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Abstract. Inverse problems are ubiquitous because they formalize the integration of data with mathematical
models. In many scientific applications the forward model is expensive to evaluate, and adjoint com-
putations are difficult to employ; in this setting derivative-free methods which involve a small number
of forward model evaluations are an attractive proposition. Ensemble Kalman-based interacting par-
ticle systems (and variants such as consensus-based and unscented Kalman approaches) have proven
empirically successful in this context, but suffer from the fact that they cannot be systematically
refined to return the true solution, except in the setting of linear forward models [A. Garbuno-Inigo
et al., STAM J. Appl. Dyn. Syst., 19 (2020), pp. 412-441]. In this paper, we propose a new derivative-
free approach to Bayesian inversion, which may be employed for posterior sampling or for maximum
a posteriori estimation, and may be systematically refined. The method relies on a fast/slow system
of stochastic differential equations for the local approximation of the gradient of the log-likelihood
appearing in a Langevin diffusion. Furthermore the method may be preconditioned by use of in-
formation from ensemble Kalman—based methods (and variants), providing a methodology which
leverages the documented advantages of those methods, while also being provably refinable. We
define the methodology, highlighting its flexibility and many variants, provide a theoretical analysis
of the proposed approach, and demonstrate its efficacy by means of numerical experiments.
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1. Introduction.

1.1. Overview. In this paper, we consider the inverse problem of finding an unknown
parameter § € R¢ from data y € R, where

(1.1) y=G(0)+n,

with G : R? — RX a forward operator and 7 the observational noise. In the Bayesian approach
to inverse problems [48, 87, 23], the vectors 6, n, and y are treated as random variables. If the
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unknown parameter and the noise are assumed to be independent and normally distributed,
with distribution parameters 6 ~ N (m,X) and n ~ N(0,T), then the joint distribution of
(0,y) can be obtained from (1.1):

e~ Pr(03)

fRK fRd e—Pr(0:y) J6 dy'

(9, y) ~

Here @5 is a function that regularizes the least-squares functional ®; these two functions are
given by

1
(1.20) ®(0;y) = 5 ly = GO,
1
(1.2b) Or(0:y) = (0:y) + 510 — ml:,
with the notation, for a symmetric positive definite matrix A,

<1; 2>A:<17A71 2>7 ’|?4:<7 >A7

where (e, ) is the Euclidean inner product. By Bayes’ formula, the conditional probability
density function of 6 given y equals

_exp(=®r(%y)
Jraexp(—®r(6;y))d0  Z(y)

(13) n(0) exp(~@r(b ).

This probability distribution is the Bayesian posterior, and its pointwise maximizer is the
mazimum a posteriori (MAP) estimator.

There exist several approaches for solving inverse problems, which we review in the next
section. In this paper, we present a new derivative-free approach for (1.1). Our method is
based on a fast/slow system of stochastic differential equations (SDEs), and it may be used
for sampling from the Bayesian posterior (1.3) or for calculating the MAP estimator. Unlike
the ensemble Kalman sampler (EKS), and variants such as the unscented Kalman sampler
(UKS) [45] and consensus-based sampler (CBS) [15], the method we present can be refined
systematically in order to approach the true solution: in the refinement limit, it produces a
stochastic process described by dynamics of the type

(1.4) A6, = —KVp® (61 y) dt + vvV2K duw;.

Here {w;}i>0 is a standard d-dimensional Brownian motion, K is a symmetric positive def-
inite matrix, and v is a coeflicient equal to 1 if the method is used for posterior sampling
or 0 in optimization mode. When v = 0, (1.4) is a preconditioned gradient descent in the
potential @, and, when v = 1, (1.4) is a preconditioned overdamped Langevin diffusion in
the potential ®z. From now on, since the observation y is a fixed parameter of the inverse
problem, we write ®(0) = ®(0;y) and ®Pr(0) = Pr(0;y) and Z = Z(y) for simplicity.
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1.2. Literature review. There are two main approaches for solving inverse problems of
the type (1.1): the classical approach and the Bayesian approach [48, 87]. Classical methods
are generally based on an optimization problem of the form

(1.5) argminl ly — G(0)|% + R(0)
geRd 2

for some symmetric positive definite matrix X and where R is an optional regularization term.
The aim of the regularization term is to ensure that the minimization problem is well-posed;
without this term, there may be minimizing sequences that are not bounded in R¢. See, for
example, [2, 19, 22, 41, 42] for a discussion of the classical approach (1.5) and of regularization
techniques. A widely used form for R(6), known as a Tikhonov—Phillips regularization, is
given by R(0) = |6 — z@/ for some vector z and a symmetric positive definite matrix Y. In
the classical approach, the matrices X, Y and the vector z are generally parameters without
a probabilistic interpretation.

The Bayesian approach to the inverse problem (1.1), on the other hand, relies on the
statistical properties of the noise and on the specification of a prior probability distribution
which encapsulates a priori knowledge on the unknown parameter, as shown in subsection 1.1.
In the Bayesian framework, the optimization problem (1.5) is relevant with X = I" and with
the Tikhonov-Phillips regularization R(f) = |§ — m|%. In this case, the solution to (1.5)
admits a clear interpretation: it is the pointwise maximizer of the Bayesian posterior (1.3),
so it can be viewed as the most likely value of the parameter given the data. See [87] for
more details on the connection between the classical and Bayesian approaches. Often, one is
interested not in a point estimator but in the statistical properties of the Bayesian posterior,
which can be used, for example, for the derivation of confidence intervals. In most applications,
the dimension of the parameter space is large, so it is necessary to generate samples from the
Bayesian posterior in order to calculate its statistical properties.

Several methods can be employed for solving the inverse problem (1.1) via the optimization
problem (1.5). In a number of important applications of inverse problems, such as parameter
estimation in climate models [26], the derivatives of the forward operator G are unavailable or
too computationally expensive to obtain, so, in this literature review, we only briefly review
gradient-based methods and focus mostly on derivative-free methods.

When the derivatives of the forward operator G are available, a natural approach is to
employ the gradient descent algorithm or one of its variants; we mention, for example, the
conjugate gradient descent [44], the stochastic gradient descent [80, 54], the Barzilai-Borwein
method [8], and other gradient-based optimization techniques that rely on interacting particle
systems [90, 11, 10]. One may also recur to the Newton or Gauss—Newton methods and their
variants [36, 3], or to methodologies based on the Levenberg-Marquardt method [61, 65, 39].

When the derivatives of the forward operator G are unavailable, on the other hand,
derivative-free methods are required for solving the optimization problem (1.5). A comprehen-
sive presentation of standard derivative-free optimization methods is given in [20], and a review
focusing on recent trends and developments in this field is given in [55]. A simple approach,
which was popular in many of the early works on derivative-free optimization, is to employ
a finite difference gradient approximation in place of the exact gradient in a derivative-based
method; see, for example, [13, 33]. Many other general-purpose derivative-free optimization
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methods can be employed for solving (1.5), and we mention, for example, simulated anneal-
ing [51], particle-swarm optimization [50], and consensus-based optimization (CBO) [76, 14].
One may also use methods based on the ensemble Kalman filter, which rely on the quadratic
structure of the loss function in (1.5). Ensemble Kalman methods, introduced for dynamical
state estimation in [30], were extended as derivative-free Bayesian inverse problem solvers
in [18, 28]; they were modified to become derivative-free optimizers in [46], a method we refer
to as ensemble Kalman inversion (EKI). EKI has been shown, both theoretically in simple
settings and empirically, to perform very well in the context of inverse problems [46, 85, 86],
and it has also been applied successfully for training neural networks [53]. A recent variant
on EKI, unscented Kalman inversion (UKI), shows significant promise for problems in which
the parameter dimension is low, but the forward model is expensive to evaluate and hard
to differentiate [45]. Another alternative is the method developed in [38], which is based on
similar ideas for gradient approximation but aims to drive a single distinguished particle to
the optimizer.

Likewise, there exist several methods for solving (1.1) via the Bayesian approach, i.e., for
generating samples from the Bayesian posterior (1.3). If the derivatives of the log-posterior
are available, the simplest option is to rely on a Langevin diffusion of type (1.4), which enjoys
the property of transforming any initial distribution into the Bayesian posterior (1.3) in the
longtime limit ¢ — oco. One may also employ higher-dimensional stochastic dynamics that
admit the Bayesian posterior as a marginal of their ergodic measure, such as the underdamped
Langevin dynamics [60, 71] or the generalized Langevin dynamics [69, 59, 72].

Another standard and related approach for sampling from a high-dimensional probability
density is to use a Markov chain Monte Carlo method (MCMC), i.e., to construct a Markov
chain whose unique invariant distribution is the target density. To this end, the most widely
used method is the Metropolis-Hastings (MH) algorithm [67, 40]. All that is required to define
an MH algorithm is a proposal distribution, which may or may not be based on the derivatives
of the target density (or of its logarithm). We mention, for example, the Metropolis-adjusted
Langevin dynamics (MALA), which uses the derivative, and the random walk MH method
(RWMH), which does not. There is also a substantial literature on computing, or exploiting,
Gaussian approximations of the posterior; see [75] and the references therein. There is an
extensive literature on the convergence properties and optimal parametrization of these meth-
ods, and on their connections with overdamped Langevin diffusions in the high-dimensional
limit [83, 81, 82]. See also [47] for a study of the connection of high-dimensional RWMH with
overdamped Langevin dynamics in the transient regime, and [12] for a proof of convergence of
MALA to an overdamped Langevin diffusion in the small time step limit in fixed dimension.

In recent years, there has also been significant activity devoted to developing sampling
methods based on interacting particle systems, which can leverage recent advances in parallel
computing. These include, for example, sequential Monte Carlo samplers [25], interacting
particle MCMC methodologies [24, 58], Stein variational gradient descent [63, 62], EKS [31],
and affine-invariant Langevin dynamics (ALDI) [32]. The derivative-free formulations of the
latter two methods were proposed specifically for Bayesian inverse problems—they rely on
the least-squares structure (1.2a) of the log-posterior—and they were shown to produce good
approximate samples of the posterior distribution at a relatively low computational cost. Both
EKS and ALDI are strongly related to (1.4); in the linear setting, they are based on a system of
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preconditioned overdamped Langevin diffusions, with a time-dependent preconditioner given
by the covariance of the ensemble. ALDI improves upon EKS by incorporating a correction
term which guarantees that the ergodic measure of the finite-dimensional particle system is
the product measure of J copies of the target distribution, where J denotes the number of
particles. Recently, a variant on EKS using the unscented transform (UKS) [45] was proposed,
as was a generalization of CBO to sampling (CBS) [15]; both UKS and CBS are derivative-free.

The parallel MCMC method of [58], as well as the ensemble Kalman-based methods for
Bayesian inverse problems, i.e., EKI, EKS, and ALDI, enjoy the property of being affine
invariant in the sense of [34]; see also [37] and [56]. As the terminology indicates, affine
invariant methods are insensitive to affine transformations of the regularized least-squares
functional ® g, which makes them particularly well-suited in cases where ® exhibits strong
anisotropy at its minimizer. The affine invariance of EKS, ALDI, and the ensemble Kalman—
Bucy filter was demonstrated carefully in [32], where the authors also show that the Bayesian
posterior is invariant and ergodic under ALDI. Around the same time, it was observed that the
rate of convergence to equilibrium for the nonlocal PDEs associated with EKI and EKS was
independent of the parameters of the regularized least-squares functional ® g, in the simple
case of a linear forward model [31, 16]; this independence is in fact a consequence of affine
invariance, although this fact is not identified in these references.

As mentioned in subsection 1.1, the method we present in this paper is based on a fast/slow
system of SDEs, and it may be used both for MAP estimation and posterior sampling. Multi-
scale methods have been used before for optimization purposes. A multiscale dynamics is
employed in [17] for smoothing the loss function associated with deep neural networks, and
the method is revisited later in [49]. A similar multiscale dynamics is also employed in [77] for
calculating convolutions, with the aim of reducing metastability in the context of molecular
dynamics. See also [89] for information on how smoothing the objective function by convolu-
tion with a Gaussian kernel can be helpful in optimization schemes. The method we propose
in this paper is based on similar ideas, in that it employs a fast/slow system of SDEs for
approximating the gradient of the loss function, but it is gradient-free and relies on a different
multiscale system. In addition, we demonstrate how preconditioning can be incorporated in
the method in order to approach the solution to (1.4) with an appropriate symmetric, positive
definite matrix K. We also show how a good preconditioner K can be constructed using in-
formation from ALDI; similar approaches can be used based on information obtained through
EKS, UKS, or CBS.

Our work is aimed at sampling posterior distributions which are not Gaussian. The
paper [29] demonstrates clearly that standard ensemble Kalman—based methods for inverse
problems do not reproduce the correct posterior distribution in the large particle size limit
in the non-Gaussian setting. Although there is interesting empirical work which addresses
this shortcoming through iteration of ensemble Kalman filters [84, 9], it is not clear that
this methodology may be applied systematically to arbitrary inverse problems. Our proposed
methodology, on the other hand, addresses shortcomings of standard ensemble methods in this
setting and is founded on refinable approximations which, in certain limits, will reproduce the
true posterior distribution.

Although our method applies, in principle, to multimodal distributions, it will not be
efficient in this scenario; this is because our method is based on approximation of an over-
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damped Langevin equation, and hence may suffer from metastability issues when the posterior
is multimodal. For this reason our focus is on non-Gaussian unimodal distributions; our pri-
mary purpose in this paper is not to address multimodality. Indeed it is likely that a generic
solution to the problem of multimodality will be very hard to find [88]—problem-specific
multimodal approaches are more likely to yield fruitful research. There is, however, interest-
ing work by [57] which uses a localized sample covariance matrix in a parallel MCMC method
to address this problem in a generic fashion; we briefly touch on this in subsection 2.4. The
idea of using localized covariances is incorporated into ALDI in [79] in order to extend the
range of applicability of the method beyond the unimodal setting.

1.3. Our contributions. This paper, then, is focused on the construction of provably
refinable derivative-free methods for Bayesian inverse problems characterized by unimodal
but non-Gaussian posterior distributions. The primary contributions in this paper are the
following:

e We present a novel method based on a multiscale dynamics for MAP estimation and
posterior sampling in Bayesian inverse problems. We discuss possible variations of the
method and present a fully practical numerical discretization.

e In addition to motivating the method with formal arguments, we prove the pathwise
convergence of the solution it produces to a gradient descent or to an overdamped
Langevin diffusion, depending on whether the method is used for optimization or
sampling, respectively. We also obtain a strong convergence estimate for the numerical
discretization of the multiscale dynamics.

e We present numerical experiments demonstrating the efficiency of the method, for
the purposes of both sampling and optimization. We consider first a standard low-
dimensional test problem and then a high-dimensional inverse problem where the for-
ward model requires the solution of an elliptic PDE.

e We show how a significant improvement in performance can be obtained by precondi-
tioning the method using information from ALDI.

The rest of the paper is organized as follows. In section 2, we introduce the multiscale method
and present our main results. In section 3, we present numerical experiments demonstrating
the efficacy of the method, both for low-dimensional and high-dimensional parameter spa-
ces, and we show how preconditioning can be incorporated into the method. Section 4 is
reserved for conclusions and perspectives for future work. In Appendix A, we prove our main
convergence results, and in Appendices B and C, we obtain auxiliary technical results.

2. Presentation of the method and main results. This section is organized as follows:
In subsection 2.1, the multiscale method is presented as a continuous-time dynamics and
motivated by formal arguments. In subsection 2.2, a fully practical time discretization of the
continuous dynamics is presented. Subsection 2.3 then presents the statements of our main
results, the proofs of which are given in Appendix A.

2.1. Continuous-time dynamics. Our method is based on a multiscale system of SDEs:
A slow variable is employed for the purposes of finding the MAP estimator or sampling from
the Bayesian posterior, and several fast variables provide information on the variation of the
least-squares functional in the vicinity of the slow variable. At any time, the drift for the
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slow variable is calculated based on the values of the forward functional at the positions of
these fast explorers, using a projected gradient approximation similar in structure to that
used in the methods for inversion and sampling based on the ensemble Kalman filter (EnKF);
see [85] (in the context of optimization) and [31] (in the context of sampling). The idea of
employing an approximation based on ensemble Kalman methods for specifying the drift of a
single distinguished particle is inspired by the paper [38], in which the authors proposed using
stochastic differences as a surrogate for gradients in an ensemble-based optimization context.

In most applications, the space of the unknown parameter is R? but, for simplicity of
the analysis presented in Appendix A, we also consider the case where this space is the
d-dimensional torus T?. Therefore, we denote the parameter space by K¢, with K = R
or K = T. At the continuous-time level, our method is based on the following system of
interacting SDEs:

(2.1a)
. 1 < ,
=53 Z G(9),G(0) — y)r (69 — 0) — C(Z)2"10 — m) + v/2C(E) 0,

(2.1b)

9(3’):9_1_050')’ ji=1,...,J,
(2.1c)

. 2 . ; .

§0) =~ €0 4 [ 200, €0(0) ~ (0,1, j=1
where 0 € Kd 2= (W ... D) e (R, I is the R*? is the identity matrix, the processes
w and {w) J _, are independent standard Brownian motions, and

17
CE =35> Vo)
7=1

The processes {f(j)};]:l are stationary Ornstein—Uhlenbeck processes with invariant mea-

sure N(0, ;) and autocorrelation function e~/ % I;. The parameter 0 can therefore be
viewed as the square root of the characteristic time scale of the fast processes. The coef-
ficient v € {0,1} controls whether noise should be included in the equation for #: if v = 0,
then (2.1) is a method for finding the minimizer of the regularized least-squares functional
®p, i.e., the MAP estimator; if v = 1, then (2.1) is a method for sampling from the posterior
distribution 7 given in (1.3).

Note that (2.1) can also be employed without the prior regularization and with v = 0,
as a method for finding the minimizer of the nonregularized least-squares functional ®. This
formally corresponds to taking the prior covariance to be infinite, i.e., ¥ = ooly, and can be
useful when prior knowledge of the unknown parameter 6 is not available, or is not needed
because the problem is overdetermined. In this case, any parameter § € G~(y) is a steady
state of (2.1), which is not the case for the alternative derivative-free formulation (2.5) we
present below.
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Remark 2.1 (connection with the stochastic gradient descent). The method (2.1) is most
useful with o small, in which case, neglecting quadratic or smaller terms in o, the following
approximation holds:

(2.2) GOW)) — G0) ~ (6% — 0) - VG(H).

Using this approximation, we can rewrite the equation for 6 in (2.1) as

Mi

e
Il

1

(69 2 e®) Vo) - CE)T(O —m) + v/20(E)
VORr(0) +v/2C(E) w

The term C(Z) V®g(0) can be viewed as a projection of V®r(0;y) on the subspace spanned
by {¢M, ..., )} which shows a link with the stochastic gradient descent algorithm. For
large J, it holds formally that C(Z) ~ I; at all times, so the equation for # reduces to a
gradient descent when v = 0, or to the overdamped Langevin equation if v = 1, both with
respect to the potential ®p.

—-C(Z)

[1]

Remark 2.2. Note that (2.2) holds exactly when G is linear, for all ¢ > 0. In this case and
in the presence of noise (i.e., when v = 1), (2.1) admits as invariant measure the distribution

(2.3) poc(0,Z) = m(0) g(€W) ... g(¢\),

where g denotes the density of the standard normal distribution. The associated marginal
distribution for 6 is given by the Bayesian posterior distribution 7. To show that (2.3) is
indeed the unique invariant distribution when G is linear, we note that the Fokker—Planck
operator associated with (2.1) in this case is given by [71, Chapter 4]

Lip=Vy- (C(E)(V(I)R(H)p + Vgp ) 52 ngm < P+ ngp)

o (e () e (e ()5 e (2)

J=1

where D is the RU/TDxd(J+1) plock diagonal matrix with diagonal blocks C/(Z), & s la, ., %Id.

It is clear that ps in (2.3) is in the kernel of this operator. To show formally that the invariant
measure is unique, it suffices to multiply both sides of the equation £fp = 0 by p/pso and to
integrate over the state space K¢ x (R%)”, which gives

/Kd/Rd_../Rd C(2) vg(pf;>2 1 vf(”(,;)

and therefore p = po, necessarily.

2
Poo(0,2)deM . deM) g =0,
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For the purposes of analysis, we also consider a simplified version of (2.1) in which the

coefficient of the noise is independent of the fast processes £, ... £():

(2.4a) 0= —ﬁ ;(G(ew) —G(9),G(0) —y)r (8V) —0) — C(E)2"HO — m) + vV/2u,
(2.4b) V) = 0+o—5]<;>, j=1,...,J

(2.4¢) £0) = _5% €l 4 %wm_

Equation (2.4a) admits the same formal limit as J — oo or 6 — 0 as (2.1a), but it is simpler to
analyze because the noise is additive. We note, however, that the invariant measure associated
to (2.4a)—(2.4c) for finite J differs from (2.3), even in the case of a linear forward model.

Remark 2.3 (second alternative derivative-free formulation). Instead of (2.1) or (2.4), we
could also use a system of equations of the form

J
(2.50) 6— —% z; (®(69) — 25(0)) (09 0) +1\/20(F) v,
=

(2.5b) 0 =9 +oel),  j=1,...,J,

» 1 2
(2.5¢) €U) = —ﬁé(]) + 4 /?w(a).

This formulation has two advantages over (2.1) and (2.4): it does not require the prior distri-
bution to be Gaussian, and it does not rely on the specific quadratic structure of ® g in (1.2a),
making it more generally applicable. However, like (2.4), the system of equations (2.5) does
not admit (2.3) as invariant measure when J is finite, not even in the case of a linear forward
model.

2.2. Numerical discretization. To integrate (2.1) numerically, we employ the Euler—
Maruyama method for 6 and a closed formula for the exact (in law) solution of the Ornstein—
Uhlenbeck process for {£ (7) 3-]:1. We use the notation A to denote the time step and the nota-
tion (én, én), with 2, = (Aﬁbl), R A,({])), to denote the numerical approximation of (6,4, ZnA),
i.e., the numerical approximation of the continuous-time solution at time nA. We also denote
by N the total number of iterations and by 7" = NA the final time of the simulation. The
numerical scheme we propose reads

J

1 ~ ~ ~ ~ .
3 (Gl + o€D) ~ G(6.), G(Bn) — e €9 A
j=1

— C(E)2 Y0, — m)A + v\/2D(E,)A 2,
(2.6b) 0 e D p1—e ), D AN, L),  G=1,...,7,

where z,, = A_1/2(w(n+1)A—wnA) ~ N(0,1;) and :cgj), forn=0,....N—landj=1,...,J,
are independent N (0, I;) random variables. Here D(Z,) = C(Z,) or D(E,) = I , depending

(2.6a) Ops1 =0, —
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on whether a solution to (2.1) or to (2.4) is sought, respectively. At the numerical level, we
can consider the limit 6 — 07, in which case the numerical scheme (2.6) simplifies to

J
A A 1 A s ~ ~ s
s = o = 55 DGl +o8) = GO, Gll) — & &

— C(E)EZ (0, — m)A + v\/2D(E,) A

where éﬁf), forn =0,...,N—1and j =1,...,J, are drawn independently from N (0, I).
In the noise-free case v = 0, the algorithm in the form (2.7) is precisely what was proposed
and implemented in the paper [38], in the context of optimizing parameters of neural net-
works, and inspired the work presented here. This algorithm is simpler to implement and
analyze than (2.6), but may not always be the best option for the purposes of sampling and
optimization. Although we have found small values of § to be preferable in our numerical
experiments, it is indeed conceivable that problems with rugged energy landscapes may ben-
efit from stronger correlation between successive descent directions. We leave this question
for future work and, in all the numerical experiments presented in section 3, we use the
scheme (2.6) with § > 0 (but in most examples very small). We do, however, analyze the con-
vergence of (2.7) theoretically in Appendix A, as a first step towards proving the convergence
of (2.6).

(2.7)

2.3. Main results. In this section, we present and comment on our main results, which
are proved in Appendix A. In order to simplify the analysis, we assume throughout that the
state space of the parameter is the d-dimensional torus T¢, rather than R¢, and that the
prior distribution is the uniform density over T, in which case ®p = ®. In all our results,
the minimum regularity requirement on the forward model is that G € C?(T9 RK), but
we also present refined estimates in the case of a more regular forward model, namely, if
G € C3(T4,RK). In particular, the case of a linear forward model is excluded.

We first present a strong convergence result for the dynamics (2.4), which coincides with
the dynamics (2.1) in the absence of noise. More precisely, Theorem 2.1 establishes, in the
joint limit 6 — 0 and o — 0, the pathwise convergence of the stochastic process {0 }sc[07] to
the solution {¥¢},c(o,7) of the averaged equation

(2.8) Oy = —=VOR(V;) + V2, o = b.

Note that the Brownian motion and initial condition in this equation are the same as in (2.4),
which allows us to establish a strong convergence estimate.

Theorem 2.1. Assume that {6y, £t(1), e »fgj)}te[O,T] is a solution to (2.4) supplemented with
any initial condition (6’0,581), . ,féj)) such that
(2.9) €V, Y~ N(0,10) x - x N(0, I).
If G € C*(T4,RK), then for any p > 1, any J > 0, and any T > 0 there is C = C(p, T, J)
such that

(210) V(é,a) S R+ X R+, E ( sup ‘9,5 — ﬁt‘p> < C((Sp + O"Bp).

0<t<T
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The exponent B is defined as follows:

2.11) g {1 if G € C2(T4,RK),

2 if G € C3(TY,RK).

Remark 2.4. Tt should in principle be possible, but may prove technically challenging, to
extend our findings to R? Gaussian priors, and unbounded vector fields by using results
from [70]. Furthermore, although the convergence result is over a finite time interval, it
is to be expected that convergence of invariant measures might also be established, using
(for example) the ideas in [66] or [6, 7]. In this regard we notice that we have focused on
pathwise convergence on finite time intervals; typically only weak convergence results would
be required to obtain convergence of the invariant measure. Indeed weak convergence results
will be needed to study the formulation from Remark 2.3 because the noise is multiplicative.

Remark 2.5. Since knowing the convergence rates with respect to  and o is helpful for
the parametrization of the method in practice, we opted to explicitly consider both cases.
The critical change from two to three derivatives occurs because three or more derivatives are
required to exploit the mean-zero property of third moments of =. One might wonder whether
an even higher regularity of G could lead to better convergence rates in the limit ¢ — 0. An
inspection of the proof of Theorem 2.1 reveals this is not the case.

In order to balance the two error terms on the right-hand side of (2.10), one may choose
o « § when G € C*(T¢ RK), or just o « v§ when G € C3(T¢, RK). Since a larger value
of o seems to favor exploration of the state space, as suggested by the numerical experiments
in subsection 3.1, choosing ¢ o /0 might indeed be advantageous for convergence when
G € C3(T4, RF).

Next, we present the counterpart of Theorem 2.1 for the numerical discretizations (2.6).
We note that a weaker metric is employed in this result than in (2.10).

Theorem 2.2. Assume that {én,f,(ll), e () N_, is a solution to (2.6) with D(s) = I and

an initial condition (6o, él), . ,f(g“])) satisfying (2.9). If G € C%(T4,RK), then for any J > 0
and any T > 0, there exists a constant C = C(T,J) such that

2
(212)  V(5,0,A) € R, sup E |0, 19%‘ <C (A + 028 4 log(1+ 671 52) .

0<n<T/A

The exponent [ is defined as in (2.11).

Remark 2.6. Tt is straightforward to obtain an error bound for (2.7) from this result.
Indeed, denoting by 6,, the solution to (2.7) in order to differentiate it from the solution
to (2.6), it holds by the triangle inequality and (2.12) that, for all (§,0,A) € R3 and all
e >0,

2

_ 2 1 .
Gn—ﬂm‘ < <1+> sup E|d, — 6,
€/ 0<n<N

+(1+e)C (A + 0% 4 log(1+07Y) 52) .

sup E
0<n<N
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Here we used that, by Young’s inequality, it holds that (a + b)? < (1 + ¢)a® + (1 + %) b2
for any € > 0 and any a,b € R. It is clear that if é(gj), Agj), Agj), ... in (2.7) coincide with

ééj),xéj), :cgj) ... in (2.6) for all 1 < j < J, then the first term on the right-hand side vanishes
in the limit as § — 0. Therefore, letting 6 — 0 and then ¢ — 0, we deduce

~ 2
(2.13) Y(o,A) € Ry x R, sup E |6, — ﬁnA‘ <C (A + a2ﬂ> ,
0<n<N

where C' = C(T,J) is the same constant as in (2.12). In Appendix A, for clarity of expo-
sition, we will in fact first prove the convergence estimate (2.13) before showing the more
general Theorem 2.2.

Remark 2.7. In the limit A — 0, the error bound (2.12) becomes

. 2
sup E |0, — 79nA’ < (aQ’B + log(1 + 5*1)52> ,

0<n<T/A

which is almost as sharp as the bound obtained in Theorem 2.1. The presence of the extra
factor log(1 +0~1) in front of 62 indicates that it may be possible to obtain a sharper bound.

2.4. Accelerating convergence with preconditioning. In many applications, the condi-
tion number of the Hessian of & at and around the MAP estimator is very large. In this
situation, the fastest time scale of (2.8), i.e., of gradient descent (v = 0) or overdamped
Langevin (v = 1) dynamics, is much smaller than its slowest time scale. This is evident when
®p is quadratic, in which case the slowest and fastest time scales correspond to the reciprocals
of the smallest and largest eigenvalues of D2®p, respectively. As a result of this wide scale
separation, a very small time step, compared to the time scale of convergence, is required
in order to resolve the dynamics precisely using a numerical method. For explicit numerical
methods, a wide separation of time scales also leads to stringent constraints on the time step
in order to guarantee stability, leading to often prohibitive computational costs.

Empirically, we observe—see subsection 3.3—that our multiscale method suffers from a
similar issue, which is not surprising given that (2.4) converges to (2.8) as (4,0) — (0,0)
by Theorem 2.1. This is in contrast with the sampling and inversion methods for inverse
problems that are based on the ensemble Kalman filter, essentially because these methods
are affine-invariant [32]: they behave similarly across the class of problems that differ only
by an affine transformation. Ensemble Kalman methods can be viewed, at least in the case
of a linear forward model, as coupled gradient descent dynamics or overdamped Langevin
diffusions preconditioned by the covariance of the ensemble, which provides good stability
and convergence properties [31, 16].

To remedy this issue of overly restrictive constraints on the time step (relatively to the
slowest time scales of the problem), preconditioning can be incorporated in our multiscale
method. More precisely, given a symmetric positive definite matrix K, the dynamics (2.1)
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(resp., (2.4)) can be modified as follows:

(2.14a)
J
i JL Z G(OY)) — G(8),G(0) — y)r (89 — 8) — Cx(2)SH0 — m) + v\/2DK (2) 0,
(2.14b)
0U) =0 4+ o VKW, ji=1,...,J,
(2.14c)
£0) = go 2 00, €9D(0) ~N(0, 1)),  j=1,....J,

52

where Cx(Z) := VK C(E)VK and Dg(Z) = Ck(E) (resp., D (Z) = K). Under the linear
approximation

GODY — G(0) ~ (V) — ) - VG(H),

which is accurate for small o, we can rewrite (2.14a) as

0~ —Cxg(2)VPr(A) + v\/ 2D (),

which suggests that {6;}:;>0 should converge, in the limit as § — 0 and ¢ — 0, to the pre-
conditioned overdamped Langevin dynamics (1.4). In order to make this more precise, notice
that if the stochastic process {0, Z;}1>0 solves (2.14), then {u;, =t }i>0 := {VEK 101, Et }1>0 is
equal in law to the solution of (2.1) (resp., (2.4)) with the modified forward model

Gu)=G(WVEKu), ueRY

with the modified initial condition ug = v K160y, and with the modified prior parameters m =
VEK=Imand £ = VK-1SVK 1, i.e., with the prior distribution N (VK ~tm, VK- 1SVK-1).
In view of this connection, Theorems 2.1 and 2.2 apply mutatis mutandis to the dynam-
ics (2.14) with Dg(2) = K.

We motivate in subsection 3.3 that when the forward model is linear, a good precondition-
ing matrix K is given by the covariance of the Bayesian posterior. In practice, we observed
that preconditioning with the posterior covariance works well also for nonlinear forward mod-
els, provided that the posterior distribution is unimodal. We emphasize that this approach
to preconditioning can be applied both with (¥ = 1) and without (v = 0) noise. In order
to approximate the posterior covariance at a reasonable computational cost, we employ the
gradient-free ALDI (gfALDI) approach proposed in [31], which enables generating approxi-
mate samples from the Bayesian posterior. The ALDI method is based on the dynamics

L
) 1 _ _
00 = 2 3 (GOW) - G.GOY) ~ yr (¥ ~b)
k=1
—1p(0) d+1 5 - (0)
(2.15) —c(e)sL(9 —m)—i—T(@ P+ 20@ 0D, r=1,...,L
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where © = (1), .., 0(F)) and

1 L
o , .
0= ;1:9(), G=

)

1

~|

L
(=

The processes w®) are independent Brownian motions in R, C(©) = %2521(9(5) —-0)®

(00 — @) is the covariance matrix associated with the ensemble, and /C(©) is the R¥*L
matrix defined by

c(0) = & (6 —0) ... (L) —0)].

It holds that C(©) = /C(©)4/C (@)T, which motivates the square root notation. The first
argument in the inner product on the right-hand side of (2.15) is related to consensus, whereas
the second argument measures the mismatch with the observed data. In practice, the initial
ensemble members are drawn independently from the Gaussian prior distribution. When the
Bayesian posterior distribution is close to Gaussian, it is expected that each particle in the
ensemble is an approximate sample from the posterior for sufficiently large times. Therefore,
the expectation of an observable f with respect to 7 is approximated from ALDI iterates as

No+N L

(2.16) E,.f~ ﬁ | > Z(Sézm,
1=Np+1 ¢=1

where the first Ny iterations can be discarded for reducing the bias from initial conditions,
and where {éy)}izo is a discrete-time approximation of Y for ¢ ¢ {1,...,L}. The main
difference between ALDI and EKS is the presence of the second-to-last term on the right-
hand side of (2.15). It is shown by means of numerical experiments in [32] that this corrective
drift term, which was first identified in [68], is crucial for accuracy when the number of particles
L is of the same order of magnitude as the dimension of the state space d.

Although EKS and ALDI are self-preconditioned, these methods can suffer from stability
issues for small times when the posterior distribution is far from or much more concentrated
than the prior; this stiffness issue is discussed for the ensemble Kalman-Bucy filter in [4]. In
practice, it is often useful to proceed in two steps: (i) first, run Ny iterations with a small time
step, until the ensemble reaches a region of high posterior probability; (ii) then use a larger
step size for the rest of the simulation, and use only these iterations for the computation of
averages with respect to the posterior distribution, as in (2.16). The matrix K could also be
learned from the EKS, UKS, or CBS approaches to approximate sampling, rather than from
ALDI.

Before closing this section, we note that the local preconditioning approach developed
in [57, 79], based on localized covariance matrices, could potentially also be useful for improv-
ing the performance of our method. Once a rough approximation of the posterior has been
calculated using (2.1), for example, self-preconditioning could be achieved through a localized
covariance matrix constructed from all the previously generated samples that are in the vicin-
ity of the distinguished particle. It may be worthwhile to explore this idea in future work, but
in this paper we consider only preconditioning through a position-independent matrix K, as
in (2.14).
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3. Numerical experiments. In this section, we present numerical experiments demon-
strating the performance and limitations of our method. Subsections 3.1 to 3.3 serve as proof
of concept: in subsection 3.1 a toy inverse problem with low-dimensional parameter and data
is presented, in subsection 3.2 an example with bimodal posterior is considered, and in sub-
section 3.3 preconditioning is exemplified. A more challenging simulated example, closer to
inverse problems arising in real applications, is then considered in subsection 3.4.

3.1. Low-dimensional parameter space. We first consider the inverse problem with low-
dimensional parameter space that was first presented in [29] and later employed as a test
problem in [43, 31]. In this problem, the forward model maps the unknown (u;,us) € R? to
the observation (p(z1),p(z2)) € R?, where 21 = 0.25 and x5 = 0.75 and where p(z) denotes
the solution to the boundary value problem

d dp
1 — et — ) =1 1
(3.1) (P =1 ecnm,

with boundary conditions p(0) = 0 and p(1) = uy. This problem admits the following explicit
solution [43]:

2
_ —u (T
p(x) = ugx + e < 5 —i—2>.

We employ the same parameters as in [31]: the prior distribution is N'(0,02I5) with o = 10,
and the noise distribution is A'(0,7%I2) with v = 0.1. The observed data is taken to be
y = (27.5,79.7). Since (3.1) admits an explicit solution, the forward model can be evaluated
very quickly. As a result, obtaining a good approximation of the MAP with our multiscale
method takes less than a minute on a personal computer.

We first investigate the performance of the algorithm (2.6) when v = 0, i.e., when an
approximation of the MAP estimator is sought. All the numerical results related to this
problem were obtained with J = 8 auxiliary processes, with a fixed time step A = 1073, and
with 6y = (1,103) as the initial condition.

The effect of the parameter o, which encodes the radius of exploration around @, is illus-
trated in Figure 1. In the left panel, we present the trajectories of the solution 6,, obtained
with (2.6) for fixed small § = 10~7 and several values of . In the right panel, we present
the evolution of the error, in the Euclidean norm, along the trajectories. In contrast with
deterministic algorithms, the iterates produced by our method do not converge to a limit,
which is reflected in the fact that the error oscillates indefinitely at a small value as the sim-
ulation progresses. The reason for this is that there does not exist a value of # for which the
right-hand side of (2.1a) is zero for all = € (R%)’. We also notice that a larger value of o
seems to increase the convergence speed in the initial stage of the simulation, but it leads to
a larger error in the later stages, as the iterates get close to the MAP estimator.

The effect of the parameter §, which influences the correlation between the directions of
successive steps, is illustrated in Figure 2 for fixed ¢ = 0.1. We observe that the direction of
successive steps seems to oscillate more rapidly when § is small, which is consistent with our
understanding of the effect of this parameter. In this particular example, choosing a large ¢
does not appear to improve convergence.
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Figure 1. Left: Trajectories of the numerical solution 6y, for fized § = 1078 and different values of o.
Right: Error |0, — Omarl|2 along the trajectories, where Onap is the MAP estimator.
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Figure 2. Left: Trajectories of the numerical solution 6y, for fixed o = 0.1 and different values of 6. Right:
Error |0, — Omarl|2 along the trajectories, where Onviap is the MAP estimator.

Let us now investigate the efficiency of (2.6) for sampling from the posterior distribution.
For this simulation, we used the parameters § = 10~% and o = 0.01. We ran the simulation for
20,000 iterations and, discarding the first 1,000 iterates, we computed an approximation of the
posterior by kernel density estimation with the function gaussian_kde from the scipy.stats
module. The iterates 1,000 to 20,000, the approximation of the Bayesian posterior based on
these iterates, and the true posterior are depicted in the left, middle, and right panels of
Figure 3, respectively. It appears from the figure that the approximate posterior is close to
the true posterior. Indeed, the mean and covariance of the true and approximate posterior
distributions, given, respectively, by

oo (274, (0.0120.. 0.0288..
»~\104.346... ) © 7~ \0.0288... 0.0808... /"

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/25/22 to 155.198.30.86 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

300 G. A. PAVLIOTIS, A. M. STUART, AND U. VAES

Figure 3. Left: Iterates 1,000 to 20,000. Middle: Approximation of the Bayesian posterior based on these
iterates, using kernel density estimation. Right: True Bayestan posterior.

and

A —2.686... o= 0.0147... 0.0308...
P\104.411... ) P10.0308... 0.0866...

are fairly close.

3.2. Two-dimensional bimodal example. In this section, we consider a bimodal example
from [79], associated with forward model

G:R?30— |0, —6:)* €R,

noise distribution n ~ N(0, I3), and prior distribution A/(0,I3). This example is employed
in [79] for demonstrating the ability of an appropriately localized version of ALDI to sample
from multimodal distributions. We consider two different values for the data: y = 2 and
y = 4.2297, the latter value being the one used in [79]. In both cases, the posterior is bimodal
and so ensemble Kalman methods fail to accurately capture the Bayesian posterior, but the
energy barrier between the two modes is much higher when y = 4.2297, which makes this case
challenging also for our method.

The approximate posteriors for y = 2 and y = 4.2297, obtained from 10 iterations of our
method discretized using (2.6) with a time step A = 1072, parameters § = 0 = 107°, and J =
8 auxiliary particles, are depicted in Figures 4 and 5, respectively. Whereas gfALDI without
localized covariance fails for both values of y, our method gives a very good approximation
of the true posterior distribution when y = 2, which illustrates the strength of our method
compared to ensemble Kalman—based methods without localization.

For y = 4.2297, however, the posterior distribution appears to be well approximated by
our method within each of the two high-density regions, but the probabilities of these regions
are not accurately captured: only 33% of the iterates are such that 6, — 6; > 0, whereas this
fraction is 50% under the true posterior probability. This discrepancy is due to the strong
metastability of the dynamics caused by bimodality, and indeed the line 6, — 8, = 0 was
crossed by the iterates only 88 times during the simulation. For comparison, for y = 2 the
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Figure 4. All figures are for y = 2. Left: Approximation of the Bayesian posterior constructed by kernel
density estimations from 10° samples generated with gfALDI. Middle: Approzimation of the Bayesian posterior
constructed from 10° iterations of the multiscale method. Right: True Bayesian posterior.
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Figure 5. All figures are for y = 4.2297. Left: Approzimation of the Bayesian posterior constructed by
kernel density estimations from 10° samples generated with gfALDI. Middle: Approzimation of the Bayesian
posterior constructed from 10° iterations of the multiscale method. Right: True Bayesian posterior.

proportion of iterates such that 69 — 61 > 0 was 50.8%, and the line 65 — 6; = 0 was crossed
33,492 times. This example shows that strongly multimodal distributions are challenging for
our method, which is not surprising given the connection with overdamped Langevin dynamics
established in Theorem 2.1.

3.3. Toy example with preconditioning. We now illustrate the preconditioning method-
ology proposed in subsection 2.4 for a simple inverse problem where the forward model is
given by the linear function G : R? > 6 ~ (01, k2, k?03) with k = 5. We choose the other
parameters of the inverse problem as follows: y = (1,k, k%), ¥ = +ocl3 (that is, there is no
prior regularization), and I' = I3, so that the MAP estimator is Oyap = (1,1,1) and the
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least-squares functional is given by
1
(3.2) ®(0;y) =5 (161 — y1* + K102 — yao|* + K403 — ys|*) .

The largest eigenvalue of the Hessian of ®(e;y) at Oyap is equal to k*, so if we were to use
a gradient descent for (3.2) with the explicit Euler method in order to find the minimizer of
®(e;y), then the constraint on the time step A in order to ensure stability would be that
E*A < 2. Since our method converges to a gradient descent in the limit as § — 0 and o — 0,
it is reasonable to expect that a similar constraint should hold to ensure stability of (2.6),
and this is indeed what we observed numerically; in particular, we verified in the case where
o = =107 that (2.6) is stable when A = 1/k* but unstable when A = 3/k*.
For this problem, the covariance of the Bayesian posterior is given by

1 0 0
K=[0 & 0
0 0 &

This is clearly the optimal preconditioner for calculating the MAP estimator. Indeed, in this
case, the limiting equation associated with (2.14) in the limit as max(d,o) — 0 is

(33) dgt = —(Gt — eMAP) dt + vvV2K dwt.

When employed for integrating this equation with v = 0, the explicit Euler scheme is stable
for time steps satisfying A < 2. In practice, we approximate the preconditioning parameter K
from 100,000 iterations of gfALDI, run with 5 particles initialized independently as N(0, I3)
and discretized using the Euler—-Maruyama method. The first 10,000 iterations are run with a
small time step A = 1073 to avoid stability issues, and they are discarded for the computation
of the posterior covariance in order to reduce the bias originating from initial conditions. The
remaining 90,000 iterations are run with a larger time step A = 1072, which does not lead
to stability issues in the later stages of the simulation thanks to self-preconditioning by the
ensemble covariance. We employed L = 5 particles because it was shown in [32] that choosing
L > d+ 1 ensures that the continuous-time ALDI dynamics with gradients (which coincide
with gradient-free ALDI dynamics in the case of a linear forward model) is ergodic with respect
to the product measure 7w X --- X w, where 7 is the Bayesian posterior. Using this approach,
we obtain a good approximation of the posterior covariance:

R 1.00... 0.00553... —0.000302...
K= 0.00553... 0.0399... 6.48... x 107°
—0.000302... 6.48... x 107 0.00154...

The effect of using this preconditioner is illustrated in Figure 6 in the case where (2.6) is
used in optimization mode, i.e., with v = 0. The left and right panels present the evolution
of the error with and without preconditioning. The parameters employed are ¢ = § = 107
and J = 8, and the time step was set to A = 1 with preconditioning and A = 1/k* without
preconditioning. The initial condition taken in both cases was fy = (0,0,0)7. It appears
clearly from the figure that preconditioning significantly accelerates the convergence.
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Figure 6. Error between the iterates and the MAP estimator, without (left) and with (right) preconditioning.
Here the label n of the x axis denotes the iteration index. We observe that a better approximation of the
MAP estimator is obtained after 20 iterations with preconditioning, rather than after 2,000 iterations without
preconditioning.

In practice, the mean of the ensemble obtained after application of gfALDI is also useful;
it can be employed as initial condition for (2.14). This is the approach taken in the next
section.

3.4. Higher-dimensional parameter space. We now present an example from [31] in
which the calculation of the forward map requires the solution to a partial differential equation
(PDE) in two dimensions and is therefore computationally expensive. More precisely, we
consider the inverse problem of finding the permeability from noisy pressure measurements
in a Darcy flow. This problem falls into the framework developed in [23], and it is natural
to model it as an inverse problem with infinite-dimensional parameter space. In order to be
amenable to the numerical methods developed in this paper, however, the problem needs to be
discretized; this requires defining a finite-dimensional approximation space for the unknown
parameter and specifying a numerical approximation for the calculation of the forward map.
We begin by presenting the inverse problem in its natural infinite-dimensional setting, and
then we give the associated discrete approximation, which we solve numerically using (2.6)
together with the preconditioning approach proposed in subsection 2.4.

At the infinite-dimensional level, the abstract inverse problem we consider is that of esti-
mating the logarithm of the permeability profile, denoted by a(x), based on noisy measure-
ments of the solution p(z) to the PDE

(3.4a) -V- (e“(x) Vp(z)) = f(z), x e D,
(3.4b) p(z) =0, x € dD.
Here D = [0,1]? is the domain and f(x) = 50 represents a source of fluid. For the prior

distribution, we employ a Gaussian measure on L? (D) with mean zero and precision (inverse
covariance) operator given by

R N

equipped with Neumann boundary conditions on the space of mean-zero functions. The
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eigenfunctions and eigenvalues associated with the covariance operator are given by
—Q
Yo(z) = cos(m(lzy + laxa)), Ao = (772 0% + 7'2> ) ¢ e N2

The parameters 7 and « control the characteristic length scale and the smoothness of samples
drawn from the prior, respectively. For the numerical experiments presented in this section,
we take the same values for these parameters as in [31]: 7 = 3 and a = 2. In this setting, it
can be shown by reasoning as in [23, Example 2.19] that the log-permeability a(x) is almost
surely continuous on the closed set D, so there exists a unique solution p € H'(D) to (3.4)
almost surely.

If a(z) ~ N(0,C), then E((a,¢) (a,%m)) = A¢dem by definition of the covariance op-
erator and by orthonormality of the eigenfunctions {1y }scn2, where (e, ) denotes the inner
product in L? (D). Since a(z) is almost surely in L? (D), we deduce that, almost surely,

(3.5) a=Y (a9 ve=Y Vb,

(ENZ2 LeEN?2

where the factors {0}scn2 are independent N (0, 1) random variables. This is the Karhunen—
Loeve (KL) expansion, which can be used as a starting point for the definition of probability
distributions in infinite dimensions; see, e.g., [23] for more details.

In theoretical works on Bayesian inverse problems of the type considered in this section,
the data are usually modeled as the values taken by a finite number of continuous linear
functionals 41, ..., ¢k over H(D), when evaluated at the solution p to (3.4), perturbed by
additive Gaussian noise. That is, the forward model maps the unknown permeability a(e) to

(zl(p),...,fK(p)) e RE.

In practice, however, we consider that the data consist of pointwise measurements of the
solution to (3.4), up to noise. We assume that these are taken at a finite number of equidistant
points given by
(3.6) xij:<l,]>, 1<ij<M-—1.

M M - -
Since pointwise evaluation is not a continuous functional on Hg(D), our example deviates
here from the framework in [23]. As mentioned in [31], pointwise evaluation could in principle
be approximated by integration against a narrow mollifier, which would ensure continuity of
the functionals, but we do not discuss this here. We take the distance between measurement
points equal to 1/10, i.e., M = 10, and we work with the noise distribution N'(0,v%If ), with
v =0.01 and K = (M —1)%

In order to approximate the solution to the inverse problem numerically, we truncate the
KL series (3.5) after a finite number of terms and take this truncated series as the object of
inference. More precisely, we take as unknown the vector of parameters 6 = {6, : |(| < N} €
ROHD? " and as prior distribution the Gaussian N(0,1;), with d = (N + 1)2. For each 6 ¢
R(N+1)2, a log-permeability field is constructed by summation as a(e; ) := z\f\o@SN NOYXE
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and the corresponding solution to (3.4) is approximated with a finite element method (FEM).
This defines an inverse problem with finite-dimensional parameter space, which is amenable
to (2.6) or (2.7). In practice, we use N = 7, leading to a state space of dimension 64,
and an FEM using quadratic elements over a regular mesh with 20 elements per direction,
implemented with Gridap [5]. Below, we refer to this inverse problem as the finite-dimensional
inverse problem, in order to distinguish it from the inverse problem with infinite-dimensional
parameter space it aims to discretize.

In order to generate data for the finite-dimensional inverse problem, we employ the same
FEM as is employed in the numerical algorithm for the evaluation of the forward model, with
a true permeability also given by a truncated KL expansion using as many KL terms as in
the numerical inference, i.e.,

(3.7) al(@)= > VMO, 05 ~N(0,1).

oSN

Clearly, this does not provide a sample from A (0,C), but it does provide a sample consistent
with the prior distribution assumed in the finite-dimensional inverse problem. The logarithm
of the true permeability field, as well as its MAP approximation by (2.6) with v = 0, is
illustrated in Figure 7. The preconditioning matrix K is calculated using the methodology
outlined in subsection 2.4 by running 200 iterations of gfALDI with an ensemble size equal
to 512; the first 100 iterations are employed for transitioning from the prior to a rough
approximation of the posterior, using the adaptive time-stepping scheme of [53], and then
gfALDI is run with fixed time step for an additional 100 iterations, and only these iterations
are used for the approximation of the posterior distribution.

The MAP estimator calculated from 300 iterations of the multiscale method (2.6), with a
fixed time step equal to A = 0.02, parameters 6 = o = 1077, and J = 8 auxiliary processes, is
illustrated in Figure 7. It appears from the figure that the MAP estimator obtained is close
to the truth; denoting by OMAP the MAP estimator, we indeed calculate that

2
HQT _ aMAPHLQ(D) - \/ZEOOQV Y] ’0} - eyAP‘

latllz2p - 2
) Z|£|OO§N Ae ‘9”

showing that the relative error is approximately 12%.

We now turn our attention to the problem of sampling from the Bayesian posterior. The
marginals of the posterior associated with the first 16 KL coefficients, obtained by kernel
density estimation from 20,000 iterations of the multiscale method (2.6) with » = 1 and all
other parameters unchanged, are illustrated in Figure 8. In the same figure, the marginals
of the approximate posterior distributions calculated using gfALDI and MCMC are depicted.
The MCMC method employed is a variation on the preconditioned Crank—Nicolson (pCN)
algorithm described in [21]. Specifically the proposal is based not on the prior Gaussian but
on a Gaussian distribution N (m, aK); that is, given 6,, the proposal for 6,1 is

(3.8)

=0.116...,

0;+1:m+ 1_/82 (en_m)+/85na anN(0,0éK).
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Figure 7. Logarithms of true (left) and approzimate (right) permeability profiles. The approzimate perme-
ability profile was constructed from the approzimation of the MAP estimator provided by (2.6) with v = 0. The
black dots are the observation points.
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Figure 8. Approzimate posterior samples produced by (2.6) with v = 1, without model misspecification.
From these posterior samples, the marginal distributions of the KL coefficients were approrimated by kernel
density estimation using Gaussian kernels; they are depicted (nonnormalized) in solid lines. The crosses are
the true values of the coefficients, i.e., the values employed to generate the data.

The parameters m and K are set to the mean and covariance of the posterior estimated by
gfALDI, respectively, and a scaling factor a > 1 is employed to ensure that the posterior
distribution is absolutely continuous with respect to N (m,aK). To generate the numerical
results in Figure 8, we ran 20,000 iterations of this method with § = 0.1 and o = 4. The
agreement between the true parameter and the posterior samples is good overall, and the
agreement between the approximate posteriors is also very good.
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4. Conclusions and perspectives for future work. In this paper, we introduce a new
derivative-free and adjoint-free method for solving Bayesian inverse problems, specifically for
the tasks of sampling from the Bayesian posterior or finding the MAP estimate. The method
relies on a gradient approximation with a structure similar to that in the ensemble Kalman
methods for sampling (EKS, ALDI) and inversion (EKI); a similar gradient structure was
identified within the “analysis” step of the EnKF in the paper [78]. In contrast with these
algorithms and other approximate sampling methods such as UKS and CBS, however, the
method we propose is provably refinable over a bounded time interval: using tools from multi-
scale analysis, we prove strong pathwise convergence to the gradient descent or overdamped
Langevin dynamics, depending on whether it is employed for inversion or sampling, respec-
tively. Although we show this result for the particular case where the state space is the
d-dimensional torus, we believe that it should be possible, using results from [70], to extend
our results to the case of an unbounded parameter space.

Since our method is a variation on standard gradient descent, it suffers from slow conver-
gence when the Bayesian posterior exhibits strong anisotropy or, relatedly, when the Hessian
of the regularized least-squares functional has a large condition number in the part of the
domain close to the MAP estimator. In order to remedy this possible issue, we propose a
preconditioning methodology based on information from ALDI (or EKS, UKS, CBS), and we
demonstrate its efficacy for both inversion and sampling through careful numerical experi-
ments.

Several exciting research avenues remain open for future work. On the theoretical front, it
would be interesting to obtain a uniform-in-time weak error estimate, both for the continuous-
time dynamics and its discrete-time approximation. This might prove challenging even in the
case of a compact parameter space, because the state space of the auxiliary processes employed
for the gradient approximation is unbounded. Relatedly, it would be useful to obtain a bound,
in terms of the parameters ¢ and ¢ and in an appropriate metric, on the distance between
the true Bayesian posterior and that approximated by the method, i.e., the #-marginal of the
invariant measure of (2.1); the ideas developed in [6, 7, 66] might be useful in this regard. It
would also be interesting to study other time discretizations of (2.1a) than the one employed in
this paper; for example, we could consider discretizations where Bernoulli random variables are
employed instead of exact (in law) Brownian increments, which should not change the weak
convergence properties of the method [52], or semi-implicit discretizations (which preserve
linearity of the updates) based on the formulation of ensemble Kalman methods in [53, section
4.3.3]; the diagonally semi-implicit modification of the forward Euler scheme used in [4] in
the context of the ensemble Kalman—Bucy filter may also prove useful for developing efficient
time-stepping schemes. Finally, one could study the mean field J — oo and averaging 6 — 0
limits for the alternative derivative-free formulation (2.5).

On the practical side, it will be important to determine how the method can be coupled
to more efficient or less computationally expensive preconditioners than those computed from
ALDI or EKS, or how these methods, and related methods such as UKS and CBS, can be
accelerated. One may also explore questions related to the parametrization of the multiscale
method. Since a larger value of the parameter o in (2.1) seems to be associated with faster
convergence initially but a larger error later on, as noted in the description of Figure 1, it
would be interesting to investigate whether a computational gain can be obtained by adapting
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o during a simulation. One might, for example, start the dynamics with a relatively large
value of ¢ in order to favor exploration initially, and then progressively decrease this parameter
in order to increase accuracy once the distinguished particle has reached regions of high
posterior probability density. Finally, it would be interesting to study more precisely and
more generally the influence of the parameter J, in order to determine, for example, whether
a large value of this parameter can be advantageous for promoting exploration in rugged
landscapes. Our numerical experiments in this paper suggest that choosing > 0 may not be
advantageous for convergence, and if this is consistently observed, then the simpler discrete-
time formulation (2.7) corresponding to the case § = 0 should be preferred over (2.6).

Appendix A. Proof of the main results. Throughout this section, we consider that the
number of particles J is a fixed parameter. We often denote the drift in (2.1a) by

J
F(0,5) = Jiz G(6+o€D) = G(0), G(6) — y)r €9

We recall that we are working on the multidimensional torus T¢ with a uniform prior, so
®r = ®. If the forward model satisfies G € C3(T? RX) then, by Taylor’s formula, it holds
for all (6,¢) € T? x R? that

§< (6 +0€) ~ G(0),G(6) ~ y)r &

K K
(A1) BARALURE DI k(€26 s D*Gu(0)) (Gul8) — )¢
2K K o
=YY e (€@ €0 ) DUCHO + ko)) (Gol) e )¢
k=1 (=1

for some a € [0, 1]% depending on 6, ¢, and . Here (@€ € R and £@E@¢ € RY*4*? denote
the matrix and third-order tensor with components (£ ®§);; = &&; and (€ @Rk = &i&jék,
respectively. We used the notation D2Gj(6) € R¥? for the Hessian of G} at 6, and the
notation D3G(6) € R¥*¥*? for the tensor of third derivatives of G}, at 0, i.e., the third-order
tensor with components (D3Gg);0(0) = 9;0;0,Gy(0). The symbol : denotes the Frobenius

inner product on R%*?, and the symbol : denotes the R4*¥*¢ inner product defined by S:7T =
S 31 Yy SipeTjn for S, T € R,
Equation (A.1) motivates the following notation:
Fy(0,Z) = ~C(E)Ver(0),
1 K K
= -1 (1) & 0 . D2 - )
Fi(0,2) = —55 330 > (0 (69 @69) : D°Gi(6)) (Gul0) — ).

Fy(0,8) = —(F7(0,2) — Fy(6,2) — o F1(0,E)).
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With this notation, the multiscale system (2.4) can be rewritten as

0= Fy(0,2) + o F1(0,2) + 02 F5(0,2) + vv/2u,
» 1 . o .
§(J>:—§§U)+ ﬁw@)’ j=1,...,J.

If G € C?(T? RX), then by Taylor’s theorem

J
(A.2) V(0,2) € T? x (RY),  [F7(0,2) — Fo(0,E)| < Co Y _[¢V)?
j=1
for a constant C' independent of ¢. Likewise, if G € C3(T¢, RX), then by (A.1) it holds that
J
(A.3) V(0,2) e T x RY,  |F7(0,5) — R(0,2) — oFi(0,5)| < Co® > _|€V)]*
j=1

for a possible different constant C, also independent of o. We divide the proof of Theorem 2.1
in two parts. In the first part, we assume that the forward map satisfies only G € C?(T?, RX),
and in the second part we obtain a refined estimate for when G' € C3(T% RX).

Proof of Theorem 2.1 when G € C*(T RX). Our approach for this proof is based on [74,
Chapter 17]. Throughout the proof, C' denotes a constant independent of § and o that is
allowed to change from occurrence to occurrence. The generator of the dynamics associated
to (2.4) is given by .

L=5

£0+£17

where
J .
Lo=) =9 Vi + Lewi,
j=1
L1 =-C(E)VPR(Y)-Vo+ (FI(0,E) — Fy(0,E)) - Vg + vy.
Let ®% denote a mollification with parameter € of ®g, as defined in Lemma B.2. Since

® € C?(T¢,R) by the assumption that G € C?(T¢, R¥), it holds by the standard properties
of mollifiers that

(A.4) Vie{l,....d}, (105, Pkl oo (pay < 106, PRIl Loo (pay
and similarly for the second derivatives. The Poisson equation
1< . .
—LoA(E) = C(E) ~ la = 5 ;@0) ® €9 — 1)
admits as unique mean-zero solution
(A.5) A®) = = ij(s“') ® V) — 1),
2J =
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Applying It6’s formula to the function ¥(0,=2) = A(Z) VO%(6), we obtain

1

t t
W(0;,Z) — (0o, Z) = 52/0 (Id—o(as))v¢§(9s)ds+/o (F7(05,Z5) - Vo + vL9) (65, Z5)ds

J
n \/g ; /0 (@) V)00 Z,) + 0V /0 (A, - Vo) (s, =)
Since the rigorous interpretation of the It6 SDE (2.4a) is in integral form, we have
0, — 0o = — /Ot C(Z,)VPR(0,)ds + /Ot(F"(HS,ES) — Fy(0s,Es)) ds + vv/2uwy,
and so we deduce
O; — Oy = — /Ot Vog(0s)ds + /Ot (I — C(E5)) (VPR(0s) — VO3H(65)) ds
+ /Ot (F7(05,Z5) — Fo(0s,Zs)) ds + vv2w; + 62 (10, Z¢) — ¥(00, Zo))
— 52 /Ot (F7(05,Zs) - Vo + vLg) (05, Z5) ds — My — 62Ny,

where M; and N; are the martingale terms:

J J
Mt = \/§ Z/t <dng) . Vé(j)) Qp(gsaES) = ZMt(j)v
j=1"70 j=1

t
Nt:uﬂ/o (dws - Vo) (65, Zs).

Using the fact that ¢ solves the averaged equation (2.8) with the same initial condition and
Brownian motion, we deduce

t t
O — 0 = — /O (VOR(0,) — VOr(0,)) ds + /O (I — C(24)) (VOR(0) — VO%(0,)) ds
t
+ [ (70020 = Fof6,20) ds+ (000, %)~ 0160, %)
— 52 /t (F7(05,Es) - Vo + vlg)1h(0s,Z5) ds — 6M; — 5°Ny.
0

Let e; = 6, — ;. Using the Lipschitz continuity of V®p in order to bound the first integral on
the right-hand side, the bound (B.3) for the second, the bound (A.2) for the third, the simple
inequality (A.4) for the fourth, and the bound (B.2) for the fifth, noticing that this bound
implies the inequality

v(0,5) € T x (R, max{|Voui(0,5)

J
| D3 i (6, E)‘F} < Ce™! (1 + Z |§(j)‘2>
=1
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for all € {1,...,d}, we obtain

J

t t J et
ley| gL/ |es\ds+C’5/ 1+ [ ds+CaZ/ €9 ds
0 0 =170
7=1

J=1
’2

2 [ O L S| e)
+C8 Z‘fo ’ +Z‘§t
=1 =1

)
ggﬂ‘ ds + & | M| + 6% | Ny .

t J
+ 5%t / 1+
0 =

Here L is the Lipschitz constant of V®pr. Raising to the power p, letting ¢ = §, taking the
supremum, and taking the expectation, we obtain

t t J
E(Sup !es!p> SCT“/ E\es\”ds+05PTp1/ (1+ZEI£§”\2P> ds
0 0

0<s<t =

J t J . J .
w0t S [CEIED P as+ oo (Sl + o ( sup 16 )
=170 j=1 j=1 st

0<s<

t J 15
+ c&pr—l/ 1+ E ‘ggﬁ‘ ") ds + Co'E < sup |Mt|”> + C6PE ( sup |Nt|”>
0 -
J=1

0<s<t 0<s<t

for all t € [0,T]. Since & M, ..., €Y) are identically distributed stationary stochastic processes,
their moments are constant in time and they coincide, so we deduce

t
E < sup |eslp> SC/ E ( sup |eu|p> ds + CoP + O + C*PE < sup |£§1)]2p>
0

0<s<t 0<u<s 0<s<t

+ CoPE ( sup \Mt]p> + COPE ( sup ]Nt]p) vt €[0,T].
0<s<t 0<s<t

By Lemma B.1, there exists a constant C' depending only on p such that

T\ N\ P/2
(A.6) v6>0, E ( sup ‘ét(l)‘p) <C <1 +log <1 + 52>> .

0<t<T

T

Therefore, since
it holds that

(A7) ¥6 e (0,1, O’E ( sup \51121’) <C.

0<t<T
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Let us now bound the martingale terms. Using the fact that the summands in the definition
of M; are identically distributed and using the moment inequality [64, Theorem 7.2], which is
valid for p > 2, we obtain

J

A | P p

E ( sup Mt|p> <E{7Y sup ‘Mt(j)‘ - JPE( sup ‘M}”‘ )
0<t<T j=1 0<t<T 0<t<T

P z vo [T »
< JP T E‘V 0, = ) at,
< (p_ 1) ? /0 ¢ (04, 5) .

where |¢|p denotes the Frobenius norm. Since V®p is bounded on T? and the moments of

t(l), ey t(J) are constant in time, we obtain the bound

—2
Wp>2, W¥T>0, E[ sup [MP)<cr
0<t<T

and for 1 < p < 2 we have

E ( sup |Mt|p> <E ( sup (1 + \Mt|2>> —1+E ( sup Mt|2> <1+CT.
0<t<T 0<t<T 0<t<T

Similarly, for fixed T it holds that

Vp > 1, E( sup |Nt]p> <C.
0<t<T

Using these bounds together with (A.7), we obtain

t
E(sup \esp> SC/ E( sup \eu]p> ds+ Co? + CP.
0

0<s<t 0<u<s

We then obtain the required bound by Grénwall’s inequality, which concludes the proof. MW

Proof of Theorem 2.1 when G € C3(T? RX). The idea of the proof is the same. The only
difference is that now we consider additionally the Poisson equation

—Lo(E;0) = —F1(6, ).

For the sake of simplicity, we consider only the case where v = 0, in which case a regularization
in the same spirit as (B.1) is not necessary. Since the right-hand side is a cubic polynomial
in €M W) for fixed 6, its average with respect to the invariant measure of Z is zero
and the solution to the equation is itself cubic (with only cubic and linear terms) in the
variables €M), ... €)). Indeed, the eigenfunctions of Ly are given by tensor products of
Hermite polynomials; see, for example, [71, section 4.4] and [1]. Therefore, after applying
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Itd’s formula to the function (0, =Z) := A(Z) VPR(0) + ¢(=;60), we obtain

t t
0, — 0y = —/ VD p(0) ds + V2w, +/ (F7(0,,Z4) — Fo(0s,Zs) — 0 F1(6,,Z4)) ds
0 0
t
+6%(p(0:,Z1) — (00, Z0)) — 52/ F7(05,Z5) - Vop(0,2) ds
0

J ot . t
+0v2 Z/O (dng) ’ V&(J’)) ©(0s,Es) + v*V/2 /0 (dws - Vo) (b5, Es).
j=1

By (A.3), the last term on the first line leads to a bound scaling as 0?P. The other terms are
bounded as in the proof of Theorem 2.1 in the case where G € CQ(Td, RX ), which is possible
because, like ¢ in that proof, the function ¢ and its derivatives are polynomial functions in
the variables ¢, ... ¢), |

A.1. Analysis of the discrete-time numerical method. Before showing Theorem 2.2, we
show a preparatory result.

Proposition A.1. Assume that G € C2(T% RE) and let 0, be the solution obtained by (2.7).
Then there exists a constant C = C(T,J) such that

V(o,A) e R" x R, sup E |6, — 9na

2
<C (A + O—Zﬂ) ,
0<n<N

where

5 1 if G e C*(TY),
2 ifGe (T

Proof. Our strategy of proof is loosely based on that of [27, Theorem 2.4]. Let us denote
by {9}, the Euler-Maruyama approximation of the solution {Vt}eepo,r) to the averaged
equation (2.8), i.e., the discrete-time solution obtained from the iteration

(A.8) Ong1 = Un + VOR(0) A+ 1V2A 2, Do = by.

By the standard theory of numerical methods for SDEs [35, 52], the difference between ¥,,a
and its approximation ¥, satisfies the bound
2
< CA.

Here and below, C' denotes a constant independent of o and A that is allowed to change from
occurrence to occurrence. Subtracting (A.8) from the equation for 6, (2.7), we obtain that
the error e, := 6,, — 1,, at step n satisfies

'l§n - ﬁnA

(A.9) E ( sup

0<n<T/A

entl = en + (F”(én) + C(én)Vdj)R(én)) A+ (V¢R(én) - van(én)) A
+ (VOR(,) ~ C(E)VER(0,)) A
=e, + X, A+ Y, A+ Z,A.
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Therefore
Eleni1]” =Elen + AXp + AY,|? + A’E|Z,° + 2AE((en + AX,, + AY,) - Zy,).

Using the tower property of conditional expectation, it holds that
IE (en - Zo)| = ’E (E(en Za én,vfln))’ - ‘E (n - E (20| én,én)>( =0,

because, by the definition of Z,, and the fact that 57(11), . ,f,({]) are independent of 6,, and U,,, it
holds that E(Zn | O, 79”) = 0. Thus, since by Young’s inequality (a+b)? < (1—1—5)@2—1—(1 + %) b2
for any a,b € R,

Elen1|> =Elen+ AX, + AY, )2 + A2E|Z, > + 2A%E(X,, - Z + Y - Z2)
(A.10) < (1+A)Een]* + (24 + 3A%) (E X, + E|Yo]?) + 3A%E | Z,|*.

We now bound the terms one by one.
e By (A.2), it holds that
J
113
¥(0,Z) € T x (RY)!,  |F7(0,5) + C(E)VOx(0)| < Co Y \g@‘ .
j=1

Taking the expectation and using the fact that the moments of 57(11), ey Aq({]) are con-

stant in n, it holds that E|X,|* < Co?. If G is three times differentiable, we can carry
out the Taylor expansion to the next order as in (A.3), leading to the refined bound
E|X,|*> < Co’.

e The expectation of \Yn|2 can be bounded by using the Lipschitz continuity of @ g:

~ N 2
E|Y,2=E ‘V@R(ﬁn) —VoR(0,)] < CElen?.

e To bound E |Z,|?, we use the fact that ® g is uniformly bounded and that the moments

of gff), e ,5%1) are constant in n:
A2 . .12
(A.11) E|Z,|> < 2E ‘chR(en) +2E ‘C(En)V®R(9n) <c.

Going back to (A.10) and combining the bounds, we deduce
Vo<1,  Elens1)’ < 1+ A)E|en]? + CA(0* + Elen|?) + CA
< (1+CAE|en> + CA (02/3 + A) .

Let € = 02® + A. Applying the previous bound recursively,
Eleni1]> < (1+CA)((1+ CA)E |en1|* + CAc) + CAe

< < (14 CA" T Eleg)? + CA Y (14 CA)
i=0
< Eleol? €“T +(nA)eCT Ce < C(E |eg|* + ).

Since E|eg|* = 0, and in view of (A.9), this concludes the proof. [ ]
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We now prove the more general Theorem 2.2, which concerns the discrete-time dynam-
ics (2.6). To this end, 1t is useful to introduce, for j = 1,...,J and n = 0,..., N, an

approximation ’U(] of f in (2.6b) such that the processes U( O} have a compactly supported
autocorrelation function. Notice first that, with the same notation as in (2.6), the following

holds:
N ) W

In order to work with iterates that are uncorrelated when far apart in time, it is natural to
define the approximation

s if n < M,
(A.12) o) = N
1 e 22 S M:L'(J) e (M if n > M.
We denote the collection (@7(11), .. A(J)) by T,. The following lemma, proved in Appendix C,

is useful in the proof of Theorem 2 2 below.

Lemma A.2. Let {'Un N, and {fn N o, forj=1,...,J, be the discrete-time processes
obtained by (2.6b) and (A.12). Then the following bound holds for a constant C' independent
of 0:

£0) _ 0" < comt MR

n

(A.13) vje{l,....,J}, Vne{0,...,N}, E

Consequently, it holds that

o A 2
(A.14) vn € {0,...,N}, E|C(T,) - CE,)| <Ce” 2(M+1) 45

)

where we used the notation C(Y,) = 7 Z] L O o9 @ 0{).

Proof of Theorem 2.2. Throughout the proof, C denotes a constant independent of 9, o,
and A, allowed to change from occurrence to occurrence. Let e, = én — 1%, where 1§n is as
defined in (A.8). In view of (A.9), it is sufficient to obtain a bound on e, with the same
right-hand side as in (2.12). Using the same definition for X, and Y, as in the proof of
Proposition A.1, we have

ent1 =en + XA+ Y, A+ Z, A+ WA,

now with
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Using the fact that eg = 0, we deduce

2 2 2 2

n—1 n—1 n—1 n—1
lenl AN X | +4A2 D V| +4A% D Z, | +4A2 D)W,
m=0 m=0 m=0 m=0
n—1 n—1 n—1 n—1 2
<AnA? Y X2+ 40D T VP 4+ AnA? ) | Z P 402D W,
m=0 m=0 m=0 m=0
Consequently, for n < T /A,
(A.15)
n—1 m—1 2
sup Elen|? <ATAD (E|Xp[* + E Y + E[Z,%) +4A% sup |E|> W,
0<m<n m—0 0<m<n =0

The first term is bounded as in the proof of Proposition A.1. For the second term, we use the
Lipschitz continuity of ®r to deduce

~ ~ 2
E|Y,|?=E (WR(em) - V(I)R(ﬁm)‘ < CE|en|? < C swp B leol?.

For the third term, we use (A.14), which gives

" ~ 2
E|Z,° < CE ‘C(Tn) —-C(E,)] < e 2MHD) 5

In order to bound the last term of (A.15), we calculate

m—1 2 m—1m—1
E|) W = E(W, - W},)
=0 =0 k=0
m—1 m—1 ((+M)A(m—1) m—1 m—1
=Y EW/F+2> Y EW, W) +2 E(W, - W)
=0 =0 k=0+1 0=0 k=0+M+1
m—1 m—1 m—1 m—1
SO EW P +2M) EWA+2) 0 > EW W),
=0 =0 =0 k=0l+M+1

Since V®p is bounded and the moments of @ﬁ{ ) are bounded uniformly in n and j, we can
bound the first and second sums, which leads to

2

m—1 m—1 m—1
(A.16) E|) W, <Cm(1+2M)+2> > EW, W)
£=0 =0 k=(+M+1

We now bound the second term uniformly for ¢ and k satisfying £ > ¢ + M + 1. Using the
tower property of conditional expectation, we notice that

B - W)l = [B(BOW, - Wi | 6. T0))

— ’E(Wg - E(W, !ée,?e)))

Ao ~ oA 2 A oA |2
= [E(We-EW 10, T0)| < ¢EWZFE\E<M\0£,T€>) sc\/E\E(Wkwe,Te) .
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Using the notation E; = E(e |6y, T¢) and Eg(e; | e2) = E(e1 |0, Ty, o9) for conciseness, we
obtain

1 J
E,(Wi) = - ZE[<(Id _ o) @ o0 )>v<1>R(0k))
;XJ:EL(EE I — 09 @ 00 )V g(0;) | 0V ))
3iE@< Id—vk ®U](€))Eg (V(I)R(Hkﬂ ”))
j=1
(A.17) }IZJ:E@ (1= 50 © o) By (Von(d)

1

<.
Il

ZJ: ((Id — o @ o) (Be(Vor(dy) | 0f) - EZ(VQR(ék))>)_

% \

Now note that, for any & > ¢ + M and any j € {1,...,J}, the random variable U(J)

independent of ég and 'fg, and it has distribution
N(o, (1— e 2M+D3) Id).

Consequently, we can calculate the first expectation in (A.17) exactly. Using Holder’s inequal-
ity for the other term, we obtain

B(Wi)| < Ce XM czEg\Eg(vqm(emv ) B (Vern)[
j=1

Therefore, employing Jensen’s inequality, we deduce

J
(A18)  BIE(Wy)? < Ce M 1S B[B (Vor(dh) |of) — Be (VEa(ly)) ]4
j=1

J
—: Ce VY LY E(B))
j=1

Since By (VOr (05— ar) | 0F) = Bo(VOr(Bx_ar)), it holds that
By <2 By (Var(d) | o)) ~ Be (VoR(e ) o)
+23 ‘Ee (VCI’R(ék—M>> — By <V(I’R(ék)) ’4

= 3 [B, (Van(0h) ~ VorBan) [ 0f)| +2°[Be (Vor(di ) ~ Vo)
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Using Jensen’s inequality and the Lipschitz continuity of V®p, we deduce

9

~ ~ 4 . “ ~ 14
B; < CE, <(9k _ ek_M‘ |@,(j)> +CE, ‘ek_M — b,

. .4
so E(B;) < CE ‘Gk_M — Gk‘ . Using the bound

o 4 k— o k—1 4
E‘Ok —ek_M‘ ~E| S : “0nZ)A+ Y vW2Az| < C(M'A*+ M3A?),
i=k— i=k—M

which is justified because F7(0,2) < C(1 + Z ‘{ 9)‘ ) by (A.2), we deduce by going back
o (A.18) that

E[E(Wy)[2 < Ce M5 L oMAAL 4 CM2A.

Taking the square root and returning to the usual notation, we obtain

PN 2
\/E ’E(Wk yeg,n)( < Ce2MIDE L OMAA? + CMA.

Employing this bound in (A.16), we deduce

ZWe

2
< CA(1+2M)+C ( —2M+1)

A
52

A’E TM2A? + MA)

<C <A £ MA 4 M2A2 4o <M+1)a%) .

Letting M = |log(1+671) %J, we obtain

2

m—1
1
2 < —1y 52 —1\\2 ¢4
A’E ;Wg _C(A+log(1+5 )6% + (log(1+071))" 6 +|1+5_1|2>
(A.19) < C(A+log(l1+671)6%) Ve (0,1].

Here we used that, by concavity of the logarithm,

51 52
>
1+o L= [I+0 12

log(1+671) =log(1 + 6 1) —log(1) >
SO
1

log(1+071)0% > ——.
B(1+0700° 2 o

Note that the second term in (A.19) vanishes in the limit § — 0, i.e., when éﬁbj) are drawn
independently from A(0,I;) at each iteration. In this case, we recover the statement of
Proposition A.1.
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Combining everything in (A.15), we obtain

n—1
sup Elen><C (A—i—aw +log(1+6 182+ A Z ( sup E\eg]2>) .
m=0

0<m<n 0<t<m
By the discrete Gronwall lemma, we deduce

sup Ele,|* < CetT (A + 0% 4+ log(1 + 6_1)62) ,
0<n<N

which concludes the proof. |
Appendix B. Auxiliary results for Theorem 2.1.
Lemma B.1. Let § > 0 be a fized parameter and let X; denote the solution to the scalar
Ornstein—Uhlenbeck equation with stationary initial condition,
2

1
X =~ Xedt +1/ 5

= AWy,  Xo~N(0,1).

It holds that

T p/2
Vp € (1,00), E| sup | Xy | <C <1+log <1+2>>
0<t<T 0

for a constant C' independent of T .

Proof. The strategy of the proof parallels that in [73, Theorem A.1], so here we give only
a sketch. We use the notation W (t) and W; interchangeably. The process {X;} is equal in
law to {Y;/52}, where Y; is the solution to

dY; = —Y; dt + vV2dW,, Yy ~ N(0,1),

so we can assume without loss of generality that 6 = 1. The process {Y;}+>0 is equivalent in
law to the process Z; = e~! W (e?!); see, for example, [71, Chapter 1]. Therefore, it holds that

P
E| sup [V} | =E| sup
0<t<T 0<s<e2T
p)

< (log log(2 + eQT))p/2 E < sup

0<s<e2T

W

NG

W
sloglog(2 + s)

= (loglog(2 + eQT))p/2 E|N (e2T) P

where, for S > 0,

W
sloglog(2 + s)

N(S)= sup
0<s<S
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Now clearly log(e?” +2) < log(e?") +2 = 2T + 2, so loglog(2 + e?T) < 1+ log(1 + 7). Tt
is shown in the proof of [73, Theorem A.l], and in the references therein, that there are
constants C' and o such that

A2

VS >0, YA>0, P(N(S)>\) <Ce 2.

Therefore
E N’ = / P(|N ()" > A)dr
0
& & AP
:/ P(N(e*T) > AVP) dx </ Ce 17 dA\< K
0 0
for K independent of S, which concludes the proof. |

Lemma B.2. Assume ®p € C’Q(Td7 R), and let ®% denote a mollification with parameter e
of PR, that is,
(B.1)

kexp (—1h) i 101 <1,

D% = 0. % Pp, 0 = E*dg(aflﬁ), 0:R* 5 R; 0 —
0 if 6] > 1,

where k is a constant such that o integrates to 1 over R and  is the usual convolution
of functions on R? (identifying ®p with a 1-periodic function over R%). Then there is C
independent of € such that

(BQ) \V/(ij, k) € {17 s 7d}37 ||89i69j39kq>%(‘9)”L°°(Td) < 05_1 Supd |D2(I)R(9)’F )
T

where |¢|p denotes the Frobenius norm, and
(B.3) [VOR — V@[ oo (pay < Ce.
Proof. By the standard properties of mollifiers, it holds that
(B.4) V(i,j. k) €{1,...,d}>,  0p,00,00, 9% = Oy, 0 * g, 09, P -

We calculate

_ _ e 1o, _ _
0p,0:(0) = —2¢~ 4+ <9(€ 19)(1—|€_19!2)2> = —2e~ (Mg, (c710).

The function g;, for any i € {1,...,d}, is smooth and supported in the closed ball of radius
1, and so there is some constant M (independent of ¢) such that |g;(7)| < Mpo(7/2) for all
7 € R?. Therefore

Vo € T¢, |8, 0:(0)| = 26~V g, (e710)| < 2Me= WD p(c710/2) = 29 M7 9o (6),
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and so, going back to (B.4), it is simple to bound the third derivatives of ®% using the second
derivatives of ®p, at the expense of a large factor e~ on the right-hand side:

vl € T, |0p, 0p, 09, 2% (0)| < Ce™! sup ID*®R(0)], -
0eT

This proves (B.2). For the second claim, note that the following inequality holds for any
1-periodic Lipschitz continuous f with Lipschitz constant L:

Vo e T |f(8) —o-x f(6 I—'/ FO+7)) o(7)dr
_/Rdlf(‘)) £(0 -+ 7)lox(r) dr < Le.

In particular, since V®p is Lipschitz continuous by the assumption, we have (B.3). |

Appendix C. Proof of Lemma A.2. If n < M, then 5% and £ coincide and the
statement is true. If n > M, then by definition it holds that

) — o) = €0 e 41— e 2 20) o mm)
m=1
n—M-—1
_ o (M) <é(gj) e (M-DG 1 2 xg)le—(n—M—l—m)é> '
m=1

Using the inequality |a + b|* < 8la|* + 8|b|* for all a,b € R?, together with the working
assumption that n > M, we deduce

(C.1)

00| < 101+ [ gg ‘fé”F +8 (1 —e‘%%)Q E

It remains to prove that the second term in parentheses is bounded from above independently
of 6. Since it holds that |a — b|* < ngzl la; — b;|* for all a,b € R%, we assume without

loss of generality that d = 1 in order to establish (A.13). For simplicity of notation, let

U, = xS)M 9_ms SO that

1 4

M—
anmA2
a:mle

m=1

n— n—

M-
g U €
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FExpanding the sum and using the independence of vy, ..., v,_p—2, We calculate
n—M-—2 A 4 n—M-—2 n—M—-2n—M-2 A
Z 'Ume_m‘?2 = Z E|Um|4 4m52 +6 Z Z E’Um‘ E|U ‘ 2mH5
m=0 m=0 m=0 {=m+1
oYY 3 o
m=0{¢{=m+1
3 6 9
& T <

< <
1*674572 (1—6_25%)2 (1—e 2?2)2

Therefore we deduce (A.13), because the denominator cancels out with the factor of the second
term in parentheses in (C.1). In order to derive (A.14), we use Holder’s inequality and (A.13),

o[+ ) Jo é;ﬂf)
j=1
J R 1/2
SCZE<@;LJ)_ Sﬁ\) < O o 2MH)
j=1

which is the required bound.
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