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Distributionally Robust Policy Learning via
Adversarial Environment Generation
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Abstract—Our goal is to train control policies that generalize well
to unseen environments. Inspired by the Distributionally Robust
Optimization (DRO) framework, we propose DRAGEN — Distri-
butionally Robust policy learning via Adversarial Generation of
ENvironments — for iteratively improving robustness of policies to
realistic distribution shifts by generating adversarial environments.
The key idea is to learn a generative model for environments whose
latent variables capture cost-predictive and realistic variations in
environments. We perform DRO with respect to a Wasserstein ball
around the empirical distribution of environments by generating
realistic adversarial environments via gradient ascent on the latent
space. We demonstrate strong Out-of-Distribution (OoD) general-
ization in simulation for (i) swinging up a pendulum with onboard
vision and (ii) grasping realistic 3D objects. Grasping experiments
on hardware demonstrate better sim2real performance compared
to domain randomization.

Index Terms—Reinforcement learning, data sets for robot
learning, generalization, continual learning, grasping.

I. INTRODUCTION

ONE of the fundamental challenges for learning-based
control of robots is the severely limited ability of trained

policies to generalize beyond the specific distribution of environ-
ments they were trained on. For example, imagine a home-robot
with manipulation capabilities that has been trained on a dataset
containing thousands of objects. How likely is this system to suc-
ceed when deployed in different homes containing objects that
the system has never encountered before? Similarly, how likely
is a vision-based navigation policy for a drone or autonomous
vehicle to succeed when deployed in environments with varying
weather conditions, lighting (Fig. 1), or obstacle densities?
Unfortunately, current techniques for learning-based control of
robots (e.g., those based on deep reinforcement learning) can fail
dramatically when faced with even mild distribution shifts [1].

In this work, we pose the problem of learning policies
with Out-of-Distribution (OoD) generalization capabilities in
the framework of Distributionally Robust Optimization (DRO);
given a dataset of environments (e.g., objects in the case of
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manipulation), our goal is to learn a policy that minimizes the
worst-case expected cost across a set P of distributions around
the empirical distribution:

inf
θ∈Θ

sup
P∈P

E
E∼P

[CE(πθ)], (1)

where θ are the parameters of the policy (e.g., weights of a
neural network), and CE(πθ) is the cost incurred by policy
πθ when deployed in environment E (see Section II for a
formal problem formulation). One of the key ingredients of this
formalism is the choice of the set P of distributions over which
one performs worst-case optimization. This choice is crucial in
robotics applications and must satisfy two important criteria.
First, the set P should contain realistic distributions. Second, it
should be broad enough to encompass distributions that vary in
task-relevant features (e.g., geometric features of the objects in
grasping task are task-relevant, while colors are not) and thus
help improve generalization to real-world OoD environments.
The main technical insight of our work is to combine ideas from
the theory of Wasserstein metrics with advances in generative
modeling and adversarial training to propose a DRO framework
for learning policies that are robust to realistic distribution shifts.
We highlight key features of our approach next.

Statement of Contributions: The primary contribution of this
work is to propose DRAGEN, a framework based on DRO for
iteratively improving the robustness of policies to realistic dis-
tribution shifts by generating adversarial environments (Fig. 1).
To this end, we make four specific contributions.
� Develop an approach for learning a generative model for

environments (using a given training dataset) whose latent
variables capture task-relevant and realistic variations in
environments (Section III-A, III-B). This is achieved by
training the latent variables to be cost-predictive and reg-
ularizing the Lipschitz constant of the cost predictor; this
ensures that distances in the latent space correspond to
task-relevant differences in environments.

� Propose a method for specifying the set P of distributions
over which we perform DRO as a Wasserstein ball defined
with respect to distance in the latent space (Section III-
A). This ensures that P contains distributions over task-
relevant and realistic variations in environments. We also
provide a distributionally robust bound on the worst-case
expected predicted cost of distributions in P .

� Develop an algorithm for performing DRO with respect to
the Wasserstein ball by adversarial generation of environ-
ments (Section III-C). Our overall approach then iteratively
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Fig. 1. (Left) Control policies often fail under distributional shift of environments such as changing lighting conditions. (Middle) Our proposed framework,
DRAGEN, trains policies to generalize to such test environments (Section IV). It alternates between training a cost-predictive latent space of a generative model,
generating adversarial environments via the latent space, and re-training the policy using the augmented dataset. (Right) The training dataset S consists of
environments E (e.g., mugs to be grasped) in E . They are embedded in the latent space Z of a generative model. We consider the resulting set of latent embeddings
as a discrete distribution around which the uncertainty set P is defined. We apply recent progress in DRO [2] for performing worst-case optimization over P
by perturbing the support of the discrete distribution. Costs CE(πθ) incurred by the policy trains Z to be cost-predictive, and allows for gradient ascent on Z .
Decoding adversarial latent variables generates realistic adversarial environments, such as mugs with smaller openings.

improves the policy by alternating between (i) re-training
the generative model, (ii) generating adversarial environ-
ments for DRO, and (iii) re-training the policy using the
augmented dataset.

� Demonstrate the ability of our approach to learn policies
with strong OoD generalization in simulation for (i) swing-
ing up a pendulum with onboard vision and (ii) grasping
realistic 2D/3D objects (Section IV). We also validate our
approach on grasping experiments in hardware and demon-
strate that DRAGEN outperforms domain randomization
in sim2real transfer.

A. Related Work

Distributionally robust optimization: Our work is inspired
by the DRO framework in supervised learning [2]–[5], which
minimizes the risk under worst-case distributional shift of data
(similar to (1)). Recent progress provides a direct solution to
the Lagrangian relaxation of the formulation [2], which suits
our approach (Section III). In terms of the choice of uncertainty
set P , [2], [4] defines it using Wasserstein distance; this allows
P to include distributions with different support and can thus
provide robustness to unseen data. In contrast to [6] where the
Wasserstein distance is defined on the semantic space (output
of the last hidden layer) of the classifier, we define Wasserstein
distance based on distance on the latent space of a generative
model; this allows us to capture realistic distributional shifts of
environments. In addition, we train a Lipschitz-regularized cost
predictor from the low-dimensional latent space. This provides
structure to the latent space by ensuring that nearby points
correspond to environments with similar costs, and improves
distributional robustness.

Environment augmentation in policy learning: Domain Ran-
domization techniques generate new training environments by
randomizing pre-specified parameters such as object textures
or lighting intensities [7], [8], or randomly chaining shape

primitives into new objects [9] for grasping. Similarly, data aug-
mentation techniques such as random cutout and cropping [10],
[11] have been applied to vision-based reinforcement learning
(RL). Despite their simplicity, both types of techniques can be in-
efficient and do not necessarily generate realistic environments.
For instance, training on randomly generated objects leads to
worse performance in grasping realistic objects than training on
the same number of realistic objects [9]. Another line of work
generates increasingly difficult and complex environments [12],
[13] using minimax formulations based on the agent’s perfor-
mance with the current policy, which are similar to our approach
but do not focus on OoD generalization. Also these approaches
are designed for simple environments such as gridworld and 2D
bipedal terrains that are fully specified using a set of parameters,
whereas our approach addresses more complex environments in
the form of images and 3D objects that cannot be parameterized
simply.

Adversarial training with generative modeling: Adversarial
training [14] is popular in supervised learning (especially image
classification) for improving the robustness of classifiers. One
related direction shows that synthesizing adversarial data by
searching over the latent space of a generative model can be
more effective in attacking the classifier than searching over
the raw image space [15]. More recent work learns possible
perturbations from pairs of datasets [16] or pairs of original and
perturbed data [17]. A closely related work is [18], where a set
of image perturbations are pre-specified and the model learns
to be robust to confusing images through a minimax objective.
Among other applications, [19] attacks 3D point cloud classifiers
by perturbing the latent variables of an autoencoder, similar
to our setup. However, one key distinction is that while the
loss/cost is differentiable through the classifier in supervised
learning, the cost of an environment in our approach is deter-
mined by non-differentiable simulation. We resort to learning
a differentiable cost predictor as a proxy. Adversarial training
has also been applied to robotic grasping, either by randomly
perturbing mesh vertices or training a Generative Adversarial
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Network (GAN) [20], [21]. However, the difficulty of the objects
is determined by a heuristic approach based on the antipodal
metric of sampled grasps, unlike training a policy and evaluating
the cost as in our approach.

II. PROBLEM FORMULATION

We assume that the discrete-time dynamics of the robot are
given by st+1 = fE(st, at) where st ∈ S ⊆ Rns is the state of
the robot at time-step t, at ∈ A ⊆ Rna is the action, andE ∈ E
is the environment that the robot is operating in. “Environment”
here broadly refers to external factors such as the object that
a manipulator is trying to grasp, or the visual backdrop for
a vision-based control task. Importantly, we do not assume
knowledge of E , which may be extremely high-dimensional
and may not be parameterized simply. We assume access to a
datasetS := {E1, . . . , EM} ofM training environments. We let
P0 :=

∑M
i=1

1
M δEi denote the empirical distribution supported

on S, where each δEi is a Dirac delta distribution on Ei.
We assume that the robot has a sensor which provides ob-

servations ot ∈ O of the environment. Let πθ : O → A denote
a policy parameterized by θ ∈ Θ (e.g., weights of a neural
network). The robot’s task is specified via a cost function;
we let CE(πθ) denote the cumulative cost (over a specified
time horizon) incurred by the policy πθ when deployed in an
environment E. Our goal is to learn a policy πθ that minimizes
the worst-case expected cost across a set P of distributions that
contains P0:

θ� = arginf
Θ

sup
P∈P

E
E∼P

[CE(πθ)]. (2)

In the subsequent sections, we will demonstrate how to tackle
the two main challenges highlighted in Section I: (1) choosing
a meaningful set P of distributions over which the worst-case
optimization is performed, and (2) performing the inner maxi-
mization (generating meaningful, adversarial distributions over
environments) for the outer minimization (training the policy).

III. APPROACH

The overall approach is visualized in Fig. 1. The key idea
is to learn a generative model whose latent variables are cost-
predictive and capture realistic variations in environments. This
allows us to define a set P of distributions on this space for cap-
turing realistic and task-relevant distribution shifts. We perform
distributionally robust optimization using this set P .

A. Learning Realistic Variations in Environments

Defining the uncertainty setP requires first defining the space
over which distributions are supported. One option is to use
the space of raw observations of environments (e.g., the raw
pixel space of images). However, this space can be extremely
high-dimensional and perturbations in this space typically do
not correspond to realistic variations in environments, which is
evident in “imperceptible attacks” in the image classification
domain [14]. Instead, we opt for the latent space Z ⊆ Rnz of
a generative model that captures realistic variations of envi-
ronments. Previous work has demonstrated that perturbation or

Fig. 2. Training an autoencoder and a cost predictor allows iteratively gen-
erating adversarial environments (digit images used as visual backdrops) via
gradient ascent on the latent space.

interpolation in the latent space can generate realistic variations
in data [22]–[24]. In the two examples detailed in Section IV,
the raw environment is either a high-dimensional RGB image or
a 3D object mesh. We use an autoencoder [25] as the generative
model (Fig. 2):

z = g(E), E′ = f(g(E)), (3)

where the encoder g : E → Z maps the environment to a la-
tent representation, and the decoder f : Z → E reconstructs
the environment using the latent variable. Strictly speaking, an
autoencoder is not a generative model but rather a representation
model; however in practice, perturbations in the latent space
generate meaningful variations in environments as shown in
Section IV and in [23], [24].

We embed the empirical distribution P0 corresponding to the
training datasetS of environments (ref. Section II) into the latent
space Z . This induces a distribution PZ0

on the latent space:

PZ0
:=

M∑

i=1

1
M δz0i , z0i = g(Ei), Ei ∈ S. (4)

We then define the set P using the Wasserstein distance from
optimal transport [26]. For probability measures X and Y
supported on Z , and their couplings Π(X,Y ), the Wasserstein
distance over the metric space Z is defined as:

Wd(X,Y ) := inf
H∈Π(X,Y )

EH [d(x, y)], (5)

where d(·, ·) is the metric on the space Z (we use d(x, y) =
‖x− y‖2). We define the uncertainty set P as a Wasserstein
“ball” around PZ0

with radius ρ:

P := {PZ :Wd(PZ , PZ0
) ≤ ρ}. (6)

Intuitively, the Wasserstein distance (also known as the “earth
mover’s distance”) measures the minimum cost of morphing
one distribution into the other. There are two key advantages
of the Wasserstein distance over other divergences (e.g., the
KL-divergence or other f -divergences) that make it appealing in
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our setting. First, the Wasserstein distance is easier to interpret
and more physically meaningful since it takes into account
the underlying geometry of the space on which the probability
distributions are defined (see, e.g., [27]). For example, consider
distributions over objects only differing in their lengths and
embedded in a latent space perfectly based on length (m). Con-
sider three uniform distributions PZ1

, PZ2
, PZ3

with supports
[0,1], [1,2], and [2,3] respectively. The Wasserstein distance
captures our intuition that the distance between PZ1

and PZ2

is the same as that between PZ2
and PZ3

while the distance
between PZ1

and PZ2
is smaller than that between PZ1

and
PZ3

. The Wasserstein distance thus ensures distances in the
latent embedding space correspond to differences in physical
properties of the environments. Second, the Wasserstein distance
between two distributions that do not share the same support
can still be finite. This allows us to define a ball P around
the distribution PZ0

which contains distributions with differing
supports; performing worst-case optimization overPZ0

can thus
provide robustness to unseen data.

B. Learning Task-Relevant Variations in Environments

Ideally, we would like the set P to contain distributions over
both realistic and task-relevant features of environments. For ex-
ample, consider a robotic manipulator learning to grasp objects
and suppose thatP contains different distributions over colors of
objects. Such a set P can be very “large” (in terms of the radius
of the Wasserstein ball); however, performing distributionally
robust optimization over P will result in a policy that is only
robust to the task-irrelevant feature of color and not necessarily
robust to task-relevant geometric features. Our key intuition
is that the latent space Z captures task-relevant variations in
the environments if (i) Z is cost-predictive and (ii) closeness
in the latent space corresponds to closeness in terms of costs.
Then P captures cost-relevant (i.e., task-relevant) variations in
environments.

By “cost-predictive,” we mean that for the latent space Z ,
there exists a mapping from the latent variable of the environ-
ment to the true cost of the environment. To satisfy (ii), such
mapping should be Lipschitz continuous.

Definition 1 (γ-cost-predictive): The latent spaceZ is γ-cost-
predictive if there exists aγ-Lipschitz-continuous functionh that
maps the latent variable of an environment to the true cost of the
environment.

In practice, we train a cost predictor hψ : Z → R that maps
the latent variable z of an environment E to a predicted cost
C̃z(πθ) (the tilde denotes predicted cost instead of true cost),
where πθ is our current policy (Fig. 2). The training labels
are the true cost of the environments evaluated in simulation
with the current policy, CE(πθ) . Furthermore, we constrain the
Lipschitz constant γhψ of the cost predictor. Now, environments
with similar predicted costs are close in the latent space, and
a Wasserstein ball with large radius contains distributions over
environments with large variations in task-relevant features.

As described in Section III-C, we iteratively update the
policy by performing distributionally robust optimization via
adversarial environment generation. Initially the policy may be

Fig. 3. (a) Landmark and (b) Digit images used in pendulum task. Top
right shows the robot view from the onboard camera. (c) Original and per-
turbed landmark images (cropped) at different iterations. Initially generated
images contain both task-relevant (landmark dimension/location) and irrelevant
(landmark/background color) variations, but after iterations only task-relevant
variations remain.

sensitive to irrelevant features (e.g., color) and the setP contains
distributions over irrelevant features. However, once we perform
distributionally robust optimization with respect toP , the policy
becomes less sensitive to these irrelevant features, and P starts
to capture task-relevant features (Fig. 3 c). Without regularizing
Lipschitzness, the latent space may be cost-predictive but far
away points may have similar costs; in this case, the Wasserstein
distance may not capture how much distributions differ in terms
of task-relevant features (see ablation in Section IV).

Embedding training: In our experiments, we use a cost pre-
dictor hψ with two linear layers and sigmoid activation; then
γhψ can be upper bounded [2]:

γhψ � γhψ := ‖ψ0‖2‖ψ1‖2/16, (7)

where ψ0 and ψ1 are the weight matrices at the two layers.
In practice, we constrain γhψ to some fixed value γ. Overall,
we train the encoder g, decoder f , and cost predictor hψ con-
currently. The total loss function L is a weighted sum of four
components:

L = Lrec + α1Lpred + α2LLip + α3Lnorm. (8)

where Lrec is the reconstruction loss of the autoencoder, Lpred

is the l2 loss between the predicted cost and true cost evaluated
with the current policy, LLip is the l2 loss between γhψ and γ,
andLnorm minimizes the norm of the embedded latent variables,
which prevents the Lipschitz constant from being trivially con-
strained (by scaling the magnitude of latent variables to some
fixed range).

C. Distributionally Robust Policy Learning via Adversarial
Environment Generation

Next we explain our procedures for solving the minimax
optimization (2). From Section III-A, we have chosen the uncer-
tainty set as P = {PZ :Wd(PZ , PZ0

) ≤ ρ}. The optimization
problem (subject to the uncertainty set constraint) can be re-
formulated as:

minimize
πθ

sup
PZ

E
z∼PZ

[Cf(z)(πθ)], (9)

where f(z) is the reconstructed environment (passing z through
the decoder f ). Searching over P exactly is intractable; we thus
follow [2] by applying a Lagrangian relaxation with a penalty
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Algorithm 1: Distributionally Robust Policy Learning via
Adversarial Environment Generation.

Require: S, initial set of environments; πθ, initial policy
1: Pre-train πθ with S
2: for N iterations do �Run minimax N times
3: Evaluate CE(πθ), ∀E ∈ S
4: Train embedding with (8) and update PZ0

5: Sample {z0i}Ki=1 ∼ PZ0
; generate {Ei}Ki=1 with

(13) and add to S
6: Improve πθ with S
7: end for

parameter λ ≥ 0:

minimize
πθ

sup
PZ
{EPZ [Cf(z)(πθ)]− λWd(PZ , PZ0

)}, (10)

Maximizing over the distribution PZ is still difficult, and thus
we further apply an equivalent dual re-formulation [2] to allow
maximizing over the latent variable z instead:

minimize
πθ

E
z0∼PZ0

{sup
z

[Cf(z)(πθ)− λd(z, z0)]}. (11)

Equivalence between (10) and (11) requires Cf(z)(πθ) to
be continuous in f(z) [2], which is not reasonable as the
space E where f(z) belongs can be extremely high-dimensional
(e.g. pixel space for images), and Cf(z)(πθ) is evaluated using
non-differentiable simulation. To eschew the issue, we substitute
Cf(z)(πθ) with the predicted cost C̃z(πθ) from the γ-Lipschitz
cost predictor,

minimize
πθ

E
z0∼PZ0

{sup
z

[C̃z(πθ)− λd(z, z0)]}, (12)

Now the inner supremum can be performed with gradient
ascent on the latent space (Fig. 2:

z ← z0 + η∇z[C̃z(πθ)− λd(z, z0)], (13)

where η is the step size. In practice we perform the minimax
procedure iteratively: during inner maximization, a set of K
latent variables {z0i}Ki=1 are sampled from the current latent
distribution PZ0

and perturbed into {zi}Ki=1. The reconstructed
environments {Ei}Ki=1 := {f(zi)}Ki=1 are added to the dataset
S; during the minimization phase, the policy is re-trained using
the augmented S. Between the two phases, we train the em-
bedding using all environments in S and their cost evaluated at
the current policy πθ; this is used to update PZ0

, whose support
grows over iterations.

Target ascent in the latent space: In practice we find it difficult
to tune the number of gradient ascent steps when perturbing a
latent variable. Instead, we set a target on how much the predicted
cost C̃z(πθ) of the perturbed latent variable should increase
from that of the original latent variable C̃z0(πθ), and run (13)
until the target is reached. However, since the cost predictor
is Lipschitz-regularized, the range of its output is likely to be
smaller than the true range of the cost evaluated in simulation.
Thus at each iteration before generating new environments, we
calculate the empirical rangeR(C̃) (difference of the maximum
and minimum predicted cost over all environments inS), and set

the target ascent ΔC̃ using a percentage ΔC̃p ∈ [0, 1] ofR(C̃).
We find that ΔC̃p = 0.2 works well for all experiments.

IV. EXPERIMENTS

We implement our approach on two robotics tasks in simula-
tion: (1) swinging up a pendulum with onboard vision, and (2)
grasping realistic 3D objects. We also test grasping policies on a
real robot arm. Through these experiments we aim to investigate
the following questions: (1) Does our method offer superior OoD
performance compared to data augmentation or domain random-
ization techniques? (2) Does our method generate seemingly
meaningful environments for training? (3) Does regularizing the
Lipschitz constant of the cost predictor lead to more meaningful
environment variations and better OoD performance? (4) Does
our method improve sim2real performance for the grasping task?
For all experiments in simulation we run the minimax procedures
for 30 iterations, and all results are evaluated at the iteration
with the best training performance and averaged over 10 seeds.
See App. A4/A5 of the extended version [28] for more ablation
studies, experimental details, and hyperparameters.

A. Swinging up a Pendulum With Onboard Vision

Task and environment specification: Imagine a camera
mounted to a pendulum and facing a visual backdrop (Fig. 3);
the pendulum needs to swing up and balance itself using visual
feedback. This is different from typical image-based pendulum
tasks where the virtual camera is located away from the pendu-
lum and is pointed at the rotating pendulum and a static backdrop
(distraction). Our onboard camera setup is more representative
of robotics tasks (e.g., vision-based navigation) and requires
the policy to extract features from the backdrop. We consider
an environment E as a backdrop image, and use two types
of images (Fig. 3): (1) Landmark: randomly colored backdrop
with a randomly colored, elliptical “landmark” at a fixed radial
location; (2) Digit: black backdrop with white digits from the
MNIST [29] and USPS [30] datasets. At each time-step, the
robot’s policy maps image observations from the past three
time-steps to the torque applied at the joint.

Control policy training: We perform off-policy training using
Soft Actor Critic (SAC) [31]. Episodes are sampled with the
pendulum initialized at any angle. The reward function penal-
izes angle deviation from upright, angular velocity, and torque
applied.

DRAGEN training: The training dataset of images is embed-
ded in the low-dimensional latent vector space of an autoencoder.
Both the encoder and decoder consist of convolutional layers and
linear layers, and the decoder upsamples bilinearly. For training
the cost predictor, we evaluate the cost of each image using
average cost of episodes with the pendulum initialized around
the lowest point. The cost is normalized between [0,1]; the lower
bound corresponds to the pendulum not moving at all with itself
hanging downwards, and the upper bound corresponds to the cost
when the policy is trained using the true states of the pendulum
instead of the camera image.
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TABLE I
NORMALIZED REWARD (MEAN AND STANDARD DEVIATION OVER 10 SEEDS) FOR THE PENDULUM TASK. TOP: LANDMARK; BOTTOM: DIGIT

Baselines: We benchmark DRAGEN against commonly-used
data augmentation techniques in RL including pixel-wise Gaus-
sian noise, Perlin noise [32], and random cutout [11]. Note
that since the policy needs to extract spatial information from
the image, some other techniques such as flipping and rotating
cannot be applied.

Results: Landmark: We generate a set of training environ-
ments (“Normal” in Table I, 200 images) where the landmarks
are centered along the radial direction and normally sized, and
four sets of test environments where the landmarks are closer
to or farther away from the center, or smaller or larger in
dimensions (“Closer,” “Farther,” “Smaller,” “Larger” in Table I).
DRAGEN outperforms all baselines among all test datasets.
Fig. 3 c demonstrates that DRAGEN learns to focus on gen-
erating task-relevant variations such as landmark locations and
dimensions over iterations.

Results: Digit: We run experiments using digits
2, 3, 4, 5, 6, 7, 9; digits 0, 1, 8 are not suitable due to symmetry
about both axes. Policies are trained separately for each digit
with 200 training images from the MNIST dataset and then
tested on the USPS dataset. The USPS dataset contains human
drawings with more cursive digits. Due to space limits, we
only show test performance in Table I. DRAGEN outperforms
all baselines for digits 2, 5, 6, 7, 9, and performs comparably
to the strongest baseline for 3, 4. Note that Perlin noise is a
strong baseline for this setting as its structure may “augment”
the white digit (Fig. 4 e). In App. A4 of [28], we show that
DRAGEN outperforms Perlin noise in larger margins when
colored distractions are added to the black background.

Ablation: Regularizing Lipschitz constant of the cost predic-
tor: We also investigate whether it is useful to constrain the
Lipschitz constant of the cost predictor, which we hypothesize
induces task-relevant variations in generated environments. We
run the additional baseline without Lipschitz regularization
(“DRAGEN-NoLip” in Table I) using digit datasets, and it
performs worse than DRAGEN across all test datasets. Fig. 4
c shows that DRAGEN-NoLip generates less task-relevant vari-
ations in images.

Ablation: Learning a cost-predictive embedding of
environments: We remove the cost prediction loss Lpred

from (8) - the cost predictor is not learned, and thus it is not
possible to perform gradient ascent in the latent space to find

Fig. 4. Samples of images of digit 6 at one iteration: (a) original, (b) DRAGEN,
(c) DRAGEN-NoLip, (d) DRAGEN-NoCost, (e) Perlin noise [32], (f) pixel-wise
Gaussian noise, and (g) random cutout. Images at the same column are based on
the same original image on the top row. DRAGEN generates new images that
tend to rotate or straighten the long stroke of digit 6; such features are cost/task-
relevant. Variations generated by DRAGEN-NoLip and DRAGEN-NoCost tend
to be irregular and disorganized. Also Perlin noise tends to “augment” the white
digit with its structure, and thus provides a strong baseline for the task.

adversarial environments. Instead, we randomly perturb the
latent variables of existing environments in the latent space to
generate new ones. Perturbations are sampled from zero-mean
Gaussian distributions with diagonal covariances to roughly
match the amount of perturbations generated by DRAGEN.
The results are shown in Table. I as DRAGEN-NoCost. Without
searching for adversarial environments varying in task-relevant
features, the baseline performs worse than DRAGEN and on par
with other data augmentation techniques. Fig. 4 d shows that
DRAGEN-NoCost generates images with worse qualities than
DRAGEN.

Runtime comparison: Each experiment is run using one
Nvidia RTX 2080Ti GPU and 16 server CPU threads. It takes
3 hours to run 30 iterations of DRAGEN or DRAGEN-NoLip
training, and 2.5 hours for DRAGEN-NoCost. All other base-
lines take about 2 hours.
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TABLE II
RESULTS (MEAN AND STANDARD DEVIATION (OVER 10 SEEDS) FOR THE GRASPING TASK

Fig. 5. Sample objects generated by (a) DRAGEN, (b) Domain Randomiza-
tion. Objects in (b) are unrealistic and more irregular in shapes. Although they
vary in shapes significantly, they are not realistic and can hinder the training
progress. Objects generated by DRAGEN generally contain less perturbations
from original objects and tend to be more realistic.

Fig. 6. Hardware setup for grasping.

B. Grasping Realistic 3D Objects

Task and environment specification: A robot arm needs to
pick up an object placed at a fixed location in the PyBullet
simulator [33]. Before executing the grasp, the robot receives
a heightmap image from an overhead camera and decides the
3D positions and yaw orientation of the grasp. We consider an
environment E as an object, and diverse synthetic 3D objects
from the 3DNet [34] dataset are used for training. Policies
trained in simulation with synthetic data are also transferred
to a real setup (Fig. 6).

Control policy training: We follow the off-policy Q learning
from [35]. The Q function is modeled as a fully convolutional
network (FCN) that maps a heightmap image to a pixel-wise
prediction of success of executing the grasp at the corresponding
2D location. The heightmap image is rotated into six different
orientations (30 ◦ interval) and stacked as input to the network.
The pixel with the highest value across the six output maps is
used as the 2D position and yaw orientation of the grasp. The

grasp height is chosen as 3 centimeters lower than the height
value at the picked pixel. The friction coefficient is fixed as 0.3.
The reward function is either 0 or 1 based on whether the object is
successfully lifted. Due to the use of fully convolutional network
and multiple grasp orientations, the cost of an object is invariant
to its position and orientation.

DRAGEN training: The training dataset of object meshes
is embedded in the low-dimensional latent vector space of
an autoencoder. Generative modeling for 3D object meshes is
more involved than that for images. The encoder is a PointNet
network [36] that encodes objects from sampled 3D points on
their surfaces. The decoder follows recent work in learning
continuous signed distance functions (SDF, distance of a spatial
point to the closest surface) for shape representation [23], [37]:
it maps the pair of a query 3D location and latent variable
to the SDF value at that location. After querying the SDF at
many points, the mesh can be rasterized via the Marching cubes
algorithm.

Training the cost predictor requires a continuous cost for the
objects to allow for gradient ascent in the latent space. We assign
the cost of an object between [0,1] based on the minimum
friction coefficient among [0.10,0.55] needed for a successful
grasp (lower value corresponds to lower cost).

Baselines: Besides no data augmentation (None), we also
implement Domain Randomization (DR) technique from [9]
that randomly chains shape primitives into new objects. We
hypothesize that DR does not generate realistic objects and can
be less efficient and effective when training policies to be tested
on realistic objects. Another baseline (EGAD) is to substitute
adversarial objects generated at each iteration with objects from
the EGAD dataset [21]. The EGAD dataset consists of grasping
objects of diverse complexities and difficulties, but most of them
are not realistic, especially the ones with high complexity and
difficulty.

Results: The 60 categories of objects from the 3DNet dataset
are split into training and test datasets, each with 255 and 205
objects. Table II shows that DRAGEN outperforms all baselines
again in both test datasets. Surprisingly, DRAGEN also performs
best in the training dataset. Our generated objects (Fig. 5) may
form a better training curriculum than those generated with
Domain Randomization or objects from the EGAD dataset. Both
DR and EGAD baselines performed worse than no augmentation
in training reward.

Results: Hardware: Policies trained in simulation are tested
with 40 common objects (see App. A5 of [28] for images and
discussion) on a Franka Panda arm and a Microsoft Azure Kinect
depth camera. For each method, we run 3 out of the 10 policies
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trained in simulation (corresponding to the 10 different seeds).
DRAGEN performs the best in both settings (Table II). Videos of
representative trials are provided in the supplementary materials.

Runtime comparison: Each experiment is run using 1 RTX
2080Ti GPU and 32 server CPU threads. It takes about 6
hours to run 30 iterations of DRAGEN training. The domain
randomization baseline takes longer time (about 8 hours) since
generating new objects involves chaining shape primitives and
checking if all primitives overlap. Without any data augmen-
tation, the baseline takes about 4 hours to run. EGAD training
takes the same time since new objects added to the dataset are
pre-available.

V. CONCLUSION

We have presented DRAGEN, a framework that iteratively
improves the robustness of control policies to realistic distri-
butional shifts. By training a generative model with a cost-
predictive latent space, DRAGEN can generate task-relevant and
realistic variations in environments, which are then added to the
training dataset to improve the policy. Results on two different
robotic tasks in simulation and in sim2real transfer demonstrate
the strong OoD performance of our approach.

Challenges and Future Work: Our current choice of autoen-
coders for generative modeling limits the ability to generate
more fine-grained variations in environments. Using more so-
phisticated models based on GANs may improve the quality
of generated environments. In addition, our current approach
learns possible perturbations from the training dataset — one
potential direction is to augment this approach by prescribing a
set of possible perturbations and training the generative model
to select/combine the provided perturbations [16]–[18].
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