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A B S T R A C T   

Social media platforms are playing increasingly critical roles in disaster response and rescue operations. During 
emergencies, users can post rescue requests along with their addresses on social media, while volunteers can 
search for those messages and send help. However, efficiently leveraging social media in rescue operations re
mains challenging because of the lack of tools to identify rescue request messages on social media automatically 
and rapidly. Analyzing social media data, such as Twitter data, relies heavily on Natural Language Processing 
(NLP) algorithms to extract information from texts. The introduction of bidirectional transformers models, such 
as the Bidirectional Encoder Representations from Transformers (BERT) model, has significantly outperformed 
previous NLP models in numerous text analysis tasks, providing new opportunities to precisely understand and 
classify social media data for diverse applications. This study developed and compared ten VictimFinder models 
for identifying rescue request tweets, three based on milestone NLP algorithms and seven BERT-based. A total of 
3191 manually labeled disaster-related tweets posted during 2017 Hurricane Harvey were used as the training 
and testing datasets. We evaluated the performance of each model by classification accuracy, computation cost, 
and model stability. Experiment results show that all BERT-based models have significantly increased the ac
curacy of categorizing rescue-related tweets. The best model for identifying rescue request tweets is a customized 
BERT-based model with a Convolutional Neural Network (CNN) classifier. Its F1-score is 0.919, which out
performs the baseline model by 10.6%. The developed models can promote social media use for rescue opera
tions in future disaster events.   

1. Introduction 

Natural hazards like hurricanes, tornadoes, and floods are becoming 
more devastating and increasingly frequent due to climate change 
(Kryvasheyeu et al., 2016). The emergence of novel forms of big data 
brings new approaches to understand and mitigate natural disasters’ 
impacts on human communities (Liu et al., 2015). Specifically, the rise 
of massive social media data enables researchers to view human re
sponses to disasters in near real-time through a special lens. During di
sasters, social media data reflect how users perceive risks and access 
information, shaping how they prepare for and respond to hazardous 
events. Meanwhile, natural hazards spring activities such as pre-disaster 
evacuation, in-disaster rescue, and post-disaster rebuilding, which could 
be monitored through social media streams. As a result, the popularity of 
incorporating social media data and platforms into disaster management 

continues to grow (Zou, Lam, Cai, and Qiang, 2018; Kirilenko and 
Stepchenkova, 2014; Zhang et al., 2018; Arthur, Boulton, Shotton and 
Williams, 2018; Avvenuti, Cresci, La Polla, Marchetti, and Tesconi, 
2014). 

During Hurricane Harvey in 2017, the local police and fire de
partments saved only 30% of Houston residents who failed to evacuate 
and demanded rescue (Gallagher, 2017). When the 911 system was 
overloaded, many Harvey victims turned to social media for assistance 
(Mihunov, Lam, Zou, Wang, and Wang, 2020). Houston residents posted 
rescue requests and their addresses on social media while volunteers 
searched for those messages and sent help, marking Harvey as one of the 
first events in which social media played significant roles in fast- 
response and rescue missions (Rhodan, 2017). 

Collecting rescue requests from social media takes three steps 
(Fig. 1). The first step, referred to as VictimFinder in this research, is 
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identifying rescue request messages from social media data. The second 
step is toponym recognition, which extracts complete addresses from the 
detected rescue request messages. Finally, the extracted addresses can 
be converted to geographical coordinates through geocoding, namely 
toponym resolution. 

However, challenges exist in collecting rescue requests from social 
media, which hinder the effective application of social media in disaster 
response and rescue operations. During Hurricane Harvey, social media 
users lacked knowledge on how to get help online, so they composed 
rescue request messages differently (Mihunov et al., 2020). Conse
quently, searching rescue requests in the first step was mainly accom
plished manually, requiring intensive human resources and time. There 
is a need to develop algorithms and tools to automate harvesting rescue 
requests from social media applications. 

The breakthroughs in Natural Language Processing (NLP) provide 
solutions to the challenges. One way to identify rescue request messages 
from social media data is through text understanding and classification, 
which involves using NLP techniques to understand and categorize so
cial media messages. Recently, the introduction of bidirectional trans
formers models in feature extraction, such as the Bidirectional Encoder 
Representations from Transformers (BERT) model, has significantly 
outperformed previous NLP models in numerous text analysis tasks 
(Devlin, Chang, Lee, and Toutanova, 2019), offering a great potential to 
develop robust classifiers that can precisely recognize rescue requests 
from social media data during disasters. 

In light of this concept, we developed VictimFinder models based on 
advanced NLP algorithms, including BERT, for recognizing rescue 
request Twitter messages, referred to as tweets. The primary objective is 
to examine if BERT-based models can significantly increase the efficacy 
of identifying rescue request tweets with limited training data. Rescue- 
related tweets during 2017 Hurricane Harvey were collected and used 
to train ten VictimFinder models, including three based on milestone NLP 
algorithms, four BERT-based, and three customized BERT-based models. 
We evaluated each model by classification performance, computation 
cost, and model stability. The developed optimal models can be applied 
to harvest rescue requests from social media in future hazard events. 
Findings from this study will shed light on the potentials and limitations 
of different language modeling algorithms in analyzing social media 
data. 

The article proceeds as follows. We first provide a brief review of 
previous investigations on the analysis of social media data for disaster 
research, a summary of NLP for tweet classification, and an introduction 
to Hurricane Harvey in Section 2. Section 3 details the methodology of 
building tweet classification models using different NLP algorithms. The 
training Twitter data collection and preprocessing, experiment imple
mentation, and model evaluation are explained in Section 4. Following 
that, we document the results in Section 5. Finally, we conclude with a 
summary of the findings and their implications in Section 6 while dis
cussing the methodological uncertainties and limitations of the study 
and providing suggestions for future research. 

2. Background 

2.1. Social media analysis for disaster research 

The emergence and rapid development of information and commu
nications technology (ICT) have turned individuals into sensors, 
fostering the production of human-generated geospatial big data. Such 
datasets bring new channels for us to gain deeper understandings of the 
socioeconomic environment at multiple spatial and temporal scales. The 
use of geospatial big data to study socioeconomic characteristics is 
defined as social sensing (Liu et al., 2015). Taxi trajectories, mobile 
phone records, location data recorded by mobile sensors, social media, 
and social networking data are popular forms of geospatial big data (Liu 
et al., 2015). 

In terms of disasters, previous research has been dependent on 
traditional data collected at regular intervals, for example, data from 
surveys, health agencies, and the census. These data are usually 
collected by reliable authorities or research teams. Mihunov et al. 
(2018) developed a resilience inference measurement (RIM) framework 
to estimate county-level resilience scores to drought by leveraging so
cioeconomic data from the U.S. Census and health data from the U.S. 
Department of Health and Human Services. Socioeconomic data can also 
be incorporated with inundated areas detected from remote sensing to 
assess disaster damages (Qi and Altinakar, 2011). Online or telephone 
surveys are commonly used to collect information on post-disaster so
cietal impacts, such as investigating the effect of flood risk on migration 
considerations in coastal Louisiana (Correll, Lam, Mihunov, Zou, and 
Cai, 2021). However, these data are unable to describe communities’ 
real-time preparedness, response, and recovery behaviors during haz
ardous events (Zou et al., 2018). Such drawbacks can be tackled by 
taking advantage of social sensing. Social media, for example, have 
gradually been integrated into our daily lives and become a major 
contributor of effective social sensing, offering significant potentials in 
disaster management. 

With the fact-finding accuracy of analysis based on social media 
continues to progress (Wang et al., 2015), and social media data re
sources have burgeoned, they have been applied to investigate different 
types of natural hazards. For example, Avvenuti et al. (2014) imple
mented an early earthquake detecting and warning system using Twitter 
data, which offers timely detection of events in Italy with a False Positive 
rate of 10% regarding earthquake magnitude over 3.5 Richter. A Na
tional Landslide Database sourced from social media since 2012 has 
been constructed and publicized that underpins future landslide forecast 
and assessment (Pennington, Socher, and Manning, 2014). Wildfire- 
related tweets have been analyzed to reveal the situational and 
geographical awareness of the users (Wang, Ye, and Tsou, 2016). Agile 
monitoring of when and where the flood takes place is achieved by 
combining remote sensing data and social media (Jongman, Wage
maker, Romero, and De Perez, 2015). Monitoring social media data also 
helps detect disaster event centers rapidly so that responding agencies 
can task satellite observations on those areas for more accurate disaster 
understanding and response (Cervone et al., 2016). Several case studies 
processed social media data by geocoding and sentiment analysis tools 
to analyze the spatial patterns of changing public awareness and emo
tions toward hurricanes in different phases of the disaster management 

Fig. 1. The workflow of collecting rescue requests from social media.  

B. Zhou et al.                                                                                                                                                                                                                                    



Computers, Environment and Urban Systems 95 (2022) 101824

3

cycle (Wang, Lam, Zou, and Mihunov, 2021; Wang, Singh, Tang, and 
Dai, 2017; Zou et al., 2019). The observed patterns offer a deeper un
derstanding of social and geographical disparities in disaster-related 
social media use, which could help develop pathways to enhance resil
ience to hurricanes. 

2.2. NLP for social media analysis 

In recent years, NLP techniques have been used in multiple branches 
of social media analysis. For instance, NLP was applied in sentiment 
analysis to detect and extract reactions and opinions toward a given 
topic in social media, e.g., determining local reactions to disasters to 
improve emergency management (Beigi, Hu, Maciejewski, and Liu, 
2016). A Neural Network structured model has been established to 
tackle multiclass classification among five different topics to gain cross- 
disaster situation awareness (Yu, Huang, Qin, Scheele, and Yang, 2019). 
A two-step approach that fuses a Neural Network binary classifier to 
detect disaster-related tweets and a Latent Dirichlet Allocation (LDA) 
method to extract fine-grained categories such as disrupted service and 
damaged facilities has been developed to analyze disaster impact (Sit, 
Koylu, and Demir, 2019). However, finding victim information from 
tweets is a topic that has rarely been visited by scholars. It could be a 
classification problem that requires natural language understanding. 
Leveraging NLP models for this task involves two steps: (a) text repre
sentation to map tweets into higher dimensions of matrices or vectors, 
and (b) training machine learning algorithms with the derived tweet 
matrices or vectors to perform classification (Xing, Pei, and Keogh, 
2010). The first step comprises word tokenization, vectorization and 
word embedding, the history of which can stretch as far back as the 
application of the one-hot encoding approach in 2012 (Harris & Harris, 
2012). Since 2013, numerous NLP text representation models relying on 
co-occurrence frequencies of words have been developed, such as the 
continuous bag-of-words model (Mikolov, Sutskever, Chen, Corrado, 
and Dean, 2013). These algorithms are confined because they lack 
high-level symbolic capabilities, namely, manipulating recursive and 
constituent structures, representing abstract concepts, lexical and se
mantic access, and episodic memories (Cambria and White, 2014). 

Starting from the introduction and development of neural network- 
based NLP models (Bengio, Ducharme, Vincent, and Janvin, 2003), 
the boundaries of the above limitations have been pushed forward. The 
Recurrent Neural Network (RNN) and its modified versions consider the 
context of where the words appear and have achieved significant per
formance improvements in text representation and classification tasks 
compared with the one-hot encoding and frequency-based approaches 
(Peters et al., 2018). 

However, the classification accuracy of RNN-based models ranges 
from 0.6 to 0.85 in classifying social media texts (Li, Li, and Zhu, 2016; 
Lee and Dernoncourt, 2016; Wang et al., 2017), which are insufficient to 
support their applications in life-concerning events such as victim 
finding. One bottleneck in RNN-based models is that only the output 
layer of the neural network in text representations is input to the 
downstream classification tasks (Vaswani et al., 2017). Consequently, 
the information contained in the initial part of the neural network 
sequence might vanish. Recently, this problem has been tackled by 
replacing RNN models with attention-based models (Vaswani et al., 
2017), which consider the information contained in all hidden layers. 
One typical example of the attention-based NLP models is BERT. 

The newest NLP technology brings about novel models that render 
better performance in many tasks but have rarely been applied in clas
sifying rescue requesting tweets. Whether incorporating advanced NLP 
models could generate higher efficacy in identifying rescue request 
messages is unknown and solicits further investigations. 

2.3. Hurricane Harvey 

Hurricane Harvey was developed from a tropical wave on August 

17th, 2017, and grew into a Hurricane when hitting the north of 
Colombia. On August 25th, 2017, Harvey made its first landfall in the 
United States as a category-4 hurricane on coastal Texas, followed by a 
few landfalls in Texas and Louisiana (Fig. 2). It caused at least 106 
confirmed deaths in the United States and an estimated total of 125 
billion dollars in damage (Feltgen, 2018). Harvey is the second-costliest 
natural disaster recorded in Texas, only after the 2021 Winter Storm Uri, 
which disabled the entire state’s power grid (Ivanova, 2021). Most of the 
damages were caused by the catastrophic flooding in the Houston 
metropolitan area and Southeast Texas triggered by the unprecedented 
heavy rainfall with the peak accumulation reaching 153.87 cm. The 
flood inundated hundreds of thousands of homes, displacing over 
30,000 people and prompting no less than 17,000 rescues (Blake and 
Zelinsky, 2018). 

Several scholars have explored the emerging use of social media in 
disaster rescue during Hurricane Harvey. For example, user-friendly 
web applications have been developed and evaluated to detect and 
locate real time events based on geo-tagged streaming tweets by a novel 
cross-modal authority measure (Zhang et al., 2018). Victims and vol
unteers can be identified with a trained classifier whilst a hybrid 
scheduling logic is applied to ensure the most effective rescue work 
(Yang, Nguyen, Stuve, Cao, and Jin, 2017). Surveys have been con
ducted to investigate users who tweeted for help to reinforce future 
rescue operations and to understand how Twitter usage reshapes 
disaster rescue activities (Mihunov et al., 2020). An effective toponym 
extraction tool, NeuroTPR, has been trained to accurately extract loca
tions from texts to determine victims’ addresses in social media-based 
disaster rescue missions (Wang, Hu, and Joseph, 2020). 

The aforementioned examples also reveal the challenges in using 
social media for disaster rescue (Mihunov et al., 2020). People typed 
their messages differently to call for help because no official standards 
were composed for requesting rescue on social media. Thus, volunteers 
manually detected, comprehended, and processed enormous social 
media data during hazards to pinpoint rescue-related messages and 
locate victims. This manual process requires intensive human labor and 
time to gather and organize information swiftly. More in-depth on 
developing automated tools for collecting and processing rescue request 
messages on social media is urgently needed. 

3. Methodology 

3.1. VictimFinder model architectures 

The architecture of VictimFinder models consists of a pretrained 
model layer and a classifier layer, as delineated in Fig. 3. The pretrained 
model learns the general language representations from existing corpus 
while the classifier targeted at specific downstream tasks. In this way, 
we profit from the knowledge captured by large and complicated pre
trained models and usher it to the goal of detecting rescue request 
tweets. Tweets were initially converted to vectors through a tokeniza
tion and vectorization process, which splits tweets into lists of tokens 
and represents each token by a pre-defined identification number. Then, 
through the language model pretrained on large amounts of texts, pre
processed tweets can be encoded to meaningful embeddings that capture 
the semantics of words or sentences. Finally, each tweet embedding is 
fed into classifiers to detect if the user is requesting rescue or not. 

There are two common methods to train VictimFinder models based 
on the proposed architecture: fine-tuning and feature-based approaches 
(Devlin et al., 2019). The fine-tuning method calculates and modifies the 
parameter in both pretrained models and classifiers while training on a 
specific downstream task. In feature-based approaches, the parameters 
within the pretrained language model remain static, and only the clas
sifier parameters are modified during training. Thus, compared to fine- 
tuning strategies, fewer parameters need to be trained in feature-based 
approaches. This architecture is highly expandable and allows quick 
alternation between numerous model types and training routines. 
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This study built ten VictimFinder models using fine-tuning or feature- 
based approaches based on seven pretrained language models, including 
Global Vectors for Word Representation (GloVe), Embeddings from 
Language Models (ELMo), BERT, RoBERTa, DistilBERT, ALBERT, and 
XLNet (Table 1). GloVe and ELMo are milestone NLP models and 
rendered state-of-the-art performance in several NLP tasks when they 
were released. They served as baseline models in this research. The 
original BERT and its modified versions (RoBERTa, DistilBERT, and 
ALBERT) were tested to compare the performance of identifying rescue 
requests based on different existing BERT models. XLNet, which was 
proposed to overcome the limitations of BERT-based language models, 
was also included to investigate if the more complicated language model 
could outperform BERT and BERT-based models in building 
VictimFinder. 

GloVe and ELMo were coupled with a Transformers classifier, which 
is adopted from the Attention mechanism to capture more information 
from natural language (Vaswani et al., 2017). They are trained through 
the feature-based approach (models 1&2 in Table 1). The default BERT, 
modified BERT, and XLNet models were trained through a fine-tuning 
approach (models 3–7). 

In addition, we proposed three novel designed customized BERT- 
based models by placing a nonlinear multi-layer neural network, a 
Convolution Neural Network (CNN; O’Shea and Nash, 2015), and a 
Long-Short Term Memory (LSTM; Greff, Srivastava, Koutník, Steune
brink, and Schmidhuber, 2017) above the BERT model to process clas
sification tasks (models 8–10). Divergent from default BERT with linear 
classifier, the BERT-Nonlinear model attempts to boost the performance 
with a more complicated classifier. The BERT-CNN and BERT-LSTM 
models try to harness the information captured by BERT exhaustively 

by incorporating all hidden states parameters to tackle information 
vanishing problems. The three customized models were trained using 
the feature-based approach, meaning tweets in the training dataset were 
first encoded to embeddings using the default BERT model and then 
input to neural network-based classifiers to optimize their parameters. 
Compared to fine-tuned BERT-based models, customized BERT-based 
models take advantage of the pretrained embeddings and are expected 
to detect higher dimensional features hidden in the embedded texts with 
a limited training dataset. 

3.2. Selected pretrained models 

3.2.1. GloVe 
Representing words by real-valued vectors is commonly used in the 

domain of NLP that the vectors can be input as features in various 
downstream applications and text categorization (Tellex, Katz, Lin, 
Fernandes, and Marton, 2003; Sebastiani, 2002; Turian, Ratinov, and 
Bengio, 2010; Socher, Bauer, Manning, and Ng, 2013). There are two 
major models of learning word representation, global matrix factoriza
tion and local context window methods, but either of the two models 
suffers from several drawbacks, e.g., performs poorly on word analogy 
or missing statistical information. 

GloVe is a global log-bilinear regression model that combines the 
merits of these two types of word representation models. GloVe trains a 
specific weighted least squares model on the non-zero entries of a global 
word-word co-occurrence matrix, which tabulates the frequencies of 
words with another given word in a corpus. Five corpora of different 
sizes are utilized to train the model. It generates word vectors with 
meaningful substructure that leads to better performance on several 

Fig. 2. The route and rain depth of 2017 Hurricane Harvey.  
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tasks than continuous bag-of-words and skip gram models, such as word 
analogy, named entity recognition, and word similarity tasks (Pen
nington et al., 2014). 

3.2.2. ELMo 
Instead of relying on word co-occurrence counts, ELMo leverages 

vectors derived from a bidirectional LSTM which is trained on a huge 
text corpus with a coupled language model objective (Peters et al., 
2018). This is a novel deep contextualized word representation that 
takes consideration of both the word uses and how these uses change 
across linguistic contexts. The difference between ELMo and traditional 
word type embeddings, e.g., word2vec and GloVe, is that every token is 
derived from a function of the entire sentence input. Therefore, the same 

word can have distinguished representation vectors under different 
contexts. Moreover, most LSTM-based language models at that phase in 
time run only in the forward direction, while ELMo takes advantage of a 
bidirectional approach in which the model also runs over the sequence 
in the reverse direction and both the forward and backward language 
models are combined. 

The word vectors are calculated on top of a two-layer bidirectional 
language model (biLM). These two layers are stacked together and each 
one has 2 passes – a forward pass and a backward pass. The words are 
tokenized using a convolutional neural network and are input into the 
biLM. The output of the forward and backward passes is concatenated to 
form the intermediate word vectors and are input into the next hidden 
layer. The final output of ELMo can easily be used upon other existing 
models for specific downstream tasks. Its application has brought 
noticeable improvement to 6 challenging NLP tasks (question 
answering, textual entailment, semantic role labeling, coreference res
olution, named entity extraction, and sentiment analysis) compared to 
preceding models, including GloVe. 

3.2.3. BERT 
Feature-based approaches are applied to the former language models 

that achieve state-of-the-art performance with a General Language Un
derstanding Evaluation (GLUE) benchmark score of 71.0. However, the 
techniques leveraged by them have limitations. For example, ELMo is 
based on a bidirectional LSTM architecture rather than a Transformer 
architecture, in which valuable information in the inchoate hidden 
layers may vanish when the recurrent network goes deeper. BERT which 
is designed to pretrain deep bidirectional representations using unla
beled text has been introduced (Devlin et al., 2019) settling such limi
tations by applying bidirectional Transformer, which is an attention 
mechanism that learns contextual relations between words during fine- 
tuning. The model architecture is shown in Fig. 4. 

Transformer contains an encoder mechanism and decoder mecha
nism. Since the aim of BERT in this study is to generate a language 
model, only the encoder part of Transformer is required. Unlike many 
bidirectional language models, in which the contextual representation 
of every token is the concatenation of the forward and backward rep
resentations, the Transformer encoder reads the entire sequence of 
words at once. In this sense, it is considered bidirectional or non- 
directional, which enables the model to learn the context of a word 
based on all of its surroundings. To implement such bidirectional ap
proaches, BERT leverages two training strategies. First, BERT proposes a 
Masked Language Model (MLM) inspired by the Cloze task (Taylor, 
1953) in which 15% of the input tokens are masked by a special label 
[mask] at random and then predict those masked tokens. Second, BERT 
introduces Next Sentence Prediction (NSP) to the training process. The 
model takes in pairs of sentences as input and attempts to identify if the 
second sentence within the input pair is the subsequent one in the 

Fig. 3. The architecture of NLP-based VictimFinder models.  

Table 1 
The developed VictimFinder models and training methods.  

No. VictimFinder 
models 

Pretrained 
models 

Classifiers Training 
methods 

1 
Glove- 
Transformers GloVe Transformers Feature-based 

2 
ELMo- 
Transformers ELMo Transformers Feature-based 

3 BERT-Linear BERT Linear Fine-tuning 
4 RoBERTa-Linear RoBERTa Linear Fine-tuning 
5 DistilBERT-Linear DistilBERT Linear Fine-tuning 
6 ALBERT-Linear ALBERT Linear Fine-tuning 
7 XLNet-Linear XLNet Linear Fine-tuning 
8 BERT-Nonlinear BERT Nonlinear Feature-based 
9 BERT-LSTM BERT LSTM Feature-based 
10 BERT-CNN BERT CNN Feature-based  

Fig. 4. Architecture of BERT.  
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original document. 
BERT can be fine-tuned with a simple output layer to generate state- 

of-the-art performance throughout a number of NLP tasks. Under the 
GLUE benchmark, BERT outperforms ELMo by approximately 7% 
(Devlin et al., 2019). 

3.2.4. RoBERTa 
Since BERT started to prevail in the NLP world, research on devel

oping BERT-based models has emerged. RoBERTa, for example, is a 
novel and improved recipe for training BERT models, which can match 
or surpass many post-BERT methods (Liu et al., 2019). It was proposed 
after meticulously measuring the impact of key hyperparameters and 
finding that BERT was undertrained. RoBERTa optimizes the training 
process of BERT in the following ways. First, RoBERTa offers the training 
process more time, with bigger batch sizes and more data. Second, the 
next sentence prediction objective in BERT is removed in RoBERTa. 
Third, RoBERTa trains the model with a longer sequence. Last, the 
patterns of the masked language model are altered dynamically. 
Compared to BERT, RoBERTa achieves a leading score of 88.5 on the 
public GLUE benchmark result board over numerous tasks. 

3.2.5. DistilBERT 
DistilBERT is a smaller pretrained model on the basis of BERT using 

knowledge distillation. This process is a compression strategy to train a 
compact model, called the student, capable of duplicating the perfor
mance of a larger model or an ensemble of models. DistilBERT is built on 
the same general structure of BERT with token-type embeddings while 
removing the poolers and reducing the number of layers. It also takes 
advantage of the training objectives recommended by RoBERTa. 
Experiment results show that DistilBERT significantly reduces the model 
size and accelerates the training and predicting speed while maintaining 
most of the performance (Sanh, Debut, Chaumond and Wolf, 2020). 

3.2.6. ALBERT 
ALBERT is another simplified version of BERT that is also con

structed on the transformer encoder architecture. It utilizes two 
parameter reduction techniques to achieve faster training speed at lower 
memory consumption. The first method is factorized embedding 
parameterization, which projects the one-hot vectors into a lower 
dimensional space before projecting them into the hidden space during 
tokenization. The second one is cross-layer parameter sharing, a com
mon technique aiming to improve parameter efficiency. There are 
several strategies of parameter sharing, among which ALBERT chooses 
to share parameters across layers. A self-supervised loss focusing on 
modeling inter-sentence coherence has been applied which contributes 
consistently to the performance of downstream tasks with multi- 
sentence inputs. Empirical evidence shows that ALBERT establishes 
new state-of-the-art results on GLUE benchmark with an average score 
of 88.7 (Lan et al., 2020). 

3.2.7. XLNet 
BERT implements its bidirectional architecture by corrupting the 

input text with a special label [mask] which neglects the dependencies 
between the masked locations. Moreover, the data used for fine-tuning 
BERT do not contain this [mask] label, leading to a pretrain-finetune 
discrepancy. In light of this, XLNet, a generalized autoregressive pre
training method, has been proposed. XLNet enables training bidirec
tional contexts by maximizing the expected probability over all 
permutations of the factorization order, and its autoregressive formu
lation helps overcome the limitations of BERT (Yang et al., 2020). In 
addition, XLNet integrates ideas from an advanced autoregressive 
model, Transformer-XL, and designed a two-stream attention mecha
nism. Under similar experiment settings, XLNet renders better perfor
mances compared to BERT across 20 common NLP tasks (Yang et al., 
2020). 

4. Experiments 

4.1. Training dataset 

The training dataset was extracted from Twitter data purchased from 
the Twitter company. Harvey-related Twitter data during August 
25th–31st, 2017, from Harvey’s first landfall to when it weakened to a 
storm, were collected through Twitter’s enterprise Application Pro
gramming Interface (API), which provides the full historical Twitter 
data through keyword search or criteria-based search, such as location- 
based and user-based search (https://developer.twitter.com/e 
n/docs/twitter-api/enterprise). We used a list of case-insensitive key
words to identify an initial collection of Harvey or rescue-related tweets: 
[harvey, hurricane, storm, flood, houston, txtf (Texas Task Force), coast 
guard, uscg (U.S. Coast Guard), houstonpolice (Houston Police Depart
ment), cajun navy, fema (Federal Emergency Management Agency), 
rescue]. Every tweet containing at least one of the keywords was 
retrieved, resulting in 25 million tweets in the initial collection. Then we 
chose original English tweets containing the 5-digit zip code of coastal 
Texas as potential rescue request tweets, which returned 3191 undu
plicated tweets. 

We manually labeled each of the 3191 tweets by four questions to 
prepare the training database. The questions were designed based on a 
suggested rescue request method posted by a volunteer organization’s 
Twitter account (@HarveyRescue) during Hurricane Harvey. The 
method recommends Twitter users asking for rescue to post tweets with 
complete address, number of people who need help, phone number, and 
other special needs while hashtagging #HarveySOS and mentioning the 
account. Each tweet was binarily categorized based on four questions: is 
the tweet asking for help (label: help)? Does the tweet provide a full 
address (fullAddress)? Does the tweet mention the demographic or 
health-related information of victims, e.g., gender, age, physical con
ditions, and special needs (victimInfo)? Does the tweet describe the 
hazard situations, e.g., flooded water levels (hazardSituation)? We 
labeled the tweet as positive for each question if the answer is yes and 
negative for no. Two student workers were hired to annotate the tweets 
with timely communication to address the disagreements on label types. 
The tagged data were also scrutinized by the author to ensure consis
tency in tagging. Five examples of the labeled data are shown in Table 2. 
Place names and street names appearing in the sample data shown in the 
table were replaced by ‘place_name’ and ‘street_name’. Street and place 
numbers were replaced by random numbers. 

The distributions of the four types of labels are shown in Fig. 5(a). 
Among the 3191 manually labeled tweets, 1935 (60.64%) were seeking 
help, 2003 (62.77%) provided full addresses, 1278 (40.05%) mentioned 
victims’ conditions and special needs, and 57 (1.79%) described their 
hazard situations. Addresses in the rescue request tweets were further 
extracted using a customized regular expression and geocoded through 
the Google Geocoding API. Fig. 5(b) reveals the spatial hot spots of the 
rescue requests during Harvey extracted from the training dataset. The 
temporal patterns of the number of rescue request tweets within the 
dataset is shown in Fig. 5(c). 

In this study, only the first three labels (help, fullAddress, and vic
timInfo in Fig. 5(a)) were used because their positive and negative la
bels’ distributions are ideal for model training. All labeled data were first 
input into a text cleaning process where all texts were lowercased, and 
non-ASCII letters were removed. Punctuation mark removal and lem
matization were performed before the experiment. 

4.2. Implementation 

Table 3 lists the initial pre-trained parameters and concise de
scriptions for each VictimFinder model. For example, the pretrained 
model for BERT is designed with 12 layers. The size of the hidden layer is 
768 and the number of self-attention head is 12. This model has 110 
million parameters and is pre-trained using unlabeled text from 
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BooksCorpus (800 million words) and English Wikipedia (2500 million 
words) with masked language model and next sentence prediction 
method as mentioned in Section 3.2. 

A dummy classifier, which aims to authenticate the performance of 
the models tested and detects the possible bias exist in the testing 
datasets, is included in this experiment. The stratified strategy is applied 
to the dummy classifier, which generates predictions by respecting the 
training set’s class distribution. 

Before inputting to VictimFinder models, tweets were initially toke
nized and vectorized through the BERT tokenizer (Devlin et al., 2019). 
The output embeddings of GloVe and ELMo were input into a two-head, 
one-layer Transformer with average pooling for classification. The input 
layer size was 512, and the dropout rate was set to 0.3. Models 3–7 were 
linked to a simple linear classifier to perform softmax, which normalizes 
the output to a probability distribution over predicted output classes. 

The three customized feature-based models were implemented by 
running the default BERT model first, as shown in Table 3 and Fig. 6. For 
the BERT-Nonlinear model, the final hidden state of the default BERT 
model was transferred to a neural network with three fully connected 
layers of 256 nodes. Leaky Rectified Linear Unit (LeakyReLU) was 
leveraged as the activation function (negative slope = 0.01) of the first 
two layers and the final layer output the classification results by per
forming softmax function. For the BERT-LSTM model, a bidirectional 
LSTM was constructed and placed on top of BERT, and the last hidden 
state of LSTM was linked to a fully connected layer to perform softmax. 
The BERT-CNN model used hidden states from all layers of BERT. A 
convolution kernel was performed with 16 filters on the hidden states. 
The output data were concatenated to form a channel with 192 nodes. A 
one-dimensional vector was formed through max pooling and linked to a 
fully connected layer to perform softmax. 

The labeled dataset was randomly separated as training data, cross- 
validation data, and testing data with a ratio of 8:1:1. Random state was 
stored to ensure the data used for each model evaluation process were 
the same. The number of maximum training epochs was set to 40 with 
early stopping. As suggested in previous literature, the learning rate for 
non-BERT models was set to 0.001, and 2e-5 for BERT-based models 

(Devlin et al., 2019). We chose the AdamW algorithm as the optimizer 
and cross entropy as the loss function. 

All models were established using Python and relevant packages. 
Dummy classifiers were implemented using the ScikitLearn library with 
the stratified strategy. Models based on GloVe and ELMo were imple
mented using PyTorch. The BERT-based models were implemented 
based on the huggingface Transformer library (https://huggingface.co/ 
transformers/). Fine-tuning models were implemented by using hug
gingface sequence classification functions. Customized BERT-based 
models were built using PyTorch functions. 

4.3. Evaluation criteria 

The three most used metrics, precision, recall, and F1-score (Eqs. 
3–5), were utilized to evaluate the performance and bias of VictimFinder 
models. Precision measures the percentage of correctly identified tweets 
(noted as True Positives, TP) among all the positive tweets detected by 
the model, which combines both TP and False Positives (FP). Recall 
measures the percentage of correctly identified tweets among all ground 
truth, which is the combination of TP and False Negatives (FN). F1-score 
is the harmonic mean of precision and recall, providing a comprehensive 
metric to evaluate model performance. GloVe, which has the longest 
history, was selected as the baseline model for accuracy evaluation. 

Precision =
TP

TP + FP
(3)  

Recall =
TP

TP + FN
(4)  

F1–score = 2*
Precision*Recall

Precision + Recall
(5) 

Considering that rescue tweets detection should be timely so that 
related agencies could provide immediate assistance during disasters, 
we also measured the computational costs by comparing the training 
time and predicting time of each selected model. Fine-tuning BERT was 
selected as the baseline model to present a clearer view of the time cost 
for training and predicting. 

Each model was applied in three independent classification tasks. 
The standard deviation is calculated to find the most versatile model. To 
normalize the discrepancy between different models, we leveraged a 
normalization mapping considering the conception of the softmax 
function. A novel stability metric, the Normalized Model Stability Index 
(NMSI; Eq. 6), where all the output number of the function sums to 1 and 
the order is preserved, was introduced. 

NMSI = 1 −
1

∑k
k=1eσk

∙enσk (6) 

In Eq. 6, the number of selected models is noted as k (k = 3 in this 
study), σ stands for the standard deviation of F1-score, and n is the 
augment factor and was set to 100 in this case. 

5. Results 

Evaluation metrics of model performances are summarized in Ta
bles 4 and 5. According to Table 4, the F1-score of GloVe and ELMo 
ranged from 0.747 to 0.858, while the BERT-based models ranged from 
0.834 to 0.919. XLNet, which takes the asset from the Transformer 
structure and aims to optimize BERT, ranged from 0.824 to 0.905. All 
BERT-based models generally outperformed the baseline model by 
approximately 10%. The result verifies the hypothesis that the state-of- 
the-art model performs better on rescue tweet classification tasks. This is 
largely due to BERT’s word piece embedding, masked language 
modeling, and the application of a bidirectional Transformer (Devlin 
et al., 2019), leading to a better understanding of natural language by 
computer programs. 

Table 2 
Examples of manually labeled tweets.  

Text help fullAddress victimInfo hazardSituation 

#Houstonrescue 9999 
street_name Houston TX 
77074 waiting for water 
rescue in the attic they 
cant get to roof 

1 1 0 0 

Rescue Needed 
ForemanFamily of house 
flooding in last hours 
11,870 place_name 
77,044 

1 1 1 0 

@user_name55555 praying 
you & your family will be 
out of harms way 
Hurricane Harvey is 
something serious 

0 0 0 0 

Harvey is expected to make 
landfall as Category 
hurricane Text HARVEY 
to 77,453 to receive 
alerts on the massive 
Texas storm 

0 0 0 0 

@user_name My friend her 
roommate and their dogs 
in attic house flooding 
street_name TX 77539 
#dickinson #galveston 
#houstonflood 

1 1 1 0  
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Certain models perform better than the rest for specific tasks. In 
identifying rescue requesting tweets, feature-based BERT with CNN 
classification head performed the best with a 0.919 F1-score. Fine- 
tuning BERT with linear classification head had the best performance 

for detecting full address information within the text with an F1-score of 
0.913, while feature-based BERT with LSTM classifier outperformed the 
rest in distinguishing tweet with or without victim information with an 
F1-score of 0.856. However, no gigantic gap across the performance of 

Fig. 5. The distribution of labels in the training dataset and their spatial-temporal patterns.  

Table 3 
Pre-trained parameters for developed tweet classification models.  

No. VictimFinder 
models 

Pre-trained parameters Description 

– Dummy – – 
1 Glove-Transformers glove.twitter.27B-100d Train with Twitter data, 2B tweets, 27B tokens, 1.2M vocab, uncased, 100d vectors 

2 ELMo-Transformers 
elmo_2x2048_256_2048cnn_1xhighway_weights. 
hdf5 Parameters 28.0 (Millions) LSTM Hidden Size/Output size 2048/256, Highway Layers>1 

3 BERT-Linear bert-base-uncased 12-layer, 768-hidden, 12-heads, 110M parameters, trained on lower-cased English text 
4 RoBERTa-Linear roberta-base 12-layer, 768-hidden, 12-heads, 125M parameters; using the BERT-base architecture 

5 DistilBERT-Linear distilbert-base-uncased 6-layer, 768-hidden, 12-heads, 66M parameters; distilled from BERT model bert-base- 
uncased 

6 ALBERT-Linear albert-base-v1 12 repeating layers, 128 embedding, 768-hidden, 12-heads, 11M parameters 
7 XLNet-Linear xlnet-base-cased 12-layer, 768-hidden, 12-heads, 110M parameters; XLNet English model 
8 BERT-Nonlinear Same as Model 3 Same as Model 3 
9 BERT-LSTM Same as Model 3 Same as Model 3 
10 BERT-CNN Same as Model 3 Same as Model 3  
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all selected Transformer-based models was observed. BERT models 
customized with more complicated encoders may have better results but 
only marginally, possibly due to training data deficiency. This can be 
further proven by the fact that models with larger numbers of parame
ters, such as XLNet and RoBERTa, performed worse than BERT-based 
models. ELMo had a noticeably higher recall for the first two tasks 
which indicates that it has a tendency of labeling tweets as positive 
samples. This is helpful for situations when fewer positive samples are 
allowed to be missed out. 

According to Table 5, the training time of models using GloVe and 
ELMo were 0.257 and 0.278 times of BERT-based models (1.000×), and 
the predicting time was 0.006 times and 0.189 times of BERT-based 
models (1.000×), respectively. The XLNet-linear model, the most 

complicated model in this study, cost nearly 50% extra training time 
than the BERT-linear model, and the predicting time was doubled. This 
corresponds with the fact that Transformer models are massive and 
contain millions of parameters, making them computationally more 
expensive. The NMSI ranged from 0.853–0.963. The BERT with LSTM 
classifier performed the most stably across three classification tasks with 
an NMSI value of 0.963, which is 12.2% better than the baseline model 
(BERT-Linear). However, BERT with CNN classifier performed inferiorly 
regarding model stability with the lowest NMSI of 0.853. This might be 
caused by the hidden feature disparities between the embedded texts of 
help request, address, and victim information. 

Considering both Table 4 and Table 5, the customized BERT-LSTM 
model has performed most stably upon three classification tasks. This 
means the BERT-LSTM structure could be more trustworthy when 
applied to other tasks such as cross-event prediction. Regarding time 
efficiency, the actual difference may not be significant between the 
maximum number 2.290× and the minimum number 0.006× when 
running the model on tiny testing datasets. However, in disaster events, 
the model will be utilized to predict real-time Twitter streaming data, 
which are both high in flow and volume. The deviations in computa
tional overheads mean a gigantic gap in the time consumed in this 
scenario. Consequently, it is reasonable to consider compensating effi
ciency with accuracy. The DistilBERT-Linear model renders similar 
performance than other models but is much more efficient, making it the 
optimal choice for rescue tweet detection tasks accounting for both ac
curacy and efficiency. 

Fig. 6. Structures of the three customized BERT models.  

Table 4 
Precision (P), Recall (R), and F1-score of each model.  

VictimFinder models Label-“help” Label-“fullAddress” Label-“victimInfo” 

P R F1 P R F1 P R F1 

Dummy 0.642 0.618 0.630 0.628 0.631 0.629 0.666 0.641 0.653 
GloVe-Transformers 0.782 0.850 0.831 0.756 0.845 0.813 0.806 0.696 0.747 
ELMo-Transformers 0.779 0.963 0.846 0.800 0.963 0.858 0.812 0.859 0.790 
BERT-Linear 0.884 0.918 0.909 0.889 0.933 0.913 0.869 0.825 0.838 
Roberta-Linear 0.886 0.918 0.910 0.878 0.918 0.904 0.873 0.871 0.850 
DistilBERT-Linear 0.881 0.903 0.905 0.870 0.940 0.901 0.862 0.840 0.834 
XLNet-Linear 0.862 0.915 0.893 0.873 0.963 0.905 0.840 0.905 0.824 
ALBERT-Linear 0.854 0.875 0.883 0.886 0.938 0.912 0.870 0.840 0.842 
BERT-LSTM 0.878 0.913 0.904 0.873 0.940 0.903 0.881 0.856 0.856 
BERT-CNN 0.897 0.933 0.919 0.873 0.940 0.903 0.867 0.817 0.835 
BERT-Nonlinear 0.881 0.900 0.905 0.883 0.920 0.908 0.856 0.882 0.835  

Table 5 
Computation cost and model stability.  

VictimFinder models Training time ratio Predicting time ratio NMSI 

GloVe-Transformer 0.257£ 0.006£ 0.858 
ELMo-Transformer 0.278× 0.189× 0.927 
BERT-Linear 1.000× 1.000× 0.878 
Roberta-Linear 1.019× 0.940× 0.942 
DistilBERT-Linear 0.521× 0.494× 0.900 
XLNet-Linear 1.453£ 2.290£ 0.860 
Albert-Linear 0.834× 0.997× 0.933 
BERT-LSTM 1.021× 1.004× 0.963 
BERT-CNN 1.022× 1.006× 0.853 
BERT-Nonlinear 1.023× 1.005× 0.886  
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6. Conclusion 

This paper utilized different NLP models for sequence classification 
on harvesting rescue requests from Twitter data. The objective was to 
examine if BERT-based models can achieve better performance than 
models based on milestone NLP algorithms in rescue request tweet 
classifications. Experiment results show that all BERT-based models 
outperformed the baseline model with a limited amount of training data. 
BERT models with customized classification heads led to significant 
improvement in performance compared to the baseline model. In terms 
of identifying help requesting tweets, the best performer, BERT with 
CNN classifier, obtained a 0.919 F1-socre, which is 10.6% better than 
the baseline model. BERT with LSTM classifier performed most stably 
across all three classification tasks. DistilBERT, considering both model 
performance and efficiency, could be the most appropriate model for 
rescue request tweets detection in disaster response. ELMo, which pro
cesses data extremely quickly with very high recall, can be applied to 
situations where fewer rescue request tweets are expected to be missed 
out. 

This study contributes both scientifically and practically in several 
aspects. Initially, by constructing a labeled dataset, we make training 
victim-finding models possible and bring state-of-the-art NLP technol
ogy to this domain of study. Furthermore, this research provides valu
able insight into which NLP model should be selected to categorize 
rescue request tweets based on experiments with real rescue request 
Twitter data during Hurricane Harvey. Finally, the result of the exper
iments acts as the cornerstone of future victim finding applications. Web 
applications can be developed, and the optimal model can also be 
incorporated into GIS tools for displaying near real-time rescue request 
locations to which emergency responders and volunteers can refer to 
send help. 

However, several issues may arise due to the nature of big social 
media data analysis and some limitations of this research. Such issues 
should not be ignored while translating research results into practice. 
First, people using languages other than English on social media cannot 
leverage the benefit of these research results. One way to solve the 
problem is to train a corresponding model for the target language or 
scrutinize whether a unified model can render reliable performance 
across numerous languages. Second, bias in Twitter datasets is a com
mon non-negligible issue. This approach tends to help those who use 
social media more often, and those groups of people may not be the ones 
who demand help the most during disasters. Uneven usage of social 
media may lead to biased consequences. Moreover, social media posts 
suffer from locational bias, temporal bias, and reliability issues. Such 
issues should be considered while further analyzing the spatiotemporal 
patterns of the identified tweets for detecting vulnerable communities or 
assessing disaster damages. Third, the models are trained and tested 
with tweets from a single event, Hurricane Harvey, that may affect the 
generalizability of the model. Incorporating Twitter data from other 
events of the same disaster type will reinforce the robustness of the 
model developed. Fourth, a large amount of sensitive data containing 
users’ privacy can be extracted from social media by applications built 
upon such classifiers. Meticulous consideration should take place to 
decide who should have access to these applications and databases, or it 
might cause privacy issues. Fifth, the best model mentioned in this 
research offers an F1-score of 0.919, which is a promising result. How
ever, if more weight is put on social media rescue requests, the mis
classified requests may mean lives lost without scrutiny. Continuing to 
assemble disaster rescue information from multiple spectrums and 
practice social media data as a supplementary source for finding and 
rescuing disaster victims will solve this limitation. 

Future studies can be conducted in the following directions to 
address the limitations of the study and advance social media use in 
disaster rescue. The model performance can be further optimized by 
fine-tuning the hyperparameters and utilizing larger training datasets. 
Data from other events of the same disaster type can be collected and 

utilized to test and foster the generalizability of the model. Second, a 
rescue tweets detection and analysis pipeline can be constructed with 
the optimized model by adding advanced geoparsers and geocoding 
techniques. Through applying the pipeline and spatial analysis, valuable 
information and discovery regarding overlooked communities and lim
itations of traditional disaster management can be extracted from 
massive tweets to enhance disaster mitigation and preparedness. Third, 
the scope of rescue request detection should not be limited to NLP text 
classification only. The accuracy of detecting rescue request tweets can 
be improved by processing the images posted along with the text data. In 
addition, being inspired by the concept raised by SocioDim, which is a 
classification framework based on network structure to capture inter
action patterns (Tang and Liu, 2011), and Global Consistency Maximi
zation, which is a link-based classification model to identify opinions (Li 
et al., 2016), network-based approach might be a feasible shortcut to
ward enhanced rescue request discovery. Fourth, interesting patterns 
can be recognized through investigating the spatial, temporal, textual, 
and diffusion characteristics of rescue request tweets. The results can 
inform disaster response, rescue operation, and damage estimation in 
future events. Fifth, Hurricane Harvey affected different social groups 
from various communities. The geographical features of rescue request 
tweets and the underlying socioeconomic characteristics of individuals 
and communities requiring additional assistance can be further 
evaluated. 
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