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Abstract The COVID-19 pandemic caused by the
severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) continues to impact the United States.
While age and comorbid health conditions remain
primary concerns in the community-based transmis-
sion of the virus, empirical evidence continues to
suggest that substantial variability exists in the geo-
graphic and geodemographic distribution of COVID-
19 infection rates. The purpose of this paper is to
provide an alternative, spatiotemporal perspective on
the pandemic using the state of Wisconsin as a case
study. Specifically, in this paper, we explore the
geographic nuances of COVID-19 and its spread in
Wisconsin using a suite of spatial statistical
approaches. We link detected hot spots of COVID-
19 to local geodemographic profiles and the presence
of high-risk facilities, including federal and state
correctional facilities. The results suggest that the
virus disproportionately impacts several communities
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and geodemographic groups and that proximity to
risky facilities correlates to increased community
infection rates.
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Introduction

The virus responsible for the COVID-19 pandemic is
the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). As detailed by Velavan and Meyer
(2020), SARS-CoV-2 likely transitioned from animals
to humans in/around the Huanan seafood market in
Wuhan, China, although this remains an open empir-
ical question (Jin et al., 2020). The main transmission
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routes for COVID-19 are respiratory droplets and
contact transmission (Meselson, 2020). While all races
and ages are susceptible to the virus, elderly persons
(Velavan & Meyer, 2020) with underlying comorbidi-
ties such as diabetes, asthma, and cardiovascular
disease are particularly at-risk (B. Wang et al., 2020).
Research also suggests that smoking and obesity may
increase susceptibility (Dietz & Santos-Burgoa, 2020;
Patanavanich & Glantz, 2020).

While research on the virology, mechanics of
transmission, and vaccines for COVID-19 continues,
it is essential to acknowledge that information con-
cerning the pandemic’s epidemiological facets are
only beginning to emerge. For example, it is widely
recognized that without pharmaceutical intervention
strategies, social distancing was one of the few viable
tactics to control the spread of COVID-19 (Lewnard &
Lo, 2020). The basic idea for social distancing is a
simple one-reduce the mixing of infectious and
susceptible people. When combined with contact
tracing, masking, and aggressive testing for the virus,
it should have been possible to “flatten” the epidemic
curve in the United States and elsewhere (Chiu et al.,
2020). Alas, this did not happen. Using data from Mar
12-Dec 23, Camberg et al. (2020) reported that
December 2020 was the deadliest month of the
pandemic to date, with an average of 2506 deaths
reported per day and more than 119,000 people
hospitalized with COVID-19."

While these figures are alarming by themselves,
empirical work increasingly suggests that COVID-19
infections disproportionately impact racial minorities,
especially those that are impoverished. For example,
in a cross-sectional study of ~2500 adults in
Milwaukee, Wisconsin, COVID-19 was positively
associated with African Americans, with both race and
poverty associated with a higher risk of hospitalization
(Muiioz-Price et al., 2020). In related work, Holtgrave
et al. (2020) found that fatality rates for Black non-
Hispanic and Hispanic adults with COVID-19 were
3.48 and 5.38 times higher when compared to white
adults suffering from the virus in the state of New
York. In addition, Strully et al. (2021) identified
significant regional variations in COVID-19 cases.
Specifically, communities with more immigrants and

! Media reports from January 2021 indicate that it surpassed
December 2020 as the deadliest month, with 95,000 U.S.
residents dying from COVID-19 (Moser, 2021).
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Central American or Black Residents exhibited more
COVID-19 cases. Simultaneously, counties in the
Northeast and Midwest that had more Puerto Rican
residents also produced more cases.

While this research helps identify important differ-
ences in hospitalization and mortality rates between
demographic groups, it says little about potential
variations in lifestyle characteristics between groups,
the spatial distribution of these groups, or the potential
role that risky facilities may play in elevating risk and
community exposure to COVID-19. The purpose of
this paper is to provide an alternative, spatiotemporal
perspective on the pandemic using the state of
Wisconsin as a case study. Specifically, this paper
explores the geographic nuances of COVID-19 and its
spread in Wisconsin using a suite of spatial statistical
approaches. The analysis detects and links hot spots of
COVID-19 to local geodemographic profiles, their
associated lifestyle characteristics and spatial distri-
butions, as well as the presence of high-risk facilities,
including federal and state correctional facilities. The
results suggest that the virus disproportionately
impacts several communities and geodemographic
groups and that proximity to risky facilities correlates
to increased community infection rates.

This work is important for several reasons. First, the
epidemiological interactions between correctional
facilities and their surrounding communities, broadly
defined, remain poorly understood (Wang et al., 2020;
Widra & Herring, 2020). The empirical work pre-
sented in this paper deepens our understanding of
these interactions using the spread of COVID-19 in
Wisconsin as a case study. Second, an ability to
pinpoint vulnerable communities and risky facilities
within a study region is critical for public health
intervention efforts. Although spatiotemporal dynam-
ics of COVID-19 and viruses like it are relatively well
understood (e.g., concentrations of a population with
increased mobility amplify the spread), there will be
other viruses or bacterial agents in the future that may
not have such obvious transmission pathways (Witte
et al., 2020; Zhu et al., 2018). The empirical frame-
work that we highlight in this paper is generalizable
and easily reconfigured to examine alternative patho-
gens, diseases, or transmission vectors. Lastly, the use
of geodemographic measures is novel. Lifestyle habits
and characteristics play an essential role in public
health, especially when it comes to public health
messaging, community support, and intervention
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strategies (Grubesic & Durbin, 2020; Grubesic et al.,
2014; Moon et al., 2019; Petersen et al., 2011) and it is
crucial to account for their nuances when exploring
issues of community health. More importantly, iden-
tifying vulnerable geodemographic groups and their
spatial distribution is critical for increasing the
efficiency of intervention efforts. For example, sup-
pose certain groups prove to be more vulnerable
because of their spatial distribution relative to risky
facilities. In that case, the ability to prospectively
identify these geodemographic groups in other loca-
tions (e.g., outside of Wisconsin) may help prioritize
local public health efforts in these communities.

Background

As detailed in the introduction, the COVID-19 pan-
demic is fueled by a complex constellation of demo-
graphic (Dowd et al., 2020; Nepomuceno et al., 2020),
geographic (Hohl et al., 2020; Smith & Mennis, 2020),
economic (Baker et al., 2020; Chetty et al., 2020),
psychological (Babore et al., 2020; Thakur & Jain,
2020), sociological (Bavel et al., 2020), political
(Barberia & Goémez, 2020; Bosancianu et al., 2020)
and cultural factors (Huynh, 2020).

A complementary approach to deepening our under-
standing of COVID-19 is to evaluate its impacts within
the framework of vulnerability. Broadly defined, vul-
nerable groups of people are those that are dispropor-
tionately at risk for stressors and shocks, whether social
(Cutter et al., 2003), physical (Brody et al., 2008),
economic (Briguglio et al., 2009), or cultural (Nazroo,
1998). The underlying challenge for evaluating the
impacts of COVID-19 within this framework is that the
inclusion of people in these groups can change rapidly.
The Lancet (2020, 4) notes that vulnerable groups
during the COVID-19 pandemic are not limited to the
elderly or those with comorbidities. It includes those that
might be under-housed or homeless and people from a
large gradient of socio-economic groups. All of these
groups can struggle mentally, physically, or financially
during the crisis. In fact, the basic tools available for
minimizing the spread of COVID-19 in many commu-
nities, such as social distancing, masking, and basic
hygiene practices, are complicated to implement in
some places. This includes homeless camps, correc-
tional facilities, dormitories and other potentially risky
facilities within a community.

This type of polarization in community advantage/
disadvantage is all too common in the United States, and
the COVID-19 pandemic continues to expose these gaps
(Carrion et al., 2020; Douglas & Subica, 2020). There
are many communities where social and economic
advantages contribute to various local support structures
for their residents. This may include elevated municipal
services (e.g., police, fire), healthcare, social services,
and infrastructure that supports efficient disaster
response (Adger, 2000). However, within this context,
it is important to note that communities are infinitely
more complex than a simple have/have-not dichotomy
based on socio-economic status, education, resilience or
the traditional measures of advantage or disadvantage
(Archibald & Putnam Rankin, 2013; Laurence, 2011;
M. J. Lynch, 2016). One way to capture a more nuanced
understanding of a community’s demographic and
socio-economic gradients is through geodemographic
analysis (Grubesic & Durbin, 2020; Grubesic et al.,
2014; Harris et al., 2005; Singleton & Longley, 2019).

Geodemography offers the opportunity to generate
novel insights and hypothesis generation, particularly
related to spatial outcomes that can be further investigated
through confirmatory statistical approaches (Grubesic &
Durbin, 2020). In this way, geodemographics should be
considered inductive and exploratory rather than deduc-
tive and explanatory (Grubesic et al., 2014). This
exploratory structure means that geodemographic analy-
sisis highly flexible and widely applicable to public health
studies, especially for exploring inequalities associated
with health outcomes. For example, Peterson et al. (2011)
highlight the utility of geodemographic systems for
differentiating neighborhoods for public health cam-
paigns. Moon et al. (2019) use geodemographics to
enhance small area estimation of health indicators to limit
long-term illness in the U.K., while Bright et al. (2020) use
geodemographic segmentation to analyze variations in
the risk of emergency presentation of cancer patients in
England. In all cases, geodemographics offers an ability to
develop an awareness of consumer behavior and lifestyle
trends that may play a role in public health outcomes—
which is why it may provide some additional insight into
the ecological characteristics of neighborhoods (and their
locations) impacted by the COVID-19 pandemic.

Risky and/or noxious facilities

Facilities are either public or private places with some
type of infrastructure to facilitate commerce,
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education, recreation, transportation, rehabilitation,
and the like (Tompkins, 2010). Risky facilities repre-
sent a significant subset of places that generate
negative externalities for a community. For example,
there is a large corpus of research that documents the
impacts of alcohol outlets (i.e., risky facilities) on
neighborhoods, including positive and statistically
significant increases in assaultive violence in/around
alcohol outlet clusters (Grubesic & Pridemore, 2011;
Grubesic et al.,, 2013; Wei et al., 2020). Noxious
facilities, which are easily conflated with risky facil-
ities, are somewhat different. Noxious facilities often
produce, consume, or help mitigate some type of
hazardous material, such as nuclear fuel, carcinogenic
chemicals, or biological waste. Community risks from
such facilities often bear a direct relationship to its
scale (Ratick & White, 1988), but the type of hazard
such facilities traffic in, also matters. Increasingly, the
umbrella of noxious/risky facilities has expanded to
include single-room occupancy housing (Krupa et al.,
2019), commercial sex premises (Hubbard et al.,
2013), halfway houses for sex offenders (Grubesic &
Murray, 2008), pawn shops (Bowers, 2014), and many
other types of undesirable places, including correc-
tional facilities (Scott et al., 2018).

The underlying social and geographic problems
spawned within communities by these undesirable
facilities are many (Greenberg, 2018). For example, in
a case study of New York City, Maantay (2001)
highlights that noxious facilities and associated land-
use tend to concentrate in poor and minority neigh-
borhoods. In Los Angeles, Lejano and Iseki (2001)
found geographic concentrations of hazardous waste
treatment, storage and disposal facilities in Latino
communities. In both instances, there is a dispropor-
tionate burden of risk and local impacts from noxious
facilities placed on groups of people that may have
limited political and economic capital for stimulating
reform. These types of environmental injustices are
well documented throughout the literature. For a
detailed review, see (Nelson & Grubesic, 2018).

Correctional facilities and COVID-19

The United States leads the world in total incarcerated
population—averaging 2.3 million individuals per day,
with the majority (~ 2.1 million) in federal and state
prison systems (Rapisarda et al., 2020). The U.S.
confines an additional 740,000 inmates in jail settings
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on a given day, and nearly 11 million U.S. residents
cycle through jail on an annual basis, with an average
stay of 25 days (Zeng, 2019). Controlling COVID-19
infections in correctional facilities is critical to
“flattening the curve” (Kinner et al., 2020). However,
a strict focus on prisoners as carriers and transmitters
of infectious diseases means that COVID-19 contain-
ment efforts often ignore the potential that correctional
staff has to influence infections—both within and
outside of prisons. In short, prison staff represents a
bi-directional vector of COVID-19 in local commu-
nities, capable of spreading infections to/from the
prison community and to/from their local residential
community (Fig. 1). The fact that as of August, 2020
only about half of the U.S. states were requiring
correctional facility staff to wear masks and only one
third of states were requiring incarcerated people to
wear masks only increases the potential for commu-
nity outbreaks linked to correctional facility staff
(Widra & Herring, 2020). This process of jail-
community cycling is also problematic for inmates
that have a short stay in a correctional facility. As they
cycle back to the local community, they can also
spread infections to local residents. For example,
recent work by Reinhart and Chen (2020) suggested
that people cycling through Cook County Jail
(Chicago) accounted for 15.7 percent of all docu-
mented COVID-19 cases in Illinois and 15.9% of all
documented cases in the city of Chicago. In this
context, the Cook County jail certainly qualifies as a
noxious facility. Further, the results suggested that
jail-community cycling is a more significant predictor
variable than race, poverty, public transit use, or
population density. To some degree, a non-peer-
reviewed report released by the American Civil
Liberties Union (ACLU, 2020) corroborates this
result. The simulation study suggested that COVID-
19 fatalities in April 2020 may have been drastically
underestimated (~98%) because of poor data from
the U.S. correctional system.

While these results are certainly compelling, there
are significant limitations and uncertainties associated

COVID-19 ® 0.0

— — 0,
e covD-1o ™

Community

Fig. 1 Jail-community cycling: the role of staff
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with COVID-19 modeling efforts. In particular, efforts
to explain or forecast epidemics frequently suffer from
insufficient input data, flawed modeling assumptions,
high sensitivity of estimates (Ioannidis et al., 2020),
and a general lack of important geographic, economic,
sociological, political, and/or lifestyle context. These
critiques do not suggest that attempts to model
COVID-19 are without merit; it simply means that
there is a need to improve both the inputs and
assumptions—acknowledging modeling limitations
and taking care to mitigate them when appropriate
(Taleb et al., 2020).

Data and methods
Study area

The state of Wisconsin is an interesting location for
exploring the geodemographic nuances of COVID-19
and its spread. With approximately 5.8 million resi-
dents (Census, 2019), Wisconsin ranks as the 20th
most populous U.S. state (Fig. 2). Wisconsin’s inter-
state corridors (I-41, 1-43, 1-90, 1-94) are the most
densely settled portions of the state, home to the larger
cities of Madison and Milwaukee, as well as smaller,
regional hubs such as Green Bay, Appleton, Eau
Claire, Janesville, and La Crosse. Much of Wisconsin
is rural and agricultural, focusing on dairy farming,
corn, and soybeans. However, the northern portions of
the state, colloquially referred to as the “North-
woods,” is heavily forested and home to a mix of
seasonal residences, retirees, and native American
tribal lands (Gobster & Rickenbach, 2004; Loew,
2013). Many of these communities exhibit a lively
tourism industry, including places like Rhinelander
(Mentzer, 2020), but many others display elevated
levels of economic distress (EIG, 2018). The overall
demographic profile for Wisconsin in 2019 was 87%
white, 6.7% black, 7.1% Hispanic, 3% Asian, and
1.2% American Indian, with 10.4% of Wisconsin’s
population living in poverty. This demographic mix
tracks closely with the 10.5% U.S. national average.
So, while Wisconsin is whiter than the U.S. average
(76.3%), its mix of urban/rural and affluent/impover-
ished communities represents a study area where the
methodology and results presented in this paper could
be widely generalizable.

Data

Wisconsin COVID-19 data are collected and main-
tained by the Wisconsin Department of Health
Services (WDHS, 2020) and made available through
their associated portal. The data set contains the
cumulative daily count of positive and negative cases,
deaths, and the age breakdown of the patients. The
data are updated daily for all county and census tracts
within Wisconsin. Reported cases are laboratory-
confirmed, official state numbers. Reporting began
on Mar 15, 2020. WDHS provides unique numerical
identifiers for county and census tracts (i.e., GEOID)
within the data set.

We obtained the locations of the county, state, and
federal correctional facilities within Wisconsin from
the Department of Homeland Security’s Infrastructure
foundation-level data (HIFLD). HIFLD publishes
these data with georeferenced information that con-
sists of polygons corresponding to the geographic
footprint of each facility. We converted facility
footprints to points, and we use only one unique point
for each facility (Fig. 2). In addition to the location
information, attributes of the correctional facilities
included the name of the facility, address, estimated
prison population, total capacity, and security level.
We use a total of 120 correctional facilities for this
analysis, including both prisons/detention centers (52)
and jails (68).

We draw our geodemographic data from the Esri
Tapestry database (Esri, 2019a,b). The Tapestry
segments incorporate a combination of U.S. Census
data from 2010, more recent American Community
Survey 5-year data (United States Census Bureau,
2019), in-house Esri demographic updates, Experian’s
ConsumerView data (Experian, 2019), and an exten-
sive range of consumer lifestyle surveys (Gfk MRI,
2019). The Tapestry system represents a typology of
67 unique residential segments that reflect unique
lifestyles throughout the United States. We assign
each census tract (n = 1,391) a dominant tapestry type
for the state of Wisconsin. This assignment does not
mean that all households fit neatly into these segments.
Regardless of geodemographic system quality, there
will always be outliers and a range of lifestyles for a
given tract. To ensure consistency and stability, Esri
uses several ground-truthing processes to verify the
viability of assigned lifestyle segments, including
independent samples, consumer surveys, and
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information on spending patterns, service brand usage,
and media preferences (ESRI, 2015).

Methods

All of the reported COVD-19 case information from
WDHS (2020) arrived in CSV format. In addition to
the cumulative case count reported within the WDHS
data, we derive the count of new daily cases for each
tract by subtracting the previous day’s case count from
the current day’s case count. Cases were assigned to
each tract using the unique GEOID identifier. Where
applicable, infection rates were derived using daily
cases at time (¢) for each census tract (i) per 10,000
residents as follows:

dail g
Rate' = <“’ Y C“f“l) % 10,000 (1)
population;

This simple calculation provides the ability to
objectively compare COVID-19 infection rates
between both rural and urban tracts in an unbiased
manner.

In addition to basic cartographic analysis, we utilize
several more advanced statistical methods to deepen
our understanding of the COVID-19 dynamics in the
state of Wisconsin. First, we apply the local Moran’s /
statistic (Anselin, 1995):

I =1z Z WiiZj (2)

where x; and x; are observations for tracts i and j (with
mean u),z; = (x; — ),z = x; — ), and wy; is a spatial
weights matrix with values of 0 or 1, based on queen’s
contiguity. However, rather than using the standard
Local Moran’s [ statistic (2), it is implemented with
Empirical Bayes (EB) rates (Assungao & Reis, 1999).
The EB standardization procedure standardizes raw
rates to obtain a constant variance via rescaling. This
variation means replacing the raw rate with a
standardized rate (mean = 0, SD = 1). This process
helps reduce instability in the Local Moran’s I measure
and minimizes the potential for spurious inference. We
use tract population for the EB standardization
process.

We also leverage a retrospective space—time anal-
ysis that scans for clusters of tracts that exhibit higher
than expected rates (Kulldorff, 1997; Kulldorff &
Nagarwalla, 1995). The spatial scan statistic is a
classic approach that uses a cylindrical window with a

circular geographic base. The height of the cylinder
corresponds to time and reflects any possible time
interval of less than (or equal to) half of the total study
period—and the study period as a whole. Each of the
generated scanning windows is moved in space and
time to cover the entire study region. Each cylinder
represents a possible cluster, and COVID-19 infec-
tions are assumed to be Poisson distributed with a
constant risk over space and time. This approach
captures the number of cases both inside/outside the
scanning cylinder during the scanning process. When
combined with the expected number of cases reflect-
ing the underlying population at risk, it calculates the
likelihood for each cylinder. We tag the cylinder with
the maximum likelihood (exhibiting more than its
expected number of cases) as a hot spot. We evaluate
significance with Monte Carlo simulation, where the
null hypothesis (i.e., no clusters) is rejected at an
o = 0.05 if the simulated P is less than or equal to 0.5
for the most likely cluster (Kulldorff et al., 1998). We
conducted all space—time scan statistics with SaTScan
v. 9.6.1. Analysis began with the first day of case
reporting at the census tract level (Apr 11, 2020) and
ended on Oct 1, 2020. Maximum cluster size was
limited to 10% of the population at risk, and the
temporal window included a minimum size of 5 days,
with a maximum of 50% of the study period. Finally,
the clusters were restricted to include a minimum of
five cases for a hot spot, and no geographical overlap
was allowed.”

For this paper, drive-time catchment areas for
correctional facilities are used to benchmark, assess,
and evaluate the influence of community proximity
(i.e., census tracts) to each location. We calculated
catchment areas for each correctional facility using a
suite of geocomputational procedures. Schuurman
et al. (20006) detailed that catchments are geographical
areas around an institution or business that helps
describe the population that may use its services. For
example, drive-time catchment areas are used widely

2 Because many of the underlying parameters are somewhat
subjective, sensitivity analysis was conducted—varying cluster
membership thresholds, as well as geographic and temporal
windows. Local contextual knowledge of the state and its
infection rates were also incorporated into the sensitivity
analysis. The reported results represent the best balance of
parameter selections for generating spatiotemporally stable hot-
spots of COVID-19 infections for Wisconsin during the study
period.
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by retailers to deepen their understanding of local
market demographics, evaluate store accessibility, and
target promotional efforts to potential customers
(Clarkson et al., 1996; Dolega et al., 2016). We
generate geographic catchment areas using 5, 10, and
15-min drive-times on the local street network. These
catchment areas reflect typical travel times, but do not
account for high-traffic scenarios such as rush hour
(7 am-9 am or 4 pm—6 pm) for major metropolitan
areas. Figure 3 displays the 10-min drive-time catch-
ment areas for each of the correctional facilities.
Compared to the 10-min catchments, the 5-min are
more geographically compact, while the 15-min are
more geographically expansive.

Finally, we leverage a two-sample #-test for com-
paring the infection rates for each tract and their
relative proximity to correctional facilities as defined
by the 5, 10, and 15-min catchment areas detailed
above. Large differences between the mean infection
rates in areas inside/outside the catchment areas may
suggest a disproportionate burden of COVID-19 risk
for communities proximal to the corrections facilities.
Because the data in Wisconsin exhibited heteroscedas-
ticity (i.e., tracts inside and outside the catchment
areas have different standard deviations), we use
Welch’s #-test (Welch, 1947) following a significant
Levene’s test statistic.

Results
Spatial and space—time clusters

Figure 4 displays the cumulative infection rate for
COVID-19 cases in Wisconsin between April and
October 2020. Readers need to note that the geo-
graphic extent of census tracts in Wisconsin varies
substantially. As a result, it is easy to miss the high
infection rates for the smaller tracts in the Milwaukee,
Madison, Racine, and Kenosha areas in southeastern
Wisconsin. Elsewhere in the state, it is clear that many
of the smaller, regional urban centers such as Green
Bay, La Crosse, Appleton, and Eau Claire exhibited
high rates of infection. In fact, the highest overall
infection rate at the tract level was in the Green Bay
area (2751 per 10,000). For much of rural Wisconsin,
COVID-19 was undoubtedly present, but the overall
infection rates were much lower. These lower rates
included much of west-central Wisconsin and portions
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of the Northwoods. For example, a census tract located
in Ladysmith, Wisconsin (Rusk County) had the
lowest infection rate in the state for the study period,
20.09 cases per 10,000.

We applied the Local Moran’s I test with Empirical
Bayes standardization to identify local spatial clusters
and disambiguate tract infection rates. Figure 5
displays the results. Of particular note are the high-
high and high-low tracts.” The Moran’s [ statistic for
this analysis was 0.189, suggesting a low but statis-
tically significant (0.05%) level of spatial autocorre-
lation in the data.* In sum, of the 1390 tracts used for
analysis, 120 (8.63%) were classified as COVID-19
hot-spots (high-high), 320 (23.02%) were classified as
cold-spots (low—low), 11 (0.79%) as cool-spots (low—
high) and 9 (0.64%) as warm-spots (high—low).

In addition to the hot spots in/around Milwaukee,
Madison, Kenosha, and Racine, it is notable that many
of the communities that are home to a regional campus
of the University of Wisconsin system emerged as hot
spots in the analysis. These hot spots include Eau
Claire, La Crosse, and the city of Whitewater. Where
the latter is concerned, Whitewater is a much smaller
community (~ 15,000 permanent residents) when
compared to Eau Claire (~65,000) and La Crosse
(~50,000). However, when the University of Wis-
consin-Whitewater is in session, the local population
swells by the addition of 12,000 students—effectively
doubling the size of the city.

The space—time scan statistic provides an alterna-
tive method for identifying hot spots of the COVID-19
outbreak in Wisconsin (Fig. 6). By incorporating a
temporal component, it is possible to identify the start
and end date of each hot spot (Table 1). In addition,
Table 1 provides information on the relative risk,
statistical significance, and strength (LLR) for each
space—time hot-spot. There are several important
outcomes highlighted in this table. First, the outbreak
in Madison, which started during the first week of
September and ended in the third week, was the most
severe event in the state. Centered on the University of

3 High-high tracts are those with high rates of infection
surrounded by tracts of similarly high rates. High-low tracts
are those with high rates of infection surrounded by tracts of
much lower rates.

* When the local Moran’s [ is conducted without EB standard-

ization, I = 0.511 and the test generates a nearly identical spatial
footprint of clusters.
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Observed Expected Observed/expected Relative risk Population

p-
value

LLR

Tract count

End

Start

Radius
(miles)

Name

Table 2 Space time subclusters for COVID-19 in the Northwoods of Wisconsin, April-October 2020

Cluster
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2020
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2020
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241 52.802
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2020
8/21/
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2.072

2.023

288 142.375

59.028 0.00

10

Chippewa Falls 44913

7

2020

2020

Wisconsin-Madison campus, the university started
classes on Sept 2, and by the fifth day of classes, the
campus reported 404 infections (Meyerhofer, 2020).
This outbreak prompted a two-week lockdown for
large dormitories and a campus-wide pause for face-
to-face instruction. The space—time statistic results
detailed here suggest that the partial shutdown may
have helped mitigate the outbreak for Madison.
Second, the outbreaks for Whitewater, La Crosse/
Eau Claire, and Green Bay have similar start dates and
share large regional campuses for the UW system. As
detailed in Table 1, the outbreak in Whitewater was
particularly acute, where relative risk was concerned.

The space—time hot-spot in the Northwoods is of
interest. From a geographic perspective, it is the
largest of the nine hot spots. However, given the way
that SatScan operates, this result should be interpreted
with some caution. Because the Northwoods region
has a low population density, SatScan can collect more
tracts for statistical analysis without exceeding the
selected population threshold for the test statistic—
thereby generating a geographically expansive hot-
spot. However, it is possible to provide some addi-
tional fidelity to the Northwood cluster by generating
sub-clusters with SaTScan. Specifically, all of the
tracts in Cluster 9 were subjected to a secondary
space—time analysis to create sub-clusters for the
region (Table 2). The results suggested a robust
geographic correspondence between many hot spots in
the Northwoods and tribal lands (Fig. 7). In addition,
Table 2 shows that many of these outbreaks started in
September and continued through the end of our study
period (October), corroborating local reporting and
tribal vulnerabilities to the virus (A.P., 2020).

Geodemographic trends in the COVID-19
outbreak

Figure 8 illustrates the cumulative COVID-19 case
rate by geodemographic LifeMode groups using the
Esri Tapestry segmentation system. LifeMode groups
are markets that share a common experience (Esri,
2019a). This experience may be age-related (e.g., born
in the same generation), related to migratory roots
(e.g., country of origin), or some type of significant
demographic trait, such as income. There are 14
LifeMode groups that serve as an umbrella for the 67
unique market segments.
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Fig. 7 Space-time hot—spot subclusters and tribal lands, Northwoods Wisconsin
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Fig. 8 Cumulative COVID-19 case rates by LifeMode group

Each of the lines plotted in Fig. 8 corresponds to the
mean value of the tracts for a LifeMode group. The
corresponding bands represent the 95% confidence
interval for those values for that set of tracts. Three
groups, Next Wave, Scholars and Patriots, and Ethnic
Enclaves displayed a substantially higher infection
rate for the study period. In particular, Next Wave
started with the highest case rate and remained that
way through October. Nationally, this LifeMode
group is predominantly Hispanic, with many working
in the service or construction industry. Median
incomes are lower than the national average, and most
of the residents in this group never graduated high
school. This profile is certainly the case for Next Wave
tracts in Wisconsin. Statewide, the Next Wave tracts
averaged 72.8% Hispanic, with median incomes
averaging $32,775. Of note, 20.2% of the residents
in these tracts in Wisconsin do not have health
insurance. All 27 tracts classified as Next Wave in
Wisconsin are located in a detected hot spot, with a
mean case rate (684.45) almost three times higher than
the state average for tracts (209.38).
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Of particular interest in Fig. 8 is the Scholars and
Patriots group, which displayed a massive uptick in
COVID-19 infection rates in early September. Again,
we typically find this LifeMode in college and/or
military towns throughout the United States. In the
state of Wisconsin, this included the hot-spots cen-
tered on Fon du Lac (U.W. Oshkosh), Green Bay
(U.W. Green Bay), Milwaukee (U.W. Milwaukee),
Madison (U.W. Madison), La Crosse/Eau Claire
(U.W. Eau Claire, U.W. La Crosse, and U.W. Stout)
and Whitewater (U.W. Whitewater). In short, while
accounting for less than 3% (n = 41) of the total tracts
in the state, Scholars and Patriots is linked to six of the
nine detected space—time hot-spots. The underlying
geodemographic segments (College Towns and Dorms
to Diplomas) include primarily nonfamily households
with students living alone or with roommates in
densely developed student housing. Interestingly,
there are other areas in the state with tracts in these
segments (e.g., Platteville, Stevens Point, and River
Falls) that also have a U.W. system campus present but
were not designated hot-spots during the study period.
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Lastly, the Ethnic Enclaves LifeMode group exhib-
ited the third-highest average case rate (320.51) at the
end of the study period. There are only four census
tracts classified in this group for the entire state, with
two located in Madison, one in Delavan, and one in
Milwaukee (hot-spot Cluster 4). The Milwaukee tract
(geodemographic segment; Barrios Urbanos) abso-
lutely overwhelms the remaining three tracts with
population-adjusted case counts. For example, during
the last week of the study period (October), there were
624.56 cases per 10,000 residents. The next highest
was in Delevan, with 340.44. The remaining tracts
were both below 200 cases per 10,000. This trend was
present throughout the entire study period, with the
Milwaukee tract exhibiting 100% or more cases than
the others in the Ethnic Enclaves LifeMode group.
Notably, the tract in Milwaukee is located in one of the
most segregated neighborhoods in the state, with a
history of public health concerns (Lynch & Meier,
2020).

Correctional facilities and COVID-19
in Wisconsin

To deepen our understanding of the connection
between correctional facilities and the COVID-19
outbreak in Wisconsin, we created two groups of
census tracts—those found within the 5, 10, or 15-min
drive time catchments and those that are not. This
binary classifier helped identify variations in case rates
throughout the state by accounting for geographic
proximity to the risky facilities. The resulting Welch’s
t-test of mean case rates between the groups exhibited
a consistent and nearly ubiquitous series of outcomes.
Mean COVID-19 case rates are higher in tracts
proximal to correctional facilities when compared to
those that are not (Table 3). Further, the plot of
cumulative case rates, over time, with respect to the
number of correctional facilities within the catchment
area, suggests that as the number of facilities
increases, so too does the population-adjusted case
rates. For example, consider Fig. 9, which highlights
that tracts within 10 min of three, four, or five
correctional facilities have higher case rates at all
points in the study period. In all instances, these tracts
exhibited average case rates approaching (or exceed-
ing) 300 per 10,000 people. Conversely, tracts with
less exposure to these risky facilities exhibited much
lower population-adjusted case rates. The same trend

Table 3 Two-sample t-test for equality of COVID-19 case
rates within correctional facility catchment areas in Wisconsin,
April-October, 2020

Week  Date t-statistic
5-Minute 10-Minute 15-Minute

1 04_12  3.54613*%*  3.36648%*** 7.61522%%*
2 04_19  3.53879%*%  4,54252%%* 8.43672%**
3 0426  3.69572%%*  5.50535%%** 9.43263%%*
4 05_03  3.81836***  6.78286%***  10.63152%:#*
5 05_10  3.61331%***  7.14669%**  11.19534%:*
6 05_17  3.67789*%*  7.35362%**  11,73809%:*
7 05_24  3.80383*%*  7.84904%*% 1288244
8 05_31  3.56731%*%%  7.50488%***  13,18739%:#*
9 06_07  3.67425%%%  7,60041%**  13,15073%::*
10 06_14  3.23456***  7.46929%**  13.53679%**
11 06_21  3.16264***  745763%**  13,65]178%**
12 06_28  3.38105%**  7.69008***  14.07408%:*
13 07_05  3.49255%#%  7.81848%**% 1432494
14 07_12  3.81834%%%  8,0199%** 14.6314%%*
15 07_19  3.74997+%%  8.02194%**  14,76292%::
16 07_26  3.51755%%%  7.82333%%%  14,5945] %
17 08_02  3.34132%%%  772122%*%  14.22962%**
18 08_09  3.2109%* 7.55428**%  14.,02563%#*
19 08_16  3.30813** 7.40046%*%  13.66347%:#*
20 08_23  3.10533** 7.07397#%%  13.26084%:*
21 08_30  3.00036%* 6.90767+*% 12,9024 3%
22 09_06 2.9318%* 6.84304%*%  12.75563%#*
23 09_13 2.81261** 6.71073%**%  11.86402%*
24 09_20 2.49641%* 6.62658***  10.98975%**
25 09_27  2.14584* 6.67729%***  10.69819%*:
26 10_04  1.85544 6.57289**%  10.49009%*

p-value: * < 0.05, ** < 0.01, *** < 0.001

exists for the 15-min catchment areas (not shown).5
The 5-min catchment provided a slight exception,
where tracts proximal to four different correctional
facilities had the second-lowest case rate. However, it
is important to remember that the 5-min catchments
are highly compact, drastically shrinking the total
number of observations.

5 This relationship is also stable in rural, lower density areas.
Specifically, plots of the relationship between case rates and
correctional facilities for tracts with population less than 400
people per square mile suggested that proximity to the risky
facilities increases case counts for tracts.
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Discussion, limitations and conclusions

There are three facets of the results worth additional
discussion. First, many of the worst COVID-19 hot
spots in Wisconsin were connected to university
communities throughout the state. The spikes in case
rates for these tracts perfectly corresponded to the
return of students to these communities in early
September. As noted above, while the partial lock-
down of the U.W. campus in Madison seemed to
flatten the curve locally (Meyerhofer, 2020), our study
period ended in early October, and there may have
been some additional spikes we did not capture in the
university communities later in the autumn. Second, it
is important to acknowledge that COVID-19 testing
plays a role in these numbers. While the data from
WHDS represents the best, publicly available infor-
mation, WHDS likely failed to include many COVID-
19 cases in these tabulations—particularly in university
communities. Nationally, some schools required test-
ing for all students, once per week, if they wanted to
remain on campus, while at other schools, students
with symptoms had difficulty getting tested (Courage,
2020). The University of Wisconsin system includes
two doctoral research universities (Madison and
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Milwaukee), eleven comprehensive universities (e.g.,
Whitewater), and thirteen freshman-sophomore
branch campuses—all of which handled the COVID-
19 outbreak on their campus independently. This
variation in testing may explain why campuses such as
Stevens Point, Platteville and River Falls were not
included in any space—time hot spots. Regardless, it is
likely that the numbers reported in this paper and the
corresponding hot spots represent a conservative
estimate of the outbreak.

Second, the results strongly suggest that the
COVID-19 outbreak in Wisconsin disproportionately
impacted certain groups of people. In addition to the
acute outbreaks in university communities, the geode-
mographic analysis of COVID-19 in Wisconsin sug-
gests that many of the predominantly Hispanic and
American Indian communities throughout the state
suffered. For example, the Next Wave LifeMode
group, characterized by undereducated, poor, and
largely Hispanic populations, exhibited higher case
rates than any other geodemographic group. All 27 of
the tracts in Wisconsin classified as Next Wave were
located in Milwaukee and Racine and were significant
contributors to the Cluster 4 and Cluster 8 hot-spots
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(Fig. 6). In addition, all 27 of these tracts were within a
ten-minute drive of at least one correctional facility.

At the same time, tribal populations throughout the
Northwoods region of Wisconsin were also dispro-
portionately impacted by the COVID-19 outbreak.
Figure 7 illustrated the geographic correspondence
between the Northwoods sub-cluster hot-spots and
tribal lands, but it is also important to acknowledge
that the hot-spot detected in Green Bay (Fig. 6)
included the Oneida Nation. In fact, the Oneida tribal
land in Green Bay included portions of two high-high
clusters detected by the Local Moran’s [ statistic. In
short, the results presented in this paper corroborate
early empirical results that suggest COVID-19 dis-
proportionately impacts racial and ethnic minorities
throughout the United States (Tai et al., 2020).

Finally, the empirical results of this paper suggest
that there may be a connection between the presence
of correctional facilities and elevated COVID-19 case
rates in proximal communities. As detailed in Table 3,
there is strong statistical evidence that tracts located
within 5, 10, and 15 min of a correctional facility
exhibited higher case rates when compared to tracts
that were not in these catchment areas. Further, visual
evidence (Fig. 9) suggested that tracts proximal to
more correctional facilities exhibited higher case rates
when compared to tracts proximal to fewer facilities.
This finding held for rural areas too. While more
mathematical and statistical modeling is required to
uncover the exact nature of this connection, the
concept of jail-community cycling is undoubtedly
relevant for Wisconsin. Again, inmates often have a
relatively short stay in jails, and as they cycle back to
the local community (i.e., areas proximal to the
facility), they have the potential to spread infections
to local residents. This dynamic was certainly the case
for Cook County Jail in Illinois (Reinhart & Chen,
2020) and may be true for communities throughout
Wisconsin. Further, community residents that work in
the corrections system and the local incarcerate
facilities might (unknowingly) bring the COVID-19
infections home. More work is required to establish
this connection.

Limitations
There are several limitations to our analysis worth

noting. First, as mentioned in the introduction,
geodemographic analysis is exploratory by nature.

As a result, it is difficult to isolate the exact lifestyle
preferences that make certain groups more “at risk” for
COVID-19 infections. However, our study does suggest
that the spatial distribution of three groups (Next Wave,
Scholars and Patriots, and Ethnic Enclaves) displayed
a substantially higher infection rate for the study period.
There is real analytical value in this result. The
collective vulnerability of these groups allows public
health officials to prospectively identify these geode-
mographic segments in other locations (e.g., outside of
Wisconsin) and potentially prioritize local public health
efforts in these communities, especially those with risky
facilities nearby. More work is required to understand
the nuances of each group’s lifestyle and its relationship
to COVID-109 risk.

Second, our data limits our understanding of the
size of correctional facilities. Data on prisons’ char-
acteristics and daily functions are notoriously hard to
estimate, in large part because of vastly different
reporting practices across federal, state, and local
prison systems (Committee on the Best Practices for
Implementing, 2020). Moreover, within those sys-
tems, there may also be different data collection and
reporting practices. For example, there are differences
in the management of public and private prisons—or
prisons that comprise a larger complex where multiple
types of prison facilities co-locate (Wallace et al.,
2021a,b). For instance, in the federal Bureau of
Prisons (BOP), information on privately managed
prisons within the BOP, such as prisoner-to-staff
ratios, are not reported, making it nearly impossible to
understand the staff population throughout the federal
prison system (Wallace et al., 2021a,b). Very rarely is
data on staff and prisoner populations or characteris-
tics held in place. Moreover, with extensive prison
overcrowding and staffing shortages across prisons in
the U.S., any numbers concerning the prisoner and
staff population are likely in flux. Efforts to understand
how and why the lifestyles of these groups facilitate
higher infection rates will require more work.

One last limitation to this work is the need to better
understand the potential differences between urban
and rural relationships between correctional facilities,
communities, and COVID-19 risk. While the drive-
time catchment areas help standardize this analysis,
rural and urban disease transmission dynamics may
diverge.

With the arrival of the Pfizer, Moderna, and
Johnson & Johnson vaccines, there is reason to be
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optimistic that the COVID-19 pandemic will soon be
over. However, developing a deeper understanding of
how COVID-19 established a foothold in the United
States and percolated through different institutions
(e.g., universities, corrections facilities, etc.), popula-
tions (e.g., racial and ethnic minorities) lifestyle
groups will require decades of study. Nevertheless,
the results of this study suggest that both spatial
statistical and geodemographic analysis can provide
essential insights into the processes associated with
population health and the role of risky facilities.
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