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Social media platforms are playing increasingly critical roles in disaster response and rescue operations. During
emergencies, users can post rescue requests along with their addresses on social media, while volunteers can
search for those messages and send help. However, efficiently leveraging social media in rescue operations re-
mains challenging because of the lack of tools to identify rescue request messages on social media automatically
and rapidly. Analyzing social media data, such as Twitter data, relies heavily on Natural Language Processing
(NLP) algorithms to extract information from texts. The introduction of bidirectional transformers models, such
as the Bidirectional Encoder Representations from Transformers (BERT) model, has significantly outperformed
previous NLP models in numerous text analysis tasks, providing new opportunities to precisely understand and
classify social media data for diverse applications. This study developed and compared ten VictimFinder models
for identifying rescue request tweets, three based on milestone NLP algorithms and seven BERT-based. A total of
3191 manually labeled disaster-related tweets posted during 2017 Hurricane Harvey were used as the training
and testing datasets. We evaluated the performance of each model by classification accuracy, computation cost,
and model stability. Experiment results show that all BERT-based models have significantly increased the ac-
curacy of categorizing rescue-related tweets. The best model for identifying rescue request tweets is a customized
BERT-based model with a Convolutional Neural Network (CNN) classifier. Its F1-score is 0.919, which out-
performs the baseline model by 10.6%. The developed models can promote social media use for rescue opera-
tions in future disaster events.

1. Introduction

Natural hazards like hurricanes, tornadoes, and floods are becoming
more devastating and increasingly frequent due to climate change
(Kryvasheyeu et al., 2016). The emergence of novel forms of big data
brings new approaches to understand and mitigate natural disasters’
impacts on human communities (Liu et al., 2015). Specifically, the rise
of massive social media data enables researchers to view human re-
sponses to disasters in near real-time through a special lens. During di-
sasters, social media data reflect how users perceive risks and access
information, shaping how they prepare for and respond to hazardous
events. Meanwhile, natural hazards spring activities such as pre-disaster
evacuation, in-disaster rescue, and post-disaster rebuilding, which could
be monitored through social media streams. As a result, the popularity of
incorporating social media data and platforms into disaster management
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continues to grow (Zou, Lam, Cai, and Qiang, 2018; Kirilenko and
Stepchenkova, 2014; Zhang et al., 2018; Arthur, Boulton, Shotton and
Williams, 2018; Avvenuti, Cresci, La Polla, Marchetti, and Tesconi,
2014).

During Hurricane Harvey in 2017, the local police and fire de-
partments saved only 30% of Houston residents who failed to evacuate
and demanded rescue (Gallagher, 2017). When the 911 system was
overloaded, many Harvey victims turned to social media for assistance
(Mihunov, Lam, Zou, Wang, and Wang, 2020). Houston residents posted
rescue requests and their addresses on social media while volunteers
searched for those messages and sent help, marking Harvey as one of the
first events in which social media played significant roles in fast-
response and rescue missions (Rhodan, 2017).

Collecting rescue requests from social media takes three steps
(Fig. 1). The first step, referred to as VictimFinder in this research, is
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identifying rescue request messages from social media data. The second
step is toponym recognition, which extracts complete addresses from the
detected rescue request messages. Finally, the extracted addresses can
be converted to geographical coordinates through geocoding, namely
toponym resolution.

However, challenges exist in collecting rescue requests from social
media, which hinder the effective application of social media in disaster
response and rescue operations. During Hurricane Harvey, social media
users lacked knowledge on how to get help online, so they composed
rescue request messages differently (Mihunov et al., 2020). Conse-
quently, searching rescue requests in the first step was mainly accom-
plished manually, requiring intensive human resources and time. There
is a need to develop algorithms and tools to automate harvesting rescue
requests from social media applications.

The breakthroughs in Natural Language Processing (NLP) provide
solutions to the challenges. One way to identify rescue request messages
from social media data is through text understanding and classification,
which involves using NLP techniques to understand and categorize so-
cial media messages. Recently, the introduction of bidirectional trans-
formers models in feature extraction, such as the Bidirectional Encoder
Representations from Transformers (BERT) model, has significantly
outperformed previous NLP models in numerous text analysis tasks
(Devlin, Chang, Lee, and Toutanova, 2019), offering a great potential to
develop robust classifiers that can precisely recognize rescue requests
from social media data during disasters.

In light of this concept, we developed VictimFinder models based on
advanced NLP algorithms, including BERT, for recognizing rescue
request Twitter messages, referred to as tweets. The primary objective is
to examine if BERT-based models can significantly increase the efficacy
of identifying rescue request tweets with limited training data. Rescue-
related tweets during 2017 Hurricane Harvey were collected and used
to train ten VictimFinder models, including three based on milestone NLP
algorithms, four BERT-based, and three customized BERT-based models.
We evaluated each model by classification performance, computation
cost, and model stability. The developed optimal models can be applied
to harvest rescue requests from social media in future hazard events.
Findings from this study will shed light on the potentials and limitations
of different language modeling algorithms in analyzing social media
data.

The article proceeds as follows. We first provide a brief review of
previous investigations on the analysis of social media data for disaster
research, a summary of NLP for tweet classification, and an introduction
to Hurricane Harvey in Section 2. Section 3 details the methodology of
building tweet classification models using different NLP algorithms. The
training Twitter data collection and preprocessing, experiment imple-
mentation, and model evaluation are explained in Section 4. Following
that, we document the results in Section 5. Finally, we conclude with a
summary of the findings and their implications in Section 6 while dis-
cussing the methodological uncertainties and limitations of the study
and providing suggestions for future research.

Computers, Environment and Urban Systems 95 (2022) 101824
2. Background
2.1. Social media analysis for disaster research

The emergence and rapid development of information and commu-
nications technology (ICT) have turned individuals into sensors,
fostering the production of human-generated geospatial big data. Such
datasets bring new channels for us to gain deeper understandings of the
socioeconomic environment at multiple spatial and temporal scales. The
use of geospatial big data to study socioeconomic characteristics is
defined as social sensing (Liu et al., 2015). Taxi trajectories, mobile
phone records, location data recorded by mobile sensors, social media,
and social networking data are popular forms of geospatial big data (Liu
et al., 2015).

In terms of disasters, previous research has been dependent on
traditional data collected at regular intervals, for example, data from
surveys, health agencies, and the census. These data are usually
collected by reliable authorities or research teams. Mihunov et al.
(2018) developed a resilience inference measurement (RIM) framework
to estimate county-level resilience scores to drought by leveraging so-
cioeconomic data from the U.S. Census and health data from the U.S.
Department of Health and Human Services. Socioeconomic data can also
be incorporated with inundated areas detected from remote sensing to
assess disaster damages (Qi and Altinakar, 2011). Online or telephone
surveys are commonly used to collect information on post-disaster so-
cietal impacts, such as investigating the effect of flood risk on migration
considerations in coastal Louisiana (Correll, Lam, Mihunov, Zou, and
Cai, 2021). However, these data are unable to describe communities’
real-time preparedness, response, and recovery behaviors during haz-
ardous events (Zou et al., 2018). Such drawbacks can be tackled by
taking advantage of social sensing. Social media, for example, have
gradually been integrated into our daily lives and become a major
contributor of effective social sensing, offering significant potentials in
disaster management.

With the fact-finding accuracy of analysis based on social media
continues to progress (Wang et al., 2015), and social media data re-
sources have burgeoned, they have been applied to investigate different
types of natural hazards. For example, Avvenuti et al. (2014) imple-
mented an early earthquake detecting and warning system using Twitter
data, which offers timely detection of events in Italy with a False Positive
rate of 10% regarding earthquake magnitude over 3.5 Richter. A Na-
tional Landslide Database sourced from social media since 2012 has
been constructed and publicized that underpins future landslide forecast
and assessment (Pennington, Socher, and Manning, 2014). Wildfire-
related tweets have been analyzed to reveal the situational and
geographical awareness of the users (Wang, Ye, and Tsou, 2016). Agile
monitoring of when and where the flood takes place is achieved by
combining remote sensing data and social media (Jongman, Wage-
maker, Romero, and De Perez, 2015). Monitoring social media data also
helps detect disaster event centers rapidly so that responding agencies
can task satellite observations on those areas for more accurate disaster
understanding and response (Cervone et al., 2016). Several case studies
processed social media data by geocoding and sentiment analysis tools
to analyze the spatial patterns of changing public awareness and emo-
tions toward hurricanes in different phases of the disaster management
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Fig. 1. The workflow of collecting rescue requests from social media.
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cycle (Wang, Lam, Zou, and Mihunov, 2021; Wang, Singh, Tang, and
Dai, 2017; Zou et al., 2019). The observed patterns offer a deeper un-
derstanding of social and geographical disparities in disaster-related
social media use, which could help develop pathways to enhance resil-
ience to hurricanes.

2.2. NLP for social media analysis

In recent years, NLP techniques have been used in multiple branches
of social media analysis. For instance, NLP was applied in sentiment
analysis to detect and extract reactions and opinions toward a given
topic in social media, e.g., determining local reactions to disasters to
improve emergency management (Beigi, Hu, Maciejewski, and Liu,
2016). A Neural Network structured model has been established to
tackle multiclass classification among five different topics to gain cross-
disaster situation awareness (Yu, Huang, Qin, Scheele, and Yang, 2019).
A two-step approach that fuses a Neural Network binary classifier to
detect disaster-related tweets and a Latent Dirichlet Allocation (LDA)
method to extract fine-grained categories such as disrupted service and
damaged facilities has been developed to analyze disaster impact (Sit,
Koylu, and Demir, 2019). However, finding victim information from
tweets is a topic that has rarely been visited by scholars. It could be a
classification problem that requires natural language understanding.
Leveraging NLP models for this task involves two steps: (a) text repre-
sentation to map tweets into higher dimensions of matrices or vectors,
and (b) training machine learning algorithms with the derived tweet
matrices or vectors to perform classification (Xing, Pei, and Keogh,
2010). The first step comprises word tokenization, vectorization and
word embedding, the history of which can stretch as far back as the
application of the one-hot encoding approach in 2012 (Harris & Harris,
2012). Since 2013, numerous NLP text representation models relying on
co-occurrence frequencies of words have been developed, such as the
continuous bag-of-words model (Mikolov, Sutskever, Chen, Corrado,
and Dean, 2013). These algorithms are confined because they lack
high-level symbolic capabilities, namely, manipulating recursive and
constituent structures, representing abstract concepts, lexical and se-
mantic access, and episodic memories (Cambria and White, 2014).

Starting from the introduction and development of neural network-
based NLP models (Bengio, Ducharme, Vincent, and Janvin, 2003),
the boundaries of the above limitations have been pushed forward. The
Recurrent Neural Network (RNN) and its modified versions consider the
context of where the words appear and have achieved significant per-
formance improvements in text representation and classification tasks
compared with the one-hot encoding and frequency-based approaches
(Peters et al., 2018).

However, the classification accuracy of RNN-based models ranges
from 0.6 to 0.85 in classifying social media texts (Li, Li, and Zhu, 2016;
Lee and Dernoncourt, 2016; Wang et al., 2017), which are insufficient to
support their applications in life-concerning events such as victim
finding. One bottleneck in RNN-based models is that only the output
layer of the neural network in text representations is input to the
downstream classification tasks (Vaswani et al., 2017). Consequently,
the information contained in the initial part of the neural network
sequence might vanish. Recently, this problem has been tackled by
replacing RNN models with attention-based models (Vaswani et al.,
2017), which consider the information contained in all hidden layers.
One typical example of the attention-based NLP models is BERT.

The newest NLP technology brings about novel models that render
better performance in many tasks but have rarely been applied in clas-
sifying rescue requesting tweets. Whether incorporating advanced NLP
models could generate higher efficacy in identifying rescue request
messages is unknown and solicits further investigations.

2.3. Hurricane Harvey

Hurricane Harvey was developed from a tropical wave on August
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17th, 2017, and grew into a Hurricane when hitting the north of
Colombia. On August 25th, 2017, Harvey made its first landfall in the
United States as a category-4 hurricane on coastal Texas, followed by a
few landfalls in Texas and Louisiana (Fig. 2). It caused at least 106
confirmed deaths in the United States and an estimated total of 125
billion dollars in damage (Feltgen, 2018). Harvey is the second-costliest
natural disaster recorded in Texas, only after the 2021 Winter Storm Uri,
which disabled the entire state’s power grid (Ivanova, 2021). Most of the
damages were caused by the catastrophic flooding in the Houston
metropolitan area and Southeast Texas triggered by the unprecedented
heavy rainfall with the peak accumulation reaching 153.87 cm. The
flood inundated hundreds of thousands of homes, displacing over
30,000 people and prompting no less than 17,000 rescues (Blake and
Zelinsky, 2018).

Several scholars have explored the emerging use of social media in
disaster rescue during Hurricane Harvey. For example, user-friendly
web applications have been developed and evaluated to detect and
locate real time events based on geo-tagged streaming tweets by a novel
cross-modal authority measure (Zhang et al., 2018). Victims and vol-
unteers can be identified with a trained classifier whilst a hybrid
scheduling logic is applied to ensure the most effective rescue work
(Yang, Nguyen, Stuve, Cao, and Jin, 2017). Surveys have been con-
ducted to investigate users who tweeted for help to reinforce future
rescue operations and to understand how Twitter usage reshapes
disaster rescue activities (Mihunov et al., 2020). An effective toponym
extraction tool, NeuroTPR, has been trained to accurately extract loca-
tions from texts to determine victims’ addresses in social media-based
disaster rescue missions (Wang, Hu, and Joseph, 2020).

The aforementioned examples also reveal the challenges in using
social media for disaster rescue (Mihunov et al., 2020). People typed
their messages differently to call for help because no official standards
were composed for requesting rescue on social media. Thus, volunteers
manually detected, comprehended, and processed enormous social
media data during hazards to pinpoint rescue-related messages and
locate victims. This manual process requires intensive human labor and
time to gather and organize information swiftly. More in-depth on
developing automated tools for collecting and processing rescue request
messages on social media is urgently needed.

3. Methodology
3.1. VictimFinder model architectures

The architecture of VictimFinder models consists of a pretrained
model layer and a classifier layer, as delineated in Fig. 3. The pretrained
model learns the general language representations from existing corpus
while the classifier targeted at specific downstream tasks. In this way,
we profit from the knowledge captured by large and complicated pre-
trained models and usher it to the goal of detecting rescue request
tweets. Tweets were initially converted to vectors through a tokeniza-
tion and vectorization process, which splits tweets into lists of tokens
and represents each token by a pre-defined identification number. Then,
through the language model pretrained on large amounts of texts, pre-
processed tweets can be encoded to meaningful embeddings that capture
the semantics of words or sentences. Finally, each tweet embedding is
fed into classifiers to detect if the user is requesting rescue or not.

There are two common methods to train VictimFinder models based
on the proposed architecture: fine-tuning and feature-based approaches
(Devlin et al., 2019). The fine-tuning method calculates and modifies the
parameter in both pretrained models and classifiers while training on a
specific downstream task. In feature-based approaches, the parameters
within the pretrained language model remain static, and only the clas-
sifier parameters are modified during training. Thus, compared to fine-
tuning strategies, fewer parameters need to be trained in feature-based
approaches. This architecture is highly expandable and allows quick
alternation between numerous model types and training routines.
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Fig. 2. The route and rain depth of 2017 Hurricane Harvey.

This study built ten VictimFinder models using fine-tuning or feature-
based approaches based on seven pretrained language models, including
Global Vectors for Word Representation (GloVe), Embeddings from
Language Models (ELMo), BERT, RoBERTa, DistilBERT, ALBERT, and
XLNet (Table 1). GloVe and ELMo are milestone NLP models and
rendered state-of-the-art performance in several NLP tasks when they
were released. They served as baseline models in this research. The
original BERT and its modified versions (RoBERTa, DistilBERT, and
ALBERT) were tested to compare the performance of identifying rescue
requests based on different existing BERT models. XLNet, which was
proposed to overcome the limitations of BERT-based language models,
was also included to investigate if the more complicated language model
could outperform BERT and BERT-based models in building
VictimFinder.

GloVe and ELMo were coupled with a Transformers classifier, which
is adopted from the Attention mechanism to capture more information
from natural language (Vaswani et al., 2017). They are trained through
the feature-based approach (models 1&2 in Table 1). The default BERT,
modified BERT, and XLNet models were trained through a fine-tuning
approach (models 3-7).

In addition, we proposed three novel designed customized BERT-
based models by placing a nonlinear multi-layer neural network, a
Convolution Neural Network (CNN; O’Shea and Nash, 2015), and a
Long-Short Term Memory (LSTM; Greff, Srivastava, Koutnik, Steune-
brink, and Schmidhuber, 2017) above the BERT model to process clas-
sification tasks (models 8-10). Divergent from default BERT with linear
classifier, the BERT-Nonlinear model attempts to boost the performance
with a more complicated classifier. The BERT-CNN and BERT-LSTM
models try to harness the information captured by BERT exhaustively

by incorporating all hidden states parameters to tackle information
vanishing problems. The three customized models were trained using
the feature-based approach, meaning tweets in the training dataset were
first encoded to embeddings using the default BERT model and then
input to neural network-based classifiers to optimize their parameters.
Compared to fine-tuned BERT-based models, customized BERT-based
models take advantage of the pretrained embeddings and are expected
to detect higher dimensional features hidden in the embedded texts with
a limited training dataset.

3.2. Selected pretrained models

3.2.1. GloVe

Representing words by real-valued vectors is commonly used in the
domain of NLP that the vectors can be input as features in various
downstream applications and text categorization (Tellex, Katz, Lin,
Fernandes, and Marton, 2003; Sebastiani, 2002; Turian, Ratinov, and
Bengio, 2010; Socher, Bauer, Manning, and Ng, 2013). There are two
major models of learning word representation, global matrix factoriza-
tion and local context window methods, but either of the two models
suffers from several drawbacks, e.g., performs poorly on word analogy
or missing statistical information.

GloVe is a global log-bilinear regression model that combines the
merits of these two types of word representation models. GloVe trains a
specific weighted least squares model on the non-zero entries of a global
word-word co-occurrence matrix, which tabulates the frequencies of
words with another given word in a corpus. Five corpora of different
sizes are utilized to train the model. It generates word vectors with
meaningful substructure that leads to better performance on several
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Fig. 3. The architecture of NLP-based VictimFinder models.

Table 1
The developed VictimFinder models and training methods.
No. VictimFinder Pretrained Classifiers Training
models models methods
1 Glove- GloVe Transformers  Feature-based
Transformers
2 ELMo- ELMo Transformers  Feature-based
Transformers
3 BERT-Linear BERT Linear Fine-tuning
4 RoBERTa-Linear RoBERTa Linear Fine-tuning
5 DistilBERT-Linear DistilBERT Linear Fine-tuning
6 ALBERT-Linear ALBERT Linear Fine-tuning
7 XLNet-Linear XLNet Linear Fine-tuning
8 BERT-Nonlinear BERT Nonlinear Feature-based
9 BERT-LSTM BERT LSTM Feature-based
10 BERT-CNN BERT CNN Feature-based

tasks than continuous bag-of-words and skip gram models, such as word
analogy, named entity recognition, and word similarity tasks (Pen-
nington et al., 2014).

3.2.2. ELMo

Instead of relying on word co-occurrence counts, ELMo leverages
vectors derived from a bidirectional LSTM which is trained on a huge
text corpus with a coupled language model objective (Peters et al.,
2018). This is a novel deep contextualized word representation that
takes consideration of both the word uses and how these uses change
across linguistic contexts. The difference between ELMo and traditional
word type embeddings, e.g., word2vec and GloVe, is that every token is
derived from a function of the entire sentence input. Therefore, the same

Computers, Environment and Urban Systems 95 (2022) 101824

word can have distinguished representation vectors under different
contexts. Moreover, most LSTM-based language models at that phase in
time run only in the forward direction, while ELMo takes advantage of a
bidirectional approach in which the model also runs over the sequence
in the reverse direction and both the forward and backward language
models are combined.

The word vectors are calculated on top of a two-layer bidirectional
language model (biLM). These two layers are stacked together and each
one has 2 passes — a forward pass and a backward pass. The words are
tokenized using a convolutional neural network and are input into the
biLM. The output of the forward and backward passes is concatenated to
form the intermediate word vectors and are input into the next hidden
layer. The final output of ELMo can easily be used upon other existing
models for specific downstream tasks. Its application has brought
noticeable improvement to 6 challenging NLP tasks (question
answering, textual entailment, semantic role labeling, coreference res-
olution, named entity extraction, and sentiment analysis) compared to
preceding models, including GloVe.

3.2.3. BERT

Feature-based approaches are applied to the former language models
that achieve state-of-the-art performance with a General Language Un-
derstanding Evaluation (GLUE) benchmark score of 71.0. However, the
techniques leveraged by them have limitations. For example, ELMo is
based on a bidirectional LSTM architecture rather than a Transformer
architecture, in which valuable information in the inchoate hidden
layers may vanish when the recurrent network goes deeper. BERT which
is designed to pretrain deep bidirectional representations using unla-
beled text has been introduced (Devlin et al., 2019) settling such limi-
tations by applying bidirectional Transformer, which is an attention
mechanism that learns contextual relations between words during fine-
tuning. The model architecture is shown in Fig. 4.

Transformer contains an encoder mechanism and decoder mecha-
nism. Since the aim of BERT in this study is to generate a language
model, only the encoder part of Transformer is required. Unlike many
bidirectional language models, in which the contextual representation
of every token is the concatenation of the forward and backward rep-
resentations, the Transformer encoder reads the entire sequence of
words at once. In this sense, it is considered bidirectional or non-
directional, which enables the model to learn the context of a word
based on all of its surroundings. To implement such bidirectional ap-
proaches, BERT leverages two training strategies. First, BERT proposes a
Masked Language Model (MLM) inspired by the Cloze task (Taylor,
1953) in which 15% of the input tokens are masked by a special label
[mask] at random and then predict those masked tokens. Second, BERT
introduces Next Sentence Prediction (NSP) to the training process. The
model takes in pairs of sentences as input and attempts to identify if the
second sentence within the input pair is the subsequent one in the

Tokens Tokens Tokens

!

Transformer

Transformer Transformer

Transformer
Block

Transformer
Block

Transformer
Block

Embeddings

Embeddings Embeddings

Fig. 4. Architecture of BERT.
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original document.

BERT can be fine-tuned with a simple output layer to generate state-
of-the-art performance throughout a number of NLP tasks. Under the
GLUE benchmark, BERT outperforms ELMo by approximately 7%
(Devlin et al., 2019).

3.2.4. RoBERTa

Since BERT started to prevail in the NLP world, research on devel-
oping BERT-based models has emerged. RoBERTa, for example, is a
novel and improved recipe for training BERT models, which can match
or surpass many post-BERT methods (Liu et al., 2019). It was proposed
after meticulously measuring the impact of key hyperparameters and
finding that BERT was undertrained. RoBERTa optimizes the training
process of BERT in the following ways. First, RoBERTa offers the training
process more time, with bigger batch sizes and more data. Second, the
next sentence prediction objective in BERT is removed in RoBERTa.
Third, RoBERTa trains the model with a longer sequence. Last, the
patterns of the masked language model are altered dynamically.
Compared to BERT, RoBERTa achieves a leading score of 88.5 on the
public GLUE benchmark result board over numerous tasks.

3.2.5. DistilBERT

DistilBERT is a smaller pretrained model on the basis of BERT using
knowledge distillation. This process is a compression strategy to train a
compact model, called the student, capable of duplicating the perfor-
mance of a larger model or an ensemble of models. DistilBERT is built on
the same general structure of BERT with token-type embeddings while
removing the poolers and reducing the number of layers. It also takes
advantage of the training objectives recommended by RoBERTa.
Experiment results show that DistilBERT significantly reduces the model
size and accelerates the training and predicting speed while maintaining
most of the performance (Sanh, Debut, Chaumond and Wolf, 2020).

3.2.6. ALBERT

ALBERT is another simplified version of BERT that is also con-
structed on the transformer encoder architecture. It utilizes two
parameter reduction techniques to achieve faster training speed at lower
memory consumption. The first method is factorized embedding
parameterization, which projects the one-hot vectors into a lower
dimensional space before projecting them into the hidden space during
tokenization. The second one is cross-layer parameter sharing, a com-
mon technique aiming to improve parameter efficiency. There are
several strategies of parameter sharing, among which ALBERT chooses
to share parameters across layers. A self-supervised loss focusing on
modeling inter-sentence coherence has been applied which contributes
consistently to the performance of downstream tasks with multi-
sentence inputs. Empirical evidence shows that ALBERT establishes
new state-of-the-art results on GLUE benchmark with an average score
of 88.7 (Lan et al., 2020).

3.2.7. XLNet

BERT implements its bidirectional architecture by corrupting the
input text with a special label [mask] which neglects the dependencies
between the masked locations. Moreover, the data used for fine-tuning
BERT do not contain this [mask] label, leading to a pretrain-finetune
discrepancy. In light of this, XLNet, a generalized autoregressive pre-
training method, has been proposed. XLNet enables training bidirec-
tional contexts by maximizing the expected probability over all
permutations of the factorization order, and its autoregressive formu-
lation helps overcome the limitations of BERT (Yang et al., 2020). In
addition, XLNet integrates ideas from an advanced autoregressive
model, Transformer-XL, and designed a two-stream attention mecha-
nism. Under similar experiment settings, XLNet renders better perfor-
mances compared to BERT across 20 common NLP tasks (Yang et al.,
2020).
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4. Experiments
4.1. Training dataset

The training dataset was extracted from Twitter data purchased from
the Twitter company. Harvey-related Twitter data during August
25th-31st, 2017, from Harvey’s first landfall to when it weakened to a
storm, were collected through Twitter’s enterprise Application Pro-
gramming Interface (API), which provides the full historical Twitter
data through keyword search or criteria-based search, such as location-
based and user-based search (https://developer.twitter.com/e
n/docs/twitter-api/enterprise). We used a list of case-insensitive key-
words to identify an initial collection of Harvey or rescue-related tweets:
[harvey, hurricane, storm, flood, houston, txtf (Texas Task Force), coast
guard, uscg (U.S. Coast Guard), houstonpolice (Houston Police Depart-
ment), cajun navy, fema (Federal Emergency Management Agency),
rescue]. Every tweet containing at least one of the keywords was
retrieved, resulting in 25 million tweets in the initial collection. Then we
chose original English tweets containing the 5-digit zip code of coastal
Texas as potential rescue request tweets, which returned 3191 undu-
plicated tweets.

We manually labeled each of the 3191 tweets by four questions to
prepare the training database. The questions were designed based on a
suggested rescue request method posted by a volunteer organization’s
Twitter account (@HarveyRescue) during Hurricane Harvey. The
method recommends Twitter users asking for rescue to post tweets with
complete address, number of people who need help, phone number, and
other special needs while hashtagging #HarveySOS and mentioning the
account. Each tweet was binarily categorized based on four questions: is
the tweet asking for help (label: help)? Does the tweet provide a full
address (fullAddress)? Does the tweet mention the demographic or
health-related information of victims, e.g., gender, age, physical con-
ditions, and special needs (victimInfo)? Does the tweet describe the
hazard situations, e.g., flooded water levels (hazardSituation)? We
labeled the tweet as positive for each question if the answer is yes and
negative for no. Two student workers were hired to annotate the tweets
with timely communication to address the disagreements on label types.
The tagged data were also scrutinized by the author to ensure consis-
tency in tagging. Five examples of the labeled data are shown in Table 2.
Place names and street names appearing in the sample data shown in the
table were replaced by ‘place_name’ and ‘street_name’. Street and place
numbers were replaced by random numbers.

The distributions of the four types of labels are shown in Fig. 5(a).
Among the 3191 manually labeled tweets, 1935 (60.64%) were seeking
help, 2003 (62.77%) provided full addresses, 1278 (40.05%) mentioned
victims’ conditions and special needs, and 57 (1.79%) described their
hazard situations. Addresses in the rescue request tweets were further
extracted using a customized regular expression and geocoded through
the Google Geocoding API. Fig. 5(b) reveals the spatial hot spots of the
rescue requests during Harvey extracted from the training dataset. The
temporal patterns of the number of rescue request tweets within the
dataset is shown in Fig. 5(c).

In this study, only the first three labels (help, fullAddress, and vic-
timInfo in Fig. 5(a)) were used because their positive and negative la-
bels’ distributions are ideal for model training. All labeled data were first
input into a text cleaning process where all texts were lowercased, and
non-ASCII letters were removed. Punctuation mark removal and lem-
matization were performed before the experiment.

4.2. Implementation

Table 3 lists the initial pre-trained parameters and concise de-
scriptions for each VictimFinder model. For example, the pretrained
model for BERT is designed with 12 layers. The size of the hidden layer is
768 and the number of self-attention head is 12. This model has 110
million parameters and is pre-trained using unlabeled text from
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Table 2
Examples of manually labeled tweets.

Text help  fullAddress  victimInfo  hazardSituation

#Houstonrescue 9999
street_name Houston TX
77074 waiting for water 1 1 0 0
rescue in the attic they
cant get to roof
Rescue Needed
ForemanFamily of house
flooding in last hours 1 1 1 0
11,870 place_name
77,044
@user_name55555 praying
you & your family will be
out of harms way 0 0 0 0
Hurricane Harvey is
something serious
Harvey is expected to make
landfall as Category
hurricane Text HARVEY
to 77,453 to receive
alerts on the massive
Texas storm
@user_name My friend her
roommate and their dogs
in attic house flooding
street_name TX 77539
#dickinson #galveston
#houstonflood

BooksCorpus (800 million words) and English Wikipedia (2500 million
words) with masked language model and next sentence prediction
method as mentioned in Section 3.2.

A dummy classifier, which aims to authenticate the performance of
the models tested and detects the possible bias exist in the testing
datasets, is included in this experiment. The stratified strategy is applied
to the dummy classifier, which generates predictions by respecting the
training set’s class distribution.

Before inputting to VictimFinder models, tweets were initially toke-
nized and vectorized through the BERT tokenizer (Devlin et al., 2019).
The output embeddings of GloVe and ELMo were input into a two-head,
one-layer Transformer with average pooling for classification. The input
layer size was 512, and the dropout rate was set to 0.3. Models 3-7 were
linked to a simple linear classifier to perform softmax, which normalizes
the output to a probability distribution over predicted output classes.

The three customized feature-based models were implemented by
running the default BERT model first, as shown in Table 3 and Fig. 6. For
the BERT-Nonlinear model, the final hidden state of the default BERT
model was transferred to a neural network with three fully connected
layers of 256 nodes. Leaky Rectified Linear Unit (LeakyReLU) was
leveraged as the activation function (negative slope = 0.01) of the first
two layers and the final layer output the classification results by per-
forming softmax function. For the BERT-LSTM model, a bidirectional
LSTM was constructed and placed on top of BERT, and the last hidden
state of LSTM was linked to a fully connected layer to perform softmax.
The BERT-CNN model used hidden states from all layers of BERT. A
convolution kernel was performed with 16 filters on the hidden states.
The output data were concatenated to form a channel with 192 nodes. A
one-dimensional vector was formed through max pooling and linked to a
fully connected layer to perform softmax.

The labeled dataset was randomly separated as training data, cross-
validation data, and testing data with a ratio of 8:1:1. Random state was
stored to ensure the data used for each model evaluation process were
the same. The number of maximum training epochs was set to 40 with
early stopping. As suggested in previous literature, the learning rate for
non-BERT models was set to 0.001, and 2e-5 for BERT-based models
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(Devlin et al., 2019). We chose the AdamW algorithm as the optimizer
and cross entropy as the loss function.

All models were established using Python and relevant packages.
Dummy classifiers were implemented using the ScikitLearn library with
the stratified strategy. Models based on GloVe and ELMo were imple-
mented using PyTorch. The BERT-based models were implemented
based on the huggingface Transformer library (https://huggingface.co/
transformers/). Fine-tuning models were implemented by using hug-
gingface sequence classification functions. Customized BERT-based
models were built using PyTorch functions.

4.3. Evaluation criteria

The three most used metrics, precision, recall, and F1-score (Egs.
3-5), were utilized to evaluate the performance and bias of VictimFinder
models. Precision measures the percentage of correctly identified tweets
(noted as True Positives, TP) among all the positive tweets detected by
the model, which combines both TP and False Positives (FP). Recall
measures the percentage of correctly identified tweets among all ground
truth, which is the combination of TP and False Negatives (FN). F1-score
is the harmonic mean of precision and recall, providing a comprehensive
metric to evaluate model performance. GloVe, which has the longest
history, was selected as the baseline model for accuracy evaluation.

TP
Precision = ———— 3
TP + FP
TP
Recall = ———— ()]
TP + FN
Floscore — 2+ Precision*Recall ©)

Precision + Recall

Considering that rescue tweets detection should be timely so that
related agencies could provide immediate assistance during disasters,
we also measured the computational costs by comparing the training
time and predicting time of each selected model. Fine-tuning BERT was
selected as the baseline model to present a clearer view of the time cost
for training and predicting.

Each model was applied in three independent classification tasks.
The standard deviation is calculated to find the most versatile model. To
normalize the discrepancy between different models, we leveraged a
normalization mapping considering the conception of the softmax
function. A novel stability metric, the Normalized Model Stability Index
(NMSL Eq. 6), where all the output number of the function sums to 1 and
the order is preserved, was introduced.

1
NMSI = 1 — ———e™ (6
21
In Eq. 6, the number of selected models is noted as k (k = 3 in this
study), o stands for the standard deviation of Fl-score, and n is the
augment factor and was set to 100 in this case.

5. Results

Evaluation metrics of model performances are summarized in Ta-
bles 4 and 5. According to Table 4, the F1l-score of GloVe and ELMo
ranged from 0.747 to 0.858, while the BERT-based models ranged from
0.834 to 0.919. XLNet, which takes the asset from the Transformer
structure and aims to optimize BERT, ranged from 0.824 to 0.905. All
BERT-based models generally outperformed the baseline model by
approximately 10%. The result verifies the hypothesis that the state-of-
the-art model performs better on rescue tweet classification tasks. This is
largely due to BERT’s word piece embedding, masked language
modeling, and the application of a bidirectional Transformer (Devlin
et al., 2019), leading to a better understanding of natural language by
computer programs.


https://huggingface.co/transformers/
https://huggingface.co/transformers/

B. Zhou et al.

Computers, Environment and Urban Systems 95 (2022) 101824

Distribution of Labels by Label Type s o
3134 @
EEE Positive
3000 1 BN Negative .
C . Lake
o S "::‘”““-:
” o« g @y ..ﬁ.. o .
" ‘.‘:,’:&' Sl 3 s
S B, s
S
]
L |
& ; .
;w * Rescue Requests
0 16 32 64 96
fullAddress victiminfo  hazardSituation e R
(a) (b)
Per Hour Rescue Requests on Twitter During Hurricane Harvey, 2017
50
45
40
35
30
25
20
15
10
i /V\f
0 o P—-N AAA
16 20 O 16 20 O 16 20 O 12 16 20
2017/8/127 2017/8/28 2017/8/29 2017/8/30
m Houston&Port Arthur
(c)
Fig. 5. The distribution of labels in the training dataset and their spatial-temporal patterns.
Table 3

Pre-trained parameters for developed tweet classification models.

No.  VictimFinder
models

Pre-trained parameters

Description

- Dummy -
Glove-Transformers glove.twitter.27B-100d
elmo_2x2048_256_2048cnn_lxhighway_weights.

—_

2 ELMo-Transformers hdf5

3 BERT-Linear bert-base-uncased

4 RoBERTa-Linear roberta-base

5 DistilBERT-Linear distilbert-base-uncased
6 ALBERT-Linear albert-base-v1

7 XLNet-Linear xlnet-base-cased

8 BERT-Nonlinear Same as Model 3

9 BERT-LSTM Same as Model 3

10 BERT-CNN Same as Model 3

Train with Twitter data, 2B tweets, 27B tokens, 1.2M vocab, uncased, 100d vectors
Parameters 28.0 (Millions) LSTM Hidden Size/Output size 2048/256, Highway Layers>1

12-layer, 768-hidden, 12-heads, 110M parameters, trained on lower-cased English text
12-layer, 768-hidden, 12-heads, 125M parameters; using the BERT-base architecture
6-layer, 768-hidden, 12-heads, 66M parameters; distilled from BERT model bert-base-
uncased

12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters

12-layer, 768-hidden, 12-heads, 110M parameters; XLNet English model

Same as Model 3

Same as Model 3

Same as Model 3

Certain models perform better than the rest for specific tasks. In
identifying rescue requesting tweets, feature-based BERT with CNN
classification head performed the best with a 0.919 Fl-score. Fine-
tuning BERT with linear classification head had the best performance

for detecting full address information within the text with an F1-score of
0.913, while feature-based BERT with LSTM classifier outperformed the
rest in distinguishing tweet with or without victim information with an
F1-score of 0.856. However, no gigantic gap across the performance of
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Fig. 6. Structures of the three customized BERT models.
Table 4
Precision (P), Recall (R), and F1-score of each model.
VictimFinder models Label-“help” Label-“fullAddress” Label-“victimInfo”
P R F1 P R F1 P R F1
Dummy 0.642 0.618 0.630 0.628 0.631 0.629 0.666 0.641 0.653
GloVe-Transformers 0.782 0.850 0.831 0.756 0.845 0.813 0.806 0.696 0.747
ELMo-Transformers 0.779 0.963 0.846 0.800 0.963 0.858 0.812 0.859 0.790
BERT-Linear 0.884 0.918 0.909 0.889 0.933 0.913 0.869 0.825 0.838
Roberta-Linear 0.886 0.918 0.910 0.878 0.918 0.904 0.873 0.871 0.850
DistilBERT-Linear 0.881 0.903 0.905 0.870 0.940 0.901 0.862 0.840 0.834
XLNet-Linear 0.862 0.915 0.893 0.873 0.963 0.905 0.840 0.905 0.824
ALBERT-Linear 0.854 0.875 0.883 0.886 0.938 0.912 0.870 0.840 0.842
BERT-LSTM 0.878 0.913 0.904 0.873 0.940 0.903 0.881 0.856 0.856
BERT-CNN 0.897 0.933 0.919 0.873 0.940 0.903 0.867 0.817 0.835
BERT-Nonlinear 0.881 0.900 0.905 0.883 0.920 0.908 0.856 0.882 0.835
complicated model in this study, cost nearly 50% extra training time
Zable 5t ; ¢ and model stabilit than the BERT-linear model, and the predicting time was doubled. This
omputation cost and model stability. . .

P y corresponds with the fact that Transformer models are massive and
VictimFinder models Training time ratio Predicting time ratio NMSI contain millions of parameters, making them computationally more
GloVe-Transformer 0.257 % 0.006 x 0.858 expensive. The NMSI ranged from 0.853-0.963. The BERT with LSTM
ELMo-Transformer 0.278x 0.189x 0.927 classifier performed the most stably across three classification tasks with
iEET'tL"L‘?ar 1'8(1’8X é'gggx 8.58;4712 an NMSI value of 0.963, which is 12.2% better than the baseline model

oberta-Linear . X . X . . . g . .
DistilBERT-Linear 0.521 x 0.494x 0.900 (BERT—.Lmear). HoweY(.ar, BE.RT with CNN classifier performefi 1nf.er10rly
XLNet-Linear 1.453 % 2.990% 0.860 regarding model stability with the lowest NMSI of 0.853. This might be
Albert-Linear 0.834x 0.997x 0.933 caused by the hidden feature disparities between the embedded texts of
BERT-LSTM 1.021x 1.004x 0.963 help request, address, and victim information.

BERT_CNN_ 1.022x 1.006x 0.853 Considering both Table 4 and Table 5, the customized BERT-LSTM
BERT-Nonlinear 1.023x 1.005x% 0.886

all selected Transformer-based models was observed. BERT models
customized with more complicated encoders may have better results but
only marginally, possibly due to training data deficiency. This can be
further proven by the fact that models with larger numbers of parame-
ters, such as XLNet and RoBERTa, performed worse than BERT-based
models. ELMo had a noticeably higher recall for the first two tasks
which indicates that it has a tendency of labeling tweets as positive
samples. This is helpful for situations when fewer positive samples are
allowed to be missed out.

According to Table 5, the training time of models using GloVe and
ELMo were 0.257 and 0.278 times of BERT-based models (1.000x), and
the predicting time was 0.006 times and 0.189 times of BERT-based
models (1.000x), respectively. The XLNet-linear model, the most

model has performed most stably upon three classification tasks. This
means the BERT-LSTM structure could be more trustworthy when
applied to other tasks such as cross-event prediction. Regarding time
efficiency, the actual difference may not be significant between the
maximum number 2.290x and the minimum number 0.006x when
running the model on tiny testing datasets. However, in disaster events,
the model will be utilized to predict real-time Twitter streaming data,
which are both high in flow and volume. The deviations in computa-
tional overheads mean a gigantic gap in the time consumed in this
scenario. Consequently, it is reasonable to consider compensating effi-
ciency with accuracy. The DistilBERT-Linear model renders similar
performance than other models but is much more efficient, making it the
optimal choice for rescue tweet detection tasks accounting for both ac-
curacy and efficiency.
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6. Conclusion

This paper utilized different NLP models for sequence classification
on harvesting rescue requests from Twitter data. The objective was to
examine if BERT-based models can achieve better performance than
models based on milestone NLP algorithms in rescue request tweet
classifications. Experiment results show that all BERT-based models
outperformed the baseline model with a limited amount of training data.
BERT models with customized classification heads led to significant
improvement in performance compared to the baseline model. In terms
of identifying help requesting tweets, the best performer, BERT with
CNN classifier, obtained a 0.919 Fl-socre, which is 10.6% better than
the baseline model. BERT with LSTM classifier performed most stably
across all three classification tasks. DistilBERT, considering both model
performance and efficiency, could be the most appropriate model for
rescue request tweets detection in disaster response. ELMo, which pro-
cesses data extremely quickly with very high recall, can be applied to
situations where fewer rescue request tweets are expected to be missed
out.

This study contributes both scientifically and practically in several
aspects. Initially, by constructing a labeled dataset, we make training
victim-finding models possible and bring state-of-the-art NLP technol-
ogy to this domain of study. Furthermore, this research provides valu-
able insight into which NLP model should be selected to categorize
rescue request tweets based on experiments with real rescue request
Twitter data during Hurricane Harvey. Finally, the result of the exper-
iments acts as the cornerstone of future victim finding applications. Web
applications can be developed, and the optimal model can also be
incorporated into GIS tools for displaying near real-time rescue request
locations to which emergency responders and volunteers can refer to
send help.

However, several issues may arise due to the nature of big social
media data analysis and some limitations of this research. Such issues
should not be ignored while translating research results into practice.
First, people using languages other than English on social media cannot
leverage the benefit of these research results. One way to solve the
problem is to train a corresponding model for the target language or
scrutinize whether a unified model can render reliable performance
across numerous languages. Second, bias in Twitter datasets is a com-
mon non-negligible issue. This approach tends to help those who use
social media more often, and those groups of people may not be the ones
who demand help the most during disasters. Uneven usage of social
media may lead to biased consequences. Moreover, social media posts
suffer from locational bias, temporal bias, and reliability issues. Such
issues should be considered while further analyzing the spatiotemporal
patterns of the identified tweets for detecting vulnerable communities or
assessing disaster damages. Third, the models are trained and tested
with tweets from a single event, Hurricane Harvey, that may affect the
generalizability of the model. Incorporating Twitter data from other
events of the same disaster type will reinforce the robustness of the
model developed. Fourth, a large amount of sensitive data containing
users’ privacy can be extracted from social media by applications built
upon such classifiers. Meticulous consideration should take place to
decide who should have access to these applications and databases, or it
might cause privacy issues. Fifth, the best model mentioned in this
research offers an F1-score of 0.919, which is a promising result. How-
ever, if more weight is put on social media rescue requests, the mis-
classified requests may mean lives lost without scrutiny. Continuing to
assemble disaster rescue information from multiple spectrums and
practice social media data as a supplementary source for finding and
rescuing disaster victims will solve this limitation.

Future studies can be conducted in the following directions to
address the limitations of the study and advance social media use in
disaster rescue. The model performance can be further optimized by
fine-tuning the hyperparameters and utilizing larger training datasets.
Data from other events of the same disaster type can be collected and

10

Computers, Environment and Urban Systems 95 (2022) 101824

utilized to test and foster the generalizability of the model. Second, a
rescue tweets detection and analysis pipeline can be constructed with
the optimized model by adding advanced geoparsers and geocoding
techniques. Through applying the pipeline and spatial analysis, valuable
information and discovery regarding overlooked communities and lim-
itations of traditional disaster management can be extracted from
massive tweets to enhance disaster mitigation and preparedness. Third,
the scope of rescue request detection should not be limited to NLP text
classification only. The accuracy of detecting rescue request tweets can
be improved by processing the images posted along with the text data. In
addition, being inspired by the concept raised by SocioDim, which is a
classification framework based on network structure to capture inter-
action patterns (Tang and Liu, 2011), and Global Consistency Maximi-
zation, which is a link-based classification model to identify opinions (Li
et al., 2016), network-based approach might be a feasible shortcut to-
ward enhanced rescue request discovery. Fourth, interesting patterns
can be recognized through investigating the spatial, temporal, textual,
and diffusion characteristics of rescue request tweets. The results can
inform disaster response, rescue operation, and damage estimation in
future events. Fifth, Hurricane Harvey affected different social groups
from various communities. The geographical features of rescue request
tweets and the underlying socioeconomic characteristics of individuals
and communities requiring additional assistance can be further
evaluated.
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