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Abstract— The rapid development of affordable and compact
high-fidelity sensors (e.g., cameras and LIDAR) allows robots
to construct detailed estimates of their states and environments.
However, the availability of such rich sensor information intro-
duces two challenges: (i) the lack of analytic sensing models,
which makes it difficult to design controllers that are robust to
sensor failures, and (ii) the computational expense of processing
the high-dimensional sensor information in real time. This
paper addresses these challenges using the theory of differential
privacy, which allows us to (i) design controllers with bounded
sensitivity to errors in state estimates, and (ii) bound the amount
of state information used for control (i.e., to impose decision-
making under bounded rationality). The resulting framework
approximates the separation principle and allows us to derive an
upper-bound on the cost incurred with a faulty state estimator
in terms of three quantities: the cost incurred using a perfect
state estimator, the magnitude of state estimation errors, and
the level of differential privacy. We demonstrate the efficacy
of our framework numerically on different robotics problems,
including nonlinear system stabilization and motion planning.

I. INTRODUCTION

Despite the increasing availability of high-resolution sen-
sors for robotic systems, partial-observability remains a chal-
lenge for controlling such systems. Sensing modalities such
as vision and LIDAR are ultimately noisy and only provide
partial information about the robot’s state and environment.
In general, solving optimal control problems with partial
observability is computationally intractable. One of the most
common approaches to tackling this challenge is to assume
the separation principle [1], i.e., to independently design (i)
a state estimator, and (ii) a controller, e.g., one based on
model-predictive control (MPC), that is optimal assuming
perfect state estimation. The modularity afforded by such
an approach coupled with the relative tractability of tackling
the estimation and control problems independently make this
framework appealing. However, the separation principle does
not hold in general for robotic systems due to nonlinear
dynamics / measurement models. A controller that assumes
perfect state estimation can thus be highly sensitive to small
errors in the state estimate, leading to significant brittleness
of the overall control system. This is particularly challenging
in the increasingly common case where a (deep) learning
model is used as part of the robot’s state estimation pipeline
(due to potential over-fitting). As a result, robots often behave
erratically when faced with unforeseen measurement errors
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Fig. 1. The information-constrained motion-planning problem (Section VI).
The robot must navigate from the start to the goal using a limited amount
of state information (correlated with β). The distribution of trajectories
is visualized for two values of β. At low information, the robot prefers
the longer path through the wider gap, which is more robust to positional
uncertainty than the direct route preferred at higher information usage.

despite possessing high-resolution sensors.

In contrast, the cognitive science literature on bounded
rationality — a framework for analyzing decision-making
under computation or information constraints — demonstrates
that humans display impressive levels of robustness and
generalization in dexterous tasks such as locomotion and ball-
catching without relying on highly-accurate state estimates
[2, 3]. For example, gaze heuristics are control laws used
by humans to catch freely-falling objects by adjusting their
running speed based on the motion of the object in their
visual field [4, 5]. Unlike MPC strategies, gaze heuristics do
not require an accurate estimate of the system state or other
quantities such as the wind speed or object mass. In addition
to the robustness afforded by such heuristics, they are often
extremely computationally efficient. Interestingly, the dual
benefits of robustness and computational efficiency are related
to each other in the above heuristics — boundedness of online
computation (i.e., bounded rationality) ensures that control
actions are only loosely coupled to sensor measurements. Such
a loose coupling can prevent uncertainty in measurements
from significantly impacting controller performance.

Statement of Contributions. The key conceptual contri-



bution of this work is to use the observation that bounded
rationality is linked to robust decision-making as a guide and
formalize it using the theory of differential privacy (DP) [6–8],
a framework that uses an algorithm’s input-output sensitivity
to quantify the information about an input gained by observing
its output. Originally developed as a framework for ensuring
the privacy of individuals’ data (e.g., in a database with
published statistics), DP allows formalization of the idea that
control inputs should not depend too tightly on state estimates.
In particular, our approach preserves the modular structure
of the separation principle by ensuring that the mapping
from state estimates to control inputs is differentially private.
Moreover, it exploits the interpretation of the differentially
private exponential mechanism as synthesizing information-
constrained (i.e., bounded-rationality) controllers.

The primary theoretical contribution of this paper is a novel
bound on the expected performance of such controllers in the
presence of estimation error. The bound depends only on the
cost incurred using a perfect state estimator, the magnitude of
estimation errors, and the level of differential privacy. More-
over, due to the choice of the differentially-private mechanism
on which our policy is based, our bound naturally applies
to many popular inference-based control algorithms, such
as optimal control methods based on importance sampling,
Stein-variational gradient descent, and Q-learning. We are thus
able to demonstrate the efficacy of the bounded-rationality
approach we propose on a number of robotics problems of
interest, such as stabilizing a nonlinear planar quadrotor and
robust motion planning. To our knowledge, the approach
presented in this paper is the first to utilize the framework
of differential privacy to achieve robust and bounded-rational
control of robotic systems.

II. RELATED WORK

This section briefly reviews three areas of the literature
that are typically considered independently from one another.
However, the unifying theme is that they exploit various
properties of the Gibbs measure.

A. Differential Privacy and Applications in Control Theory

Differential privacy (DP) [6–9] is an algorithmic framework
that arose to meet the conflicting needs of statisticians (who
ultimately want to publish analyses of sensitive data sets)
and participants (who want to keep their data private). DP
offers an elegant solution based on the intuition that if
the results published from a study are insensitive to the
substitution of data from any given individual, then this offers
privacy. The literature on DP is vast and many differentially-
private mechanisms (i.e., stochastic algorithms) have been
proposed. The most relevant for our purpose is the exponential
mechanism [8] defined by the Gibbs measure; this mechanism
provides a method for releasing the results of an optimal
decision-making procedure based on data (e.g., Bayesian
inference [10]). Additionally, DP enjoys several appealing
theoretical properties, namely the preservation of privacy
under composition of mechanisms, and the ability to rigorously
analyze the trade-off between privacy and accuracy [8].

In the context of control theory, application of the DP
formalism is largely limited to networked control and dis-
tributed systems [11–16]. These include privately solving
distributed optimization problems, modifying control inputs
to keep the system state private from an external observer,
and aggregating measurements from privacy-concerned agents
for filtering performed by a central entity. In contrast, we do
not use DP for the sake of privacy; instead, DP formalizes
the intuition described in Section I: limiting the sensitivity
of control inputs to state estimates affords robustness to
estimation error. To our knowledge, our work is the first to
utilize DP for this purpose.

B. Bounded Rationality and Robust Decision-Making

Bounded rationality is a model of decision-making first
introduced to address misalignment between economic theory
based on rational agents and the reality of sub-optimal human
decision-making [17]. In short, while agents often have an
objective they are trying to optimize, their ability to optimize
this objective is bounded by informational and computational
constraints. The cognitive science literature has identified
several heuristics used by humans to deal with such constraints
[2, 3, 18, 19]. Empirical work in cognitive science and robotics
suggests that in addition to efficiency, such heuristics can
provide generalization to new environments [2–4, 20, 21].

While bounded rationality is formalized in a number of
ways for artificial agents, the most relevant framework adds
an information-theoretic constraint to an otherwise rational
agent. More precisely, a bounded-rational agent is modeled as
solving an entropy-maximization or rate-distortion problem
[22–27]. Despite empirical evidence that such a bounded-
rational agent can be robust to uncertainty or noise in sensor
measurements and dynamics [20, 21, 28–30], formal analyses
justifying such robustness benefits are limited. One approach
is to use a variational representation of the (relative) entropy
(e.g., the Donsker-Varadhan representation [31]) to derive a
zero-sum game that the bounded-rational agent is implicitly
playing against an adversary that chooses a cost function [25,
26, 32]. This approach is closely related to the maximum-
entropy principle from Bayesian statistics [33] and leads to
generalization results for some estimation problems. However,
the payoff of the game is difficult to interpret (especially
for the adversary) in the context of most control problems,
which limits the usefulness of the analysis. Alternatively, an
upper bound on the performance degradation of a bounded-
rational agent under measurement error exists [20] using
variational representations of the entropy, but its assumptions
make the bound difficult to interpret practically. Instead, this
paper demonstrates that the connection between DP and
bounded rationality through the Gibbs measure allows for the
derivation of a bound on control performance in the presence
of estimation error through a large-deviation analysis. The
trade-offs presented by this bound are easily understood and,
importantly, the bound only depends on access to simulation
or lab data without actually deploying the robot in the target
environment.



C. Optimal Control as Bayesian Inference

Another relevant vein of research at the intersection of
information theory, Bayesian inference, and control theory
is linearly-solvable optimal control (LSOC) [34–43]. These
techniques exploit an identified equivalence between optimal
control and Bayesian inference: an approximately optimal
control sequence is found by sampling from a Gibbs measure
over control inputs conditioned on the current state and the
event that the sequence results in an optimal trajectory [36].
The result is that the nonlinear stochastic optimal control
problem is solved as a linear, albeit infinite-dimensional,
differential equation using a transformed cost function, and
the solution is approximately computed using inference
algorithms that include importance sampling [44], Stein-
variational gradient descent (SVGD) [45], and Q-learning [46].
Despite the growing popularity of these algorithms for optimal
control and empirical evidence for the generalization benefits
they confer [47], theoretical knowledge of their robustness
properties is limited [48]. This paper aims to fill this gap by
providing a new, concrete analysis that these algorithms are
provably robust to estimation error.

III. NOTATION

Random variables are denoted by uppercase letters (e.g.,
X), and realized quantities are denoted by lowercase letters
(e.g., x). Deterministic functions appear in either case. Finite
sequences are represented as xi:j = (xk)

j
k=i for i ≤ j. The

indicator function for a set A is denoted 1A(·). Functionals are
double-struck, namely decorated varieties of the expectation
E[·], the relative entropy D[·||·], and the tightest Lipschitz
constant of a scalar-valued function L[·]. Expectations are
taken over the uppercase random variables (and mechanisms),
e.g., in E[H(x, U)], x is fixed and integration is over U .
Sets are in boldface and ∆(A) is the set of distributions
with support A. For brevity, it is assumed that all necessary
moments of random variables exist, and spaces are measurable
with their subsets coming from appropriate σ-algebras.

A mechanism (denoted by uppercase script) refers to a
(randomized) algorithm (formally, a transition kernel) between
sets X and Y. A mechanism M : X → ∆(Y) defines a
probability distribution on Y for each x ∈ X. Denote by
M(x){·} the density and measure of this distribution when
applied to elements and measurable subsets of Y respectively.
When clear from context, we will overload this notation
by treating M(x) as a random variable with support Y.
Mechanisms may be composed, i.e., if M′ : Y → ∆(Z)
is another mechanism, then (M′ ◦M)(·) := M′(M(·)).

IV. ROBUST SINGLE-STEP DECISION-MAKING

This section details the robustness properties that follow
from applying a bounded-rationality approach to a single-step
decision-making problem. Section V utilizes composition
properties of DP to extend the analysis to multi-step optimal
control problems.

A. Problem Statement

Let the state of the robotic system be x ∈ X. The goal of
the agent (robot) is to process the information contained in
this state and select a control input u ∈ U that minimizes a
cost H(x, u). The state X ∼ X is random and the agent must
find a feedback mechanism U : X → ∆(X) that solves:

min
U
Joff [U] := E[H(X,U(X))]. (OFF)

Since X is made available to the agent, this problem is fully-
observable. It is referred to as the offline problem since it
corresponds to, e.g., a lab or simulation setting where the
agent makes arbitrarily fine measurements.

In practice, the primary concern is performance of the
feedback controller on the online problem, where the agent
only has access to a noisy state estimate X̂ ∼ X̂(X).1 The
control input U ∼ U(X̂) is selected using this estimate, and
the goal is to solve:

min
U
Jon[U] := Joff [U ◦ X̂]. (ON)

This is a partially-observable decision problem and its general
solution requires reformulating the problem into an intractably
high-dimensional (often infinite-dimensional) optimization
problem [49, 50]. Instead, we will demonstrate that a bounded-
rational controller allows for the value of (ON) to be bounded
in terms of (OFF). That is, performance on the online problem
can be guaranteed using only information available offline due
to a property of the bounded rationality controller known as
differential privacy. The difference in performance between
these two problems is defined to be ∆J[U] := Jon[U] −
Joff [U], and the main contribution of this paper is to bound
this quantity.

B. Differential Privacy

Differential privacy (DP) formalizes the observation that a
mechanism does not reveal information about its input if the
input may be replaced by a similar one without impacting the
output distribution significantly. Specifically, random metric
DP [9, 10, 51] encodes similarity via a metric2 on the space
of input data and is a natural fit for control applications where
the input comes from a metric state space:

Definition (Differential Privacy). Let (X, ρ) be a pseudomet-
ric space and X, X̂ be two random variables supported on X.
A mechanism U : X → ∆(U) is said to have (ρ, γ)-random
differential privacy ((ρ, γ)-DP) if, with probability 1− γ:
∀u ∈ U, logU(X){u} − logU(X̂){u} ≤ ρ(X, X̂). (1)

Intuitively, metric DP describes a kind of Lipschitz con-
tinuity3 (in probability) and characterizes the sensitivity of
mechanisms (stochastic controllers U) to replacement of X
with X̂; specifically, the ratio of output densities is bounded

1Typically X̂(x) is the composition of a state estimator with a noisy
sensor, but these mappings are implementation dependent and irrelevant to
the analysis. It is simpler and without loss of generality to work only with
their composition.

2A metric suited for the control problem at hand may present itself (see
Section VI for problems with quadratic costs), or it may simply be taken to
be a Euclidean metric.

3Specifically, it is Lipschitz continuity with a specific metric on probability
measures [9].



by exp(ρ(X, X̂)). An important aspect of DP is that it is
preserved under composition of mechanisms [8]. Two such
composition properties are:

Proposition 1 (Post-Processing). If M1 : X → ∆(U) is
(ρ, γ)-DP, then for any M2, M2 ◦M1 is (ρ, γ)-DP.

Proposition 2 (Composition). Let M1,M2 : X → ∆(U) be
(ρ1, γ1)-DP and (ρ2, γ2)-DP mechanisms respectively. Then
M = (M1,M2) is (ρ, γ)-DP where ρ(x, x̂) := ρ1(x, x̂) +
ρ2(x, x̂) and γ := γ1 + γ2.

Proof. See the extended version of this paper [52].

These results allow for the recursive composition of system
dynamics and private controllers to yield a mechanism that
computes costs in a private manner; this will allow us
to extend the robustness theorem proven for single-step
decision-making in the next subsection to multi-step problems
(Section V).

C. The Exponential Mechanism and Bounded Rationality

A popular mechanism for DP is the exponential mechanism
[8], which provides privacy in problems where the solution
of an optimization problem is desired as output. Thus, it
is a natural starting point for designing a differentially-
private optimal control algorithm. Specifically, the exponential
mechanism Uβ : X → ∆(U) is defined as the solution to
the optimization problem:

min
U

E
[
H(X,U) + β−1D[U(X)||U⊥]

]
. (BR-SS)

Here U⊥ ∈ ∆(U) is a “prior” supported on U independent of
X (emphasized by the superscript ⊥) and β−1 is interpreted
as the Lagrange multiplier of a relative entropy constraint.
Specifically, for each value of β−1, there exists d > 0 such
that Uβ solves the constrained problem:

min
U

E [H(X,U)] s.t. E[D[U(X)||U⊥]] ≤ d.

The values of β−1 and d are linked in that increasing β−1

corresponds to an increase in d, but in general an exact
relationship is elusive.

Remark 1. This is an instance of a maximum-entropy
problem4 from information theory [54–56], and corresponds
to finding a mechanism that minimizes the expected cost
without significant deviation from the prior (measured by
the relative entropy). As β → ∞, Uβ(x) simply minimizes
the expected cost. As β → 0, the solution becomes the
prior. Therefore, the mechanism can be viewed as an agent
employing a bounded-rational controller, where it only uses a
finite amount of information (due to computational or sensing
constraints) about the state X to deviate from its default
behavior specified by U⊥. Information usage (rationality) is
directly controlled by β (inversely related to d).

Moreover, a prior that distributes weight evenly across
its support may require a large value of β for Uβ(x) to

4The maximum-entropy problem (BR-SS) related to the rate-distortion
problems common in bounded rationality models [20–22, 24] via a well-
known variational relationship between the relative entropy and mutual
information [53]. All subsequent analysis applies to these problems as well.

concentrate about the optimal control input. Similarly, a prior
with a high concentration may require a large value of β and
significant computational effort to produce solutions near the
optimal control input. This latter case is a kind of exploration-
exploitation trade-off due to the sampling schemes used by
algorithmic implementations of the exponential mechanism.

The first-order optimality conditions for the problem (BR-
SS) imply that the solution is a Gibbs measure [54–56]:

Uβ(x){u} = U⊥{u} exp(−βH(x, u)) / Zβ(x), (2)

Zβ(x) := E⊥[exp(−βH(x, U))].

Here, E⊥[·] is the expectation computed using U⊥ as the
controller. In the language from statistical mechanics, β is
the inverse temperature, H(x, u) is the Hamiltonian of the
system, Zβ(x) is the partition function, and,

F β(x) := −β−1 logZβ(x), (3)
is known as the free energy. The latter is notably important
for a number of reasons including it being a cumulant-
generating function and its equality to the Lagrangian of
(BR-SS) conditioned on X = x (see the appendix of [52]):

F β(x) = E[H(x, U)] + β−1D[Uβ(x)||U⊥]. (4)

Due to its popularity, the privacy properties of the exponen-
tial mechanism under different assumptions on H(x, u) are
well-studied. Only a simple assumption of Lipschitz continuity
in x for each u is required [10]. However, this assumption
will not hold for the applications of interest in Section VI
due to U being non-compact. In these cases, random DP may
still be achieved and is suitable for robust control:

Proposition 3. Consider the set of all u ∈ U for which
H(x, u) is at most l-Lipschitz in x, i.e. U(l) := {u ∈
U| L[x 7→ H(x, u)] < l}. Then, Uβ(x) is (2βlρ, γ(l))-DP,
where:

γ(l) := 1− E
[
1U(l)(U) exp

(
−2βlρ(X, X̂(X)

)]
.

Proof. See the appendix of [52].

The proposition characterizes the trade-offs in selecting
the free parameter l and prior U⊥. A larger value of l implies
a larger set U(l) but a smaller region of integration in the
definition of γ(l). For very large values of l, the latter will
dominate and the probability that privacy fails, which is γ(l),
becomes almost certain. Note that larger l implies a looser
privacy constraint, since 2βlρ(x, x̂) will grow for any fixed
pair x, x̂ ∈ X. The choice of prior U⊥ may also bias U
toward regions that yield a smaller Lipschitz constant.

D. Quantifying the Robustness of Bounded Rationality

The key theoretical contribution of this paper is realizing
that the proposed definition of random DP can quantify the
performance of the bounded-rational agent (i.e., the private
controller Uβ) when only a noisy estimate X̂ of the state X
is available — thereby approximating the separation principle.
This idea is combined with a large deviations argument
that exploits the similarity between the large-deviation rate
function [57] and the free energy (3) to derive the theorem:



Theorem 1. Define ρβ(x, x̂) := 2βlρ(x, x̂). With probability
at least 1− γ(l):5

∆J[Uβ ] ≤ β−1E
[
exp

(
ρβ(X, X̂) +D[Uβ(X)||U⊥]

)]
.

Proof. See the appendix of [52] for proof.

This theorem bounds the gap ∆J[Uβ ] := Jon[Uβ ] −
Joff [Uβ ] in performance between the offline and online
problems in terms of β, which describes the information usage
of the controller. Importantly, it relates three separate quan-
tities: the offline expected cost (which appears in ∆J[Uβ ]),
information usage (set by β), and the quality of the state
estimator as measured by ρ(x, x̂). Critically, all terms depend
only on offline information — that is, the state estimator is not
used for feedback in any of these terms but only to measure
its error. Therefore, both elements of the feedback system
may be designed and evaluated independently through this
bound (similar to methodologies that adopt the separation
principle). Moreover, the bound can be optimized to find β⋆

that yields the tightest bound on Jon[Uβ ].

Remark 2. In cases where D[Uβ(X)||U⊥] cannot be eval-
uated, tractable bounds may be available depending on the
context (e.g. Gibbs inequality [54], log-Sobolev inequalities
[55, 56], and variational methods [58]).

V. EXTENSION TO MULTI-STEP PROBLEMS

In the multi-step optimal control problem, the agent at-
tempts to minimize a sequence of non-negative cost functions
c0, . . . , ctf−1 : X × U → R+, ctf : X → R+ over a time
horizon tf by selecting a feedback controller Ut ∼ Ut(Xt)
that accounts for the system dynamics, Xt+1 ∼ Ft(xt, ut).
The state-input trajectories of the system generated by the
choice of controller U0:tf is denoted T[U0:tf ] with T⊥ :=
T[U⊥

0:tf
] being the prior trajectory distribution.

Introduce the shorthand for trajectory cost:
c0:tf (x0:tf , u0:tf ) := c0(x0, u0) + · · ·+ ctf (xtf ).

Adapting the single-step problem notation, the offline and
online problems are written,

min
U0:tf

Joff [U0:tf ] := E[c0:tf (X0:tf , U0:tf )],

min
U0:tf

Jon[U0:tf ] := Joff [(U ◦ X̂)0:tf ],

where X̂0:tf are mechanisms that introduce estimation error.
Bounded rationality is achieved in a similar manner to

(BR-SS) by constraining the relative entropy between the
sequence of closed-loop and open-loop controllers:
min
U0:tf

Joff [U0:tf ] s.t. D[T[U0:tf ]||T⊥] ≤ dtraj. (BR-MS)

This optimal control problem admits a recursive solution,6

U
β
t (x) := argmin

Ut

E [Ht(X,U)] + β−1D[U(x)||U⊥
t ],

where β is the Lagrange multiplier corresponding to the
entropy constraint. Then, Uβ

t is an exponential mechanism

5Expectations in the theorem are conditioned on the event U ∈ U(l),
which is why the consequent occurs with probability γ(l).

6See, e.g. [20, 24, 27, 41, 48], for detailed solutions to similar problems.

and both the Hamiltonian and value function Vt(x) are given
by the recursive equations,

Ht(x, u) := ct(x, u) + E[Vt+1(Ft(x, u))],

Vt(x) := E[Ht(x, Ut)],

where Vtf (x) := ctf (x). Notably, the free energy is equivalent
to the value function: F β

t (x) = Vt(x). The aforementioned
DP composition properties allow for extension of Proposi-
tion 3, and subsequently Theorem 1, to the multi-step problem
with changes made mutatis mutandis.

Proposition 4. Let Ut(lt) := {u | L[x 7→Ht(x, u)] < lt}.
The mechanism,

M(x0:tf ) := (Uβ
1 (x1), . . . ,U

β
tf−1(xtf−1)),

is (ρβ , γ)-DP where,

ρβ(x0:tf , x̂0:tf ) :=

tf−1∑
t=0

2βltρ(xt, x̂t), γ:=

tf−1∑
t=0

γt,

and,

γt := 1− E
[
1Ut(lt)(Ut) exp

(
−2βltρ(Xt, X̂t(Xt)

)]
.

Theorem 2. Let ρβ(x, x̂) and γ be as in Proposition 4 and
Tβ := [U0:tf ]. With probability at least 1− γ(lt),

∆J[Uβ
0:tf

] ≤ 1

β
E

[
exp

(
ρβ(X0:tf , X̂0:tf ) +D[T

β ||T⊥]

)]
.

Proof. See the appendix of [52] for proofs.

This result bounds the cumulative online cost in terms of
the offline cost, level of information usage (set by β), and
estimation error (measured by ρ) similarly to Theorem 1.

VI. NUMERICAL EXAMPLES

To demonstrate the efficacy of these robustness results, three
numerical examples are presented in this section: a motion
planning “double-slit” experiment and optimal control of both
the linearized and nonlinear planar quadrotors.7 In each case,
the dynamics of the robot are chosen to be deterministic.
While the developed theory permits stochastic dynamics,
deterministic dynamics emphasizes the sources of randomness
with which this article is focused: measurement error and
bounded-rational control policies.

A. Motion Planning

Scenario. In this problem, the objective of the robot is to
find the shortest possible path to some goal region Xg ⊂ X
while avoiding a set of obstacle configurations Xo ⊂ X that
is disjoint from Xg . Both Xg and Xo are absorbing sets. For
simplicity, the dynamics are the single integrator in the plane:
xt+1 = xt+ut with X,U = [0, 1]2. The problem cost is the
path length if the robot reaches the goal before intersecting
with an obstacle and ∞ otherwise. The prior U⊥

0:tf
is chosen

to be a zero-mean Gaussian distribution.
The specific work space navigated by the robot is shown in

Fig. 1. The region Xo consists of the boundary of the shown

7The source code implementing these examples using JAX [59] and
all experimental parameters are listed in a publicly available repository:
https://github.com/irom-lab/br-dp-robust.

https://github.com/irom-lab/br-dp-robust
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Fig. 2. Results of the numerical experiments described in Section VI. Lines indicate the expected cost of stabilizing a linearized / nonlinear quadrotor
model for a range of β and β = ∞. The latter case corresponds to the performance of the LQR / MPC controllers, which are performant given perfect state
information. The ⋆ marker indicates β⋆ found for each value of σ2

x̂. For the nonlinear example, shading indicates standard deviations for 100 trials of
SV-MPC. The bounded-rationality controllers outperform LQR / MPC in the presence of estimation error.

space and a divider punctured with a large and small slit. A
path through the large slit is more robust to measurement
error while a path through the smaller one is less forgiving.
The goal region is in the lower right. Similar experiments
are present in the literature [30, 34, 35, 43].

Results. Importance sampling [44] is used to implement
the bounded rationality controller. As shown in Fig. 1, as
the information constraint tightens (β → 0), the agent shifts
from navigating the direct-but-treacherous gap to the robust
(indirect) route. This demonstrates the robustness benefits of
our differentially private control scheme.

B. Planar Quadrotor Stabilization Problems

Scenario. These examples focus on the stabilization of a
planar quadrotor (constrained to the Y-Z plane and rotating
about the X axis). The system state x ∈ R6 consists of the
position and rotation of the robot and the time derivatives
of these variables, i.e. x = (y, z, θ, ẏ, ż, θ̇), while the control
input u ∈ R2 is the thrust exerted by two opposing pairs of
rotors (see [60, Section 6.6] for dynamics). The cost functions
are the linear-quadratic regulator (LQR) cost functions [1].
By choosing the metric,

ρ(x, x̂) =
1

2

∥∥xxT − x̂x̂T
∥∥
F
+ ∥x− x̂∥2 ,

the Hamiltonian Ht(x, u) satisfies the conditions for the
theory from Section V to apply to both systems.

The system parameters are chosen to align with the
Crazyflie 2.0 quadrotors: the mass is 0.03 kg and the moment
of inertia is 1.43×10−5 kgm2 [61]. The system is temporally
discretized with a time step of ∆t = 0.3 s and tf = 13. The
initial condition is sampled from small Gaussian perturbations
about the hover state given according to N(x̄0, σ

2
x) where

ȳ0 = 1m, z̄0 = −1m, the remaining mean entries are zero,
and σ2

x0
= (10−2, 10−2, 10−6, 10−4, 10−4, 10−8). The open-

loop prior is chosen by projecting the initial distribution
through the LQR solution to find the marginal input. The esti-
mation error is drawn from a stationary Gaussian distribution.
Specifically, X̂(x) = N(x, σ2

x̂v), where σ2
x̂ ∈ R+ is a scale

parameter and v = diag(0.25, 0.25, 0.1, 0.25, 0.25, 0.1).
Linearized Results. The system is linearized and the

dynamic programming equations specifying the control policy
are solved exactly for a feedback policy that is linear in the

state with additive Gaussian noise. Details are included in the
appendix of [52]. The performance of the bounded-rationality
controller is evaluated and compared with a controller that
is optimal assuming perfect state estimation (LQR) paired
with a sub-optimal state estimator. As shown in Fig. 2, the
bounded-rationality controller is more robust to estimation
error than the LQR controller. The optimal information usage
β⋆ decreases with the uncertainty σ2

x̂.
Nonlinear Results. The experiments were then repeated

using the nonlinear planar quadrotor dynamics. There is no
closed-form solution to (BR-MS), but numerical methods for
sampling from U

β
t (x) are available (see Section II-C). The SV-

MPC algorithm [41] is chosen due to its increased efficiency
compared to importance sampling and the fact that it reduces
to gradient-based optimization of the trajectory with multiple
random initializations in the β → ∞ limit, which is a common
MPC algorithm. The results are similar to the linear case:
there is a prominent local minimum for β that outperforms
MPC (which is optimal assuming perfect estimation) in the
presence of estimation error when averaged over 100 trials.
In this case, the monotonic relationship between β⋆ and σ2

x̂

is not seen — possibly due to SV-MPC only approximating
the controller’s distribution.

VII. CONCLUSION

This paper proposes new theoretical justifications for the ro-
bustness of bounded-rational control policies using differential
privacy. The stated performance guarantee for such policies
has a modular structure reminiscent of the separation principle.
Multiple numerical simulations demonstrate that using DP to
create controllers provides robustness to estimation error.

Future Work. There remain a number of useful properties
that need to be determined about the stated bounds that extend
beyond the scope of this paper, e.g., the tightness of the bounds
and whether the relationship between β⋆ and σ2

x̂ is monotonic
as suggested by the results for the linearized system in
Fig. 2. Developing tractable method to evaluate the robustness
bounds is also of great interest. Opportunities to extend the
experimental results of the article to new applications, such as
sim-to-real transfer, and adapting other mechanisms from the
DP literature to robust controller design may be considered.



REFERENCES

[1] B. Anderson and J. Moore, Optimal Control: Linear Quadratic
Methods. Courier Corporation, 2007.

[2] G. Gigerenzer and H. Brighton, “Homo heuristicus: Why biased minds
make better inferences,” Topics in Cognitive Science, vol. 1, no. 1,
pp. 107–143, 2009.

[3] G. Gigerenzer and W. Gaissmaier, “Heuristic decision making,”
Annual Review of Psychology, vol. 62, pp. 451–482, 2011.
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