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Abstract— We are motivated by the problem of learning
policies for robotic systems with rich sensory inputs (e.g., vision)
in a manner that allows us to guarantee generalization to
environments unseen during training. We provide a framework
for providing such generalization guarantees by leveraging a
finite dataset of real-world environments in combination with
a (potentially inaccurate) generative model of environments.
The key idea behind our approach is to utilize the generative
model in order to implicitly specify a prior over policies. This
prior is updated using the real-world dataset of environments
by minimizing an upper bound on the expected cost across
novel environments derived via Probably Approximately Cor-
rect (PAC)-Bayes generalization theory. We demonstrate our
approach on two simulated systems with nonlinear/hybrid
dynamics and rich sensing modalities: (i) quadrotor navigation
with an onboard vision sensor, and (ii) grasping objects using
a depth sensor. Comparisons with prior work demonstrate the
ability of our approach to obtain stronger generalization guar-
antees by utilizing generative models. We also present hardware
experiments for validating our bounds for the grasping task.

I. INTRODUCTION

The ability of modern deep learning techniques to pro-
cess high-dimensional sensory inputs (e.g., vision or depth)
provides a promising avenue for training autonomous robotic
systems such as drones, robotic manipulators, or autonomous
vehicles to operate in complex and real-world environments.
However, one of the fundamental challenges with current
learning-based approaches for controlling robots is their
limited ability to generalize beyond the specific set of envir-
onments they are trained on [1]. This lack of generalization
is a particularly pressing problem for safety- or performance-
critical systems for which one would ideally like to provide
formal guarantees on generalization to novel environments.

A primary contributing factor to this challenge is the fact
that real-world datasets for training robotic systems are often
limited in size (e.g., in comparison to large-scale datasets
available for training visual recognition models via super-
vised learning). Such datasets often have to be carefully and
painstakingly curated, e.g., by scanning indoor environments
using 3D cameras for creating a dataset for visual navigation
tasks [2]-[4], or scanning objects and characterizing their
physical properties (e.g., inertia, friction, and mass) for
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Fig. 1: A schematic of our overall approach. We provide a framework for
providing generalization guarantees on novel environments by combining
a (potentially inaccurate) generative model of environments (e.g., a distri-
bution that generates hollow cylinders) with a finite dataset of real-world
environments (e.g., a datset of mugs). We validate our approach on hardware
using the Franka Panda arm, and through multiple simulation experiments.

creating a dataset for robotic manipulation [5]-[7]. One way
to address this challenge of scarce real-world data is to
leverage data from a generative model of environments. As
an example, consider the problem of manipulating mugs
(Fig. 1); one could hand-craft a generative model that pro-
duces shapes that are similar to mugs (e.g., hollow cylinders;
Fig. 1) or potentially train a generative model over shapes
using a dataset of different objects (e.g., bowls).

The two sources of data outlined above have comple-
mentary features: real-world data is scarce but representative,
while data from a generative model is plentiful but potentially
different from environments the robot will encounter when
deployed. Thus, relying entirely on the small real-world
dataset can pose the risk of overfitting, while relying entirely
on the generative model may cause the robot to overfit to the
specific features of this model and prevent generalization to
real-world environments. How can we effectively combine
these two sources in order to guarantee that the robot will
generalize to novel real-world environments?

Statement of contributions: We provide a framework
for providing formal guarantees on generalization to novel
environments for robotic systems with rich sensory inputs
by leveraging a combination of finite real-world data and
a (potentially inaccurate) generative model of environments.
To our knowledge, the approach presented here is the first
to leverage these two sources of data while providing gener-
alization guarantees for robotic systems. The key technical
insight behind our approach is to utilize the generative model
for specifying a prior over control policies. In order to



achieve this, we develop a technique for implicitly paramet-
erizing policies via datasets of environments. We then train
a posterior distribution over policies using the real-world
dataset; this posterior is trained to minimize an upper bound
on the expected cost across novel environments derived via
Probably Approximately Correct (PAC)-Bayes generalization
theory. Minimizing the PAC-Bayes bound allows us to auto-
matically trade-off reliance on the real-world dataset and the
generative model, while resulting in policies with a guaran-
teed bound on expected performance in novel environments.
We demonstrate our approach on two examples which use
vision inputs: (i) navigation of an unmanned aerial vehicle
(UAV) through obstacle fields, and (ii) grasping of mugs by
a robotic manipulator. For both examples, we obtain PAC-
Bayes bounds that guarantee successful completion of the
task in 80-95% of novel environments. Comparisons with
prior work demonstrate the ability of our approach to obtain
stronger generalization guarantees by utilizing generative
models. We also present hardware experiments for validating
our bounds on the grasping task.

A. Related Work

Domain randomization and data augmentation. Do-
main randomization (DR) is a popular technique for improv-
ing the generalization of policies learned via reinforcement
learning (RL). DR generates new training environments by
randomizing specified dynamics and environmental paramet-
ers, e.g., object textures, friction properties, and lighting con-
ditions [8]-[12], or generating new objects for manipulation
by combining different shape primitives [13]. Similarly, data
augmentation techniques such as random cutout and cropping
[14], [15] seek to improve generalization for vision-based
RL tasks by performing transformations on the observation
space. While these techniques have been empirically shown
to improve generalization, they do not provide any guarantees
on generalization (which is the focus of our work).

Generative modeling of environments. Domain random-
ization techniques do not necessarily generate realistic en-
vironments for training. Consequently, another line of work
seeks to address this challenge by generating environments
with more realistic structure, e.g., via scene grammars and
variational inference [16]-[18], procedural generation [19],
or evolutionary algorithms [20]. Adversarial techniques have
also been developed for generating challenging environments
[21], [22]. Prior work has also explored augmenting real-
world training with large amounts of procedurally generated
environments via domain adaptation techniques [23], transfer
learning [24], or fine-tuning [25]. We highlight that none of
the methods above provide guarantees on generalization to
real-world environments. In this work, we provide a frame-
work based on PAC-Bayes generalization theory in order to
combine environments from a generative model with real-
world environments and provide generalization guarantees
for the resulting policies. Our work is thus complementary to
the above techniques and could potentially leverage advances
in generative modeling.

Generalization theory. Generalization theory provides a

framework for learning hypotheses (in supervised learning)
with guaranteed bounds on the true expected loss on new
examples drawn from the underlying (but unknown) data-
generating distribution, given only a finite number of training
examples. Early frameworks include Vapnik-Chervonenkis
(VC) theory [26] and Rademacher complexity [27]. How-
ever, these methods often provide vacuous generalization
bounds for high-dimensional hypothesis spaces (e.g., neural
networks). Bounds based on PAC-Bayes generalization the-
ory [28]-[30] have recently been shown to provide strong
generalization guarantees for neural networks in a variety
of supervised learning settings [31]-[36], and have been
significantly extended and improved [37]-[42]. PAC-Bayes
has also recently been extended to learn policies for robots
with guarantees on generalization to novel environments
[43]-[46]. In this paper, we build on this work and provide
a framework for leveraging generative models as a form
of prior knowledge within PAC-Bayes. Comparisons with
the approaches presented in [44], [45] demonstrate that this
leads to stronger generalization guarantees and empirical
performance (see Section V for numerical results).

II. PROBLEM FORMULATION

Dynamics, environments, and sensing. Consider a ro-
botic system with discrete-time dynamics given by:

Tip1 = fr(we, up), (1)

where x; € X C R"™= is the state of the robot at time-step t,
uy € U C R™ is the control input, and ' € £ is the environ-
ment that the robot is operating in. The term “environment” is
used broadly to represent all external factors which influence
the evolution of the state of the robot, e.g., an obstacle field
that a UAV has to avoid, external disturbances such as wind
gusts, or an object that a robotic manipulator is grasping.
The dynamics of the robot may be nonlinear/hybrid. Let
O C R" denote the space corresponding to the robot’s
sensor observations (e.g., the space of images for a camera).
Policies and cost functions. Let 7 : O — U be a
policy that maps observations (or potentially a history of
observations) to actions, and let II denote the space of
policies (e.g., neural networks with a certain architecture).
The robot’s task is specified via a cost function; we let
Cg(m) denote the cost incurred by policy © when deployed
in environment F/ over a time horizon 7'. As an example in
the context of UAV navigation, the cost function can assign
1 if the UAV collides with an obstacle, or O if it successfully
reaches its goal. We assume that the cost is bounded, and
without further loss of generality assume that Cg(7) € [0, 1].
Importantly, we make no further assumptions on the cost
function (e.g., we do not assume continuity or Lipschitzness).
Dataset of real-world environments. We assume that
there is an underlying distribution D from which real-world
environments that the robot operates in are drawn (e.g., an
underlying distribution over obstacle environments for UAV
navigation, or objects for grasping). Importantly, we do not
assume that we have explicit knowledge of D or the space
& of real-world environments. Instead, we assume access



to a finite dataset S := {Ey, Ea,..., En} of N real-world
environments drawn independently from D.

Generative model. In addition to the (potentially small)
dataset of real-world environments, we assume access to a
generative model over environments. This generative model
takes the form of a distribution D,, over a space Egen Of en-
vironments. Importantly, Dgep # D and Egen # £ in general.
Indeed, the space Ege Will typically be significantly simpler
than the space £ of real-world environments. For example,
in the context of manipulation (Fig. 1), £ may correspond
to the space of all mugs while &, may correspond to the
space of hollow cylinders (described by a small number of
geometric and physical parameters).

Goal. Our goal is to learn a policy that provably general-
izes to novel real-world environments drawn from D. In this
paper, we will employ a slightly more general formulation
where we choose a distribution P over policies (instead of
choosing a single policy). This allows for the use of PAC-
Bayes generalization theory. Our goal is then to tackle the
following optimization problem:

i P h P):= cEY. (2
nin Cp(P), where Cp(P) EINEDW@P[C(R ) ()

The primary challenge in tackling this problem is that the
distribution D is unknown to us. Instead, we have access to
a finite number of real-world environments and a (potentially
inaccurate) generative model. In the next section, we describe
how to leverage these two sources of data in order to learn
a distribution P over policies with a guaranteed bound
on the expected cost Cp(P), i.e., a provable guarantee on
generalization to novel environments drawn from D.

III. GENERALIZATION GUARANTEES WITH
GENERATIVE MODELS

In this section, we describe how to combine generative
models with a finite amount of real data in order to produce
strong generalization guarantees via PAC-Bayes theory.

A. PAC-Bayes Control

Our objective is to solve the optimization problem (2).
However, the lack of an explicit characterization of D
prohibits us from directly minimizing Cp(P). PAC-Bayes
generalization bounds [29] provide a high-confidence upper
bound on Cp(P) in terms of the empirical cost on the train-
ing environments S' that are drawn from D and a regularizer.
As both these terms can be computed, we minimize the PAC-
Bayes upper bound in order to indirectly minimize Cp(P).
Additionally, the PAC-Bayes bound serves as a certificate of
generalization to novel environments drawn from D.

Let IT := {mp | 8 € © C R"} denote the space of
policies parameterized by the vector #; as an example, 6
could be the weights and biases of a neural network. For
a “posterior” policy distribution P on II and a real-world
dataset S := {E1,Es, -+ ,En} of N environments drawn
ii.d from D, we define the empirical cost as the expected
cost across the env1ronments in St

Cs(P .NZE (70, E))- 3)

EcS

Let Py be a “prior” distribution over II which is specified
before the training dataset S is observed. The PAC-Bayes
theorem below then provides an upper bound on the true
expected cost Cp(P) which holds with high probability.

Theorem 1 (adapted from [44]). For any 6 € (0,1) and
posterior P, with probability at least 1 — § over sampled
environments S ~ DN, the following inequality holds:

CD( ) < CpAc(P Po)

= (VCs(P) + R(P, Py) + VR(P, I))°, ¥
where R(P, Py) isa regularzzatwn term defined as:
KL(P||Py) + log (24Y) 5
5N &)
It is challenging to specify good priors P, on the policy
space II in general (e.g., specifying a prior on neural network
weights); our previous approaches resorted to techniques
such as data splitting [44] and imitation learning [45] to
obtain priors. On the other hand, generative models offer an
intuitive approach for embedding prior domain knowledge in
learning [1], [16]-[19]. Motivated by this, we will leverage
generative models (based on inductive bias or other data) as
priors for the PAC-Bayes theorem.

R(P, Ry) =

B. Policy Parameterization With Datasets

The posterior P and the prior F, distributions in The-
orem 1 are on the space II of policies. Our key idea for
leveraging generative models to provide generalization guar-
antees is to provide an approach for implicitly parameterizing
policies 7y via synthetic datasets drawn from the generative
model. This parameterization is then used in Theorem 1
such that the PAC-Bayes bound is specified in terms of the
posterior ) and the prior () on the space Eg, of synthetic
environments. Let S be a synthetic (i.e., generated) dataset
of cardinality [ and let L : II x £, — [0,00) be a loss
function; e.g., L can be the average cost of deploying a
policy my in environments in S. Then, let A : Eéen — ©
be an arbitrary deterministic algorithm for (approximately)
solving the optimization problem:

arg inf L(m, 3) - 6)

Any such algorithm then provides a way to parameterize
policies 7 A(S) implicitly via datasets S. We note that we
do not impose any additional conditions on A (e.g., A
need not solve (6) to global/local optimality). Moreover,
although we require A to be deterministic, we can use
stochastic optimization approaches — such as stochastic
gradient descent — by fixing a random seed (this ensures
deterministic outputs for a given input). The algorithm A
gives rise to a push-forward measure for distributions from
the synthetic environment space &, to the policy space
II. We overload the notation to express the push-forward
distribution on the policy space as A(Q).

C. PAC-Bayes Bounds With Generative Models

In order to provide PAC-Bayes bounds using generative
models, we encode the posterior P and the prior Py on the
policy space via posterior ) and prior )y generative models



as follows: P = A(Q), and Py = A(Qop). We are now ready
to present the PAC-Bayes bound with generative models.

Theorem 2. Let A be a deterministic algorithm as defined
above. For any 6 € (0,1) and posterior generative model Q)
on Egen, with probability at least 1 — 0 over sampled real-
world environments S ~ DV, the following holds:

Cp(A(Q)) < Cpac(Q, Qo)

= (VCs(AQ) + R(Q, Qo) + VR(Q. Q).
(7N

where

E [C(myg), E)] ®)
Ees S~@
and R(Q, Qo) is the same as (5).

Proof. The proof follows by choosing A(Q) as the posterior
policy distribution P and A(Qo) as the prior policy distri-
bution Py in (4), giving us the following bound:

Op(A(Q)) < (VCs(AQ)) + R(AQ), A(Qo)) 9

+ VRAQ), A(Q0))", (10)
The empirical cost can be expressed as:
1
Cs(A@Q) =% > E_[Clm,E). (D

pes I~AQ@)

Sampling 6 from the push-forward measure A(Q) is equi-
valent to sampling S from Q and then computing A(S).
Therefore, the empirical cost can be expressed as (8).

Using the data processing inequality [47] we have
KL(A(Q)||A(Qo)) < KL(Q||Qo), which further results in
R(A(Q), A(Qo)) < R(Q, Qo). Using this in (10) completes
the proof. [

Minimizing C'p s¢ provides us a policy distribution A(Q)
with a guaranteed bound on the expected cost Cp on novel
environments, thereby tackling the optimization problem (2).

IV. TRAINING

In this section, we present our training pipeline for com-
bining a generative model with real-world data in order to
provide strong generalization guarantees. First, we describe
the algorithm A used for parameterizing policies through
datasets (Sec. III-B). Then we provide the algorithm for
minimizing the PAC-Bayes upper bound in Theorem 2.

A. Policy Parameterization With Datasets

As discussed in Sec. III-B, we require a deterministic
algorithm A (that attempts to minimize a loss L) in order
to implicitly parameterize policies m A(8) via datasets S. For
the results in this paper, we use L as the average cost of
deploying a policy 7y in environments contained in S:

L(mg, S) := % > C(mo, Egen).

Egn€S
To minimize L, we choose the algorithm A to be Evol-
utionary Strategies (ES) [48] with an a priori fixed random
seed; fixing the random seed ensures that the algorithm is
deterministic. ES belongs to a family of black-box optimizers
which train a distribution on the policy space. The choice of

12)

ES is driven by our use of black-box simulators through
which the gradient of the loss cannot be backpropagated
(e.g., due to the loss being non-differentiable or due to
the dynamics of the robot being hybrid). Additionally, ES
permits a high degree of parallelization, thereby allowing us
to effectively exploit clouding computing resources. In the
interest of space, further details on our implementation of
ES are not provided here and can be found in [44, Sec. 4.1].

B. Training a PAC-Bayes Generative Model

We assume availability of a generative model expressed
by a distribution Dge on Egen (ref. Sec. II); this model could
be hand-specified based on prior knowledge or constructed
using other data. Leveraging Dg., we first construct a prior
generative model and then train a posterior generative model
by minimizing the PAC-Bayes bound in Theorem 2.

As has been shown in [44] and [46], PAC-Bayes minimiza-

tion takes the form of an efficiently-solvable convex program
for discrete probability distributions. To exploit this convex
formulation (which allows one to optimize the PAC-Bayes
bound in a computationally efficient manner), we construct
a prior generative model gg which approximates Dg, as a
discrete probability distribution as follows:
Let Dgen be a generative model which takes the form of
a distribution on the synthetic environment space Egen, as
discussed in Sec. II. Sample m datasets of cardinality [
each from Dy, to construct the set of datasets S =
{81, ,Sm | Si ~ D.,,}. The prior generative model qq
is then defined as the uniform distribution on S.

To train a posterior generative model ¢ (which is a discrete
probability distribution on the set S of synthetic datasets),
we minimize the PAC-Bayes upper bound in Theorem 2.
To transform this minimization into a convex program, we
first compute a cost vector C' € R™. Each entry C; of this
vector corresponds to the expected cost of deploying the
policy 7 A(S)) parameterized by the synthetic dataset S;, in
the real-world training dataset S. Therefore, the empirical
cost Cs(A(Q)) can be expressed as C'q (which is linear in
the generative model posterior ¢). Leveraging this, we can
express the PAC-Bayes bound minimization as follows:

min  (/Cq+ R(q,q) + v/ R(g, qo))2

q€R

st Y i=1,0<¢ <1
i=1
Using the epigraph trick, as detailed in [44], (13) can be
further transformed to a convex program. In the interest of
space, we direct the reader to [44, Sec. 4.2] for complete
details of the algorithm to solve (13). We provide a sketch
of our entire training pipeline in Alg. 1.

13)

V. EXAMPLES

We demonstrate the ability of our framework to provide
strong generalization guarantees for two robotic systems
with nonlinear/hybrid dynamics and rich sensory inputs: a
drone navigating obstacle fields using onboard vision, and a
manipulator grasping mugs using an external depth camera.
All training is conducted on a Lambda Blade server with



Algorithm 1 Training Pipeline

: Input: Generative model: Dgen; real-world dataset: S ~ DN
: Input: Number of synthetic datasets: m

Input: Cardinality of each synthetic dataset: [

Input: Deterministic algorithm for (6): A

Sample Si,--- ,Sm ~ Di,en

qgo < [1/m,---,1/m] .

q < PAC-Bayes(S, A, qo, {S:}i~1) by solving (13)

: return g
/|
oo
’w‘ J

(@ (b)
Fig. 2: Vision-based navigation with a UAV. (a) Environment with randomly
generated obstacles. (b) Primitive library for the UAV.

XRN RN

2x Intel Xeon Gold 5220R (96 threads), 760 GB of
RAM, and 8 NVIDIA GeForce RTX 2080, each with
12 GB memory. We compare our bounds against those in
previous works with similar examples.

A. Vision-based obstacle avoidance with a drone

Overview. In this example, we train a quadrotor equipped
with an onboard depth camera to navigate across obstacle
fields. The obstacle course is a tunnel populated by cyl-
indrical obstacles as shown in Fig. 2(a). The dynamics and
sensor are simulated using PyBullet [49].

Environments. The distribution D over environments
samples the radii, locations, and orientations of 23 obstacles
in order to generate an environment; the radii are drawn from
a uniform distribution over [Scm, 30cm], the locations of
the center of the cylinders are drawn from [-5m, Sm]x[Om,
14m], and the orientations are quaternion vectors drawn from
a normal distribution.

Generative model. The generative model Dge,, samples
radii, locations, and orientations of obstacles from the same
distributions as D. However, the number of obstacles in
each environment drawn from Dg, is different from the
number of obstacles in environments drawn from D. In
our experiments, we will study the effects of degrading the
quality of the generative model by varying this parameter.

Motion primitives and planning policy. We pre-compute
a library of 25 motion primitives (Fig. 2(b)), each of which
is generated by connecting the initial position of the robot
to a desired final position by a smooth sigmoidal trajectory.
The robot’s policy takes a 50 x 50 depth image from the
onboard camera as input and selects a motion primitive to
execute. This policy is applied in a receding-horizon manner
(i.e., the robot selects a primitive, executes it, selects another
primitive, etc.). The policy is parameterized using a deep
neural network (~14K parameters) and is based on the policy
architecture presented in [44, Sec. 5.1].

Variation of PAC-Bayes Bound as Generative Model is Varied
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Fig. 3: PAC-Bayes bounds for different choices of the generative model

(obtained by varying the number N of obstacles sampled in each environ-

ment). Bounds generally become stronger as we increase Ng. Comparisons

with [44] (dotted lines) demonstrate the benefits of our approach, particularly

for smaller values of N (the number of available real-world environments).

Training. We choose the cost 1— % where £ is the number
of motion primitives successfully executed before colliding
with an obstacle and K is the total possible primitive
executions; in our example K = 12. We train policies via the
pipeline described in Section IV. We choose m = 50 datasets
in S”, and each dataset S“i € S has cardinality [ = 50. With 6
GPUs and 48 CPUs, it takes ~ 6-8 hours to train the priors
and ~ 200-1000 seconds to train the posterior (depending
on the number of real environments used).

Results. We consider different generative models Die,
by varying the number of obstacles Np sampled in any
generated environment; we vary this parameter in the set
{10, 15, 20,23, 25,30}. Generalization guarantees are ob-
tained using each variation of the generative model. We set
0 = 0.01 to have bounds that hold with probability 0.99.

Envs Using generative model (ours) Approach from [44]
™) PAC Bound | True Cost PAC Bound | True Cost
(Estimate) (Estimate)
980 20.92 % 13.81 % 29.82 % 19.7 %
1480 19.60 % 13.81 % 26.02 % 18.34 %
4480 16.76 % 13.86 % 21.52 % 18.43 %

TABLE I: Comparison of PAC-Bayes bounds with true expected cost on
novel environments (estimated via exhaustive sampling). The framework
presented here provides both stronger guarantees and empirical performance
on novel environments as compared to [44].

Figure 3 plots the PAC-Bayes bounds on the expected cost
for different choices of Ng. For example, when Ng = 30
and N = 4480, the PAC-Bayes bound using our approach
is 0.1676. Thus, we can guarantee that on average the
quadrotor will successfully navigate through at least 83.24%
(100% — 16.76%) of novel real-world environments. We also
compare these bounds with those provided by the method in
[44] (plotted with dotted lines), which splits a given dataset
of N real-world environments into two portions; the first
portion is used to train a prior over policies and the second
portion is used to obtain a posterior distribution over policies
by minimizing the PAC-Bayes bound in Theorem 1. We



provide our approach with the same number of real-world
environments (i.e., V) as used in [44] in order to ensure a
fair comparison. For each N, the bounds generally become
stronger as we increase the number of obstacles Ng sampled
by the generative model.

Figure 3 demonstrates that the approach presented here is
able to produce stronger bounds than the ones provided by
[44], with significant differences when No = 30. Interest-
ingly, the benefits of our approach become more apparent
when the number N of available real-world environments is
small. For example, when N = 980, the bounds provided
by our approach are stronger for all choices of No. When
N is small, the prior information provided by the generative
model becomes important (as one would intuitively expect).

Table I compares the theoretical generalization bounds
obtained for the case when No = 30 with the true ex-
pected cost on novel environments (estimated via exhaustive
sampling of novel environments). Results are presented for
different numbers IV of real-world environments for both our
method and the one from [44]. As the table illustrates, our
approach results in significantly improved performance on
novel environments for all values of N.

B. Grasping a diverse set of mugs

Overview. This example aims to train a Franka Panda arm
to grasp and lift a mug (Fig. 1). The arm has an overhead
camera which provides a 128 x 128 depth image. The
simulation environment for this system is implemented using
PyBullet [49], and we also present hardware results on the
Franka arm shown in Fig. 1 (right).

Environments. The real-world environments used for
training are drawn from a set of mugs with diverse shapes
and sizes collected from the ShapeNet dataset [7]. The initial
x-y position of these mugs is sampled from the uniform dis-
tribution over [0.45 cm, 0.55 cm]x[—0.05 cm, 0.05 cm], and
yaw orientations are sampled from the uniform distribution
over [— rad, 7 rad]. All mugs are placed upright.

Generative model. The generative model Dy, comprises
of hollow cylinders which are generated using trimesh
[50]. The inner radii, outer radii, and height of the cylinders
are sampled from uniform distributions. The ratio of the
maximum possible outer radius to inner radius is 2, and the
height ranges from twice the maximum inner radius to twice
the maximum outer radius. The initial location and yaw are
sampled from the same distributions as D.

Policy. The robot’s policy is parameterized using a deep
neural network (DNN) which takes a depth map of an object
and a latent state z € R19 sampled from a Gaussian distri-
bution as input and outputs a grasp location and orientation.
We keep the weights of the DNN fixed and update the
distribution on the latent space. Effectively, the latent space
acts as the space of policy parameters © and the Gaussian
distribution on it is the policy distribution P; further details
of the policy’s architecture can be found in [45].

Training. If the arm is able to grasp and lift a mug by
10 cm, we consider the rollout to be successful and assign
a cost of 0, otherwise we assign a cost of 1. We follow the

Fig. 4: Mugs used for hardware validation of the grasping policy.

pipeline in Alg. 1 for training. We choose m = 50 datasets in
S, with each dataset S; € S having cardinality 1 = 50. With
80 CPUs, the priors train in ~ 3 hours, and the posterior
takes ~ 900 seconds.

Simulation results. We obtain theoretical generalization
guarantees using the generative model described above and
compare it with the theoretical guarantees obtained in [45].
We use the same set of 500 mugs from ShapeNet used
by [45] as our real dataset in order to train the posterior
and obtain the PAC-Bayes bound. Our resulting PAC-Bayes
bound (with § = 0.99) is 0.054. Thus, our policy is
guaranteed to have a success rate of at least 94.6 %, which is
higher than the 93 % guaranteed success rate in [45] (despite
using the same real-world dataset of mugs for training).

Hardware results. The posterior policy distribution
trained in simulation is deployed on the hardware setup
shown in Fig. 1 without additional training (i.e., zero-shot
sim-to-real transfer). 10 mugs with diverse shapes are used
(Fig. 4). Among three sets of experiments with different
seeds (for sampling the latent z), the success rates are 100%
(10/10), 100% (10/10), and 90% (9/10). The overall success
rate is 96.67% (29/30) and thus validates the PAC-Bayes
bound of 94.6% trained in simulation.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an approach for learning policies for
robotic systems with guarantees on generalization to novel
environments by leveraging a finite dataset of real-world
environments in combination with a (potentially inaccurate)
generative model of environments. The key idea behind our
approach is to use the generative model in order to implicitly
specify a prior over policies, which is then updated using
the real-world environments by optimizing generalization
bounds derived via PAC-Bayes theory. Our simulation and
hardware results demonstrate the ability of our approach to
provide strong generalization guarantees for systems with
nonlinear/hybrid dynamics and rich sensing modalities, and
obtain stronger guarantees and empirical performance than
prior methods that do not leverage generative models.

Exciting directions for future work include (i) obtaining
stronger guarantees by going beyond the hand-crafted gener-
ative models used here and using state-of-the-art techniques
for generative modeling, (ii) directly optimizing a posterior
generative model () in Theorem 2 (without performing the
finite sampling described in Section I'V), and (iii) implement-
ing the UAV navigation example on a hardware platform.
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