gradually moves towards
the mug. The gripper always closes at the last step to grasp the
mug. The policy takes a 100 x 150 pixels RGB-D image from
the camera and outputs the desired pose relative to the current
pose, (Ay, Ay, A, Ay), in 3D translation and yaw orienta-
tion. The relative pose is normalized between [—0.02, 0.02]cm
for A, and A,, [-0.05,—0.03]cm for A, and [-15,15]°
for A,. To simulate more realistic camera images, we add
pixel-wise Gaussian noise to the depth image, and randomly
change the color values for 5% of the pixels in the RGB
image. In order to evaluate the failure predictor on policies
with different task success rates, we choose three different
policies saved at different epochs during training. Shown in
Table III, the policies (‘High’, ‘Medium’, and ‘Low’ settings)
achieve 11.8%, 22.1%, and 46.6% failure rates respectively
on test environments in simulation.

In order to create different environments for the robot, we
obtained 50 mugs of diverse geometries from the ShapeNet
dataset [49]. We then randomly scale them to different diame-
ters between [8, 12]cm. For each environment, we sample three
different mugs and their initial locations on the table (while
ensuring that the mugs do not intersect). We randomly assign
a RGB value as the color of the mug.

Failure Predictor and Training. Similar to the drone
example, the predictor is parameterized with a DNN that takes
the RGB-D image from the camera and outputs the probability
of success and failure with a (two-class) Softmax layer at the
end. If the predicted probability of failure is higher than 0.5,
the predictor outputs ¢ = 1. Since the gripper does not reach
the mug in the first two out of five steps of the rollout, we
only train the failure predictor using data from the last three
steps of each rollout. We use 5000 training environments to
train the prior distribution D o over failure predictors and an
additional 5000 training environments to optimize the PAC-
Bayes upper bound and provide a posterior Dx.

Simulation Results. Generalization bounds and test pre-
diction failure rates of the grasping example are shown in
Table III. Across all three settings, we achieve tight guarantees
on failure prediction compared to the true expected failure rate
of the policies. When testing on additional 5000 environments
in simulation (‘Sim’), the expected prediction rate validates the
bound in all settings. We also plot different levels of bounds
on FNR and FPR by varying the importance of false negatives
relative to that of false positive in the ‘Medium’ setting (see
Fig. 8 in Appendix C). Similar to Fig. 5 in the drone example,
we achieve strong bounds on conditional misclassification

Fig. 6. (a) Simulation environment in PyBullet simulator (virtual wrist-
mounted camera not shown). (b) Real environment with an arm and a wrist-
mounted camera for grasping task.

i

Fig. 7. Camera observation (depth not shown) at the last three steps in a
trial in the grasping task on the hardware platform. (Top) A true-positive trial,
where the predictor outputs failure at the last step, and then the right finger
of the gripper hits the mug rim (not shown); (bottom) a true-negative trial.

errors and the empirical FNR and FPR match the bounds.

TABLE III
RESULTS OF FAILURE PREDICTION IN GRASPING TASK

Setting High  Medium  Low

True Expected Failure (Sim) 0.124 0.223 0.485
Misclassification Bound 0.087 0.130 0.142

True Expected Misclassification (Sim) 0.058 0.101 0.118
True Expected Misclassification (Real) 0.067 0.133 0.133

Hardware Results. We also test the failure predictor on the
hardware setup (Fig. 6). We collect 18 real mugs of diverse
geometries and visuals and split them into 6 sets. For each
set, we perform 5 experiments with random initial mug poses
and randomly sampled failure predictor from the posterior
distribution. In order to check if the prediction is correct, we
continue the trial even when the predictor detects failure. Fig. 7
shows the RGB images from the camera and failure predictions
at the last three steps of two trials. A video with representative
trials is available at https://youtu.be/z4UwQzT jhqgo.

The results of 30 trials for each setting are shown in
Table IIT (Real). In the ‘High’ setting, p1n1 = %, Pono =
%a Piro = 2, pon1 = 0; in the ‘Medium’ setting pi~; =
350 Poro0 = 3¢, Pino = 35, Poni = 3g: and in the ‘Low’
setting pin1 = 35, Pono = 30, P10 = a5, Poni = 35. In
both ‘High’ and ‘Low’ settings, the empirical results validate
the corresponding misclassification bounds. In the ‘Medium’
setting, the empirical rate is slightly higher than the bound.
This could be due to bias from the limited number of real
experiment trials and disparities between camera observations
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in simulation and in real. Nonetheless, the hardware results
overall demonstrates the tightness of the theoretical guarantees
on failure prediction.

VI. CONCLUSION

In this work we propose an approach for training a failure
predictor with rigorous guarantees on error rates by leveraging
PAC-Bayes generalization theory. We develop novel class-
conditional bounds that allow us to trade-off the relative
rates of false-positive and false-negative errors. We present an
algorithmic approach that parameterizes the predictor using a
neural network and minimizes the theoretical error bounds.
Through extensive experiments in vision-based drone navi-
gation and robot grasping tasks in both simulation and on
real hardware, we demonstrate strong guarantees on failure
prediction rates.

Future work. Our approach assumes that environments
that the failure predictor will be deployed in are drawn from
the same underlying (but unknown) distribution from which
training environments are generated. Extending our approach
to perform failure prediction in out-of-distribution environ-
ments (e.g., using distributionally robust bounds) would be
of significant interest. In addition, the results we present
in this paper are for relatively short-horizon tasks; we are
interested to test our approach on longer-horizon problems
(e.g., using transformers or long short-term memory models).
We also note that in the settings we test, the black-box policies
have as high as 87.5% success rate. However, a limitation
of our approach, and of statistical approaches in general, is
developing meaningful guarantees in settings where the policy
has a significantly higher (e.g., 99.9%) success rate. Scaling to
such settings where failures are extremely rare may require a
large number of training samples without further assumptions
about the policy or training data; this is a good direction for
future work. Finally, the use of more sophisticated network
architectures (e.g., those based on attention models) could
have an impact on the quality of the bounds and empirical
performance. In particular, attention models could learn to
focus on particular portions of the robot’s observations that
are most predictive of failures.
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APPENDIX A
CLASS-CONDITIONAL BOUND PROOF

Proof of Theorem 3:

Lemma 4. (Bernstein Inequality for Bernoulli Variables)

For any § € (0,1), po € (0,1) and p1 = 1 — po, with
probability greater than 1 — 6 over samples S of size N of
i.i.d. Bernoulli random variables, the following inequalities
hold for Py Py and ratios K;:

(14)

Proof: For the empirical mean of Bernoulli random
variables, the Bernstein inequality allows us to show directly
that

100 log %

7 the above term inside the brackets

Defining Ksy =
simplifies to

pi(1+ Ksn) —

(2p; + Ksn)pi + 97 < 0.

This is a scalar quadratic equation in p;; taking the minimal
solution gives D, Now, analyze the multiplicative bound

log %

Pi
— KZ .
This bound implies

%

2 log 6
50K?log 2

Ipi .
To be practically feasible, we must be able to bound p; away
from 0. This is equivalent to achieving K; > 1. Of course,
observing a few instances (or even a single instance) of class

i is sufficient to ensure this condition is met for a Bernoulli
variable. Assuming this holds, we have that

N >

5 < Pi
Di pz_Ki,
= p; < (1+1)
Di = Di K,
—t i D.;
pz_Ki_’_lpza
_ s LIPS
= Di Kﬁ—lpi_*l

|
Using the error functions, we can rearrange to show that the
structure is maintained. Specifically,

(B >s>=2§w<E>¢yL
i=0 ©*
C/\ = >\7 + )\17
b, Py
Clry(Em) = -3 Maip(E) £y
! 7 C>\ i=0 Bz ’
=S NA[f(B) £
1=0

Because C is a valid error function, we can apply the PAC-
Bayes framework. Defining for notational shorthand

. Dx1(Dx|Dro) + log(24)
Rpac = Ch N )

we see that under standard PAC-Bayes, we can achieve the
following bound:

E E [C(rs(E, )) + Rpac.

E~De f~Dr

N
Sﬁg
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This implies then that we can bound C as follows:
R - -
SELE [CopE ), 8] < B E [CClrs(Em)],
N ~
C(ry(E,m)) + Rpac,

i=1

IN

Q

>
2=

WE

IN

Clrp(E,m). 8)(1+ &

1 =2 min

1
NZ. )+ Rpac.

The first and last inequalities follow from Lemma 4 and the
fact that P, < p;. Specifically, the latter fact implies that C<
C’ACN' () (in words: C >\C~’ is an over-approximation), while the
first fact implies that the over-approximation ratio is less than
14 1/K (i.e. is relatively tight). Defining p = min; p, and
K = min; K, and noting that the empirical mean error must
be less than 1/2 by definition of X (that is, there exists a policy
that achieves min{\,1 — A} cost by simply always guessing
the appropriate class), we have that (conservatively):

E E [C(riE,m),S)] < E E [C\C(rs(E,m))],

E~Def~DF E~Deg f~Dr
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This matches the result of (13) stated in Theorem 3, and
completes the proof. ]

APPENDIX B
Toy EXAMPLE CALCULATIONS

Let w; = z; + 2;. Then for each training sample, the true
class label is defined by y; = 1[w; > ¢]. The optimal classifier
in expectation is g7 = f*(x;) = 1[x; > ¢]. It can be shown
that the probability density for W = X + Z is

p(w) = 0.5 — 0.25w|, w € [-2,2]. (15)

Further, the probability of a new example being in classes 0O
and 1 as a function of the cutoff ¢ € [—2,0] is
(c+2)?

po(c) = s

pl(C) =1 —pQ(C).

By symmetry, for ¢ € [0,2] the same probabilities hold but
for the opposite quantities. We note that the optimal policy,
based only on the observable x;, is invariant for |c| > 1. As
such, we will generally restrict our attention to ¢ € [—1,1].

Cap notation will again note the intersection of two events,
which will be in the order {predicted class, true class}. Le.
pino denotes the probability that the predictor chooses class
1, but that the example is truly in class O.

We now calculate p1n and pon1 as a function of ¢ € [—1, 0]
(we will argue from symmetry that the results extend naturally

(16)

+ Rpac.

to ¢ € [0, 1], and argue by the optimal policy invariance for
large-magnitude ¢ that the extension is trivial to |¢| > 1).
For clarity, because X ~ U[-1,1], du, = (1/2)dx; this
substitution will be very common throughout the following
analysis:

p1no = p(predict 1 N truly 0),
=p((z; > )N (w; < ¢)),

c+1
1—(x—¢)
= —5 i,

1 c+1
:Z/ (1+c¢—z)dez,

1 2
= 1+ 0z = T,

4
1 A+2+1-¢2
= (4o - (),
_ 1
=3
We have that for ¢ € [-1,0]:
P1joPo = P1no;
1/8
= p1|0(c) = m,
_ 1
C(e+2)¥
= pip(—1) =1,
1
pl\O(O) —q

Similarly, again for ¢ € [—1,0]:

pon1 = p(predict 0 N truly 1),
=p((z; < )N (w; > c)),

- / (1/2) — (1/2)(c — x)d s,

-1

1 (&
:7/ (1 —c+ x)dx,
1),
2

= ;la—9z+ ]y,
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4
= 20—+ + (@/2-172),
_1 1 2
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Which leads to the expression:

Poj1P1 = Poni,
o= $(1-¢c?)
= poj1(c) —é(S—(c—&—Q)?)’
B (1—¢c?)
(8= (c+2)?)’
= poji(—1) = g =Y
P0|1(0) = i



Algorithm 1 Failure Predictor Training

Input: Fixed prior distribution Ny, over policies
Input: Rollout function r, learning rate -y
Input: Training dataset S = {E;}¥
Output: Optimized ¢*
for i ={1,2,...., N} do
{(0i,3,y1,5)} =1 « r(Ei,m)
end for
while not converged do
Sample w ~ Ny,
for i ={1,2,...,N} do
for j = {1,2,...,T} do
9i.; = fu({0ii}i=1)
end for
end for
B % Sy Cs({(fi i5)}121)
V/DKLLN¢HA%0yHn2§W
+ 2N
Y=Y —yVyB
end while

The total error is:

Perr = Pon1 + P1n0,

1 21
8 8 g
1 1,
=175
Finally, we calculate the derivative of the curve
(p1)0(c), poj1(c)) parameterized by c:
d(p1)o) -2
de  (c+2)%
d(pop) _ (8—(c+2)*)(=2c) — (1 —c*)(=2)(c +2)
dc (8 —(c+2)?2) ’
_ 4¢? —6ec+ 4
(8= (c+2)?)¥
4c®—6c+4
d(poj1) o — (GO
d(Pl\o) (ng)s ’
 —(c+2)3(2¢2 =3¢+ 2)
8—(c+2)%)r 7
d(poj1) 1
—— 71 = ——,
d(Pl\o)( ) 7
d
(Po\l) 0) = -1
d(puo)
APPENDIX C

ADDITIONAL IMPLEMENTATION DETAILS

In Sec. V, the failure predictors are parameterized with deep
neural networks (DNNs) and trained using stochastic gradient
descent. We assume access to an additional rollout function 7 :
ExIT — OT x YT which maps a given policy and environment
to a series of observations that the failure predictor will use and

-@ Medium Setting
—8— Guarantee in Medium Setting
m—Unlearned Performance
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Fig. 8. The dashed lines show the resulting failure predictor’s FNR and
FPR when the importance of a false negative is varied when training in the
‘Medium’ setting in the grasping task. The solid lines and markers show
the associated PAC-Bayes guarantee on the FNR and FPR using the class-
condition guarantees introduction in Section IV-D.

true labels y about whether the policy has failed or not, for ¢ €
{1,...,T}. We let the prior and posterior distributions over
failure predictors be multivariate Gaussian functions and write
them as Dx o = N (uo, diag(so)), and Dr = N (u, diag(s)).
Define ¢ = (u,logs) and let Ny := N (u,diag(s)). We
can then sample a single set of network weights w from the
distribution over weights N, and let the associated failure
predictor be f,. The upper bound presented in (8) has a
potentially intractable expectation taken over f ~ Dx. We use
the same technique presented in [34] to minimize the upper
bound by sampling unbiased estimates of the expectation over
f ~ Dx. Additionally, the error C(r;(E,T)) we present as
part of the upper bound in (8) is discontinuous in general,
and may be difficult to minimize directly. As such, we use a
surrogate error function C in training. We let Cy take in a
series of failure predictions from f ~ Dx and the true labels
at each point in the rollout to assign an error for that series
of predictions. We use a surrogate error similar to the cross
entropy loss:
1T
Cs({gj»yj)};“rﬂ) = T Z[w(ymin(jJrk,T) log(7;))
j=1
+ (1 = Ymin(i+r,1)) log(1 — 9;)],

where w represents a weight on the importance of a false
negative as compared to a false positive and k represents the
number of time steps ahead that the failure predictor must
detect a failure. This weight w is analogous to A used in (13)
and provides a way to scale the importance of false negatives.
We use this error function in training for our experiments
and different values of w and k. The resulting approach is
presented in Algorithm 1. After training is complete, we
compute the misclassification, FNR, and FPR guarantees using
a sample convergence bound as in [34].
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