
60 2168-2356/21©2021 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

Editor’s notes:
This article discusses how to reduce the latency of stochastic computations. 
The authors represent an integer number as a set of remainders with respect to a 
set of relatively prime moduli. Operations such as multiplication, implemented 
using a deterministic version of stochastic computing, work directly on the 
remainders, thus yielding a partitioning of the original computation and a 
significant decrease in the number of clock cycles required.

—Vincent T. Lee, Facebook Reality Labs Research

J STOCHASTIC COMPUTING (SC) [1], [2], an uncon-
ventional computing paradigm processing bit streams, 
has recently gained considerable attention in the hard-
ware design and computer architecture communities. 
Higher tolerance to noise and lower hardware cost 
compared to conventional binary-radix-based designs 
are the most appealing advantages of SC. The inaccu-
racy of computation and long processing time, how-
ever, are the major weaknesses of SC. The inaccuracy is 
mainly because of random fluctuations in generating bit 
streams and correlation (independence) between bit 
streams [1]. The common method to improve accuracy 
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is to increase the length of 
the bit streams. However, 
a longer bit stream means 
longer latency and higher 
energy consumption.

Recently, some deter-
ministic approaches for SC 
were proposed [3], [4]. 
These methods are able 

to perform completely accurate computation with SC 
circuits. In these methods, the required independence 
between bit streams is provided by three approaches: 
1) rotation of bit streams [3]; 2) clock-dividing bit 
streams [3]; or 3) using bit streams with relatively prime 
lengths [4]. These methods guarantee exact computa-
tion by processing the bit streams for the product of the 
length of the input bit streams. For example, to mul-
tiply two n-bit precision data, each represented using 
a bit stream of length 2n, the deterministic methods 
take 22n cycles to produce the exact result which is a 
bit stream of 22n bit length. Although the determinis-
tic methods outperform the conventional SC in terms 
of computation accuracy, the long processing time 
and consequently high-energy consumption (power × 
time) limit their application.
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In this work, we propose a novel approach to miti-
gate the long processing time of the current determin-
istic methods of SC. We integrate the deterministic 
methods with the residue number systems (RNSs) [5] 
to reduce the length of bit streams exponentially. RNS 
is a non-weighted number representation that offers 
a high degree of parallelism and modularity. In RNS, 
each number is decomposed into a set of residues 
that are smaller than the primary number. The arith-
metic operations are performed on each residue inde-
pendently and in parallel with the operations on other 
residues. This makes RNS a computation technique 
free of carry propagation. The parallelism offered by 
RNS is a unique property that distinguishes it from 
other number systems like the logarithmic number 
system (LNS). The proposed design outperforms the 
prior designs developed based on the deterministic 
approaches in terms of processing time and energy 
consumption. Synthesis results on implementation 
of multiplication operation show that the proposed 
approach reduces the hardware area and power 
consumption more than 88% and 56%, respectively, 
compared to those of the conventional 32-bit binary 
implementation. In summary, the main contributions 
of this work are as follows.

•  We integrate the deterministic methods of SC with 
the RNS representation. The proposed design 
provides a lower hardware area and power con-
sumption compared to the conventional binary 
and RNS implementations.

•  The proposed design methodology results in a 
significant reduction in the number of processing 
cycles (ratio of 22∗(n − ⎡log

2
 n⎤ ) where n is the data bit 

width) compared to the state-of-the-art determin-
istic methods of SC.

•  We propose an finite-state machine (FSM)-based 
reverse converter (RC) to directly convert the 
RNS-based bit streams to binary numbers.

•  Evaluating our approach on a state-of-the-art pro-
cessing element (PE) for convolutional neural 
networks (NNs) [6] shows 84%, 52%, and 30% 
area reduction, respectively, compared to the 
baseline binary, RNS, and clock division deter-
ministic implementation.

Preliminaries

Stochastic computing
In SC, computation is performed on random or 

unary bit streams [4]. The ratio of the number of 1’s 

to the length of a bit stream determines the value of 
the bit stream. Complex arithmetic operations are 
implemented using simple logic gates in this para-
digm. For example, an AND gate can be used to mul-
tiply two numbers in the stochastic domain [2]. With 
stochastic representation, a stream of 2n bits can pre-
cisely represent any n-bit precision number. A num-
ber in binary format is conventionally converted to 
a stochastic bit stream by comparing a pseudo-ran-
dom or an increasing/decreasing number to the tar-
get number [4]. The output of comparison generates 
one bit of the bit stream at any cycle. A stochastic 
bit stream can be converted back to the binary for-
mat by simply counting the number of ones in the bit 
stream using a binary counter [1].

A requirement for performing operations such as 
multiplication in the stochastic domain is to convert 
the data into independent bit streams. In conven-
tional SC, this independence is provided by using 
different sources of random numbers in generating 
bit streams. However, because of random fluctu-
ations in generating random bit streams and also  
correlation between bit streams, the computations in 
conventional SC are not accurate [4].

Deterministic methods of SC
Three deterministic methods for SC were pro-

posed recently [3], [4]. By properly structuring bit 
streams, accurate and deterministic computations 
are carried out using SC logic. The deterministic 
approaches guarantee independence by using bit 
streams with relatively prime lengths, clock-divid-
ing bit streams, and rotation of bit streams. These 
methods guarantee that each bit of one operand 
(bit stream) sees every bit of the other operands 
(bit streams) exactly once, resulting in a determin-
istic and completely accurate computation. Figure 1 
exemplifies the three deterministic methods. The 
first method simply uses two bit streams with rela-
tively prime lengths. It iterates them until they have 
a length equal to the product of the length of the bit 
streams. In the second method (i.e., clock division 
method), the second bit stream is clock divided by 
the length of the first bit stream. Finally, in the rota-
tion method, the second bit stream is stalled for one 
cycle after each time generating the first bit stream.

All these deterministic methods guarantee 
accurate computation if generating and process-
ing bit streams for the product of the length of 
the input bit streams. This means that processing  
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i n-bit precision data, each represented by a 
2n-bit bit stream, takes 2i×n cycles to calculate an 
accurate result. This long processing time translates 
to high- energy consumption making the current 
deterministic methods inefficient for many appli-
cations. In this work, we exploit the RNS number 
representation to mitigate the long processing time 
of the deterministic methods of SC.

Residue number system
RNS is a number representation system in which a 

number is represented by its residues when divided 
by the members of a set of relatively prime integers 
(called moduli set). A formal definition of RNS can 
be written as follows.

•  Considering a set of L relatively prime numbers  
<m1, m2,…, mL>, an integer value x is represented 
by <x1, x2, …, xL> where xi = x mod mi.

An important advantage of using RNS is that com-
plex and costly operations are split into several inde-
pendent and simple operations running in parallel 
[5]. For example, a two-input integer multiplication 
(x × y) is performed in three steps.

•  Convert x and y to their RNS representation, that 
is, (xi , yi) where i = 1,…, L and L is cardinality of 
the moduli set.

•  Multiply each pair of (xi , yi).

•  Convert the multiplication result back to conven-
tional binary representation.

This computation flow can be extended to other 
arithmetic operations such as addition and subtrac-
tion. Considering the fact that the residues are sig-
nificantly smaller than the original number, a set of 
significantly shorter bit streams can be used to pre-
cisely represent each number.

An RNS system with moduli set <m1, m2, …,  
mL > represents DR = m1 × m2 × …× mL different num-
bers. DR is called the dynamic range of the system. 
To represent an n-bit binary number, the dynamic 
range of the selected moduli set should be greater 
than 2n to guarantee that all the numbers in the  
range of [0,(2n)−1] are covered. Figure 2a illustrates 
how to calculate x × y in RNS. As shown, the main oper-
ation is decomposed into three smaller operations run-
ning in parallel. If the result of an operation is greater 
than its corresponding residue, the result should be 
divided by the residue to achieve the remainder. Chi-
nese remainder theorem (CRT) [7] is a method to con-
vert a number in the RNS format to its corresponding 
binary representation (reverse conversion). 

There have been some prior works employing 
RNS in an acceleration of NNs [8], [9]. Our work is 
essentially different from those works in the sense 
that we exploit RNS to improve the performance of 
the deterministic methods of SC. This is realized by 
the bit-width reduction offered by RNS, which results 
in an exponential reduction in the length of bit 
streams and so in the number of processing cycles.

Proposed design
In this section, we elaborate on the proposed 

approach. In the deterministic methods, the number 
of clock cycles required to perform an operation fol-
lows an exponential function of the binary bit width 
of the operands. Multiplying two n-bit precision data 
takes 22n clock cycles as 22n-bit bit streams must be 
processed [4]. Using high-bit-width binary numbers 
as the operands of the operations leads to very long 
processing time and hence very high energy con-
sumption. Exploiting the inherent parallel nature 
of the RNS, we split the high-bit-width operands of 
the computations into operands (residues) with low 
bit widths. While the idea is presented based on the 
multiplication operation, the proposed method is 
also applicable to the deterministic scaled addition/
subtraction [4].

Figure 1. Examples of the deterministic 

methods of SC. (a) Relatively prime bit stream 

lengths, (b) clock division, and (c) rotation 

method.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore.  Restrictions apply. 



63November/December 2021

Precise SC in RNS domain
Dividing the computation into several parallel 

lanes, each lane processing low bit-width oper-
ands decreases the complexity of the computation. 
Decreasing the bit width of the operands means 
exponentially shorter bit streams to represent each 
data. Figure 2 illustrates the idea of combining the 
deterministic methods of SC and RNS through a 
simple example. As shown in Figure 2b, multiplying 
two 8-bit precision numbers with the deterministic 
methods takes 22×8 clock cycles. Figure 2c shows 
how the proposed method reduces the number of 
processing cycles. With RNS, the precision of the 
operands decreases to three bits. Hence, it takes only 
22×3 clock cycles to perform all subcomputations, 
which means 210

× fewer cycles compared to the 
non-RNS design. Note that the proposed RNS-based  
design has some hardware cost overheads to convert 
the outputs back from RNS to the binary format. In 
many applications, this conversion can be postponed 
to the final stage of computation. We will show that, 
even with the conversion overhead, the proposed 
design provides a higher energy efficiency compared 
to the current deterministic designs of SC because of 
an exponential decrease in the processing time.

Moduli set selection
Table 1 compares the processing time of the pro-

posed design and the deterministic designs for differ-
ent data precisions and moduli sets. As can be seen, 
the performance improvement offered by the pro-
posed design changes by changing the moduli set 
(both the number of moduli and the value of each 
modulus). Therefore, choosing proper moduli set is 
an important step to achieve the best performance 
using the proposed technique.

The symmetricity of the design is another impor-
tant design aspect that should be considered. In 
conventional RNS, circuits for each operation in dif-
ferent moduli have different timing characteristics. 
For instance, the critical path (CP) delay of a modu-
lar multiplier in mode 2n is much lower than the CP 
delay for a modular multiplier in mode 2n − 1. Typi-
cally, there are more than two moduli in moduli set. 
The difference between the CP of the fastest and the 
slowest moduli is considerable. The slowest modu-
lus determines the overall system’s speed. In our pro-
posed method, the CP delay depends on the binary 
precision (bit width) of the moduli; the moduli with 
the same bit width have the same CP delay and with 

different bit widths have different CP delays. For 
example, in the moduli set (64, 63, 61, 59, and 5), 
circuits for moduli 64, 63, 61, and 59 have the same 
CP delay which is different from the CP delay of the 
circuit for modulus 5. Another concern is the num-
ber of required clock cycles to complete the compu-
tations. In the moduli set (64, 63, 61, 59, and 5), the 
result of modulus 5 is ready after 22×3 cycles, while 
the results of other moduli are ready after 22×6 cycles. 
Thus, some parts of the circuit are underutilized for 
a large fraction of processing time. To avoid this type 
of inefficiency, we pick up a moduli set where all 
the modulus have the same bit width and so take the 
same number of processing cycles.

In this work, we use the following moduli set with 
three members: (2m 

− 3, 2m 
− 1, 2m). These numbers 

Figure 2. (a) RNS multiplication, 

(b) previously proposed deterministic 

SC [4], and (c) our proposed RNS-based 

deterministic method.
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are the three greatest relatively prime numbers repre-
sented by m bits. The residues of dividing any integer 
number by these three moduli can be represented 
by the same number of bits (i.e., m bits). It is easy to 
prove that the inequality in (1) is true for any m > 2. 
The inequality shows that these three numbers can 
represent any n = 23m−1-bit precision binary number. 
For example, with m = 3, the resulted RNS can repre-
sent any 8-bit precision binary number

(2m 
− 3) × (2m 

−1) × (2m) ≥ 23m −1. (1)

Proof. Consider 2m = X. Equation (1) can be 
rewritten as follows:

 ( ) ( )X X
X

− × − ≥3 1
2

2
. (2)

Equation (2) holds when X ≥ 8. So, for m ≥ 3, (1) 
is always true.

Example: Assume A is a 9-bit binary number. With 
the moduli set (2m 

− 3, 2m 
− 1, 2m), the smallest  

bit-width for the RNS representation of A is given by  
3m − 1 ≥ 9. The smallest integer number that satisfies 
this inequality is 4.

Table 2 compares the number of processing 
cycles for the case of multiplying two binary num-
bers with the proposed design when using (2m 

− 3, 
2m 

− 1, 2m) as the moduli set, and with the current 
deterministic methods of SC. Multiplying two n-bit 
precision data with the deterministic methods takes 
22n cycles. The reduction ratio (the number of cycles 
with the deterministic methods divided by the num-
ber of cycles with the proposed method) is formu-
lated in (3):

  reduction_ratio = ​2  ​2*​(n − ⎡lo​g  ​
2 
 ​n⎤)​​ . (3)

As can be seen in Table 2, the reduction ratio 
increases by increasing the data bit-width which 
means higher savings in the processing time and 
energy consumption. We note that the selected mod-
uli set is not efficient for processing of low bit-width 
operands, for example, for n ≤ 8. For the processing 
of such operands other modules sets such as (2m 

− 1, 2m ) 
is recommended.

Hardware architecture
Figure 3 demonstrates a high-level architecture of 

the proposed design for n-bit precision multiplica-
tion. The moduli set is (2m 

− 3, 2m 
− 1, 2m). An input 

buffer is used to store two distinct numbers, A and B, 
in the RNS format. These two numbers are provided 
as the inputs of the circuit, each using three residues, 
that is, A2m, A2m − 1, and A2m − 3. We use the low-cost 
FSM-based bit stream generator proposed in [10] to 
convert the residues to bit stream representation. 
Converting each residue requires a separate multi-
plexer (MUX) unit. Two FSMs are reused and con-
nected to the select input of the MUX units to choose 
one of the binary bits of the residue at any cycle. To 
guarantee the required independence between the 
two inputs of each multiplication operation, each 
one of the two FSMs is configured to generate a dif-
ferent low-discrepancy pattern [10]. Each FSM is 
connected to three MUX units, each MUX for con-
verting one of the three residues. In cases that the 
architecture is extended to perform several multi-
plications in parallel, the two FSMs will be shared 
between more multipliers and their effective over-
head will be lower.

As shown in Figure 3a, three parallel AND 
gates are employed to perform the multiplication 

 
Table 1. Processing time comparison of the proposed method and 
the deterministic methods.

 
Table 2. Required number of clock cycles when multiplying two 
values with the proposed method based on (2m−3, 2m−1, 2m ) moduli 
set versus with the deterministic SC.
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operations on the residues. Each AND gate is fol-
lowed by a counter to convert the produced output 
bit stream to binary representation. To calculate the 
residues of the outputs, the reset signal of each coun-
ter is set to the corresponding modulus. The state of 
these counters also plays a register role to store the 
final results. The controller manages other aspects 
of the system for correct operation. We note that in 
contrast to the conventional SC designs in which 
streaming inputs can be processed partially, the pro-
posed design needs to process the entire bit stream 
to accurately perform RNS computations.

Reverse conversion
In applications where we have several consecu-

tive stages of operations in a pipelined fashion, there 
is no need to convert the RNS numbers back to binary 
format in the intermediate stages. In fact, all the 
intermediate computations can be performed in the 
RNS domain and the RNS-to-binary conversion will 
be confined to the last stage of the computations. A 
naive method to perform this reverse conversion is by 
using a CRT module [11]. The CRT module receives 
the residue numbers from the counters and converts 
them to the equivalent representation in the binary 
domain. However, CRT requires a high-power logic 
circuit, which reduces the effectiveness of the RNS 
method. Here, we propose an efficient FSM-based RC 
to directly convert the residue bit streams to binary 
representation. Since the inputs of the proposed RC 
are RNS-based numbers in the bit stream format, the 
counters can be removed from the last stage.

Table 3 depicts the transitions of the proposed 
RC. The FSM has DR states, entitled 0 to DR – 1. The 
converted result (output) is equal to the final state’s 
number after iterating over all input bit streams. In 
Table 3, Sc represents the current state, % shows the 
Mod operation, and Ri shows the reversed binary 
equivalent of the converter’s input vector, where 
i is the integer value of the input vector. Since our 
moduli set has three modulus, the array R is of size 
23 = 8 which is independent of m. For instance,  
R1 = 105 is the only number in the dynamic range 
whose remainders of division by 23 − 3, 23 − 1, and 23 
are equal to 0, 0, and 1, respectively. Similarly, given 
m = 3, DR = (23 − 3) (23 − 1) (23) = 280, and R = {0, 
105, 120, 225, 56, 161, 176, 1} can be calculated and 
stored in a lookup table at design time. Figure 3b 
shows the equivalent hardware needed for the 
reverse conversion. The output register is initialized 

to zero, hence the initial state in the transition table 
is S0. In each cycle, the RC unit chooses one of the 
stored values in the LUT based on its input values, 
and calculates the next state (output). Note that the 
forward conversion (binary-to-RNS conversion) can 
be done in the proposed design in an offline manner 
at no additional hardware cost.

Experimental results
To evaluate the performance of the proposed 

design we implement a two-input multiplier with 
various bit-widths by: 1) our proposed design; 

Figure 3. Microarchitecture of the proposed 

method for multiplication operation. 

(a) Intermediate stages without reverse 

conversion and (b) last stage with RC.

 
Table 3. State transition table of the proposed FSM-based RC. S0 
is the initial state. x, y, and z show the output bit streams of each 
computing lane at any cycle. c is the current output of the RC.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 21,2022 at 19:48:48 UTC from IEEE Xplore.  Restrictions apply. 



66 IEEE Design&Test

Stochastic Computing for Neuromorphic Applications

2) conventional binary design; 3) conventional RNS; 
and 4) clock division deterministic design [4]. We 
also evaluate the hardware efficiency of the multi-
plier when using the proposed design with the FSM-
based RC compared to an RNS-based design that 
uses the RC of [12]. We do not compare with the 
conventional nondeterministic SC because of its ina-
bility to produce accurate results and its significantly 
higher latency and energy consumption compared 
to the deterministic methods of SC [4]. The conven-
tional RNS design is implemented based on (2m 

− 1, 
2m, 2m + 1) moduli set as it provides the minimum 
hardware cost compared to other moduli sets includ-
ing (2m 

− 3, 2m 
− 1, 2m). We further compare the cost of 

implementing a PE proposed in a state-of-the-art con-
volutional NN accelerator [6] based on binary, RNS, 
and proposed design methodology. To evaluate the 
hardware efficiency of the implemented designs we 
develop a cycle-accurate microarchitectural simula-
tor in RTL VHDL. We use the Synopsys Design Com-
piler to synthesize the implemented designs with the 
45-nm FreePDK gate library. The proposed design 
delivers the same computation accuracy and the 
same result as the baseline binary and RNS design.

Hardware cost for multiplication operation
For each design approach, we implement 8-, 12-, 

16-, and 32-bit multipliers. Table 4 shows the CP delay, 
hardware area, power consumption at 100 MHz and 
at the maximum working frequency, energy per cycle  
(EPC = CP power consumption at the maximum 

working frequency), number of clock cycles to com-
plete the computation, and total energy consumption 
(EPC x number of clock cycles) of the implemented 
designs. The proposed design offers, on average, 79% 
and 49% saving in the hardware area cost and 84% 
and 57% reduction in the EPC compared to the binary 
and nonstochastic RNS counterpart, respectively. Con-
sidering the fact that the total energy of the SC designs 
depends on the number of processing cycles, the 
binary and RNS designs consume lower energy to pro-
duce accurate results.

Compared to the clock division determinis-
tic design of [4], the proposed RNS-based design 
requires less hardware resources to generate bit 
streams (counters and comparators are replaced 
with FSMs and MUXs) and to convert the output 
bit streams back to the binary format. For example, 
for the 16-bit multiplication, the proposed design 
requires three 6-bit counters in its output while the 
clock division design needs a 32-bit counter. On 
average, the proposed design saves the area and 
power consumption by 63.5% and 32.5%, respec-
tively, compared to the clock division design. The 
hardware cost of the proposed design with and with-
out RC is reported Table 4. The rows with “+RC” are 
the ones that include the RC circuit. As can be seen, 
even with RC the primary saving is still observed in 
the processing time and energy consumption. The 
proposed design delivers more than 2,400× speedup 
and 3,200× energy reduction for 8-bit precision mul-
tiplication. For 32-bit precision multiplication, the 

 
Table 4. Synthesis results for two-input multiplications in 45-nm technology. The results are shown for different bit widths 
of operands.
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latency and energy consumption reduce by a factor 
of 9.03 × 1012 and 1.38 × 1013, respectively.

Hardware cost for NN computations
Because of the increase in the use of NNs in all fields 

of science, designing NN accelerators is an important 
task for the researchers in the EDA community. To 
further evaluate the proposed design we implement 
the PE of Eyeriss [6] with different design approaches. 
We only implement the computational and the logi-
cal parts of the PE and do not take scratchpads into 
account as they are the same in the proposed and 
binary design. We evaluate the design for 16-bit pre-
cision data-width. Table 5 shows the synthesis results. 
As can be seen, the proposed design occupies 84% 

lower area compared to the binary implementation. 
It also needs 52% lower area compared to the non-
stochastic RNS implementation. The proposed design 
achieves 2.60 × 106 and 8.94 × 106 times reduction in 
terms of processing time and energy consumption, 
respectively, compared to the conventional determin-
istic design of SC.

The product of power consumption, CP delay, 
and occupied area can be used as a measure of hard-
ware efficiency. Based on this metric, the proposed 
design is 201× and 21.5× more efficient than the 
conventional binary and RNS design, respectively. It 
should be noted that for processing time and also 
total energy consumption, the conventional binary 
implementation still outperforms SC-based designs 
when performing a completely accurate computa-
tion. The proposed design is a good fit for embed-
ded applications with severe limitations on the area 
and power consumption but not very efficient for 
high-performance and energy-limited applications.

IN THIS WORK, we proposed a novel method to 
mitigate the long processing time and the high energy 
consumption of the current deterministic methods 
of SC. The proposed method significantly reduces 
the number of processing cycles by employing the 
RNS representation. Hardware implementation of 
a two-input multiplier and also a PE of NN compu-
tation shows that the proposed design approach 
delivers a lower hardware area and power cost com-
pared to the baseline binary, RNS, and clock divi-
sion design of SC. The proposed RNS-based design 
is significantly faster and consumes considerably 
lower energy than the current deterministic designs 
of SC. These properties make the proposed design 

an attractive alternative to the current deterministic 
designs of SC for resource-limited applications. �
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