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Abstract

Modeling distributions of covariates, or density estimation, is a core challenge in
unsupervised learning. However, the majority of work only considers the joint
distribution, which has limited utility in practical situations. A more general and
useful problem is arbitrary conditional density estimation, which aims to model
any possible conditional distribution over a set of covariates, reflecting the more
realistic setting of inference based on prior knowledge. We propose a novel method,
Arbitrary Conditioning with Energy (ACE), that can simultaneously estimate the
distribution p(x,, | x,) for all possible subsets of unobserved features x,, and
observed features x,. ACE is designed to avoid unnecessary bias and complexity
— we specify densities with a highly expressive energy function and reduce the
problem to only learning one-dimensional conditionals (from which more complex
distributions can be recovered during inference). This results in an approach that
is both simpler and higher-performing than prior methods. We show that ACE
achieves state-of-the-art for arbitrary conditional likelihood estimation and data
imputation on standard benchmarks.

1 Introduction

Density estimation, a core challenge in machine learning, attempts to learn the probability density
of some random variables given samples from their true distribution. The vast majority of work on
density estimation focuses on the joint distribution p(x) [10, 4, 25, 11, 23, 22, 6], i.e., the distribution
of all variables taken together. While the joint distribution can be useful (e.g., to learn the distribution
of pixel configurations that represent human faces), it is limited in the types of predictions it can
make. We are often more interested in conditional probabilities, which communicate the likelihood of
an event given some prior information. For example, given a patient’s medical history and symptoms,
a doctor determines the likelihoods of different illnesses and other patient attributes. Conditional
distributions are often more practical since real-world decisions are nearly always informed by prior
information.

However, we often do not know ahead of time which conditional distribution (or distributions) will
be of interest. That is, we may not know which features will be known (observed) or which will
be inferred (unobserved). For example, not every patient that a doctor sees will have had the same
tests performed (i.e., have the same observed features). A naive approach requires building an
exponential number of models to cover all possible cases (one for every conditional distribution),
which quickly becomes intractable. Thus, an intelligent system needs to understand the intricate
conditional dependencies between all arbitrary subsets of covariates, and it must do so with a single
model to be practical.

In this work, we consider the problem of learning the conditional distribution p(x, | x,) for any

arbitrary subsets of unobserved variables x,, € R/l and observed variables x, € RI°l, where
u,0 C{1,...,d} and o Nu = ). We propose a method, Arbitrary Conditioning with Energy (ACE),
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that can assess any conditional distribution over any subset of random variables, using a single
model. ACE is developed with an eye for simplicity — we reduce the arbitrary conditioning problem
to the estimation of one-dimensional conditional densities (with arbitrary observations), and we
represent densities with an energy function, which fully specifies unnormalized distributions and has
the freedom to be instantiated as any arbitrary neural network.

We evaluate ACE on benchmark datasets and show that it outperforms current methods for arbitrary
conditional/marginal density estimation. ACE remains effective when trained on data with missing
values, making it applicable to real-world datasets that are often incomplete, and we find that ACE
scales well to high-dimensional data. Also, unlike some prior methods (e.g., [20]), ACE can naturally
model data with both continuous and discrete values.

Our contributions are as follows: 1) We develop the first energy-based approach to arbitrary con-
ditional density estimation, which eliminates restrictive biases (e.g. normalizing flows, Gaussian
mixtures) imposed by common alternatives. 2) We empirically demonstrate that ACE is state-of-the-
art for arbitrary conditional density estimation and data imputation. 3) We find that complicated prior
approaches can be easily outperformed with a simple scheme that uses mixtures of Gaussians and
fully-connected networks.

2 Previous Work

Several methods have been previously proposed for arbitrary conditioning. Sum-Product Networks are
specially designed to only contain sum and product operations and can produce arbitrary conditional
or marginal likelihoods [27, 3]. The Universal Marginalizer trains a neural network with a cross-
entropy loss to approximate the marginal posterior distributions of all unobserved features conditioned
on the observed ones [5]. VAEAC is an approach that extends a conditional variational autoencoder
by only considering the latent codes of unobserved dimensions [14], and NeuralConditioner uses
adversarial training to learn each conditional distribution [1]. DMFA uses factor analysis to have
a neural network output the parameters of a conditional Gaussian density for the missing features
given the observed ones [28]. The current state-of-the-art is ACFlow, which extends normalizing flow
models to handle any subset of observed features [20].

Unlike VAEAC, ACE does not suffer from mode collapse or blurry samples. ACE is also able to
provide likelihood estimates, unlike NeuralConditioner which only produces samples. DMFA is
limited to learning multivariate Gaussians, which impose bias and are harder to model than one-
dimensional conditionals. While ACFlow can analytically produce normalized likelihoods and
samples, it is restricted by a requirement that its network consist of bijective transformations with
tractable Jacobian determinants. Similarly, Sum-Product Networks have limited expressivity due to
their constraints. ACE, on the other hand, exemplifies the appeal of energy-based methods as it has
no constraints on the parameterization of the energy function.

Energy-based methods have a wide range of applications within machine learning [17], and recent
work has studied their utility for density estimation. Deep energy estimator networks [30] and
Autoregressive Energy Machines [22] are both energy-based models that perform density estimation.
However, both of these methods are only able to estimate the joint distribution.

Much of the previous work on density estimation relies on an autoregressive decomposition of the
joint density according to the chain rule of probability. Often, the model only considers a single
(arbitrary) ordering of the features [22, 24]. Uria et al. [33] proposed a method for assessing joint
likelihoods based on any arbitrary ordering, where they use masked network inputs to effectively
share weights between a combinatorial number of models. Germain et al. [8] also consider a shared
network for joint density estimation with a constrained architecture that enforces the autoregressive
constraint in joint likelihoods. In this work, we construct an order-agnostic weight-sharing technique
not for joint likelihoods, but for arbitrary conditioning. Moreover, we make use of our weight-sharing
scheme to estimate likelihoods with an energy based approach, which avoids the limitations of the
parametric families used previously (e.g., mixtures of Gaussians [33], or Bernoullis [8]). Query
Training [16] is a method for answering probabilistic queries. It also takes the approach of computing
one-dimensional conditional likelihoods but does not directly pursue an autoregressive extension of
that ability.



The problem of imputing missing data has been well studied, and there are several approaches based
on classic machine learning techniques such as k-nearest neighbors [32], random forests [31], and
autoencoders [9]. More recent work has turned to deep generative models. GAIN is a generative
adversarial network (GAN) that produces imputations with the generator and uses the discriminator
to discern the imputed features [34]. Another GAN-based approach is MisGAN, which learns two
generators to model the data and masks separately [19]. MIWAE adapts variational autoencoders by
modifying the lower bound for missing data and produces imputations with importance sampling
[21]. ACFlow can also perform imputation and is state-of-the-art for imputing data that are missing
completely at random (MCAR) [20].

While it is not always the case that data are missing at random, the opposite case (i.e., missingness
that depends on unobserved features’ values) can be much more challenging to deal with [7]. Like
many data imputation methods, we focus on the scenario where data are MCAR, that is, where the
likelihood of being missing is independent of the covariates’ values.

3 Background

3.1 Arbitrary Conditional Density Estimation

A probability density function (PDF), p(x), outputs a nonnegative scalar for a given vector input
x € R? and satisfies [ p(x)dx = 1. Given a dataset D = {xW}N | of i.i.d. samples drawn from an
unknown distribution p*(x), the object of density estimation is to find a model that best approximates
the function p*. Modern approaches generally rely on neural networks to directly parameterize the
approximated PDF.

Arbitrary conditional density estimation is a more general task where we estimate the conditional
density p* (x,, | X,) for all possible subsets of observed features o C {1, ..., d} (i.e., features whose
values are known) and corresponding subset of unobserved features u C {1,...,d} such that o and
u do not intersect. Here x, € Rl°l and x,, € RI*/. The estimation of joint or marginal likelihoods
is recovered when o is the empty set. Note that marginalization to obtain p(x,) = | p(Xu, X,) dx,

(and hence p(x,, | x,) = %) is intractable in performant generative models like normalizing

flow based models [4, 20]; thus, we propose a weight-sharing scheme below.

3.2 Energy-Based Models

Energy-based models capture dependencies between variables by assigning a nonnegative scalar
energy to a given arrangement of those variables, where energies closer to zero indicate more desirable
configurations [17]. Learning consists of finding an energy function that outputs low energies for
correct values. We can frame density estimation as an energy-based problem by writing likelihoods
as a Boltzmann distribution

eff(x)

px)=—F—, Z= / e ¢ dx (1)

where & is the energy function, e =€) is the unnormalized likelihood, and Z is the normalizer.

Energy-based models are appealing due to their relative simplicity and high flexibility in the choice
of representation for the energy function. This is in contrast to other common approaches to density
estimation such as normalizing flows [4, 20], which require invertible transformations with Jacobian
determinants that can be computed efficiently. Energy functions are also naturally capable of
representing non-smooth distributions with low-density regions or discontinuities.

4 Arbitrary Conditioning with Energy

We are interested in approximating the probability density p(x, | x,) for any arbitrary sets of
unobserved features x,, and observed features x,. We approach this by decomposing likelihoods into
products of one-dimensional conditionals, which makes the learned distributions much simpler. This
concept is a basic application of the chain rule of probability, but has yet to be thoroughly exploited
for arbitrary conditioning. During training, ACE estimates distributions of the form p(xu; | Xor),



Energy Network  ——  &£(x,,:x,)

o) BT s (wlmix,), (wmix,))
G Proposal Network  [—— ©
b [ e [ie 0]

| — (w(u‘,,‘:x(,). Yy, :x,,))

(a) Proposal Network (b) Energy Network

Figure 1: Overview of the networks used in ACE. The plus symbol refers to concatenation.

where x, is a scalar. During inference, more complex distributions can then be recovered with

. o Corylel ;s .
an autoregressive decomposition: p(xy | xo) = [[;Z; p(#u; [ XU, ), Where v is an arbitrary

permutation of v and u’;, = {u),...,u;_;}. This approach is appealing because the estimated
distributions are over a one-dimensional domain, allowing one to use a myriad of flexible estimators.

We adopt an energy-based approach (similar to AEMs [22]), which affords a large degree of flexibility
in modeling the exponentially many conditional distributions at hand — we are free to represent
the energy function with an arbitrary, and highly expressive, neural network that directly outputs
unnormalized likelihoods. This contrasts with the current state-of-the-art for arbitrary conditional
density estimation, which is limited by normalizing flow transformations [20]. Energy functions are
highly expressive and naturally model complex (i.e., multimodal, non-smooth) densities, as they avoid
a parametric-family on the shape of the distribution. Our main contribution is a method, Arbitrary
Conditioning with Energy (ACE), for computing arbitrary conditional likelihoods with energies, one
dimension at a time.!

4.1 Decomposing Densities

We decompose the arbitrary conditioning task into 1d-domain arbitrary conditional estimation
problems. This follows from the chain rule of probability, which allows us to write

||

p(Xu | Xo) = Hp (xu; | XoUu’<i) ’ 2
=1

where v’ is an arbitrary permutation of u, T, 1s the i unobserved feature given by u’, and
u’; = {u},...,u;_; }. The one-dimensional conditionals in Equation 2 are themselves arbitrary con-
ditionals due to the choice of permutation. Thus, the arbitrary conditioning problem may be reduced
to one-dimensional arbitrary conditional estimation. If we can compute any likelihood of the form
p(x; | Xor) for o' C {1,...,d}, we can compute any distribution over the features. This includes all
possible conditional distributions, marginal distributions, and the joint distribution. Although the
reduction of arbitrary conditioning to 1d conditional estimation is seemingly straightforward, this is,
to the best of our knowledge, the first work to leverage this formulation.

We train our model non-autoregressively, to output the likelihood p(x; | x,/) for any z; and x,/,
where i € {1,...,d} \ 0. During inference, an autoregressive procedure that repeatedly applies the
chain rule can be used to compute likelihoods of the form p(x, | X,). In practice, this consists of
simply adding the previously considered unobserved dimension to the observed set before moving to
the next step in the chain.”

4.2 Likelihoods from Energies

We express likelihoods in terms of energies by modifying Equation 1 to write

e—E(@u;3%0) 3
P(Tu; | Xo0) = e 3)
and we choose to represent the energy function as a neural network. In order to avoid learning a
different network for each conditional, we adopt a weight-sharing scheme (e.g. [33, 14, 20]). That is,

! An implementation of ACE is available at https://github.com/lupalab/ace.

20ne could also implement this with a masked network architecture (e.g., MADE [8]) that can more efficiently
compute autoregressive likelihoods. We choose not to do this for simplicity and to enable the use of arbitrary,
and more expressive, architectures.
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we use a bitmask b € {0, 1} that indicates which features are observed and define a zero-imputing
function ¢(x,; b) that returns a d-dimensional vector where unobserved features are replaced with
zeros (see Figure 5 in Appendix). These are then used as inputs to the energy network (see Figure 1b).

Approximating normalized likelihoods. We can use Equation 3 to compute normalized likeli-
hoods, but only if the normalizing constant Z,,, .« is known. Directly computing the normalizer is
intractable in general. However, importance sampling can be used to obtain an estimate [2]. Nash
and Durkan [22] show that this technique is sufficiently accurate when considering one-dimensional
conditionals for joint density estimation, and we adapt the approach for arbitrary conditioning. As-
suming access to a proposal distribution ¢(z,,, | x,) which is similar to the target distribution, we
approximate Z,,x, as

£ ; e’g(%i?xo)
Zui;x,, - \/67 (i) dl‘ui = /7(](551” | X(J) dSCul 4)
Q(qu Xo)
S —£(®ix,)
1 e ug .
~ g T’ :I:Sh) ~ q(xui | Xo) . %)
s=1 C](xuI Xo)

For some problems, we may have access to a good proposal distribution ahead of time, but in general,
we can learn one in parallel with the energy network. We note that importance sampling is also more
computationally efficient than the simpler alternative of using points from a grid. Since distributions
may be non-smooth and span a large domain, fewer samples from a good proposal distribution will be
able to obtain as good of an estimate as a grid that has many more points, which in turn will require
fewer evaluations of the energy network. Furthermore, generating samples from the proposal is very
efficient, as it only requires one neural network evaluation to obtain the parameters of a tractable
parametric distribution, which can then be easily sampled.

4.3 Training ACE

We learn the proposal distribution alongside the energy function by having a neural network output
the parameters of a tractable parametric distribution. For the proposal network, we again share
weights between all conditionals as is done with the energy network. The proposal network accepts
a concatenation of b and ¢(x,; b) as input, and it outputs the parameters w(u;; X, ) for a mixture
of Gaussians for each unobserved dimension u;. The proposal network also outputs a latent vector,
~(u;; X,), for each unobserved dimension, which is used as input to the energy network in order to
enable weight sharing between the proposal and energy networks [22]. Using a different latent vector
for each feature allows the latent vectors to represent the fact that different unobserved features may
depend on x, in different ways.

We then estimate the normalizing constants in Equation 3 using importance sampling:

S (2 i m (g
. 1 S o €@ ixo(uix,))
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where argf) is sampled from q(x,,, | w(u;;X,)). This in turn leads to the following approximation of

the log-likelihood of xz,,, given x,:

logp(xul | xo) ~ _g(xui y Xos ’)’(U“ XO)) - 1Og ZUi;Xov (7)
where we use abbreviated notation in the previous two equations and omit the bitmask b for greater
readability. Refer to Figure 1 for the precise inputs of each network.’

Since Equation 2 gives us a way to autoregressively compute p(x,, | X,) as a chain of one-dimensional
conditionals, we only concern ourselves with learning p(z,,, | X,) for arbitrary u; and x,. Thus, for
a given data point x, we randomly partition it into x, and x,, and jointly optimize the proposal and
energy networks with the maximum-likelihood objective

Jul Jul

J(Xo; % 0) = Y " log pl(wu, | o) + Y _ log (v,

=1 =1

Xo), ®)

31t is not strictly necessary for the energy network to include x,, as input, since the latent vectors can encode
that information. However, doing so acts like a sort of skip-connection, which often helps with deeper networks.



where 6 holds the parameters of both the energy and proposal networks. Because we want to optimize
the proposal and energy distributions independently, gradients are stopped on proposal samples and
proposal likelihood before they are used in Equation 6. We note that optimizing Equation 8 can be
interpreted as a stochastic approximation to optimizing the full autoregressive likelihoods p(x, | x,)
(i.e., Equation 2). For a given data point, we are choosing to optimize individual 1d-conditionals
from numerous hypothetical autoregressive chains, rather than all of the 1d-conditionals from a single
autoregressive chain. That is, each random set of observed values that is encountered during training
(in Equation 8) can be seen as a single factor in the product in Equation 2 for some p(x,, | X,). Over
the course of training though, the same conditionals are ultimately being evaluated in either case.

The negative of Equation 8 is minimized with Adam [15] over a set of training data, where observed
and unobserved sets are selected at random for each minibatch (see Section 5). In some cases, we
found it useful to include a regularization term in the loss that penalizes the energy distribution for
large deviations from the proposal distribution. We use the mean-square error (MSE) between the
proposal likelihoods and energy likelihoods as a penalty, with gradients stopped on the proposal
likelihoods in the error calculation. The coefficient of this term in the loss is a hyperparameter.

4.4 Inference
4.4.1 Likelihoods

Recall that our model learns one-dimensional conditionals: p(z,, | X,). Thus, to obtain a complete
likelihood for x,,, we employ an autoregressive application of the chain rule (see Equation 2). The
pseudocode for this procedure is presented in the Appendix (see Algorithm 1). Since the values of x,,
are known ahead of time, each one-dimensional conditional can be evaluated in parallel as a batch,
allowing the likelihood p(x,, | X,) to be computed efficiently.

Importantly, the order in which each unobserved dimension is evaluated does not matter. As argued
in previous work [33, 8], this can be considered advantageous, since we can effectively leverage
multiple orderings at test time to obtain an ensemble of models. However, this does incur extra
computational cost during inference. We note that a model which perfectly captures the true densities
would give consistent likelihoods for all possible orderings (thus evaluating only one ordering would
suffice). However, current order-agnostic methods (such as ACE or [33, 8]) do not inherently satisfy
this constraint. In the Appendix, we study how these inconsistencies can be mitigated in ACE, but we
leave a true solution to this challenge for future work.

4.4.2 Imputing

Sampling allows us to obtain multiple possible values for the unobserved features that are diverse
and realistic.* However, these are not always the primary goals. For example, in the case of data
imputation, we may only want a single imputation that aims to minimize some measure of error (see
Section 5.1.2). Thus, rather than imputing true samples, we might prefer to impute the mean of the
learned distribution. In this case, we forego autoregression and directly obtain the mean of each
distribution p(z,,, | x,) with a single forward pass. Analytically computing the mean of the proposal
distribution is straightforward since we are working with a mixture of Gaussians. We estimate the
mean of the energy distribution via importance sampling:

S
Ts p(Tu | Xo)
E [2,,] = E 7$1(f), ry = —/————~ )
i i (@, | %o)
(s)

where z,, is sampled from ¢(z,,, | X,). It is worth noting that imputing the mean ignores depen-
dencies between features in the unobserved set, so for some applications, other methods of imputing
(such as multiple imputation by drawing samples) may make more sense.

4.4.3 Heterogenous Data

Prior approaches to arbitrary conditioning have to make restrictive assumptions when modeling
arbitrary dependencies between continuous and discrete covariates. VAEAC [14], for example,
makes an assumption of conditional independence given a latent code. ACFlow [20] is not directly

*We describe how to generate samples from ACE in the Appendix.



Table 1: Test arbitrary conditional log-likelihoods (in nats) for UCI datasets. Higher is better.
Likelihood estimates are computed with 20,000 importance samples for POWER, GAS, and HEPMASS,
10,000 importance samples for MINIBOONE, and 3,000 importance samples for BSDS. Results for
ACFlow and VAEAC are taken from Li et al. [20]. The best model for each dataset and missing rate
is shown in bold. Results are averaged over 5 observed masks.

POWER GAs HEPMASS MINIBOONE BSDS
Missing Rate 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5
ACE 0.631 0.633 0.600 9.643 9.526 8530 -3.859 -4255 -8.133 0.310 -0.688 -5701 86.701 86.130 80.613
ACE Proposal ~ 0.583  0.573  0.542 9484 9348 8.183 4417 -4796 -8497 -0.241 -1.328 -9.169 85.228 84.204 75.767
ACFlow 0.561 0.557 0458 8.086 7.568 5405 -8.197 -7.784 -10.538 -0.972 -5.150 -9.892 81.827 80.783 75.050
ACFlow+BG ~ 0.528 0510 0417 7.593 7212 4.818 -6.833 -9.670 -10.975 -1.098 -3.577 -10.849 81.399 79.745 73.061
VAEAC -0.042  -0.103 -0.343 2418 2823 1952 -10.082 -10.389 -11.415 -3.452 -4242 -9.051 74850 74313 66.628

applicable to discrete data given its use of the change of variable theorem. On the other hand, ACE
can naturally model arbitrary dependencies between continuous and discrete covariates without any
assumptions. In this setting, the proposal network outputs categorical logits for discrete features, as
opposed to Gaussian mixture parameters. These logits can themselves be interpreted as energies, and
we don’t need to learn an additional energy function for the discrete features. Similarly, ACE could
be applied to multimodal data in a straightforward fashion by conditioning the proposal distributions
and energy function on a fused multimodal latent representation (which could be freely learned by
arbitrary neural networks).

5 Experiments

5.1 Real-valued UCI Data

We first evaluate ACE on real-valued tabular data. Specifically, we consider the benchmark UCI
repository datasets described by Papamakarios et al. [25] (see Table 6 in the Appendix).

Unlike other approaches to density estimation that require particular network architectures [8, 4, 22,
20], ACE has no such restrictions. Thus, we use a simple fully-connected network with residual
connections [12, 13] for both the energy network and proposal network. This architecture is highly
expressive, yet simple, and helps avoid adding unnecessary complexity to ACE. The bitmask b, which
indicates observed features, is sampled for each training example by first drawing & ~ U{0,d — 1},
then choosing k distinct features with uniform probability to be observed. Full experimental details
and hyperparameters can be found in the Appendix.

We also consider the scenario in which data features are completely missing, i.e., some features are
deemed unavailable for particular instances during training and are never part of the observed or
unobserved set.’ This allows us to examine the effectiveness of ACE on incomplete datasets, which
are common when working with real-world data. When training models with missing data, we simply
modify the sets of observed and unobserved indices to remove any indices which have been declared
missing. This is a trivial modification and requires no other change to the design or training procedure
of ACE. We consider two scenarios where data are missing completely at random at a 10% and 50%
rate.

5.1.1 Likelihood Evaluation

Table 1 presents the average arbitrary conditional log-likelihoods on held-out test data from models
trained with different levels of missing data. During inference, no data is missing and b is drawn
from a Bernoulli distribution with p = 0.5. Likelihoods are calculated autoregressively as described
in Section 4.4.1. The order in which the unobserved one-dimensional conditionals are computed is
randomly selected for each instance.

We can draw two key findings from Table 1. First, we see that our proposal distribution outperforms
ACFlow in all cases. Even this exceptionally simple approach (just a fully-connected network that
produces a mixture of Gaussians) can give rise to extremely competitive performance, and we see
there are advantages to using decomposed densities and unrestricted network architectures. Second,

SFeatures are missing at the per-instance level. For example, this does not mean that the i feature is never
observed for all training instances.



Table 2: Test marginal log-likelihoods (in nats) for UCI datasets. Higher is better. We evaluate the
marginal distributions of the first 3, 5, and 10 dimensions of each dataset (POWER and GAS don’t
have 10 features, so the joint likelihood over all features is reported instead). The same number of
importance samples are used as in Table 1. Results for ACFlow and TAN are taken from Li et al. [20].
Bold indicates where ACE outperformed ACFlow. Results are averaged over 5 observed masks.

POWER GAS HEPMASS MINIBOONE BSDS
Dimensions 3 5 6 3 5 8 3 5 10 3 5 10 3 5 10
ACE -0.56 142 0.58 131 431 1220 -4.00 -591 -10.72 -2.13 -3.80 -794 510 9.37 2031
ACE Proposal -0.58 135 049 1.11 398 11.84 -401 -594 -10.82 -2.14 -3.79 -793 5.06 930 20.17
ACFlow -0.57 134 042 078 3.01 10.13 -403 -6.19 -11.58 -276 -531 -1036 5.06 9.26 19.60
TAN -0.54 140 057 122 447 1209 -400 -592 -10.87 -2.13 -3.73 -813 511 943 2044

Power Gas Hepmass Miniboone BSDS
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Figure 2: Normalized root-mean-square error (NRMSE) of imputations generated by ACE. Lower
is better. NRMSE is computed as the root-mean-square error normalized by the standard deviation
of each feature and then averaged across all features. Estimates of energy distribution means are
computed with 20,000 importance samples for POWER and GAS, 10,000 importance samples for
HEPMASS and MINIBOONE, and 3,000 importance samples for BSDS. Results for ACFlow and
VAEAC are taken from Li et al. [20].

we find that in every case, the likelihood estimates produced by the energy function are higher than
those from the proposal, illustrating the benefits of an energy-based approach which imposes no
biases on the shape of the learned distributions.

We also examine the arbitrary marginal distributions learned by ACE, i.e., the unconditional distribu-
tion over a subset of features. We again test our model against ACFlow, and we additionally compare
to Transformation Autoregressive Networks (TAN) [23], which are designed only for joint likelihood
estimation. A separate TAN model has to be trained for each marginal distribution. While a single
ACFlow model can estimate all marginal distributions, Li et al. [20] retrained models specifically for
arbitrary marginal estimation. Contrarily, we used the same ACE models when evaluating arbitrary
marginals as were used for arbitrary conditionals. Results are provided in Table 2. We find that ACE
outperforms ACFlow in all cases and even surpasses TAN most of the time, even though ACFlow
and TAN both received special training for marginal likelihood estimation and ACE did not.

5.1.2 Imputation

We also evaluate ACE for data imputation, where some elements are missing from a dataset completely
at random and we seek to infer their values. ACE is naturally applied to this task — we consider
p(xy | X0), where x,, contains the missing features.

Figure 2 shows the normalized root-mean-square error (NRMSE) on held-out test data. Again, we
consider models trained with three different levels of missing data. During inference, b is drawn
from a Bernoulli distribution with p = 0.5 for the 0% and 50% missing rates and p = 0.9 for the
10% missing rate.® The means of the unobserved distributions are used as the imputed values (see
Section 4.4.2).

As seen in Figure 2, ACE achieves a lower NRMSE score than ACFlow in all cases (exact numbers
are available in the Appendix). These results further validate ACE’s ability to accurately model
arbitrary conditionals, leading us to again advocate for simple methods with few biases. It is also

SThis means that for the 10% missing rate, we are imputing fewer values (only 10% as opposed to 50%)
during inference than with the other two missing rates. This explains the lower errors for the 10% missing rate
that we see in Figure 2. Even though there is missing data during training, we are estimating the values of fewer
values based on a larger amount of observed data, which intuitively should result in more accurate imputations.



Table 3: Conditional log-likelihoods (LL), Table 4: Log-likelihood and imputation results for
joint bits-per-dimension (BPD), and inpainting the UCI Adult dataset. NRMSE measures imputa-
peak signal-to-noise-ratio (PSNR) for ACE and tion performance for continuous features and accu-

ACFlow on MNIST. racy is used for discrete features.
Method LL BPD PSNR Method LL NRMSE Accuracy
ACE 1043.88 142 16.81 ACE 2.38 0.90 0.69
ACE Proposal ~ 828.60 2.11 16.70 ACE Proposal  2.24 0.89 0.69
ACFlow 875.87 3.09 13.75 VAEAC -7.25 0.91 0.67
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(a) Inpaintings from ACE and ACFlow. Left: Groundtruth  (b) Samples from the joint distribution (i.e., all
and observed pixels. Middle: ACE samples. Right: ACFlow  pixels are unobserved). Left: ACE samples.
samples. Right: ACFlow samples.

Figure 3: MNIST samples generated by ACE and ACFlow.

worth noting that ACE and ACE Proposal do comparably in this imputation task, which estimates the
first-order moment of conditional distributions. However, as evidenced in Table 1, the energy-based
likelihood better captures higher-order moments.

5.2 High-dimensional Data

We examine ACE’s ability to scale to general high-dimensional data by considering the flattened
MNIST dataset [18] (i.e., each example is a 784-dimensional vector). In order to make a fair
comparison, we trained a non-convolutional ACFlow model (using the authors’ code) on the flattened
data as well. The only change to ACE’s training procedure is in the distribution of bitmasks that are
sampled during training, which we detail in the Appendix.

Table 3 compares ACE and ACFlow in terms of arbitrary conditional log-likelihoods, joint bits-per-
dimension (BPD), and peak signal-to-noise-ratio for inpaintings, and we see that ACE outperforms
ACFlow for all three metrics. We also note that ACE’s BPD of 1.42 is comparable to prior methods
for joint density estimation such as TAN, MADE, and MAF, which have reported BPD of 1.19, 1.41,
and 1.52 respectively (lower is better), despite the fact that these other methods can only model
the joint distribution [23]. Qualitatively, we see that ACE produces more realistic inpaintings (see
Figure 3a) and samples from the joint (see Figure 3b) than ACFlow. These findings indicate that
ACE’s performance scales well to high-dimensional data.

5.3 Mixed Continuous-Discrete Data

In order to demonstrate ACE’s ability to model data with both continuous and discrete features, we
conduct experiments on the UCI Adult dataset’, which offers a relatively even balance between the
number of continuous and discrete features (see below). We preprocess the data by standardizing
continuous features and dropping instances with missing values. We also only keep instances for
which the native-country feature is United-States.® The processed data has 6 continuous

"https://archive.ics.uci.edu/ml/datasets/adult
8Such instances account for about 91% of the data, and the other 9% take on any of 39 possible values. Thus
we are able to discard a highly class-imbalanced feature while retaining the vast majority of the data.


https://archive.ics.uci.edu/ml/datasets/adult
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Figure 4: Percent error of normalizing constant estimates obtained with importance sampling when
compared to “true” values obtained with numerical integration. Estimates grow more accurate as the
number of importance samples increases. Whiskers indicate 1.5 times the IQR.

features and 8 discrete features and is split into train, validation, and test partitions of size 22003,
5501, and 13788 respectively.

We trained an ACE model and VAEAC model (using the authors’ publicly available code) on this
dataset and evaluated them in terms of likelihoods and imputation. For discrete features, the mode of
the learned distribution is imputed (as opposed to the mean). The results are presented in Table 4,
where we see that ACE outperforms VAEAC on all metrics. We also reiterate that due to its use of
the change of variable theorem, ACFlow cannot be trained on this dataset.

5.4 Importance Sampling Accuracy

In order to better understand the impact of the number of importance samples used when estimating
normalizers, we compare the importance sampling estimates from our model to “true” estimates
obtained via numerical integration (similar to [22]). For each UCI dataset, we randomly select 10,000
one-dimensional conditionals (from a validation set that was not seen during training) and integrate
the unnormalized energy likelihoods using a trapezoidal rule [26]. For each conditional, we then
also estimate the normalizer with an increasing number of importance samples. Figure 4 shows the
percentage errors of the importance sampling estimates. In most cases, a small number of samples
(e.g., 20) can already produce relatively accurate estimates, and we see that the estimates grow more
accurate as the number of samples increases.

6 Conclusion

In this work, we present a simple approach to modeling all arbitrary conditional distributions
p(xy | X,) over a set of covariates. Our method, Arbitrary Conditioning with Energy (ACE), is
the first to wholly reduce arbitrary conditioning to one-dimensional conditionals with arbitrary
observations and to estimate these with energy functions. By using an energy function to specify
densities, ACE can more easily model highly complex distributions, and it can freely use high-capacity
networks to model the exponentially many distributions at hand.

Empirically, we find that ACE achieves state-of-the-art performance for arbitrary conditional/marginal
density estimation and for data imputation. For a given dataset, all of these results are produced with
the same trained model. This high performance does not come at the cost of complexity — ACE is
much simpler than other common approaches, which often require restrictive complexities such as
normalizing flow models or networks with specially masked connections [20, 8].

Furthermore, ACE’s proposal distribution, a basic mixture of Gaussians, outperforms prior methods,
demonstrating that the principle of learning one-dimensional distributions is still powerful when
decoupled from energy-based learning. These results emphasize that seemingly complex problems do
not necessitate highly complex solutions, and we believe future work on arbitrary density estimation
will benefit from similar ideas.
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