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Abstract: We analyzed a variety of satellite-based ocean color products derived using MODIS-Aqua
to investigate the most accurate empirical and semi-analytical algorithms for representing in-situ
chromophoric dissolved organic matter (CDOM) across a large latitudinal transect in the Bering,
Chukchi, and western Beaufort Seas of the Pacific Arctic region. In particular, we compared the
performance of empirical (CDOM index) and several semi-analytical algorithms (quasi-analytical
algorithm (QAA), Carder, Garver-Siegel-Maritorena (GSM), and GSM-A) with field measurements of
CDOM absorption (acpom) at 412 nanometers (nm) and 443 nm. These algorithms were compared
with in-situ CDOM measurements collected on cruises during July 2011, 2013, 2014, 2015, 2016, and
2017. Our findings show that the QAA 4443 and GSM-A 1443 algorithms are the most accurate and
robust representation of in-situ conditions, and that the GSM-A 1443 algorithm is the most accurate
algorithm when considering all statistical metrics utilized here. Our further assessments indicate that
geographic variables (distance to coast, latitude, and sampling transects) did not obviously relate to
algorithm accuracy. In general, none of the algorithms investigated showed a statistically significant
agreement with field measurements beyond an approximately £ 60 h offset, likely owing to the
highly variable environmental conditions found across the Pacific Arctic region. As such, we suggest
that satellite observations of CDOM in these Arctic regions should not be used to represent in-situ
conditions beyond a & 60 h timeframe.

Keywords: Arctic; Arctic Ocean; CDOM; MODIS-Aqua; semi-analytical algorithm; Bering Sea;
Chukchi Sea; Beaufort Sea

1. Introduction

Chromophoric dissolved organic matter (CDOM) represents the optical fraction of
dissolved organic matter in natural waters, and its production impacts the heating and
propagation of light in the water column [1]. As climate change continues, variability in
CDOM distribution may have major effects on primary production and carbon cycling in
the Arctic Ocean, particularly in the Bering, Chukchi, and western Beaufort Seas of the
Pacific Arctic region. CDOM will further shift in coastal areas as anthropogenic eutrophica-
tion occurs owing to changes in continental runoff, atmospheric nutrient deposition, and
ocean warming [2,3]. Another major factor influencing CDOM production and distribution
is sea-ice extent. The Pacific Arctic region, in particular, is undergoing the greatest seasonal
sea-ice thinning and retreat of the entire Arctic region [4-7]. Less sea ice and more melt
ponds lead to increases in: (a) light availability in the water column [8], (b) primary produc-
tion (e.g., photosynthesis and phytoplankton production) [9,10], (c) autochthonous CDOM
(i.e., produced through phytoplankton decay), and (d) allochthonous CDOM (i.e., formed
on land and transported through riverine inputs to coastal areas) [1,11,12]. As such, all of
these dynamics create complexities in CDOM production, distribution, and measurements
across this region.
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The remoteness of this area and the limitation of seasonal in-situ measurements
require other tools, such as satellite instruments, to monitor the spatial and temporal
distribution of CDOM. Indeed, the optical properties of CDOM allow for monitoring by
ocean color satellite instruments during summer months after the sea-ice melt season.
Satellite measurements by the Moderate Resolution Imaging Spectroradiometer onboard
Aqua (MODIS-Aqua) provide important estimates of CDOM in surface waters. Current
ocean color CDOM algorithms work most efficiently for retrieval in open ocean or Case-1
waters from a global in-situ data set in which CDOM production is minimal [13]. However,
most currently available CDOM algorithms do not take into consideration other variations
of CDOM production from both autochthonous and allochthonous sources in a regional
area, such as in the Bering, Chukchi, and Beaufort Seas. Optically complex waters have
variable concentrations of CDOM, chlorophyll-a (chl-a), and total suspended matter that can
contribute to challenges associated with the retrieval of all of these parameters (including
CDOM) when using satellite remote sensing [14]. CDOM is detected by satellites using
a combination of empirical (e.g., band ratio) and semi-analytical algorithms in which
CDOM is estimated at four distinctive wavelengths (412, 443, 490, and 555 nm) [15,16].
Empirical algorithms (e.g., R(412)/R(443) and R(490)/R(555)) are commonly used for
spectral and/or surface reflectance (R) in open ocean waters [11]. The ratio between
R(412)/R(443) is sensitive to CDOM, while the ratio for R(490)/R(555) depends on chl-
a, which is also influenced by CDOM. However, empirical algorithms can under- or
overestimate CDOM production because of other bio-optical signatures or factors, such
as the presence of phytoplankton and detrital material, which are ubiquitously found
in natural waters. Variations in these ratios may be established via bio-optical models
developed for Case-1 instead of Case-2 (i.e., coastal) waters. On the other hand, semi-
analytical algorithms [17] and quasi-analytical algorithms (QAA) [18,19] have also been
utilized to remotely retrieve CDOM. Semi-analytical algorithms and QAA do allow for the
incorporation of phytoplankton and detrital material into calculations. This can also lead
to overestimation, but these algorithms are still considered more accurate than empirical
algorithms because they can more robustly depict environmental conditions found in
the field.

A number of studies have used satellite measurements, including MODIS-Aqua,
to retrieve CDOM using empirical and/or semi-analytical algorithms in Case-1 waters.
Empirical algorithms, such as the CDOM index, were developed as band ratios at four
wavelengths, including R/s(412)/R;s(443) and R,s(490)/R,s(555), to retrieve CDOM and
chl-a concentrations in mostly oceanic waters [16]. Other empirical algorithms were
recently compared to in-situ data collected in the summer of 2010 and 2011 as part of the
NASA Impacts of Climate Change on the Eco-Systems and Chemistry of the Arctic Pacific
Environment (ICESCAPE) mission in the western Arctic [20]. Those authors reported that
there were overestimates for the empirical algorithms used to retrieve chl-a when compared
to in-situ measurements. Furthermore, another linear empirical algorithm (OC3L) was
recently developed to improve ocean color empirical algorithms (e.g., OC3Mv#6) in the
western Arctic Ocean, also as part of the NASA ICESCAPE mission [21]. Those authors
presented a three-band input, R(443) > R(490)/R(555), to retrieve chl-a, and consequently
to reduce statistical error from CDOM in the Chukchi Sea. That empirical algorithm was
calibrated with coincident in-situ measurements for both chl-a and CDOM [21]. However,
retrieving CDOM measurements under highly variable environmental conditions across a
large latitudinal area may still be challenging.

In contrast to the band ratio algorithms, semi-analytical algorithms are considered
more reliable since different oceanic constituents, such as chl-a, phytoplankton absorp-
tion, and particulate backscattering, are retrieved and analyzed concurrently in surface
waters [22]. The QAA and Carder algorithms each combine measured remote sensing
surface reflectance (R;s (A)) as well as theoretical and empirical models yielding a set of
simultaneous equations to retrieve chl-a in the presence of CDOM [18,19,23]. In addition,
the Garver-Siegel-Maritorena (GSM) model combines R;s (A), backscatter and absorption
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coefficients with empirical formulas to retrieve CDOM, chl-a concentration, and the particu-
late backscatter coefficient in clear waters [17,24]. More recently, the GSM-A semi-analytical
algorithm was created for use in Case-1 and Case-2 Arctic waters [25,26]. The GSM-A was
designed specifically for the western Beaufort Sea; two factors, including the presence of
sea-ice and large quantities of terrigenous CDOM transported to coastal areas, need to be
present to retrieve CDOM accurately for this particular algorithm.

The objective of this study was to compare satellite measurements with in-situ mea-
surements of CDOM collected in July 2011, 2013, 2014, 2015, 2016, and 2017 for CDOM
across the Pacific Arctic region. We compared empirical and semi-analytical algorithms,
including Carder, QAA, GSM, GSM-A, and CDOM index for the absorption of CDOM
absorption acpom at 412 nm and 443 nm across our study region. Statistical analyses were
performed using Pearson’s correlation coefficient (R), mean deviation (MD), mean absolute
deviation (MAD), slope of the least squares, mean percent deviation (MPD), and standard
deviation to study how MODIS-Aqua satellite data compare to our in-situ measurements.
This study provides a first simultaneous assessment of multiple satellite-based CDOM al-
gorithms across the broad Pacific Arctic region using multiple years of in-situ observations.
Moreover, we additionally present a first sensitivity study to better understand the time
frame over which satellite-based CDOM algorithms represent field-based CDOM most
accurately (i.e., over what time period do field and satellite measurements diverge from
one another), providing insight into the temporal utility of these satellite observations that
has not previously existed.

2. Materials and Methods
2.1. Study Area and CDOM Absorption

Ocean water samples were collected as part of the NASA-Impacts of Climate on the
Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) mission on the
U.S. Coast Guard Cutter (USCGC) Healy in July 2011 in the Chukchi and western Beaufort
Seas as well as the NSF-Arctic Observing Network Distributed Biological Observatory
(DBO) program [27] in July from 2013 to 2017 in the Bering and Chukchi Seas onboard the
Canadian Coast Guard Ship Sir Wilfrid Laurier (SWL) (Figure 1). We collected seawater
samples (for this study we used samples at the shallowest depth collected, at 5 m) using
the CTD rosettes of the Healy and SWL research vessels, which consisted of a 12-place
rosette with 30 L Niskin bottles and 24-place rosette with 10 L Niskin bottles, respectively.
Collection vessels used were acid washed (10% HCI) and pre-combusted (450 °C for 6 h) foil-
covered Kimax clear glass bottles. Inmediately after collections, 125 mL of seawater was
filtered using 0.2 pm Whatman Nuclepore polycarbonate filter (pre-soaked with 10% HCl
and soaked /rinsed with Milli-Q) and analyzed for CDOM absorbance following filtering.

The analysis of CDOM was performed onboard the SWL research vessel for July
2013-2017. Filtered seawater samples were stored in the dark at 4 °C in acid washed (10%
HCI) and pre-combusted (450 °C for 6 h) foil-covered Qorpak clear glass bottles. The caps
were additionally pre-soaked (10% HCI), soaked /rinsed with Milli-Q, and air dried before
using. The CDOM samples were analyzed within 24 h of collection (most typically within
1-2 h) onboard the SWL. For July 2011 on the Healy cruise, water samples were frozen after
filtration owing to the ship’s ice-breaking activities and later analyzed onshore in the Polar
Science Research Laboratory at Clark University. In both cases, CDOM was measured
using a Shimadzu UV-1800 UV /Visible scanning spectrophotometer between wavelengths
of 800 and 200 nm at 1-nm increments using a 10-cm cuvette and Milli-Q blank correction.
Absorbance values were calculated as follows:

ay = 2.303A, /1 1)

where A, is the raw absorbance value from the spectrophotometer, a is the Naperian
absorbance coefficient (m~!) at a specific wavelength (A), and I is the cell path length
(m) [28]. Field-based CDOM data are available at the National Science Foundation Arctic
Data Center (doi numbers are below in the Data Availability Statement).
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Figure 1. The study area in the Bering, Chukchi, and western Beaufort Seas (shades of blue show bathymetry from shallow
(light blue) to deep (dark blue)). Red points indicate DBO stations where field collections took place each July from 2013
to 2017 and blue points indicate NASA-ICESCAPE stations where samples were collected in July 2011. Red numbered
rectangles indicate individual DBO transects.

2.2. Ocean Color Satellite Remote Sensing Data

MODIS-Aqua Level-1A files were downloaded from the NASA Ocean Biology Pro-
cessing Group (OBPG) http://oceancolor.gsfc.nasa.gov (accessed from 20 December 2017
to 8 January 2018) for July 2011, 2013, 2014, 2015, 2016, and 2017. Geometric and atmo-
spheric corrections were applied to Level-1A data, which included reconstructed and/or
unprocessed instrument data at full resolution, and batch processed to Level-3 data (i.e.,
well-defined spatial grid, including binned and mapped, over a well-defined time period)
using SeaDAS 7.5 and Python 2.7.15 [29]. Empirical and semi-analytical algorithms were
then evaluated using remote sensing surface reflectance (R;s) visible bands at 412 and
443 nm to analyze the performance of empirical and semi-analytical algorithms, including
CDOM index R;s(412)/R,s(443) [16], QAA [18], Carder [23,30], GSM [17,24], and GSM-A
(specific for Arctic waters) [25]. The R,s for GSM-A at 412, 443, 488, 531, 555, and 678 nm
were further calculated using RStudio version 1.1.447, RStudio, Boston, MA.

We did not change default values (e.g., chlorophyll-a, total suspended matter) in
the existing algorithms in order to best assess the accuracy of the CDOM algorithms as
they are widely available to the general public. That being said, the mean chlorophyll-a
concentration of our ~5 m surface water samples (associated with our in-situ CDOM mea-
surements) in this study was 1.354 mg/m3 (N = 170), which was in range of the default
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values in the assessed algorithms (0.002-10.00 mg/m? for Carder [23], 0.07-49.40 mg/m?>
for QAA [18], and 0.02-10.00 mg/ m?3 for GSM [17]). In the case of the GSM-A region, the
geometric mean of summer chlorophyll-a concentrations was 0.553 mg/m? [31], which
was remarkably similar to the geometric mean of our surface water samples (0.53 mg/m?).
Although chlorophyll-a concentrations in the Pacific Arctic region can be much higher
during the spring/early-summer seasonal phytoplankton bloom, our consistent sampling
later in the season during July (after this seasonal bloom) clearly allowed for more compar-
ative values with existing CDOM algorithms and supported the acceptability of retaining
default parameters.

Level-2 raster files (processed from the Level-1A data as above) were also utilized to
compare CDOM MODIS-Aqua satellite measurements to in-situ measurements (in 2011,
2013, 2014, 2015, 2016, and 2017) using WimSoft WAM-match module version 10.09, http:
/ /www.wimsoft.com (accessed on 9 June 2018) [32]. The water column field measurements
used for match-ups were collected at a ~5 m depth (the shallowest depth collected via
CTD). Specifically, (a) the time lag was defined at a maximum of +120 h, with the results
binned into successive 12-h groupings for subsequent comparisons (e.g., £12 h, 24 h,
£36 h); (b) satellite values were filtered for unmasked pixels in a 5 x 5 box centered on the
in-situ target; (c) a minimum of 13 was set for valid pixels (within the 5 x 5 window) to
accept a matchup; and (d) the valid maximum and minimum values established were 64.5
and 0.016, respectively.

2.3. Statistical Analyses and Temporal Sensitivity Study

Pearson’s correlation coefficient (R), mean deviation (MD), mean absolute deviation
(MAD), slope of the least squares, and average percent deviation (APD) were part of the
broad statistical analyses to compare CDOM MODIS-Aqua satellite measurements with our
field measurements. Our first step was to determine which of the 8 algorithms (GSM 4412,
GSM 443, QAA 2412, QA A 4443, Carder a412, Carder 4443, CDOM Index, and GSM-A a443)
and 10 different temporal offsets associated with each (+12, £24, £36, £48, +60, 72, +-84,
£96, £108, and £120 h) showed statistically significant R values when comparing satellite
with in-situ measurements. Using these methods, we performed a temporal sensitivity
study to better understand the time frame over which satellite and in-situ observations
began to diverge from one another, specifically over this 12 to 120-h timeframe (before and
after the time of field collections). Next, for those relationships that showed statistically
significant R values, we calculated MD and MAD to compare these resulting culled satellite-
based algorithms (Y) with field measurements (X) [33]. These metrics are generally utilized
to understand how points are distributed with respect to the Y = X (i.e., 1:1) line for a
given relationship, where X and Y describe the same continuous phenomenon [33]. These
statistics were calculated in linear space but plotted with a logarithmic scale. The MD was
calculated to understand how the average deviation of values compared to the overall
mean. The MAD was calculated to show the average vertical distance between the points
with respect to the 1:1 line (using absolute values). Those values closest to 0 indicated
relationships with the least dispersion from the 1:1 line of the satellite-field relationship.
Next, the slope of the least squares line was calculated to provide additional insight for
the proximity of the satellite-field relationship to the 1:1 line. Last, for those relationships
that showed MD and MAD values closest to zero, we calculated and plotted the modal
distribution of APD for each satellite-field match-up point.

3. Results
3.1. R Values for Temporal Sensitivity Study

We first performed a temporal sensitivity study to understand which CDOM MODIS-
Aqua algorithm(s) best statistically aligned with our in-situ measurements (Figure 2). The
tested algorithms included GSM 4412 and 2443, QAA q412 and 4443, Carder 4412 and 1443,
CDOM index, and GSM-A a443. The number of hours that each algorithm was tested was
up to £120 (i.e., both before and after the time of field collection); we included satellite
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comparisons with both the ICESCAPE samples taken in July 2011 and stations within the
DBO sites 1-5 sampled in July 2013, 2014, 2015, 2016, and 2017 (Figure 1). The gray shaded
areas show those R values that were statistically significant at p < 0.01 for each time step
investigated (at 12-h increments). When the black squares fell within the gray shaded
area, these squares were statistically significant (circled in red), and all others were not
statistically significant.

The CDOM MODIS-Aqua GSM 4412 algorithm did not have any statistically signifi-
cant R values (Figure 2A), but the GSM 4443 had one statistically significant R value that
overlapped with the gray area at +36 h (Figure 2B). Similarly, the QAA 4412 algorithm did
not have any significant R values; however, the QAA 4443 algorithm had three significant
R values (Figure 2C,D). The three significant R values were specifically at =36, £48, and
£60 h. This was not the case for the MODIS-Aqua Carder 4412 and 4443 (Figure 2E,F) and
CDOM index (Figure 2G) algorithms, which had no statistically significant or overlapping
points with the gray area. However, the GSM-A algorithm had two significant R values,
which were at £48 and +60 h (Figure 2H). Each time step was associated with an N (num-
ber of points in our scatterplots, which we discuss in the next section), so those significant
values of R (i.e., the gray shaded areas) were also based on degrees of freedom (N-2). N
increased with time because there were more satellite overpasses available over longer
stretches of time and that therefore had more in-situ match-ups (and hence the critical
threshold for the R values (p < 0.01) decreased with time).

3.2. Statistically Significant CDOM Algorithms

There were only six situations where R values were statistically significant for the
CDOM MODIS-Aqua algorithms (six varying time steps among three algorithms: GSM
a443, QAA q443, and GSM-A a443) (Figure 2B,D,H), with the scatterplots associated with
these algorithms and time steps (i.e., those circled in red in Figure 2) shown in Figure 3.
These overall statistical results are summarized in Table 1. If we were interested in inves-
tigating a linear transfer function to create a more accurate algorithm, we would likely
choose that algorithm and time step with the highest R. For example, the CDOM MODIS-
Aqua algorithms with the highest R values were QAA 4443 at 36 h with an R value of
0.44 (Figure 3B), GSM 4443 at =36 h with an R value of 0.36 (Figure 3A), and GSM-A 4443
at 48 h with an R value of 0.30 (Figure 3E). However, the algorithms that had the lowest
MD/MAD values (of those that already have statistically significant R values) were the
MODIS-Aqua algorithms QAA 4443 at 60 h (Figure 3D) and the GSM 4443 at +48 and
+60 h (Figure 3E,F). Specifically, the QAA 4443 at £60 h had an MD value of 0.09 and an
MAD value of 0.12 (Figure 3D). The GSM-A 4443 at +48 h had an MD value of 0.02 and an
MAD value of 0.04 (Figure 3E), and the MD and MAD values for GSM-A 4443 at 60 h
were 0.03 and 0.05 at +60 h, respectively (Figure 3F). In addition, the QAA 4443 and GSM
a443 at £60 h showed the largest N at 162 and 164, respectively. In the case of QAA 1443
at £60 h, the slope was 0.93, which was the closest to 1 and most of the points aligned
along the 1:1 line. Overall, the relationship between in-situ and satellite measurements
deteriorated after 60 h for both the QAA 4443 and GSM-A 3443 algorithms.

Table 1. Statistical summary for the six algorithms/time steps with the most significant critical R values (i.e., the six red

circled points from Figure 2, which are also shown as the six 1:1 scatterplots in Figure 3). Shown in this table are Pearson’s

correlation coefficient (R), mean deviation (MD), mean absolute deviation (MAD), and the slope of the least squares for
MODIS-Aqua satellite measurements compared to field measurements for 1443 GSM 4443, QAA 4443, and GSM-A a443.

Algorithm Time (h) N R MD MAD Slope
GSM 7443 +36 50 0.36 0.12 0.13 2.39
QAA 443 +36 70 0.44 0.16 0.17 2.87
+48 113 0.25 0.10 0.13 1.07
+60 162 0.23 0.09 0.12 0.93
GSM-A 2443 +48 122 0.30 0.02 0.04 0.29
+60 164 0.21 —0.03 0.05 0.20
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Figure 2. MODIS-Aqua Level-2 algorithms investigated in this study: (A) GSM a412; (B) GSM a443; (C) QAA a412; (D) QAA
a443; (E) Carder a412; (F) Carder a443; (G) CDOM index; and (H) GSM-A 4443. Black squares indicate the R values of
satellite-field comparisons for each time offset, and gray circles indicate the number of in-situ matchups for each time offset.

Gray shaded areas show those R values that are statistically significant at p < 0.01 for each algorithm at each time offset.
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Figure 3. The 1:1 plots show the most significant critical R values (p < 0.01) for satellite algorithms from Figure 2 (red circles):
(A) GSM 4443 at +36 h; (B) QAA 4443 at £36 h; (C) QAA 4443 at £48 h; (D) GSM-A 4443 at +60 h; (E) GSM-A 4443 at 48 h;
and (F) GSM-A 4443 at £60 h versus in-situ CDOM 4443 in July 2011, 2013, 2014, 2015, 2016, and 2017.
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We further calculated MPD and standard deviation for the QAA 4443 and GSM-A
a443 algorithms at +60 h (Figure 4), as the two algorithms with the lowest MD/MAD
values. The N was almost identical for the QAA 2443 and GSM-A 2443 algorithms, at 162
and 164, respectively. Furthermore, the MPD for QAA 4443 was 353.4%, and for GSM-A
a443, 61.3% (Figure 4A,B). The standard deviation for QAA 2443 was 585.5%, but 103.4%
for GSM-A 4443. We additionally analyzed the distribution of the QAA 2443 and GSM-A
a443 algorithms, with the lines shown indicating the normal curve distribution of the
data (Figure 4). The distribution for the QAA 4443 algorithm at £60 h was wider and
shallower; the GSM-A 4443 algorithm at £60 h had a narrower and taller distribution,
making GSM-A 4443 a more robust indicator of field measurements than QAA 7443. Based
on these results (i.e., that GSM-A 4443 was the most accurate and robust indicator of field
measurements), we created scatterplots for the GSM-A 4443 in which we compared the
time frame, distance (km), latitude, and transects to better understand the potential factors
affecting the scatter around the 1:1 line (Figure 5). We analyzed how the number of hours
increasing from 0 to £60 could affect the relationship between in-situ CDOM 4443 and
GSM-A 2443, but we found no clear relationships (Figure 5A). We also investigated the
distance (km) from the coast to the field stations, but this did not seem to explain the
scatter around the 1:1 line, either (Figure 5B). Station latitudes and individual sampling
transects were also analyzed with no apparent relationship between in-situ and GSM-
A 1443 measurements (Figure 5C,D). We additionally investigated whether algorithm
accuracy related to satellite-derived sea surface temperature (SST) data, but no clear
patterns were found (results were similar to latitude, given that SST and latitude across
sampling sites were strongly correlated).

30

(A) QAA 2443 (60 hours)
N=162
251 MPD=353.4%
StdDev=585.5%
204
-
g
Z 15
Q
10 4
5 .
0 .
0 500 1000 1500 2000
30
(B GSM-A a443 (60 hours)
N=164
251 MPD=61.3%
StdDev=103.4%
20
-
=
515
&)
10 4
5 -
0- 1 T l T T
0 500 1000 1500 2000

APD

Figure 4. Histogram distribution of average percent deviation (APD) for the QAA 4443 and GSM-A
a443 algorithms for all in-situ match-ups at £60 h. Each line represents a normal data distribu-
tion curve.
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Figure 5. The GSM-A 4443 algorithm for +60 h versus in-situ CDOM 4443 designated by (A) time
offset (up to £60 h); (B) distance from coast (km); (C) latitude; and (D) individual sampling transects
in this study.

4. Discussion

The satellite algorithms investigated in this study revealed that no single satellite
algorithm can accurately and simultaneously retrieve allochthonous and autochthonous
CDOM because most of the algorithms were developed for areas of high or low CDOM
concentrations, but not both simultaneously. For instance, Figure 2 shows MODIS-Aqua
algorithms and time steps that were acceptable from the temporal sensitivity study. Then,
when we arrived at the 6 algorithms/time steps that were statistically significant based
on the first-cut of R values, we analyzed the actual data in the scatterplots for further
assessment, including the R, MD, MAD, and slope (Figure 3). While Figure 3A,B,E show
the highest R values, the QAA 4443 at 60 h and GSM-A 4443 at +48 and 60 h had the
lowest (closest to 0) MD/MAD values. If we were interested in utilizing a linear transfer
function to create a more accurate algorithm, we would choose that relationship with
the highest R value. However, in fact, the GSM-A 4443 algorithm had the second lowest
MD (0.03) and MAD (0.05) values (Figure 3), highest N (164) (Figure 3), and the lowest
MPD and standard deviation values with the narrowest and tallest histogram distribution
(Figure 4B). In addition, the GSM-A 4443 algorithm was the only algorithm assessed in this
study that was already tuned for Case-1 and Case-2 Arctic waters, where our samples were
collected [25].

As for the GSM 4412 and 4443 algorithms, the statistical results were not consistent
when compared to the GSM-A 2443 and QAA 4443 algorithms (Figure 2). The QAA a443
algorithm had three significant R values (circled in red), overlapped within gray/shaded
area of the plot. However, the MD and MAD values were lower for the GSM-A 1443
algorithm at £48 and +60 h even though the R values were higher for QAA 4443 at £36,
448, and +60 h. The overall MPD for QAA 4443 (353.4%) and GSM-A 4443 (61.34%)
confirmed that GSM-A was the most robust algorithm in this study for representing
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field conditions. Based on the results, the GSM-A 1443 had the best performance; the
GSM-A 4443 algorithm was created for Arctic waters particularly in the Beaufort Sea,
which has higher concentrations of allochthonous CDOM mostly from the Mackenzie
River. We were expecting higher correlations per year as well as all years together, but
one of the factors that may have influenced lower correlation values in this study was a
combination of allochthonous and autochthonous CDOM production in surface waters
in our region of sampling. Differences in spatial constraints for in-situ matchups can also
make for important discrepancies in resulting statistics [34]. Furthermore, the scatterplots
of the GSM-A 4443 algorithm at =60 h (Figure 5) did not obviously reveal how time
offset, distance from coast, latitude, or sampling transect may be able to explain the
scatter of the data (and therefore, the overall accuracy of this algorithm across sampling
sites). This highlights the complexity of these waters across both time and space, likely
owing to a variety of CDOM sources [35] and variable environmental conditions across
the Pacific Arctic region. The best relationships between in-situ measurements and the
GSM-A q443 and QAA 4443 algorithms were at 36, £48 and £60 h (Figure 3), and the
overall relationships indeed deteriorated after 60 h. Other studies have highlighted how
environmental variability including lake size [36] and eutrophication dynamics [37] can
impact CDOM variability. Future work may investigate how other types of environmental
variability (e.g., large storms [38]) may impact the temporal stability of surface CDOM
as well.

5. Conclusions

In this study, we provided a first accuracy assessment of multiple satellite-based
CDOM MODIS-Aqua algorithms across a broad latitudinal gradient in the Pacific Arctic
region over numerous years. We compared the accuracy of empirical (i.e., CDOM index)
and semi-analytical algorithms, including GSM 4412 and 2443, QAA 4412 and 4443, Carder
a412 and 4443, and GSM-A a443. To do so, we investigated numerous statistical metrics to
understand which algorithms best represent in-situ CDOM conditions. While we suggest
GSM-A 1443 is the most accurate based on several statistical metrics investigated (R, MD,
MAD, slope, MPD, standard deviation), we found no patterns in time offset, distance
to coast, latitude, or sampling transects that explained overall scatter when comparing
satellite and in-situ measurements. Furthermore, after a £60 h offset, the relationships
between in-situ and satellite measurements broke down precipitously. Thus, when utilizing
satellite-based CDOM measurements in the Pacific Arctic region where environmental
conditions are highly variable, this study recommends not using satellite data longer than
a £60 h offset when trying to accurately estimate in-situ conditions in the absence of
field measurements.

Our statistical results show that improvements can be made, such that ocean color
algorithms can retrieve CDOM more accurately from ocean surface waters that have
variable amounts of allochthonous and autochthonous CDOM. This study’s assessment of
CDOM algorithms using satellite and in-situ measurements in the Bering, Chukchi, and
western Beaufort Seas suggests that a path forward should be forged for improved ocean
color applications. For instance, future studies can assess and use a combination of bio-
optical properties, such as increasing the variability of autochthonous and allochthonous
CDOM production, chl-a, and phytoplankton absorption to improve the performance of
semi-analytical algorithms. Future studies focused on in-situ measurements may collect Ry
at different wavelengths in the visible region to compare to R;s in the Bering, Chukchi, and
western Beaufort Seas. Moreover, the improved function of applying additional bio-optical
measurements, such as GSM-A 4443 and other semi-analytical algorithms, demonstrates
the advantage of improved ocean color sensors and algorithms that may be applied in the
Bering, Chukchi, and western Beaufort Seas and in similar areas with highly seasonally
variable CDOM concentrations in Case-1 and Case-2 waters.
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