
60 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

Editor’s notes:
This article discusses how to reduce the latency of stochastic computations.
The authors represent an integer number as a set of remainders with respect to a
set of relatively prime moduli. Operations such as multiplication, implemented
using a deterministic version of stochastic computing, work directly on the
remainders, thus yielding a partitioning of the original computation and a
significant decrease in the number of clock cycles required.

—Vincent T. Lee, Facebook Reality Labs Research

J STOCHASTIC COMPUTING (SC) [1], [2], an uncon-
ventional computing paradigm processing bit streams,
has recently gained considerable attention in the hard-
ware design and computer architecture communities.
Higher tolerance to noise and lower hardware cost
compared to conventional binary-radix-based designs
are the most appealing advantages of SC. The inaccu-
racy of computation and long processing time, how-
ever, are the major weaknesses of SC. The inaccuracy is
mainly because of random fluctuations in generating bit
streams and correlation (independence) between bit
streams [1]. The common method to improve accuracy

High-Performance
Deterministic Stochastic
Computing Using
Residue Number System
Kamyar Givaki and Reza Hojabr
University of Tehran, Tehran 1417466191, Iran

M. H. Gholamrezaei
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Ahmad Khonsari
University of Tehran, Tehran, Iran
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Saeid Gorgin
Iranian Research Organization for Science and
Technology (IROST), Tehran, Iran

Dara Rahmati
Shahid Beheshti University, Tehran, Iran

M. Hassan Najafi
University of Louisiana, Lafayette, LA, USA

is to increase the length of
the bit streams. However,
a longer bit stream means
longer latency and higher
energy consumption.

Recently, some deter-
ministic approaches for SC
were proposed [3], [4].
These methods are able

to perform completely accurate computation with SC
circuits. In these methods, the required independence
between bit streams is provided by three approaches:
1) rotation of bit streams [3]; 2) clock-dividing bit
streams [3]; or 3) using bit streams with relatively prime
lengths [4]. These methods guarantee exact computa-
tion by processing the bit streams for the product of the
length of the input bit streams. For example, to mul-
tiply two n-bit precision data, each represented using
a bit stream of length 2n, the deterministic methods
take 22n cycles to produce the exact result which is a
bit stream of 22n bit length. Although the determinis-
tic methods outperform the conventional SC in terms
of computation accuracy, the long processing time
and consequently high-energy consumption (power ×
time) limit their application.

Digital Object Identifier 10.1109/MDAT.2021.3051848
Date of publication: 14 January 2021; date of current version:
6 December 2021.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

61November/December 2021

In this work, we propose a novel approach to miti-
gate the long processing time of the current determin-
istic methods of SC. We integrate the deterministic
methods with the residue number systems (RNSs) [5]
to reduce the length of bit streams exponentially. RNS
is a non-weighted number representation that offers
a high degree of parallelism and modularity. In RNS,
each number is decomposed into a set of residues
that are smaller than the primary number. The arith-
metic operations are performed on each residue inde-
pendently and in parallel with the operations on other
residues. This makes RNS a computation technique
free of carry propagation. The parallelism offered by
RNS is a unique property that distinguishes it from
other number systems like the logarithmic number
system (LNS). The proposed design outperforms the
prior designs developed based on the deterministic
approaches in terms of processing time and energy
consumption. Synthesis results on implementation
of multiplication operation show that the proposed
approach reduces the hardware area and power
consumption more than 88% and 56%, respectively,
compared to those of the conventional 32-bit binary
implementation. In summary, the main contributions
of this work are as follows.

• We integrate the deterministic methods of SC with
the RNS representation. The proposed design
provides a lower hardware area and power con-
sumption compared to the conventional binary
and RNS implementations.

• The proposed design methodology results in a
significant reduction in the number of processing
cycles (ratio of 22∗(n − ⎡log

2
 n⎤ ) where n is the data bit

width) compared to the state-of-the-art determin-
istic methods of SC.

• We propose an finite-state machine (FSM)-based
reverse converter (RC) to directly convert the
RNS-based bit streams to binary numbers.

• Evaluating our approach on a state-of-the-art pro-
cessing element (PE) for convolutional neural
networks (NNs) [6] shows 84%, 52%, and 30%
area reduction, respectively, compared to the
baseline binary, RNS, and clock division deter-
ministic implementation.

Preliminaries

Stochastic computing
In SC, computation is performed on random or

unary bit streams [4]. The ratio of the number of 1’s

to the length of a bit stream determines the value of
the bit stream. Complex arithmetic operations are
implemented using simple logic gates in this para-
digm. For example, an AND gate can be used to mul-
tiply two numbers in the stochastic domain [2]. With
stochastic representation, a stream of 2n bits can pre-
cisely represent any n-bit precision number. A num-
ber in binary format is conventionally converted to
a stochastic bit stream by comparing a pseudo-ran-
dom or an increasing/decreasing number to the tar-
get number [4]. The output of comparison generates
one bit of the bit stream at any cycle. A stochastic
bit stream can be converted back to the binary for-
mat by simply counting the number of ones in the bit
stream using a binary counter [1].

A requirement for performing operations such as
multiplication in the stochastic domain is to convert
the data into independent bit streams. In conven-
tional SC, this independence is provided by using
different sources of random numbers in generating
bit streams. However, because of random fluctu-
ations in generating random bit streams and also
correlation between bit streams, the computations in
conventional SC are not accurate [4].

Deterministic methods of SC
Three deterministic methods for SC were pro-

posed recently [3], [4]. By properly structuring bit
streams, accurate and deterministic computations
are carried out using SC logic. The deterministic
approaches guarantee independence by using bit
streams with relatively prime lengths, clock-divid-
ing bit streams, and rotation of bit streams. These
methods guarantee that each bit of one operand
(bit stream) sees every bit of the other operands
(bit streams) exactly once, resulting in a determin-
istic and completely accurate computation. Figure 1
exemplifies the three deterministic methods. The
first method simply uses two bit streams with rela-
tively prime lengths. It iterates them until they have
a length equal to the product of the length of the bit
streams. In the second method (i.e., clock division
method), the second bit stream is clock divided by
the length of the first bit stream. Finally, in the rota-
tion method, the second bit stream is stalled for one
cycle after each time generating the first bit stream.

All these deterministic methods guarantee
accurate computation if generating and process-
ing bit streams for the product of the length of
the input bit streams. This means that processing

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

62 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

i n-bit precision data, each represented by a
2n-bit bit stream, takes 2i×n cycles to calculate an
accurate result. This long processing time translates
to high- energy consumption making the current
deterministic methods inefficient for many appli-
cations. In this work, we exploit the RNS number
representation to mitigate the long processing time
of the deterministic methods of SC.

Residue number system
RNS is a number representation system in which a

number is represented by its residues when divided
by the members of a set of relatively prime integers
(called moduli set). A formal definition of RNS can
be written as follows.

• Considering a set of L relatively prime numbers
<m1, m2,…, mL>, an integer value x is represented
by <x1, x2, …, xL> where xi = x mod mi.

An important advantage of using RNS is that com-
plex and costly operations are split into several inde-
pendent and simple operations running in parallel
[5]. For example, a two-input integer multiplication
(x × y) is performed in three steps.

• Convert x and y to their RNS representation, that
is, (xi , yi) where i = 1,…, L and L is cardinality of
the moduli set.

• Multiply each pair of (xi , yi).

• Convert the multiplication result back to conven-
tional binary representation.

This computation flow can be extended to other
arithmetic operations such as addition and subtrac-
tion. Considering the fact that the residues are sig-
nificantly smaller than the original number, a set of
significantly shorter bit streams can be used to pre-
cisely represent each number.

An RNS system with moduli set <m1, m2, …,
mL > represents DR = m1 × m2 × …× mL different num-
bers. DR is called the dynamic range of the system.
To represent an n-bit binary number, the dynamic
range of the selected moduli set should be greater
than 2n to guarantee that all the numbers in the
range of [0,(2n)−1] are covered. Figure 2a illustrates
how to calculate x × y in RNS. As shown, the main oper-
ation is decomposed into three smaller operations run-
ning in parallel. If the result of an operation is greater
than its corresponding residue, the result should be
divided by the residue to achieve the remainder. Chi-
nese remainder theorem (CRT) [7] is a method to con-
vert a number in the RNS format to its corresponding
binary representation (reverse conversion).

There have been some prior works employing
RNS in an acceleration of NNs [8], [9]. Our work is
essentially different from those works in the sense
that we exploit RNS to improve the performance of
the deterministic methods of SC. This is realized by
the bit-width reduction offered by RNS, which results
in an exponential reduction in the length of bit
streams and so in the number of processing cycles.

Proposed design
In this section, we elaborate on the proposed

approach. In the deterministic methods, the number
of clock cycles required to perform an operation fol-
lows an exponential function of the binary bit width
of the operands. Multiplying two n-bit precision data
takes 22n clock cycles as 22n-bit bit streams must be
processed [4]. Using high-bit-width binary numbers
as the operands of the operations leads to very long
processing time and hence very high energy con-
sumption. Exploiting the inherent parallel nature
of the RNS, we split the high-bit-width operands of
the computations into operands (residues) with low
bit widths. While the idea is presented based on the
multiplication operation, the proposed method is
also applicable to the deterministic scaled addition/
subtraction [4].

Figure 1. Examples of the deterministic

methods of SC. (a) Relatively prime bit stream

lengths, (b) clock division, and (c) rotation

method.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

63November/December 2021

Precise SC in RNS domain
Dividing the computation into several parallel

lanes, each lane processing low bit-width oper-
ands decreases the complexity of the computation.
Decreasing the bit width of the operands means
exponentially shorter bit streams to represent each
data. Figure 2 illustrates the idea of combining the
deterministic methods of SC and RNS through a
simple example. As shown in Figure 2b, multiplying
two 8-bit precision numbers with the deterministic
methods takes 22×8 clock cycles. Figure 2c shows
how the proposed method reduces the number of
processing cycles. With RNS, the precision of the
operands decreases to three bits. Hence, it takes only
22×3 clock cycles to perform all subcomputations,
which means 210

× fewer cycles compared to the
non-RNS design. Note that the proposed RNS-based
design has some hardware cost overheads to convert
the outputs back from RNS to the binary format. In
many applications, this conversion can be postponed
to the final stage of computation. We will show that,
even with the conversion overhead, the proposed
design provides a higher energy efficiency compared
to the current deterministic designs of SC because of
an exponential decrease in the processing time.

Moduli set selection
Table 1 compares the processing time of the pro-

posed design and the deterministic designs for differ-
ent data precisions and moduli sets. As can be seen,
the performance improvement offered by the pro-
posed design changes by changing the moduli set
(both the number of moduli and the value of each
modulus). Therefore, choosing proper moduli set is
an important step to achieve the best performance
using the proposed technique.

The symmetricity of the design is another impor-
tant design aspect that should be considered. In
conventional RNS, circuits for each operation in dif-
ferent moduli have different timing characteristics.
For instance, the critical path (CP) delay of a modu-
lar multiplier in mode 2n is much lower than the CP
delay for a modular multiplier in mode 2n − 1. Typi-
cally, there are more than two moduli in moduli set.
The difference between the CP of the fastest and the
slowest moduli is considerable. The slowest modu-
lus determines the overall system’s speed. In our pro-
posed method, the CP delay depends on the binary
precision (bit width) of the moduli; the moduli with
the same bit width have the same CP delay and with

different bit widths have different CP delays. For
example, in the moduli set (64, 63, 61, 59, and 5),
circuits for moduli 64, 63, 61, and 59 have the same
CP delay which is different from the CP delay of the
circuit for modulus 5. Another concern is the num-
ber of required clock cycles to complete the compu-
tations. In the moduli set (64, 63, 61, 59, and 5), the
result of modulus 5 is ready after 22×3 cycles, while
the results of other moduli are ready after 22×6 cycles.
Thus, some parts of the circuit are underutilized for
a large fraction of processing time. To avoid this type
of inefficiency, we pick up a moduli set where all
the modulus have the same bit width and so take the
same number of processing cycles.

In this work, we use the following moduli set with
three members: (2m

− 3, 2m
− 1, 2m). These numbers

Figure 2. (a) RNS multiplication,

(b) previously proposed deterministic

SC [4], and (c) our proposed RNS-based

deterministic method.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

64 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

are the three greatest relatively prime numbers repre-
sented by m bits. The residues of dividing any integer
number by these three moduli can be represented
by the same number of bits (i.e., m bits). It is easy to
prove that the inequality in (1) is true for any m > 2.
The inequality shows that these three numbers can
represent any n = 23m−1-bit precision binary number.
For example, with m = 3, the resulted RNS can repre-
sent any 8-bit precision binary number

(2m
− 3) × (2m

−1) × (2m) ≥ 23m −1. (1)

Proof. Consider 2m = X. Equation (1) can be
rewritten as follows:

 () ()X X
X

− × − ≥3 1
2

2
. (2)

Equation (2) holds when X ≥ 8. So, for m ≥ 3, (1)
is always true.

Example: Assume A is a 9-bit binary number. With
the moduli set (2m

− 3, 2m
− 1, 2m), the smallest

bit-width for the RNS representation of A is given by
3m − 1 ≥ 9. The smallest integer number that satisfies
this inequality is 4.

Table 2 compares the number of processing
cycles for the case of multiplying two binary num-
bers with the proposed design when using (2m

− 3,
2m

− 1, 2m) as the moduli set, and with the current
deterministic methods of SC. Multiplying two n-bit
precision data with the deterministic methods takes
22n cycles. The reduction ratio (the number of cycles
with the deterministic methods divided by the num-
ber of cycles with the proposed method) is formu-
lated in (3):

 reduction_ratio = ​2 ​2*​(n − ⎡lo​g ​
2
 ​n⎤)​​ . (3)

As can be seen in Table 2, the reduction ratio
increases by increasing the data bit-width which
means higher savings in the processing time and
energy consumption. We note that the selected mod-
uli set is not efficient for processing of low bit-width
operands, for example, for n ≤ 8. For the processing
of such operands other modules sets such as (2m

− 1, 2m)
is recommended.

Hardware architecture
Figure 3 demonstrates a high-level architecture of

the proposed design for n-bit precision multiplica-
tion. The moduli set is (2m

− 3, 2m
− 1, 2m). An input

buffer is used to store two distinct numbers, A and B,
in the RNS format. These two numbers are provided
as the inputs of the circuit, each using three residues,
that is, A2m, A2m − 1, and A2m − 3. We use the low-cost
FSM-based bit stream generator proposed in [10] to
convert the residues to bit stream representation.
Converting each residue requires a separate multi-
plexer (MUX) unit. Two FSMs are reused and con-
nected to the select input of the MUX units to choose
one of the binary bits of the residue at any cycle. To
guarantee the required independence between the
two inputs of each multiplication operation, each
one of the two FSMs is configured to generate a dif-
ferent low-discrepancy pattern [10]. Each FSM is
connected to three MUX units, each MUX for con-
verting one of the three residues. In cases that the
architecture is extended to perform several multi-
plications in parallel, the two FSMs will be shared
between more multipliers and their effective over-
head will be lower.

As shown in Figure 3a, three parallel AND
gates are employed to perform the multiplication

Table 1. Processing time comparison of the proposed method and
the deterministic methods.

Table 2. Required number of clock cycles when multiplying two
values with the proposed method based on (2m−3, 2m−1, 2m) moduli
set versus with the deterministic SC.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

65November/December 2021

operations on the residues. Each AND gate is fol-
lowed by a counter to convert the produced output
bit stream to binary representation. To calculate the
residues of the outputs, the reset signal of each coun-
ter is set to the corresponding modulus. The state of
these counters also plays a register role to store the
final results. The controller manages other aspects
of the system for correct operation. We note that in
contrast to the conventional SC designs in which
streaming inputs can be processed partially, the pro-
posed design needs to process the entire bit stream
to accurately perform RNS computations.

Reverse conversion
In applications where we have several consecu-

tive stages of operations in a pipelined fashion, there
is no need to convert the RNS numbers back to binary
format in the intermediate stages. In fact, all the
intermediate computations can be performed in the
RNS domain and the RNS-to-binary conversion will
be confined to the last stage of the computations. A
naive method to perform this reverse conversion is by
using a CRT module [11]. The CRT module receives
the residue numbers from the counters and converts
them to the equivalent representation in the binary
domain. However, CRT requires a high-power logic
circuit, which reduces the effectiveness of the RNS
method. Here, we propose an efficient FSM-based RC
to directly convert the residue bit streams to binary
representation. Since the inputs of the proposed RC
are RNS-based numbers in the bit stream format, the
counters can be removed from the last stage.

Table 3 depicts the transitions of the proposed
RC. The FSM has DR states, entitled 0 to DR – 1. The
converted result (output) is equal to the final state’s
number after iterating over all input bit streams. In
Table 3, Sc represents the current state, % shows the
Mod operation, and Ri shows the reversed binary
equivalent of the converter’s input vector, where
i is the integer value of the input vector. Since our
moduli set has three modulus, the array R is of size
23 = 8 which is independent of m. For instance,
R1 = 105 is the only number in the dynamic range
whose remainders of division by 23 − 3, 23 − 1, and 23
are equal to 0, 0, and 1, respectively. Similarly, given
m = 3, DR = (23 − 3) (23 − 1) (23) = 280, and R = {0,
105, 120, 225, 56, 161, 176, 1} can be calculated and
stored in a lookup table at design time. Figure 3b
shows the equivalent hardware needed for the
reverse conversion. The output register is initialized

to zero, hence the initial state in the transition table
is S0. In each cycle, the RC unit chooses one of the
stored values in the LUT based on its input values,
and calculates the next state (output). Note that the
forward conversion (binary-to-RNS conversion) can
be done in the proposed design in an offline manner
at no additional hardware cost.

Experimental results
To evaluate the performance of the proposed

design we implement a two-input multiplier with
various bit-widths by: 1) our proposed design;

Figure 3. Microarchitecture of the proposed

method for multiplication operation.

(a) Intermediate stages without reverse

conversion and (b) last stage with RC.

Table 3. State transition table of the proposed FSM-based RC. S0
is the initial state. x, y, and z show the output bit streams of each
computing lane at any cycle. c is the current output of the RC.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

66 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

2) conventional binary design; 3) conventional RNS;
and 4) clock division deterministic design [4]. We
also evaluate the hardware efficiency of the multi-
plier when using the proposed design with the FSM-
based RC compared to an RNS-based design that
uses the RC of [12]. We do not compare with the
conventional nondeterministic SC because of its ina-
bility to produce accurate results and its significantly
higher latency and energy consumption compared
to the deterministic methods of SC [4]. The conven-
tional RNS design is implemented based on (2m

− 1,
2m, 2m + 1) moduli set as it provides the minimum
hardware cost compared to other moduli sets includ-
ing (2m

− 3, 2m
− 1, 2m). We further compare the cost of

implementing a PE proposed in a state-of-the-art con-
volutional NN accelerator [6] based on binary, RNS,
and proposed design methodology. To evaluate the
hardware efficiency of the implemented designs we
develop a cycle-accurate microarchitectural simula-
tor in RTL VHDL. We use the Synopsys Design Com-
piler to synthesize the implemented designs with the
45-nm FreePDK gate library. The proposed design
delivers the same computation accuracy and the
same result as the baseline binary and RNS design.

Hardware cost for multiplication operation
For each design approach, we implement 8-, 12-,

16-, and 32-bit multipliers. Table 4 shows the CP delay,
hardware area, power consumption at 100 MHz and
at the maximum working frequency, energy per cycle
(EPC = CP power consumption at the maximum

working frequency), number of clock cycles to com-
plete the computation, and total energy consumption
(EPC x number of clock cycles) of the implemented
designs. The proposed design offers, on average, 79%
and 49% saving in the hardware area cost and 84%
and 57% reduction in the EPC compared to the binary
and nonstochastic RNS counterpart, respectively. Con-
sidering the fact that the total energy of the SC designs
depends on the number of processing cycles, the
binary and RNS designs consume lower energy to pro-
duce accurate results.

Compared to the clock division determinis-
tic design of [4], the proposed RNS-based design
requires less hardware resources to generate bit
streams (counters and comparators are replaced
with FSMs and MUXs) and to convert the output
bit streams back to the binary format. For example,
for the 16-bit multiplication, the proposed design
requires three 6-bit counters in its output while the
clock division design needs a 32-bit counter. On
average, the proposed design saves the area and
power consumption by 63.5% and 32.5%, respec-
tively, compared to the clock division design. The
hardware cost of the proposed design with and with-
out RC is reported Table 4. The rows with “+RC” are
the ones that include the RC circuit. As can be seen,
even with RC the primary saving is still observed in
the processing time and energy consumption. The
proposed design delivers more than 2,400× speedup
and 3,200× energy reduction for 8-bit precision mul-
tiplication. For 32-bit precision multiplication, the

Table 4. Synthesis results for two-input multiplications in 45-nm technology. The results are shown for different bit widths
of operands.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

67November/December 2021

latency and energy consumption reduce by a factor
of 9.03 × 1012 and 1.38 × 1013, respectively.

Hardware cost for NN computations
Because of the increase in the use of NNs in all fields

of science, designing NN accelerators is an important
task for the researchers in the EDA community. To
further evaluate the proposed design we implement
the PE of Eyeriss [6] with different design approaches.
We only implement the computational and the logi-
cal parts of the PE and do not take scratchpads into
account as they are the same in the proposed and
binary design. We evaluate the design for 16-bit pre-
cision data-width. Table 5 shows the synthesis results.
As can be seen, the proposed design occupies 84%

lower area compared to the binary implementation.
It also needs 52% lower area compared to the non-
stochastic RNS implementation. The proposed design
achieves 2.60 × 106 and 8.94 × 106 times reduction in
terms of processing time and energy consumption,
respectively, compared to the conventional determin-
istic design of SC.

The product of power consumption, CP delay,
and occupied area can be used as a measure of hard-
ware efficiency. Based on this metric, the proposed
design is 201× and 21.5× more efficient than the
conventional binary and RNS design, respectively. It
should be noted that for processing time and also
total energy consumption, the conventional binary
implementation still outperforms SC-based designs
when performing a completely accurate computa-
tion. The proposed design is a good fit for embed-
ded applications with severe limitations on the area
and power consumption but not very efficient for
high-performance and energy-limited applications.

IN THIS WORK, we proposed a novel method to
mitigate the long processing time and the high energy
consumption of the current deterministic methods
of SC. The proposed method significantly reduces
the number of processing cycles by employing the
RNS representation. Hardware implementation of
a two-input multiplier and also a PE of NN compu-
tation shows that the proposed design approach
delivers a lower hardware area and power cost com-
pared to the baseline binary, RNS, and clock divi-
sion design of SC. The proposed RNS-based design
is significantly faster and consumes considerably
lower energy than the current deterministic designs
of SC. These properties make the proposed design

an attractive alternative to the current deterministic
designs of SC for resource-limited applications. �

Acknowledgments
This work was supported in part by the Louisi-

ana Board of Regents Support under Grant LEQSF
(2020–2023)-RD-A-26 and in part by the National
 Science Foundation under Grant 2019511.

J References
 [1] A. Alaghi, W. Qian, and J. P. Hayes, “The promise

and challenge of stochastic computing,” IEEE Trans.

Comput.-Aided Design Integr. Circuits Syst., vol. 37,

no. 8, pp. 1515–1531, Aug. 2018.

 [2] B. Gaines, “Stochastic computing systems,” in

Advances in Information Systems Science. New York,

NY, USA: Springer, 1969, pp. 37–172.

 [3] D. Jenson and M. Riedel, “A deterministic approach to

stochastic computation,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Design (ICCAD), Nov. 2016, pp. 1–8.

 [4] M. H. Naja! et al., “Performing stochastic computation

deterministically,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 27, no. 12, pp. 2925–2938, Dec. 2019.

 [5] H. L. Garner, “The residue number system,” presented at

the Western Joint Comput. Conf. ACM, 1959, pp. 146–153.

 [6] Y.-H. Chen et al., “Eyeriss: An energy-ef!cient

recon!gurable accelerator for deep convolutional

neural networks,” IEEE J. Solid-State Circuits,

vol. 52, no. 1, pp. 127–138, Jan. 2017.

 [7] C.-H. Chang et al., “Residue number systems: A new

paradigm to datapath optimization for low-power

and high-performance digital signal processing

applications,” IEEE Circuits Syst. Mag., vol. 15, no. 4,

pp. 26–44, 4th Quart., 2015.

 [8] S. Salamat et al., “RNSnet: In-memory neural network

acceleration using residue number system,” in Proc. IEEE

Int. Conf. Rebooting Comput. (ICRC), Nov. 2018, pp. 1–12.

 [9] N. Samimi et al., “Res-DNN: A residue number system-

based DNN accelerator unit,” IEEE Trans. Circuits Syst.

I, Reg. Papers, vol. 67, no. 2, pp. 658–671, Feb. 2020.

Table 5. Comparison of CP delay, area, power, and energy
consumption of a PE.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

68 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

 [10] S. Asadi and M. H. Naja!, “Late breaking results:

LDFSM: A low-cost bit stream generator for low-

discrepancy stochastic computing,” in Proc. 57th ACM/

IEEE Design Autom. Conf. (DAC), Jul. 2020, pp. 1–2.

 [11] Y. Wang, “Residue-to-binary converters based on new

Chinese remainder theorems,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process., vol. 47, no. 3,

pp. 197–205, Mar. 2000.

 [12] H. Pettenghi, R. Chaves, and L. Sousa, “Method to

design general RNS reverse converters for extended

moduli sets,” IEEE Trans. Circuits Syst. II, Exp. Briefs,

vol. 60, no. 12, pp. 877–881, Dec. 2013.

Kamyar Givaki is currently pursuing a PhD (final-
year) in computer engineering with the University
of Tehran, Tehran, Iran. His research interests
include application-specific accelerators, computer
arithmetic, and approximate computing. Givaki has
an MSc from the Isfahan University of Technology,
Isfahan, Iran.

Reza Hojabr is currently pursuing a PhD (final-
year) in computer engineering with the University
of Tehran, Tehran, Iran. His research interests
include domain-specific accelerators, approximate
computing, machine learning, and agile hardware
design. Hojabr has an MSc from the University of
Tehran.

M. H. Gholamrezaei is a Research Assistant
with the School of Computer Science, Institute for
Research in Fundamental Sciences (IPM), Tehran,
Iran. His research interests include computer
arithmetic, embedded systems, and design
automation. Gholamrezaei has a BS in computer
architecture engineering from Shahid Beheshti
University, Tehran.

Ahmad Khonsari is an Associate Professor
with the Department of Electrical and Computer
Engineering (ECE), University of Tehran, Tehran,
Iran, and a Researcher with the Institute for

Research in Fundamental Sciences (IPM), Tehran.
His research interests include simulation, data
analysis, and performance modeling/evaluation of
networked and distributed systems. Khonsari has
a PhD in computer science from the University of
Glasgow, Glasgow, U.K.

Saeid Gorgin is an Assistant Professor of
Computer Engineering with Iranian Research
Organization for Science and Technology (IROST),
Tehran, Iran. His current research interests include
computing systems, computer arithmetic, and VLSI
design. Gorgin has a PhD in computer system
architecture from Shahid Beheshti University, Tehran.

Dara Rahmati is an Assistant Professor with the
Computer Science and Engineering Department,
Shahid Beheshti University, Tehran, Iran. Rahmati has
a PhD in computer engineering from Sharif University
of Technology, Tehran. He is a Member of IEEE.

M. Hassan Najafi is an Assistant Professor
with the School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA,
USA. His research interests include stochastic and
approximate computing, unary processing, in-
memory computing, and machine learning. Najafi has
a PhD in electrical engineering from the University of
Minnesota, Twin Cities, Minneapolis, MN, USA.

J Direct questions and comments about this article
to Kamyar Givaki, School of Electrical and Computer
Engineering, University of Tehran, Tehran 1417466191,
Iran; givakik@ut.ac.ir.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore. Restrictions apply.

