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Abstract The COVID-19 pandemic caused by the

severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) continues to impact the United States.

While age and comorbid health conditions remain

primary concerns in the community-based transmis-

sion of the virus, empirical evidence continues to

suggest that substantial variability exists in the geo-

graphic and geodemographic distribution of COVID-

19 infection rates. The purpose of this paper is to

provide an alternative, spatiotemporal perspective on

the pandemic using the state of Wisconsin as a case

study. Specifically, in this paper, we explore the

geographic nuances of COVID-19 and its spread in

Wisconsin using a suite of spatial statistical

approaches. We link detected hot spots of COVID-

19 to local geodemographic profiles and the presence

of high-risk facilities, including federal and state

correctional facilities. The results suggest that the

virus disproportionately impacts several communities

and geodemographic groups and that proximity to

risky facilities correlates to increased community

infection rates.

Keywords COVID-19 � Geography � Spatial
analysis � Prisons � Geodemographics

Introduction

The virus responsible for the COVID-19 pandemic is

the severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2). As detailed by Velavan and Meyer

(2020), SARS-CoV-2 likely transitioned from animals

to humans in/around the Huanan seafood market in

Wuhan, China, although this remains an open empir-

ical question (Jin et al., 2020). The main transmission
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routes for COVID-19 are respiratory droplets and

contact transmission (Meselson, 2020).While all races

and ages are susceptible to the virus, elderly persons

(Velavan &Meyer, 2020) with underlying comorbidi-

ties such as diabetes, asthma, and cardiovascular

disease are particularly at-risk (B. Wang et al., 2020).

Research also suggests that smoking and obesity may

increase susceptibility (Dietz & Santos-Burgoa, 2020;

Patanavanich & Glantz, 2020).

While research on the virology, mechanics of

transmission, and vaccines for COVID-19 continues,

it is essential to acknowledge that information con-

cerning the pandemic’s epidemiological facets are

only beginning to emerge. For example, it is widely

recognized that without pharmaceutical intervention

strategies, social distancing was one of the few viable

tactics to control the spread of COVID-19 (Lewnard &

Lo, 2020). The basic idea for social distancing is a

simple one–reduce the mixing of infectious and

susceptible people. When combined with contact

tracing, masking, and aggressive testing for the virus,

it should have been possible to ‘‘flatten’’ the epidemic

curve in the United States and elsewhere (Chiu et al.,

2020). Alas, this did not happen. Using data from Mar

12–Dec 23, Camberg et al. (2020) reported that

December 2020 was the deadliest month of the

pandemic to date, with an average of 2506 deaths

reported per day and more than 119,000 people

hospitalized with COVID-19.1

While these figures are alarming by themselves,

empirical work increasingly suggests that COVID-19

infections disproportionately impact racial minorities,

especially those that are impoverished. For example,

in a cross-sectional study of *2500 adults in

Milwaukee, Wisconsin, COVID-19 was positively

associated with African Americans, with both race and

poverty associated with a higher risk of hospitalization

(Muñoz-Price et al., 2020). In related work, Holtgrave

et al. (2020) found that fatality rates for Black non-

Hispanic and Hispanic adults with COVID-19 were

3.48 and 5.38 times higher when compared to white

adults suffering from the virus in the state of New

York. In addition, Strully et al. (2021) identified

significant regional variations in COVID-19 cases.

Specifically, communities with more immigrants and

Central American or Black Residents exhibited more

COVID-19 cases. Simultaneously, counties in the

Northeast and Midwest that had more Puerto Rican

residents also produced more cases.

While this research helps identify important differ-

ences in hospitalization and mortality rates between

demographic groups, it says little about potential

variations in lifestyle characteristics between groups,

the spatial distribution of these groups, or the potential

role that risky facilities may play in elevating risk and

community exposure to COVID-19. The purpose of

this paper is to provide an alternative, spatiotemporal

perspective on the pandemic using the state of

Wisconsin as a case study. Specifically, this paper

explores the geographic nuances of COVID-19 and its

spread in Wisconsin using a suite of spatial statistical

approaches. The analysis detects and links hot spots of

COVID-19 to local geodemographic profiles, their

associated lifestyle characteristics and spatial distri-

butions, as well as the presence of high-risk facilities,

including federal and state correctional facilities. The

results suggest that the virus disproportionately

impacts several communities and geodemographic

groups and that proximity to risky facilities correlates

to increased community infection rates.

This work is important for several reasons. First, the

epidemiological interactions between correctional

facilities and their surrounding communities, broadly

defined, remain poorly understood (Wang et al., 2020;

Widra & Herring, 2020). The empirical work pre-

sented in this paper deepens our understanding of

these interactions using the spread of COVID-19 in

Wisconsin as a case study. Second, an ability to

pinpoint vulnerable communities and risky facilities

within a study region is critical for public health

intervention efforts. Although spatiotemporal dynam-

ics of COVID-19 and viruses like it are relatively well

understood (e.g., concentrations of a population with

increased mobility amplify the spread), there will be

other viruses or bacterial agents in the future that may

not have such obvious transmission pathways (Witte

et al., 2020; Zhu et al., 2018). The empirical frame-

work that we highlight in this paper is generalizable

and easily reconfigured to examine alternative patho-

gens, diseases, or transmission vectors. Lastly, the use

of geodemographic measures is novel. Lifestyle habits

and characteristics play an essential role in public

health, especially when it comes to public health

messaging, community support, and intervention

1 Media reports from January 2021 indicate that it surpassed

December 2020 as the deadliest month, with 95,000 U.S.

residents dying from COVID-19 (Moser, 2021).
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strategies (Grubesic & Durbin, 2020; Grubesic et al.,

2014; Moon et al., 2019; Petersen et al., 2011) and it is

crucial to account for their nuances when exploring

issues of community health. More importantly, iden-

tifying vulnerable geodemographic groups and their

spatial distribution is critical for increasing the

efficiency of intervention efforts. For example, sup-

pose certain groups prove to be more vulnerable

because of their spatial distribution relative to risky

facilities. In that case, the ability to prospectively

identify these geodemographic groups in other loca-

tions (e.g., outside of Wisconsin) may help prioritize

local public health efforts in these communities.

Background

As detailed in the introduction, the COVID-19 pan-

demic is fueled by a complex constellation of demo-

graphic (Dowd et al., 2020; Nepomuceno et al., 2020),

geographic (Hohl et al., 2020; Smith &Mennis, 2020),

economic (Baker et al., 2020; Chetty et al., 2020),

psychological (Babore et al., 2020; Thakur & Jain,

2020), sociological (Bavel et al., 2020), political

(Barberia & Gómez, 2020; Bosancianu et al., 2020)

and cultural factors (Huynh, 2020).

A complementary approach to deepening our under-

standing of COVID-19 is to evaluate its impacts within

the framework of vulnerability. Broadly defined, vul-

nerable groups of people are those that are dispropor-

tionately at risk for stressors and shocks, whether social

(Cutter et al., 2003), physical (Brody et al., 2008),

economic (Briguglio et al., 2009), or cultural (Nazroo,

1998). The underlying challenge for evaluating the

impacts of COVID-19 within this framework is that the

inclusion of people in these groups can change rapidly.

The Lancet (2020, 4) notes that vulnerable groups

during the COVID-19 pandemic are not limited to the

elderly or thosewith comorbidities. It includes those that

might be under-housed or homeless and people from a

large gradient of socio-economic groups. All of these

groups can struggle mentally, physically, or financially

during the crisis. In fact, the basic tools available for

minimizing the spread of COVID-19 in many commu-

nities, such as social distancing, masking, and basic

hygiene practices, are complicated to implement in

some places. This includes homeless camps, correc-

tional facilities, dormitories and other potentially risky

facilities within a community.

This type of polarization in community advantage/

disadvantage is all too common in theUnited States, and

theCOVID-19pandemic continues to expose thesegaps

(Carrión et al., 2020; Douglas & Subica, 2020). There

are many communities where social and economic

advantages contribute to various local support structures

for their residents. This may include elevatedmunicipal

services (e.g., police, fire), healthcare, social services,

and infrastructure that supports efficient disaster

response (Adger, 2000). However, within this context,

it is important to note that communities are infinitely

more complex than a simple have/have-not dichotomy

based on socio-economic status, education, resilience or

the traditional measures of advantage or disadvantage

(Archibald & Putnam Rankin, 2013; Laurence, 2011;

M. J. Lynch, 2016). One way to capture a more nuanced

understanding of a community’s demographic and

socio-economic gradients is through geodemographic

analysis (Grubesic & Durbin, 2020; Grubesic et al.,

2014; Harris et al., 2005; Singleton & Longley, 2019).

Geodemography offers the opportunity to generate

novel insights and hypothesis generation, particularly

related to spatial outcomes that can be further investigated

through confirmatory statistical approaches (Grubesic &

Durbin, 2020). In this way, geodemographics should be

considered inductive and exploratory rather than deduc-

tive and explanatory (Grubesic et al., 2014). This

exploratory structure means that geodemographic analy-

sis is highlyflexible andwidely applicable topublichealth

studies, especially for exploring inequalities associated

with health outcomes. For example, Peterson et al. (2011)

highlight the utility of geodemographic systems for

differentiating neighborhoods for public health cam-

paigns. Moon et al. (2019) use geodemographics to

enhance small area estimation of health indicators to limit

long-term illness in theU.K.,whileBright et al. (2020)use

geodemographic segmentation to analyze variations in

the risk of emergency presentation of cancer patients in

England. In all cases, geodemographicsoffers an ability to

develop an awareness of consumer behavior and lifestyle

trends that may play a role in public health outcomes–

which is why it may provide some additional insight into

the ecological characteristics of neighborhoods (and their

locations) impacted by the COVID-19 pandemic.

Risky and/or noxious facilities

Facilities are either public or private places with some

type of infrastructure to facilitate commerce,
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education, recreation, transportation, rehabilitation,

and the like (Tompkins, 2010). Risky facilities repre-

sent a significant subset of places that generate

negative externalities for a community. For example,

there is a large corpus of research that documents the

impacts of alcohol outlets (i.e., risky facilities) on

neighborhoods, including positive and statistically

significant increases in assaultive violence in/around

alcohol outlet clusters (Grubesic & Pridemore, 2011;

Grubesic et al., 2013; Wei et al., 2020). Noxious

facilities, which are easily conflated with risky facil-

ities, are somewhat different. Noxious facilities often

produce, consume, or help mitigate some type of

hazardous material, such as nuclear fuel, carcinogenic

chemicals, or biological waste. Community risks from

such facilities often bear a direct relationship to its

scale (Ratick & White, 1988), but the type of hazard

such facilities traffic in, also matters. Increasingly, the

umbrella of noxious/risky facilities has expanded to

include single-room occupancy housing (Krupa et al.,

2019), commercial sex premises (Hubbard et al.,

2013), halfway houses for sex offenders (Grubesic &

Murray, 2008), pawn shops (Bowers, 2014), and many

other types of undesirable places, including correc-

tional facilities (Scott et al., 2018).

The underlying social and geographic problems

spawned within communities by these undesirable

facilities are many (Greenberg, 2018). For example, in

a case study of New York City, Maantay (2001)

highlights that noxious facilities and associated land-

use tend to concentrate in poor and minority neigh-

borhoods. In Los Angeles, Lejano and Iseki (2001)

found geographic concentrations of hazardous waste

treatment, storage and disposal facilities in Latino

communities. In both instances, there is a dispropor-

tionate burden of risk and local impacts from noxious

facilities placed on groups of people that may have

limited political and economic capital for stimulating

reform. These types of environmental injustices are

well documented throughout the literature. For a

detailed review, see (Nelson & Grubesic, 2018).

Correctional facilities and COVID-19

The United States leads the world in total incarcerated

population–averaging 2.3 million individuals per day,

with the majority (*2.1 million) in federal and state

prison systems (Rapisarda et al., 2020). The U.S.

confines an additional 740,000 inmates in jail settings

on a given day, and nearly 11 million U.S. residents

cycle through jail on an annual basis, with an average

stay of 25 days (Zeng, 2019). Controlling COVID-19

infections in correctional facilities is critical to

‘‘flattening the curve’’ (Kinner et al., 2020). However,

a strict focus on prisoners as carriers and transmitters

of infectious diseases means that COVID-19 contain-

ment efforts often ignore the potential that correctional

staff has to influence infections–both within and

outside of prisons. In short, prison staff represents a

bi-directional vector of COVID-19 in local commu-

nities, capable of spreading infections to/from the

prison community and to/from their local residential

community (Fig. 1). The fact that as of August, 2020

only about half of the U.S. states were requiring

correctional facility staff to wear masks and only one

third of states were requiring incarcerated people to

wear masks only increases the potential for commu-

nity outbreaks linked to correctional facility staff

(Widra & Herring, 2020). This process of jail-

community cycling is also problematic for inmates

that have a short stay in a correctional facility. As they

cycle back to the local community, they can also

spread infections to local residents. For example,

recent work by Reinhart and Chen (2020) suggested

that people cycling through Cook County Jail

(Chicago) accounted for 15.7 percent of all docu-

mented COVID-19 cases in Illinois and 15.9% of all

documented cases in the city of Chicago. In this

context, the Cook County jail certainly qualifies as a

noxious facility. Further, the results suggested that

jail-community cycling is a more significant predictor

variable than race, poverty, public transit use, or

population density. To some degree, a non-peer-

reviewed report released by the American Civil

Liberties Union (ACLU, 2020) corroborates this

result. The simulation study suggested that COVID-

19 fatalities in April 2020 may have been drastically

underestimated (*98%) because of poor data from

the U.S. correctional system.

While these results are certainly compelling, there

are significant limitations and uncertainties associated

Fig. 1 Jail-community cycling: the role of staff
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with COVID-19modeling efforts. In particular, efforts

to explain or forecast epidemics frequently suffer from

insufficient input data, flawed modeling assumptions,

high sensitivity of estimates (Ioannidis et al., 2020),

and a general lack of important geographic, economic,

sociological, political, and/or lifestyle context. These

critiques do not suggest that attempts to model

COVID-19 are without merit; it simply means that

there is a need to improve both the inputs and

assumptions–acknowledging modeling limitations

and taking care to mitigate them when appropriate

(Taleb et al., 2020).

Data and methods

Study area

The state of Wisconsin is an interesting location for

exploring the geodemographic nuances of COVID-19

and its spread. With approximately 5.8 million resi-

dents (Census, 2019), Wisconsin ranks as the 20th

most populous U.S. state (Fig. 2). Wisconsin’s inter-

state corridors (I-41, I-43, I-90, I-94) are the most

densely settled portions of the state, home to the larger

cities of Madison and Milwaukee, as well as smaller,

regional hubs such as Green Bay, Appleton, Eau

Claire, Janesville, and La Crosse. Much of Wisconsin

is rural and agricultural, focusing on dairy farming,

corn, and soybeans. However, the northern portions of

the state, colloquially referred to as the ‘‘North-

woods,’’ is heavily forested and home to a mix of

seasonal residences, retirees, and native American

tribal lands (Gobster & Rickenbach, 2004; Loew,

2013). Many of these communities exhibit a lively

tourism industry, including places like Rhinelander

(Mentzer, 2020), but many others display elevated

levels of economic distress (EIG, 2018). The overall

demographic profile for Wisconsin in 2019 was 87%

white, 6.7% black, 7.1% Hispanic, 3% Asian, and

1.2% American Indian, with 10.4% of Wisconsin’s

population living in poverty. This demographic mix

tracks closely with the 10.5% U.S. national average.

So, while Wisconsin is whiter than the U.S. average

(76.3%), its mix of urban/rural and affluent/impover-

ished communities represents a study area where the

methodology and results presented in this paper could

be widely generalizable.

Data

Wisconsin COVID-19 data are collected and main-

tained by the Wisconsin Department of Health

Services (WDHS, 2020) and made available through

their associated portal. The data set contains the

cumulative daily count of positive and negative cases,

deaths, and the age breakdown of the patients. The

data are updated daily for all county and census tracts

within Wisconsin. Reported cases are laboratory-

confirmed, official state numbers. Reporting began

on Mar 15, 2020. WDHS provides unique numerical

identifiers for county and census tracts (i.e., GEOID)

within the data set.

We obtained the locations of the county, state, and

federal correctional facilities within Wisconsin from

the Department of Homeland Security’s Infrastructure

foundation-level data (HIFLD). HIFLD publishes

these data with georeferenced information that con-

sists of polygons corresponding to the geographic

footprint of each facility. We converted facility

footprints to points, and we use only one unique point

for each facility (Fig. 2). In addition to the location

information, attributes of the correctional facilities

included the name of the facility, address, estimated

prison population, total capacity, and security level.

We use a total of 120 correctional facilities for this

analysis, including both prisons/detention centers (52)

and jails (68).

We draw our geodemographic data from the Esri

Tapestry database (Esri, 2019a,b). The Tapestry

segments incorporate a combination of U.S. Census

data from 2010, more recent American Community

Survey 5-year data (United States Census Bureau,

2019), in-house Esri demographic updates, Experian’s

ConsumerView data (Experian, 2019), and an exten-

sive range of consumer lifestyle surveys (Gfk MRI,

2019). The Tapestry system represents a typology of

67 unique residential segments that reflect unique

lifestyles throughout the United States. We assign

each census tract (n = 1,391) a dominant tapestry type

for the state of Wisconsin. This assignment does not

mean that all households fit neatly into these segments.

Regardless of geodemographic system quality, there

will always be outliers and a range of lifestyles for a

given tract. To ensure consistency and stability, Esri

uses several ground-truthing processes to verify the

viability of assigned lifestyle segments, including

independent samples, consumer surveys, and
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Fig. 2 Correctional facilities in the state of Wisconsin, 2020
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information on spending patterns, service brand usage,

and media preferences (ESRI, 2015).

Methods

All of the reported COVD-19 case information from

WDHS (2020) arrived in CSV format. In addition to

the cumulative case count reported within the WDHS

data, we derive the count of new daily cases for each

tract by subtracting the previous day’s case count from

the current day’s case count. Cases were assigned to

each tract using the unique GEOID identifier. Where

applicable, infection rates were derived using daily

cases at time tð Þ for each census tract ið Þ per 10,000
residents as follows:

Rateti ¼
daily casesti
populationi

� �
� 10; 000 ð1Þ

This simple calculation provides the ability to

objectively compare COVID-19 infection rates

between both rural and urban tracts in an unbiased

manner.

In addition to basic cartographic analysis, we utilize

several more advanced statistical methods to deepen

our understanding of the COVID-19 dynamics in the

state of Wisconsin. First, we apply the local Moran’s I

statistic (Anselin, 1995):

Ii ¼ zi
X

wijzj ð2Þ

where xi and xj are observations for tracts i and j (with

mean l), zi ¼ xi � lð Þ, zj ¼ xj � lÞ, andwij is a spatial

weights matrix with values of 0 or 1, based on queen’s

contiguity. However, rather than using the standard

Local Moran’s I statistic (2), it is implemented with

Empirical Bayes (EB) rates (Assunção & Reis, 1999).

The EB standardization procedure standardizes raw

rates to obtain a constant variance via rescaling. This

variation means replacing the raw rate with a

standardized rate (mean = 0, SD = 1). This process

helps reduce instability in the LocalMoran’s Imeasure

andminimizes the potential for spurious inference.We

use tract population for the EB standardization

process.

We also leverage a retrospective space–time anal-

ysis that scans for clusters of tracts that exhibit higher

than expected rates (Kulldorff, 1997; Kulldorff &

Nagarwalla, 1995). The spatial scan statistic is a

classic approach that uses a cylindrical window with a

circular geographic base. The height of the cylinder

corresponds to time and reflects any possible time

interval of less than (or equal to) half of the total study

period–and the study period as a whole. Each of the

generated scanning windows is moved in space and

time to cover the entire study region. Each cylinder

represents a possible cluster, and COVID-19 infec-

tions are assumed to be Poisson distributed with a

constant risk over space and time. This approach

captures the number of cases both inside/outside the

scanning cylinder during the scanning process. When

combined with the expected number of cases reflect-

ing the underlying population at risk, it calculates the

likelihood for each cylinder. We tag the cylinder with

the maximum likelihood (exhibiting more than its

expected number of cases) as a hot spot. We evaluate

significance with Monte Carlo simulation, where the

null hypothesis (i.e., no clusters) is rejected at an

a = 0.05 if the simulated P is less than or equal to 0.5

for the most likely cluster (Kulldorff et al., 1998). We

conducted all space–time scan statistics with SaTScan

v. 9.6.1. Analysis began with the first day of case

reporting at the census tract level (Apr 11, 2020) and

ended on Oct 1, 2020. Maximum cluster size was

limited to 10% of the population at risk, and the

temporal window included a minimum size of 5 days,

with a maximum of 50% of the study period. Finally,

the clusters were restricted to include a minimum of

five cases for a hot spot, and no geographical overlap

was allowed.2

For this paper, drive-time catchment areas for

correctional facilities are used to benchmark, assess,

and evaluate the influence of community proximity

(i.e., census tracts) to each location. We calculated

catchment areas for each correctional facility using a

suite of geocomputational procedures. Schuurman

et al. (2006) detailed that catchments are geographical

areas around an institution or business that helps

describe the population that may use its services. For

example, drive-time catchment areas are used widely

2 Because many of the underlying parameters are somewhat

subjective, sensitivity analysis was conducted–varying cluster

membership thresholds, as well as geographic and temporal

windows. Local contextual knowledge of the state and its

infection rates were also incorporated into the sensitivity

analysis. The reported results represent the best balance of

parameter selections for generating spatiotemporally stable hot-

spots of COVID-19 infections for Wisconsin during the study

period.
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by retailers to deepen their understanding of local

market demographics, evaluate store accessibility, and

target promotional efforts to potential customers

(Clarkson et al., 1996; Dolega et al., 2016). We

generate geographic catchment areas using 5, 10, and

15-min drive-times on the local street network. These

catchment areas reflect typical travel times, but do not

account for high-traffic scenarios such as rush hour

(7 am–9 am or 4 pm–6 pm) for major metropolitan

areas. Figure 3 displays the 10-min drive-time catch-

ment areas for each of the correctional facilities.

Compared to the 10-min catchments, the 5-min are

more geographically compact, while the 15-min are

more geographically expansive.

Finally, we leverage a two-sample t-test for com-

paring the infection rates for each tract and their

relative proximity to correctional facilities as defined

by the 5, 10, and 15-min catchment areas detailed

above. Large differences between the mean infection

rates in areas inside/outside the catchment areas may

suggest a disproportionate burden of COVID-19 risk

for communities proximal to the corrections facilities.

Because the data inWisconsin exhibited heteroscedas-

ticity (i.e., tracts inside and outside the catchment

areas have different standard deviations), we use

Welch’s t-test (Welch, 1947) following a significant

Levene’s test statistic.

Results

Spatial and space–time clusters

Figure 4 displays the cumulative infection rate for

COVID-19 cases in Wisconsin between April and

October 2020. Readers need to note that the geo-

graphic extent of census tracts in Wisconsin varies

substantially. As a result, it is easy to miss the high

infection rates for the smaller tracts in the Milwaukee,

Madison, Racine, and Kenosha areas in southeastern

Wisconsin. Elsewhere in the state, it is clear that many

of the smaller, regional urban centers such as Green

Bay, La Crosse, Appleton, and Eau Claire exhibited

high rates of infection. In fact, the highest overall

infection rate at the tract level was in the Green Bay

area (2751 per 10,000). For much of rural Wisconsin,

COVID-19 was undoubtedly present, but the overall

infection rates were much lower. These lower rates

included much of west-central Wisconsin and portions

of the Northwoods. For example, a census tract located

in Ladysmith, Wisconsin (Rusk County) had the

lowest infection rate in the state for the study period,

20.09 cases per 10,000.

We applied the Local Moran’s I test with Empirical

Bayes standardization to identify local spatial clusters

and disambiguate tract infection rates. Figure 5

displays the results. Of particular note are the high-

high and high-low tracts.3 The Moran’s I statistic for

this analysis was 0.189, suggesting a low but statis-

tically significant (0.05%) level of spatial autocorre-

lation in the data.4 In sum, of the 1390 tracts used for

analysis, 120 (8.63%) were classified as COVID-19

hot-spots (high-high), 320 (23.02%) were classified as

cold-spots (low–low), 11 (0.79%) as cool-spots (low–

high) and 9 (0.64%) as warm-spots (high–low).

In addition to the hot spots in/around Milwaukee,

Madison, Kenosha, and Racine, it is notable that many

of the communities that are home to a regional campus

of the University of Wisconsin system emerged as hot

spots in the analysis. These hot spots include Eau

Claire, La Crosse, and the city of Whitewater. Where

the latter is concerned, Whitewater is a much smaller

community (*15,000 permanent residents) when

compared to Eau Claire (*65,000) and La Crosse

(*50,000). However, when the University of Wis-

consin-Whitewater is in session, the local population

swells by the addition of 12,000 students–effectively

doubling the size of the city.

The space–time scan statistic provides an alterna-

tive method for identifying hot spots of the COVID-19

outbreak in Wisconsin (Fig. 6). By incorporating a

temporal component, it is possible to identify the start

and end date of each hot spot (Table 1). In addition,

Table 1 provides information on the relative risk,

statistical significance, and strength (LLR) for each

space–time hot-spot. There are several important

outcomes highlighted in this table. First, the outbreak

in Madison, which started during the first week of

September and ended in the third week, was the most

severe event in the state. Centered on the University of

3 High-high tracts are those with high rates of infection

surrounded by tracts of similarly high rates. High-low tracts

are those with high rates of infection surrounded by tracts of

much lower rates.
4 When the local Moran’s I is conducted without EB standard-

ization, I = 0.511 and the test generates a nearly identical spatial

footprint of clusters.
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Fig. 3 10-min drive-time catchment areas for correctional facilities in Wisconsin
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Fig. 4 COVID-19 infection rates by Tract, April–October, 2020
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Fig. 5 Local Moran’s l hot-spots of COVID-19 infections, April–October, 2020
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Fig. 6 Space–time hot-spots of COVID-19 infections
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Wisconsin-Madison campus, the university started

classes on Sept 2, and by the fifth day of classes, the

campus reported 404 infections (Meyerhofer, 2020).

This outbreak prompted a two-week lockdown for

large dormitories and a campus-wide pause for face-

to-face instruction. The space–time statistic results

detailed here suggest that the partial shutdown may

have helped mitigate the outbreak for Madison.

Second, the outbreaks for Whitewater, La Crosse/

Eau Claire, and Green Bay have similar start dates and

share large regional campuses for the UW system. As

detailed in Table 1, the outbreak in Whitewater was

particularly acute, where relative risk was concerned.

The space–time hot-spot in the Northwoods is of

interest. From a geographic perspective, it is the

largest of the nine hot spots. However, given the way

that SatScan operates, this result should be interpreted

with some caution. Because the Northwoods region

has a low population density, SatScan can collect more

tracts for statistical analysis without exceeding the

selected population threshold for the test statistic–

thereby generating a geographically expansive hot-

spot. However, it is possible to provide some addi-

tional fidelity to the Northwood cluster by generating

sub-clusters with SaTScan. Specifically, all of the

tracts in Cluster 9 were subjected to a secondary

space–time analysis to create sub-clusters for the

region (Table 2). The results suggested a robust

geographic correspondence betweenmany hot spots in

the Northwoods and tribal lands (Fig. 7). In addition,

Table 2 shows that many of these outbreaks started in

September and continued through the end of our study

period (October), corroborating local reporting and

tribal vulnerabilities to the virus (A.P., 2020).

Geodemographic trends in the COVID-19

outbreak

Figure 8 illustrates the cumulative COVID-19 case

rate by geodemographic LifeMode groups using the

Esri Tapestry segmentation system. LifeMode groups

are markets that share a common experience (Esri,

2019a). This experience may be age-related (e.g., born

in the same generation), related to migratory roots

(e.g., country of origin), or some type of significant

demographic trait, such as income. There are 14

LifeMode groups that serve as an umbrella for the 67

unique market segments.
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Fig. 7 Space–time hot-spot subclusters and tribal lands, Northwoods Wisconsin
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Each of the lines plotted in Fig. 8 corresponds to the

mean value of the tracts for a LifeMode group. The

corresponding bands represent the 95% confidence

interval for those values for that set of tracts. Three

groups, Next Wave, Scholars and Patriots, and Ethnic

Enclaves displayed a substantially higher infection

rate for the study period. In particular, Next Wave

started with the highest case rate and remained that

way through October. Nationally, this LifeMode

group is predominantly Hispanic, with many working

in the service or construction industry. Median

incomes are lower than the national average, and most

of the residents in this group never graduated high

school. This profile is certainly the case for NextWave

tracts in Wisconsin. Statewide, the Next Wave tracts

averaged 72.8% Hispanic, with median incomes

averaging $32,775. Of note, 20.2% of the residents

in these tracts in Wisconsin do not have health

insurance. All 27 tracts classified as Next Wave in

Wisconsin are located in a detected hot spot, with a

mean case rate (684.45) almost three times higher than

the state average for tracts (209.38).

Of particular interest in Fig. 8 is the Scholars and

Patriots group, which displayed a massive uptick in

COVID-19 infection rates in early September. Again,

we typically find this LifeMode in college and/or

military towns throughout the United States. In the

state of Wisconsin, this included the hot-spots cen-

tered on Fon du Lac (U.W. Oshkosh), Green Bay

(U.W. Green Bay), Milwaukee (U.W. Milwaukee),

Madison (U.W. Madison), La Crosse/Eau Claire

(U.W. Eau Claire, U.W. La Crosse, and U.W. Stout)

and Whitewater (U.W. Whitewater). In short, while

accounting for less than 3% (n = 41) of the total tracts

in the state, Scholars and Patriots is linked to six of the

nine detected space–time hot-spots. The underlying

geodemographic segments (College Towns andDorms

to Diplomas) include primarily nonfamily households

with students living alone or with roommates in

densely developed student housing. Interestingly,

there are other areas in the state with tracts in these

segments (e.g., Platteville, Stevens Point, and River

Falls) that also have a U.W. system campus present but

were not designated hot-spots during the study period.

Next Wave

Scholars and Patriots

Ethnic Enclaves

LifeMode Group

Fig. 8 Cumulative COVID-19 case rates by LifeMode group
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Lastly, the Ethnic Enclaves LifeMode group exhib-

ited the third-highest average case rate (320.51) at the

end of the study period. There are only four census

tracts classified in this group for the entire state, with

two located in Madison, one in Delavan, and one in

Milwaukee (hot-spot Cluster 4). The Milwaukee tract

(geodemographic segment; Barrios Urbanos) abso-

lutely overwhelms the remaining three tracts with

population-adjusted case counts. For example, during

the last week of the study period (October), there were

624.56 cases per 10,000 residents. The next highest

was in Delevan, with 340.44. The remaining tracts

were both below 200 cases per 10,000. This trend was

present throughout the entire study period, with the

Milwaukee tract exhibiting 100% or more cases than

the others in the Ethnic Enclaves LifeMode group.

Notably, the tract in Milwaukee is located in one of the

most segregated neighborhoods in the state, with a

history of public health concerns (Lynch & Meier,

2020).

Correctional facilities and COVID-19

in Wisconsin

To deepen our understanding of the connection

between correctional facilities and the COVID-19

outbreak in Wisconsin, we created two groups of

census tracts–those found within the 5, 10, or 15-min

drive time catchments and those that are not. This

binary classifier helped identify variations in case rates

throughout the state by accounting for geographic

proximity to the risky facilities. The resulting Welch’s

t-test of mean case rates between the groups exhibited

a consistent and nearly ubiquitous series of outcomes.

Mean COVID-19 case rates are higher in tracts

proximal to correctional facilities when compared to

those that are not (Table 3). Further, the plot of

cumulative case rates, over time, with respect to the

number of correctional facilities within the catchment

area, suggests that as the number of facilities

increases, so too does the population-adjusted case

rates. For example, consider Fig. 9, which highlights

that tracts within 10 min of three, four, or five

correctional facilities have higher case rates at all

points in the study period. In all instances, these tracts

exhibited average case rates approaching (or exceed-

ing) 300 per 10,000 people. Conversely, tracts with

less exposure to these risky facilities exhibited much

lower population-adjusted case rates. The same trend

exists for the 15-min catchment areas (not shown).5

The 5-min catchment provided a slight exception,

where tracts proximal to four different correctional

facilities had the second-lowest case rate. However, it

is important to remember that the 5-min catchments

are highly compact, drastically shrinking the total

number of observations.

Table 3 Two-sample t-test for equality of COVID-19 case

rates within correctional facility catchment areas in Wisconsin,

April–October, 2020

Week Date t-statistic

5-Minute 10-Minute 15-Minute

1 04_12 3.54613*** 3.36648*** 7.61522***

2 04_19 3.53879*** 4.54252*** 8.43672***

3 04_26 3.69572*** 5.50535*** 9.43263***

4 05_03 3.81836*** 6.78286*** 10.63152***

5 05_10 3.61331*** 7.14669*** 11.19534***

6 05_17 3.67789*** 7.35362*** 11.73809***

7 05_24 3.80383*** 7.84904*** 12.88244***

8 05_31 3.56731*** 7.50488*** 13.18739***

9 06_07 3.67425*** 7.60041*** 13.15073***

10 06_14 3.23456*** 7.46929*** 13.53679***

11 06_21 3.16264*** 7.45763*** 13.65178***

12 06_28 3.38105*** 7.69008*** 14.07408***

13 07_05 3.49255*** 7.81848*** 14.32494***

14 07_12 3.81834*** 8.0199*** 14.6314***

15 07_19 3.74997*** 8.02194*** 14.76292***

16 07_26 3.51755*** 7.82333*** 14.59451***

17 08_02 3.34132*** 7.72122*** 14.22962***

18 08_09 3.2109** 7.55428*** 14.02563***

19 08_16 3.30813** 7.40046*** 13.66347***

20 08_23 3.10533** 7.07397*** 13.26084***

21 08_30 3.00036** 6.90767*** 12.90243***

22 09_06 2.9318** 6.84304*** 12.75563***

23 09_13 2.81261** 6.71073*** 11.86402***

24 09_20 2.49641* 6.62658*** 10.98975***

25 09_27 2.14584* 6.67729*** 10.69819***

26 10_04 1.85544 6.57289*** 10.49009***

p-value: *\ 0.05, **\ 0.01, ***\ 0.001

5 This relationship is also stable in rural, lower density areas.

Specifically, plots of the relationship between case rates and

correctional facilities for tracts with population less than 400

people per square mile suggested that proximity to the risky

facilities increases case counts for tracts.
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Discussion, limitations and conclusions

There are three facets of the results worth additional

discussion. First, many of the worst COVID-19 hot

spots in Wisconsin were connected to university

communities throughout the state. The spikes in case

rates for these tracts perfectly corresponded to the

return of students to these communities in early

September. As noted above, while the partial lock-

down of the U.W. campus in Madison seemed to

flatten the curve locally (Meyerhofer, 2020), our study

period ended in early October, and there may have

been some additional spikes we did not capture in the

university communities later in the autumn. Second, it

is important to acknowledge that COVID-19 testing

plays a role in these numbers. While the data from

WHDS represents the best, publicly available infor-

mation, WHDS likely failed to include many COVID-

19 cases in these tabulations–particularly in university

communities. Nationally, some schools required test-

ing for all students, once per week, if they wanted to

remain on campus, while at other schools, students

with symptoms had difficulty getting tested (Courage,

2020). The University of Wisconsin system includes

two doctoral research universities (Madison and

Milwaukee), eleven comprehensive universities (e.g.,

Whitewater), and thirteen freshman-sophomore

branch campuses–all of which handled the COVID-

19 outbreak on their campus independently. This

variation in testing may explain why campuses such as

Stevens Point, Platteville and River Falls were not

included in any space–time hot spots. Regardless, it is

likely that the numbers reported in this paper and the

corresponding hot spots represent a conservative

estimate of the outbreak.

Second, the results strongly suggest that the

COVID-19 outbreak in Wisconsin disproportionately

impacted certain groups of people. In addition to the

acute outbreaks in university communities, the geode-

mographic analysis of COVID-19 in Wisconsin sug-

gests that many of the predominantly Hispanic and

American Indian communities throughout the state

suffered. For example, the Next Wave LifeMode

group, characterized by undereducated, poor, and

largely Hispanic populations, exhibited higher case

rates than any other geodemographic group. All 27 of

the tracts in Wisconsin classified as Next Wave were

located in Milwaukee and Racine and were significant

contributors to the Cluster 4 and Cluster 8 hot-spots

Facility Count

Fig. 9 Cumulative COVID-

19 case rates for tracts

within 10 min of a

correctional facility
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(Fig. 6). In addition, all 27 of these tracts were within a

ten-minute drive of at least one correctional facility.

At the same time, tribal populations throughout the

Northwoods region of Wisconsin were also dispro-

portionately impacted by the COVID-19 outbreak.

Figure 7 illustrated the geographic correspondence

between the Northwoods sub-cluster hot-spots and

tribal lands, but it is also important to acknowledge

that the hot-spot detected in Green Bay (Fig. 6)

included the Oneida Nation. In fact, the Oneida tribal

land in Green Bay included portions of two high-high

clusters detected by the Local Moran’s I statistic. In

short, the results presented in this paper corroborate

early empirical results that suggest COVID-19 dis-

proportionately impacts racial and ethnic minorities

throughout the United States (Tai et al., 2020).

Finally, the empirical results of this paper suggest

that there may be a connection between the presence

of correctional facilities and elevated COVID-19 case

rates in proximal communities. As detailed in Table 3,

there is strong statistical evidence that tracts located

within 5, 10, and 15 min of a correctional facility

exhibited higher case rates when compared to tracts

that were not in these catchment areas. Further, visual

evidence (Fig. 9) suggested that tracts proximal to

more correctional facilities exhibited higher case rates

when compared to tracts proximal to fewer facilities.

This finding held for rural areas too. While more

mathematical and statistical modeling is required to

uncover the exact nature of this connection, the

concept of jail-community cycling is undoubtedly

relevant for Wisconsin. Again, inmates often have a

relatively short stay in jails, and as they cycle back to

the local community (i.e., areas proximal to the

facility), they have the potential to spread infections

to local residents. This dynamic was certainly the case

for Cook County Jail in Illinois (Reinhart & Chen,

2020) and may be true for communities throughout

Wisconsin. Further, community residents that work in

the corrections system and the local incarcerate

facilities might (unknowingly) bring the COVID-19

infections home. More work is required to establish

this connection.

Limitations

There are several limitations to our analysis worth

noting. First, as mentioned in the introduction,

geodemographic analysis is exploratory by nature.

As a result, it is difficult to isolate the exact lifestyle

preferences that make certain groups more ‘‘at risk’’ for

COVID-19 infections. However, our study does suggest

that the spatial distribution of three groups (Next Wave,

Scholars and Patriots, and Ethnic Enclaves) displayed

a substantially higher infection rate for the study period.

There is real analytical value in this result. The

collective vulnerability of these groups allows public

health officials to prospectively identify these geode-

mographic segments in other locations (e.g., outside of

Wisconsin) and potentially prioritize local public health

efforts in these communities, especially those with risky

facilities nearby. More work is required to understand

the nuances of each group’s lifestyle and its relationship

to COVID-19 risk.

Second, our data limits our understanding of the

size of correctional facilities. Data on prisons’ char-

acteristics and daily functions are notoriously hard to

estimate, in large part because of vastly different

reporting practices across federal, state, and local

prison systems (Committee on the Best Practices for

Implementing, 2020). Moreover, within those sys-

tems, there may also be different data collection and

reporting practices. For example, there are differences

in the management of public and private prisons–or

prisons that comprise a larger complex where multiple

types of prison facilities co-locate (Wallace et al.,

2021a,b). For instance, in the federal Bureau of

Prisons (BOP), information on privately managed

prisons within the BOP, such as prisoner-to-staff

ratios, are not reported, making it nearly impossible to

understand the staff population throughout the federal

prison system (Wallace et al., 2021a,b). Very rarely is

data on staff and prisoner populations or characteris-

tics held in place. Moreover, with extensive prison

overcrowding and staffing shortages across prisons in

the U.S., any numbers concerning the prisoner and

staff population are likely in flux. Efforts to understand

how and why the lifestyles of these groups facilitate

higher infection rates will require more work.

One last limitation to this work is the need to better

understand the potential differences between urban

and rural relationships between correctional facilities,

communities, and COVID-19 risk. While the drive-

time catchment areas help standardize this analysis,

rural and urban disease transmission dynamics may

diverge.

With the arrival of the Pfizer, Moderna, and

Johnson & Johnson vaccines, there is reason to be
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optimistic that the COVID-19 pandemic will soon be

over. However, developing a deeper understanding of

how COVID-19 established a foothold in the United

States and percolated through different institutions

(e.g., universities, corrections facilities, etc.), popula-

tions (e.g., racial and ethnic minorities) lifestyle

groups will require decades of study. Nevertheless,

the results of this study suggest that both spatial

statistical and geodemographic analysis can provide

essential insights into the processes associated with

population health and the role of risky facilities.
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Prisons and custodial settings are part of a comprehensive

response to COVID-19. The Lancet Public Health, 5(4),
e188–e189. https://doi.org/10.1016/S2468-

2667(20)30058-X

Krupa, J. M., Boggess, L. N., Chamberlain, A. W., & Grubesic,

T. H. (2019). Noxious housing: The influence of single

room occupancy (SRO) facilities on neighborhood crime.

Crime and Delinquency. https://doi.org/10.1177/

0011128719875701

Kulldorff, M. (1997). A spatial scan statistic. Communications
in Statistics Theory and Methods, 26(6), 1481–1496.

https://doi.org/10.1080/03610929708831995

123

GeoJournal

https://doi.org/10.17226/25945.
https://doi.org/10.17226/25945.
https://www.vox.com/21445908/covid-19-prevention-university-campus-dorms-testing.
https://www.vox.com/21445908/covid-19-prevention-university-campus-dorms-testing.
https://www.vox.com/21445908/covid-19-prevention-university-campus-dorms-testing.
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1111/1540-6237.8402002
https://doi.org/10.1002/oby.22818
https://doi.org/10.1016/j.jretconser.2015.08.013
https://doi.org/10.1016/j.jretconser.2015.08.013
https://doi.org/10.1016/j.ypmed.2020.106282
https://doi.org/10.1016/j.ypmed.2020.106282
https://doi.org/10.1073/pnas.2004911117
https://doi.org/10.1073/pnas.2004911117
https://eig.org/dci.
https://tinyurl.com/y3j7nt9b.
https://tinyurl.com/y3j7nt9b.
https://tinyurl.com/y4l2hjjj.
https://tinyurl.com/y56onqvz.
https://tinyurl.com/y56onqvz.
https://tinyurl.com/y5ppyo3z.
https://tinyurl.com/y5ppyo3z.
https://doi.org/10.1016/j.landurbplan.2003.09.005
https://doi.org/10.1016/j.landurbplan.2003.09.005
https://doi.org/10.1177/0890334420941416
https://doi.org/10.1007/s12061-008-9013-5
https://doi.org/10.1186/1476-072X-10-30
https://doi.org/10.1186/1476-072X-10-30
https://doi.org/10.1093/alcalc/agt055
https://doi.org/10.1093/alcalc/agt055
https://doi.org/10.1016/j.apgeog.2014.08.017
https://doi.org/10.1016/j.apgeog.2014.08.017
http://nbn-resolving.de/urn:nbn:de:101:1-201412187192.
https://doi.org/10.1016/j.sste.2020.100354
https://doi.org/10.1016/j.sste.2020.100354
https://doi.org/10.1016/j.annepidem.2020.06.010
https://doi.org/10.1016/j.annepidem.2020.06.010
https://doi.org/10.1068/a4574
https://doi.org/10.1068/a4574
https://doi.org/10.1016/j.ssci.2020.104872
https://doi.org/10.1016/j.ijforecast.2020.08.004
https://doi.org/10.1016/j.ijforecast.2020.08.004
https://doi.org/10.3390/v12040372
https://doi.org/10.3390/v12040372
https://doi.org/10.1016/S2468-2667(20)30058-X
https://doi.org/10.1016/S2468-2667(20)30058-X
https://doi.org/10.1177/0011128719875701
https://doi.org/10.1177/0011128719875701
https://doi.org/10.1080/03610929708831995


Kulldorff, M., &Nagarwalla, N. (1995). Spatial disease clusters:

Detection and inference. Statistics in Medicine, 14(8),
799–810. https://doi.org/10.1002/sim.4780140809

Kulldorff, M., Athas, W. F., Feurer, E. J., Miller, B. A., & Key,

C. R. (1998). Evaluating cluster alarms: A space-time scan

statistic and brain cancer in Los Alamos, New Mexico.

American Journal of Public Health, 88(9), 1377–1380.
https://doi.org/10.2105/AJPH.88.9.1377

Lancet, T. (2020). Redefining vulnerability in the era of

COVID-19. The Lancet, 395(10230), 1089. https://doi.org/
10.1016/S0140-6736(20)30757-1

Laurence, J. (2011). The effect of ethnic diversity and com-

munity disadvantage on social cohesion: A multi-level

analysis of social capital and interethnic relations in UK

communities. European Sociological Review, 27(1),
70–89. https://doi.org/10.1093/esr/jcp057

Lejano, R. P., & Iseki, H. (2001). Environmental justice: Spatial

distribution of hazardous waste treatment, storage and

disposal facilities in Los Angeles. Journal of Urban
Planning and Development, 127(2), 51–62. https://doi.org/
10.1061/(ASCE)0733-9488(2001)127:2(51)

Lewnard, J. A., & Lo, N. C. (2020). Scientific and ethical basis

for social-distancing interventions against COVID-19. The
Lancet Infectious Diseases, 20(6), 631–633. https://doi.
org/10.1016/S1473-3099(20)30190-0

Loew, P. (2013). Indian nations of Wisconsin: Histories of
endurance and renewal (2nd ed.). Wisconsin Historical

Society Press.

Lynch, M. J. (2016). The ecological distribution of community

advantage and disadvantage: Power structures, political

economy, communities, and green-state crime and justice.

Critical Criminology, 24(2), 247–262. https://doi.org/10.
1007/s10612-016-9313-z

Lynch, E. E., & Meier, H. C. S. (2020). The intersectional effect

of poverty, home ownership, and racial/ethnic composition

on mean childhood blood lead levels in Milwaukee County

neighborhoods. PLoS ONE, 15(6), e0234995. https://doi.
org/10.1371/journal.pone.0234995

Maantay, J. (2001). Zoning, equity, and public health. American
Journal of Public Health, 91(7), 1033–1041. https://doi.
org/10.2105/AJPH.91.7.1033

Mentzer, R. (2020). Report: Outdoor recreation is worth $7.8B

to Wisconsin economy. Wisconsin national public radio.

https://www.wpr.org/report-outdoor-recreation-worth-7-8b-

wisconsin-economy.

Meselson, M. (2020). Droplets and aerosols in the transmission

of SARS-CoV-2. New England Journal of Medicine,
382(21), 2063–2063. https://doi.org/10.1056/

NEJMc2009324

Meyerhofer, K. (2020). UW-Madison’s fall reopening: A story

of success, failure or simply survival? Wisconsin State

Journal. https://madison.com/wsj/news/local/education/

university/uw-madisons-fall-reopening-a-story-of-

success-failure-or-simply-survival/article_a761d934-

2fba-533e-8587-06d00ff87245.html.

Moon, G., Twigg, L., Jones, K., Aitken, G., & Taylor, J. (2019).

The utility of geodemographic indicators in small area

estimates of limiting long-term illness. Social Science and
Medicine, 227, 47–55. https://doi.org/10.1016/j.

socscimed.2018.06.029

Moser, W. (2021). The deadliest month yet. The Atlantic.

https://www.theatlantic.com/health/archive/2021/02/

january-pandemic-deadliest-month/617898/.
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