
20
21

 5
8t

h
AC

M
/IE

EE
 D

es
ig

n
Au

to
m

at
io

n
Co

nf
er

en
ce

 (D
AC

) |
 9

78
-1

-6
65

4-
32

74
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

DA
C1

80
74

.2
02

1.
95

86
16

6

StocHD: Stochastic Hyperdimensional System for
Efficient and Robust Learning from Raw Data

Prathyush Poduval*, Zhuowen Zou'I/J, Hassan Najafi*, Houman Homayoun ,̂ Mohsen Imani+
*Indian Institute of Science, 'I/J UC San Diego, *University of Louisiana, t UC Davis, +UC Irvine

Emaü: m.imani@uci.edu
Abstract—Hyperdimensional Computing (HDC) is a neurally-

inspired computation model working based on the observation
that the human brain operates on high-dimensional representa-
tions of data, called hypervector. Although HDC is significantly
powerful in reasoning and association of the abstract information,
it is weak on features extraction from complex data such as
image/video. As a result, most existing HDC solutions rely on
expensive pre-processing algorithms for feature extraction. In this
paper, we propose StocHD, a novel end-to-end hyperdimensional
system that supports accurate, efficient, and robust learning over
raw data. Unlike prior work that used HDC for learning tasks,
StocHD expands HDC functionality to the computing area by
mathematically defining stochastic arithmetic over HDC hyper-
vectors. StocHD enables an entire learning application (including
feature extractor) to process using HDC data representation, en-
abling uniform, efficient, robust, and highly parallel computation.
We also propose a novel fully digital and scalable Processing
In-Memory (PIM) architecture that exploits the HDC memory-
centric nature to support extensively parallel computation. Our
evaluation over a wide range of classification tasks shows that
StocHD provides, on average, 3.3x and 6.4x (52.3x and 143.Sx)
faster and higher energy efficiency as compared to state-of-the-art
HDC algorithm running on PIM (NVIDIA GPU), while providing
16x higher computational robustness.

I. INTRODUC TION

We face increasing needs for efficient processing for diverse
cognitive tasks using a vast volume of data generated [l], [2].
However, running machine learning algorithms often results in
extremely slow processing speed and high energy consumption
on traditional systems or needs a large cluster of application-
specific integrated chips (ASIC), e.g., deep learning on Google
TPU [3]. There are two key technical challenges that make it
difficult to learn in today’s computing devices: computation
efficiency and robustness to noise.

HyperDimensional Computing (HDC) is introduced as
a computational model towards high-efficiency and noise-
tolerant computation [4]. HDC is motivated by the observa-
tion that the human brain operates on high-dimensional data
representations. In HDC, objects are thereby encoded with
high-dimensional vectors, called hypervectors, which have
thousands of elements [5], [6]. It mimics several important
functionalities of the human memory model with vector opera-
tions, which are computationally tractable and mathematically
rigorous in describing human cognition [7], [8].

Although HDC is significantly powerful in reasoning and
association of the abstract information, it is weak on features
extraction from complex data such as image/video data. This
forces HDC algorithms to rely on the pre-processing step to
extract useful information from raw data. For an example
of image data, HDC solutions rely on signal extracted from
popular feature extractor algorithms, such as convolution and

histogram of gradient (HOG) [9]. These pre-processing algo-
rithms are not compatible with the HDC learning model, thus
need to be processed over traditional data representation. The
existing HDC primitives are abstract and approximate, thus
cannot support the high precision arithmetic.

Running pre-processing algorithms o traditional data rep-
resentation provides the following challenges: (i) significant
computation cost that dominates the entire learning efficiency,
(ii) non-uniform data processing as feature extractors require
different hardware optimizations, precision, and data repre-
sentation, (iii) a low computational robustness coming from
non-holographic data representation, making the entire system
vulnerable to error, and (iv) the necessity of using expensive
data encoding to map extracted features into high-dimensional
space. To address these issues, we propose StocHD, a novel
end-to-end hyperdimensional learning system operating accu-
rate, efficient, and robust learning over raw generated data.
The main contributions are listed below:
• This is the first effort that fundamentally defines stochastic

arithmetic over hyperdimensional vectors, enabling highly
accurate, efficient, and robust computation. unlike all prior
methods that rely on the expensive pre-processing step,
StocHD enables an entire learning application (including
feature extractor) to process using HDC data representation,
enabling uniform, efficient, robust, and parallel computation.

• Our solution mathematically defines stochastic arithmetic
over HDC vectors, including weighted addition, subtraction,
multiplication, division, and comparisons. We exploit these
arithmetic to revisit the pre-processing algorithms to run
using uniform HDC data representation without paying the
cost of decoding data back to the original space.

• We propose a novel processing in-memory architecture
that exploits inherent parallelism and the memory-centric
nature of HDC. Our PIM architecture exploits the switching
characteristics of non-volatile memory to support tensor-
based computation over hypervector internally in memory.
We evaluate StocHD efficiency over a wide range of learn-

ing algorithms. Our evaluation shows that StocHD provides,
on average, 3.3x and 6.4x (52.3x and 143.5x) faster and
higher energy efficiency as compared to state-of-the-art HDC
algorithm running on PIM (NVIDIA GTX 1080 GPU). In ad-
dition, as compared to state-of-the-art HDC solutions, StocHD
provides 16x higher robustness to possible noise.

II. Ba c k g r o u n d a n d Rel a t ed Wo r k

Hyperdimensional computing (HDC): is a computational
model developed based on the observation that the human
brain operates on high-dimensional data [4]. The fundamental
units of computation in HDC are “hypervectors”, which are
constructed using an encoding procedure [6]. Although HDC
is significantly powerful in reasoning and association of the

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 1195

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

P IM Architecture
In te rface n

�

l W J �

v'HDC Primitive
v^HD Arithmetic
^Nearest Search
v^Data Transfer

O
PIM Platform

for HDC
Acceleration

Fig. 1: StocHD framework, an end-to-end HDC learning from
raw data along with processing in-memory acceleration

abstract information, it is weak in features extraction from
complex data, e.g., image/video. As a result, most exist-
ing HDC solutions are operating over costly pre-processed
data [5], [10]—[12], This pre-processing often takes a large
portion of the total learning cost.

Stochastic computing (SC): represents numbers in terms
of probabilities in long independent bit-streams [13], [14].
SC supports various encoding modules to map binary data
to stochastic representation [13]. Arithmetic operations in this
representation involve simple logic operations on uncorrelated
and independently generated input bit-streams. SC uses a
binary sequence to represent real numbers between 0 and 1 via
the proportion of 1 bits in the sequence. Arithmetic operations
are done using bitwise operations [15], [16].

Although both SC and HDC use similar redundant high-
dimensional representation, their goals and strengths are com-
plimentary. (i) Representation The SC defines operations over
vectors that their percentage of Is determines their value.
While HDC works based on a pattern of neural actively in
high-dimensional space, where vectors have roughly equal
numbers of Os and Is. (ii) Application: SC is capable of
performing efficient and highly parallel arithmetic operations,
enable us to accelerate feature extractor and signal process-
ing applications. In contrast, HDC is a highly approximate
cognitive and learning model. This paper is the first effort to
fundamentally define SC operations over HDC space, expand-
ing HDC functionality to the computing domain. Our solution
enables HDC to process both pre-processing and learning
steps, enabling efficient and robust system.

III. StocHD F r a m e w o r k O v e r v i e w

Figure 1 shows an overview of the StocHD framework
consisting of HDC learning and computing solutions. As
Figure 1 @ shows, the existing HDC learning solutions op-
erate over pre-processed data. The pre-processing step is a
costly feature extractor performing over original data. HDC
implements efficient and robust learning after maps the ex-
tracted features into high-dimensional space. In this paper, we
propose a novel solution that expands HDC functionality to the
computing area, defining stochastic arithmetic operations over

HDC vectors (©). Our framework translates all data points
to hyperdimensional space, enabling both feature extraction
and learning to perform using uniform data representation. For
example, for image data convolution or Histogram of Gradient
(HOG) are commonly used feature extractors. StocHD exploits
HDC arithmetic to revisit the feature extractor algorithm
to high-dimensional space. As Figure 1© shows, StocHD
framework provides: (1) an end-to-end learning solution that
enables fully HDC learning over raw data, (2) high computa-
tional robustness, as the entire application (including feature
extractor) can benefit from the holographic data representation,
and (3) significant efficiency as HDC revisits the complex
feature extraction with parallel bitwise operations.

HDC has a memory-centric architecture with primitives
hardware friendly operations and extensive parallelism [10].
These features make HDC idea for in-memory acceleration.
We propose a novel processing in-memory platform that
supports all StocHD operations directly over digital data
stored in the memory. This eliminates the data movement
issue between memory and computing unit, which dominates
the entire StocHD energy. In Section V, we show how our
PIM platform can accelerate the entire HDC application, from
feature extraction to the learning process (©).

IV. StocHD S t o c h a s t i c P r i m i t i v e s

A. HDC Supported Operations
HDC encoding works based on a set of defined prim-

itives [4], Our goal is to exploit the same primitives to
define SC-based arithmetic operations over HDC vectors. HDC
is an algebraic structure; it uses search along with several
key operations (and their inverses): Bundling (+) that acts
as memorization during hypervector addition. Binding (*)
that associates multiple hypervectors, and Permutation (p)
which preserves the position by performing a single rotational
shift. In HDC, the hypervectors are compositional - they
enable computation in superposition, unlike standard neural
representations. These HDC operations allow us to reason
about and search through input data that satisfy prespecified
constraints. To support arithmetic operation, StocHD requires
the following HDC operations:
HDC Hypervector Generation: We generate a random hyper-
vector with elements ±1 such that +1 appears with probability
p. This will allow us to construct HDC representations of
arbitrary numbers via a D dimensional vector. In our HDC
system, information is stored with components ±1. We fix a
random HDC vector Vi to be a Basis vector. A random HDC
vector Vh (h € [—1,1]) is said to represent the number h
if S(Vh, Vi) = h. This is consistent with our notation for Vi
which means that Vi represents the number 1. Note that based
on our representation, V_a = —Va.
Probabilistic Merging: Given n numbers { a i,a � , .., an } and
their corresponding probability values, {pi,P� j •••,Pn-i} £
[0,1], where pn is defined by ^ ”_ 1 p, = 1, the probabilistic
merging chooses the number a, with probability p, . This
operation can be extended to operate n hypervectors, where we
select each dimension of merged hypervector by probabilistic
merging of n elements located in the same dimension of given
input hypervectors.
Similarity Measurement: Between two HD vectors Vi and
V2, the similarity defines as £>(Vi ,V2) = VlDv'2 where D is

1196

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

the number of dimensions and (•) is the vector dot product
operator. HDC supports other similarity metrics, such as
Hamming similarity, that measures the number of dimensions
at which two HDC vectors differ.

B. HDC Arithmetic Operations
Weighted Average: StocHD defines weighted accumulation

over hypervectors. Given two random HDC vectors Va and V),
and two probability numbers {p, q} £ [0,1] (p + q = 1), we
define C = pVa ® qVi, to be the random HDC vector whose ith
component is V* or V,' with probability p and q, respectively.
This can be extended to probabilistic merging of n HDC
vectors Vi, V2,..., Vn and n — 1 probabilities p i ,p 2,
(pn is defined by X«=r Pi = !)• We can similarly define the
weighted sum as piV± © p2V2 © • • • (BpnVn-

Let us consider Vc = 0.5Va © 0.5V/,. To verify the correct
functionality of StocH D, we need to show that c = © p. Based
on our definition, Va has similarity a with Vi. As a result it
has exactly p p parts components common with Vi. So if
we randomly chose a dimension i, the probability that the

component of both Va and Vi match is given by P p .

(a) Addition (b) Multiplication (c) Compare

Ath

O 2k IflSi 1k

Considering the v ' component of Vc, the probability that
the ith component is taken from Va and V/, is 0.5 and 0.5
respectively. Thus, the probability that the i th component of
Vc matches with Vi is given by | P p + | P p = 1+^ .
As a result, 6(Vc-,Vi) = p p which is what was claimed.
Similarly, StocHD supports weighted subtraction given by
0.5ua © 0.5r/_b = Va^b.
Constructing Representations: Let us define Va = p p V i ©
i= ^ (—Vi). Note that Va will have P p components same
with Vi and P p component same with — Vi (which has
components complementary to V!). As a result we have
() (V„ . V i) = a and thus we have constructed a representation
of the number a given by Va = p p Vi © P p (V _ i). Note that
if a £ [0,1], then this is equivalent to P p £ [0,1] and so the
probabilities for merging are well defined. This operation will
be the building blocks of all other arithmetic operations.
Multiplication: Given two HDC representations Va and V/,,
we show a way to construct Vab. Consider the i th dimension
of ip and set it to the i th dimension of Vi if the i th dimension
of Va and V/, are both +1 or both —1. Otherwise set the ith
dimension of Vc to be the ith dimension of V_ 1. From this
construction, the probability that the i th dimension of Vc is the
same as Vi is given by P p P Thus, 5(VC, Vi) = 2 p p f _ 1 =
ab and so Vc = V,,/,. In a simpler form, V,,/, can be computed
by element-wise product of Va, V/,, and Vi hypervectors.
Comparisons: Comparison is another key operation for data
processing as well as required operation to implement division.
Suppose we are given hypervectors Va and V/, corresponding
to a and b values in original space. We can check comparison
by first calculating = Va © V_/,. Then we evaluate the_J2
value using ~ r)(V«-6, Vi). Finally, we can check whether

_. 2
is positive, negative or 0.

Division: Consider two vectors Va and V/,. Our aim is to
construct an HDC vector Va/i,, which would be saturated if ci/b
lies outside the range of our HDC arithmetic system. Without

Fig. 2: Error for (a) N-Addition, (b) N-Multiplication, and (c)
comparison between two numbers.

loss of generality, assume a and b are both positive. Then, we
do the following steps:
• Initialize two vectors Viow t° be V_i and Vhigh to be Vi
• Calculate Vmid ~ tf 5V/ovi, ©0.5Vhigh and Vmidb = Vmid ©

Vb where we use © to stand for multiplication
• if Vmidb V Va, then do Vhigh i Vmidb
• If Vmidb < Va, then do ViQw -> Vmi dp
• Repeat from step 2 until Vmidb — Va or Vc = V±1, then

stop.
This process eventually has to end because the difference
between the evaluation of Viow and Vhigh keeps decreasing
at each iteration. Thus, we get a representation of a/b which
IS Vmid-
Doubling: Similar to how we defined division, we can also
define a doubling formula to construct V2a from Va- The way
to proceed would be to compare Vmid�� with Va rather than
Vmidb in the algorithm for division.

C. Arithmetic Error Rates
We first discuss the error rates for generating errors. We

generate a HD-SC representation of a number a £ [—1,1]
using Va = © P p(V _!). Let X , be a random variable
with value 1 if the i th dimension of Va and Vi are the same,
and —1 otherwise. Moreover, let S =_ XL A',

D . We note that
6(Va, Vi) = 2S— 1. Now, X., are independently and identically
distributed Bernoulli random variable with p = P p , // =

. Using the Central Limit Theorem, we get
iV(0,1) is normal distributed. As a result, we have:
1 -\~CL

2
_ W X A

r i l a v o �� 1 > i g) = - © e 2 dx

The similarity of two vectors Va and V/, is calculated using
5(Va, Vb) = J2f=i d *1 Where is the i th component of
the vector Va. We calculate the Mean Absolute Error (MRE)
of the representation Va representing the number a £ [—1,1]
using the formula

E (W £ . V i) - q |) x l 0 0 = f l ^ . . v .) - a , l x l 0 0
2 ^ 2Ni= 1

Here, we divide by 2 so that we normalise the length of the
interval to 1. We use this metric to compare our errors with
other methods.

Addition/Multiplication: The error in weighted addition
follows the same theoretical analysis of the generational error.
This is because the analysis only depends on the relation
between the probability with which Va and Vi have a common

1197

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

dimension, and the value of a itself. The additional advantage
is that the repeated weighted addition does not result in an
accumulation of error, which is essential in multiplication
where we use weighted addition multiple times in a sequence.
This arises theoretically from the fact that the distribution
of the components of the added vectors follows the correct
Bernoulli distribution; thus, the same explained error analysis
still holds. Figure 2a shows our error analysis for the errors
of the weighted addition of N numbers as a function of the
dimension. Our results indicate that the larger the N , the lower
the error becomes.

Comparision/Division: Our goal is to find the probability
that the comparison returns the correct result. We also recall
that 6(Va-b, Vi) is normally distributed with p =

and standard deviation a = y j 1 — {3̂ -) 2/\ fD . We assume

y j 1 — i 3̂) 2 ~ 1 which will give us the upper bound for the
error. The first case is when is positive. The probability
that the comparison returns the incorrect value is given by

P(<5(Vo-t,, VO < 0) = \ ^ - [e - ^ - ^ d x
2 V 2tr J_00

The second case is when "7 '̂ is negative. The probability
that the comparison returns the incorrect value can be com-
puted in a similar way. Figure 2c shows the error rate of
StocHD comparison as a function of closeness of a and b, and
the hypervector dimensions. Note that, although comparison
has a much higher error rate in D = 1024. division does not
see any appreciable loss of error.

V. P r o c e s s i n g In -M e m o r y A r c h i t e c t u r e

In this section, we present a digital-based processing in-
memory architecture, called StocHD, which accelerates a
wide range of HDC-based algorithms on conventional crossbar
memory. StocHD supports all essential HDC operations in
memory in a parallel and scalable way. Figure 1 demonstrates
an overview of the proposed learning system.

A. StocHD Accelerator

Our digital-based PIM architecture enables parallel com-
puting and learning over the hypervectors stored in memory.
Unlike prior PIM designs that use large ADC/DAC blocks
for analog computing [17], [18], StocHD performs all HDC
computations on the digital data stored in memory. This elimi-
nates ADC/DAC blocks, resulting in high throughput/area and
scalability. StocHD supports several fundamental operations
required to accelerate HDC. StocHD uses two blocks for
performing the computation; a compute block and a search
block. Each block supports the following set of operations
(shown in Figure 3a): (i) Arithmetic operations: row-parallel
NOR-based operation, and (ii) search-based operations: row-
parallel nearest Hamming distance search.

Row-Parallel PIM-based Arithmetic: StocHD supports
arithmetic operations directly on digital data stored in memory
without reading them out of sense amplifiers [19], [20].
Our design exploits the memristor switching characteristic
to implement NOR gates in digital memory [19]. StocHD
selects two or more columns of the memory as input NOR
operands by connecting them to ground voltage (Shown in
Figure 3b). During NOR computation, the output memristor is

Fig. 3: PIM architecture: (a) supported operations, (b) arith-
metic computing, (b) CAM-based search operation, (d) timing
characteristic of CAM during search. [21]

switched from R o n to R o f f when one or more inputs stored
‘1.’ value (Ro n)- In fact, the low resistance input passes a
current through an output memristor resulting in writing R af f
value on it. This NOR computation performs in row-parallel
on all the activated memory rows by the row-driver. Since
NOR is a universal logic gate, it can be used to implement
other logic operations like AND and XOR operations required
for HDC automatics. Note that all these arithmetic can be
supported in parallel over all dimensional of hypervectors,
enabling significant computational speedup.

Nearest Search: The exact search is one of the native
operations supported by crossbar memory. During the search,
a row-driver of the CAM block pre-charges all CAM rows
(match-lines:M L s) to supply voltage (V,i,i). Consider a CAM
cell (shown in Figure 3c), if a query input matches with
the stored value in the CAM cell, the M L voltage will
stay charged. However, in case of a mismatch between the
CAM cell and the query data, the CAM starts discharging the
M L. Conventionally, CAM blocks exploit the M L discharging
current to enable the exact search operation. Here, we exploit
the timing characteristic of each row discharging current to
detect a row with minimum distance to query data [21],
As shown in Figure 3c, a CAM row with the minimum
discharging current will have the highest similarity with the
query data. However, due to reducing the voltage of M L
during the search, the M L discharging current saturates with
increasing the number of mismatches. This eliminates finding
a row with minimum Hamming distance. To provide a more
reliable search, we exploit a voltage stabilizer [21] in each
CAM row that ensures a fixed M L voltage during the search.
We also utilize ganged-circuits [22], as a CAM sense amplifier
to enable the nearest search in a row-parallel way.
B. Architecture

StocHD exploits row-parallel PIM-based NOR operation
to accelerate feature extractors, which are mainly based on
arithmetic operation, i.e., bitwise operations in HDC space.
The feature extraction can perform by simple bitwise operation
between hypervectors representing the values. Next, StocHD
supports permutation and row-parallel XOR operation over the
high-dimensional features. For example, in case of n extracted
features, { / i , / � , --- ■ f „ } ■ StocHD encodes the information
by: % = f i © p 1 ¡ 2 © • ■ ■ pn~ l f n , where pn denotes n-

1198

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Datasets (n: feature size, k: number of classes)

n k
Feature

Extractor
Train
Size Description

MNIST 784 10 Convolution 60,000 Handwritten Recognition [26], [27]
UCIHAR 561 12 Noise Filter 6,213 Activity Recognition(Mobile) [28]
ISOLET 617 26 MFCC 6,238 Voice Recognition [29]
FACE 608 2 HOG 522,441 Face Recognition [30]

PAMAP 75 5 FFT 611,142 Activity Recognition(IMU) [31]

bit rotational shift. All encoding steps can perform using
row-parallel NOR operation and shift operation that can be
implemented by our PIM. StocHD performs classification by
checking the similarity of an encoded query with a binary
HDC class hypervectors. A query will assign to data with the
highest Hamming distance similarity. The inference can be
supported using the nearest search supported by our PIM.

VI. E x p e r i m e n t a l E v a l u a t i o n

A. Experimental Setup
We implement StocHD using both software and hardware

support. In software, we developed a PyTorch-based library
of Hyperdimensional computing, supporting all required com-
puting and learning operations. In hardware, we design a
cycle-accurate simulator based on Py Torch [23] that emulates
StocHD functionality during classification. For hardware, we
use HSPICE for circuit-level simulations to measure the
energy consumption and performance of all the StocHD
operations in 28nm technology. We used system Verilog and
Synopsys Design Compiler [24] to implement and synthesize
the StocHD controller. At the circuit-level, we simulate the
cost of inter-tile communication, while in architecture, we
model and evaluate intra-tile communications. StocHD works
with any bipolar resistive technology, which is the most
commonly used in existing NVMs. In order to have the highest
similarity to commercially available 3D Xpoint, we adopt the
memristor device with a VTEAM model [25].

We evaluate StocHD accuracy and efficiency on five pop-
ular datasets such as a large data that includes hundreds of
thousands of facial data. Table I lists the workloads, their
corresponding feature extractors, and dataset size.

B. StocHD Learning Accuracy
State-of-the-art Learning Algorithms: We compare

StocHD classification accuracy with state-of-the-art learning
algorithms, including Deep Neural Networks (DNN), Support
Vector Machine (SVM), and AdaBoost. The DNN models
are trained with Tensorflow, and we exploited the Scikit-learn
library to train other ML algorithms. We exploit the grid search
to identify the best hyper-parameters for each model. Our
evaluation shows that StocHD provides comparable accuracy
to other state-of-the-art algorithms (only 0.2% lower than
DNN, and 1.5% and 1.8% higher than SVM and AdaBoost).

Baseline HDC Algorithms: we compare HDC classifica-
tion accuracy in different configurations: (i) without feature
extractor where learning directly happens over a raw data,
(ii) with feature extractor running on original data, and (iii)
using StocHD arithmetic computation to processed feature
extraction. Our evaluation shows that HDC with no feature
extraction provides, on average, 59% lower accuracy than
HDC operating over extracted features. Revisiting the fea-
ture extractor with StocHD stochastic arithmetic can almost
provide the same result as running feature extraction over
original data. The quality of StocHD computation depends

(D N N []SVM []AdaBoost [] Baseline-HDC (with Extractor)
IStocHD (D=4k) □ StocHD (D=3k) □ StocHD (D=2k) □ StocHD (D=lk)

Fig. 4: Comparing StocHD accuracy to state-of-the-art.

on the HDC dimensionality. Using D = 4,000 dimensions,
StocHD provides the same accuracy as the baseline algorithm.
Reducing dimension to D = 3, 000 and D = 2, 000 reduces
StocHD accuracy, on average, by 0.9% and 2.1%, respectively.
This lower accuracy comes from StocHD accumulative noise
during the pre-processing step.

C. StocHD Learning Efficiency
PIM & Feature Extraction: Figure 5 compares StocHD

efficiency with the baseline HDC running on the proposed
PIM platform. All results are normalized to execution time and
energy consumption of the baseline HDC running on NVIDIA
GTX 1080 GPU. In GPU, the feature extraction takes, on
average, 72% of execution time and 77% of total learning
energy consumption. As explained in Section V, our proposed
PIM is an in-memory computing platform that can accelerate
any tensor-based algorithms, including the feature extractors,
listed in Table I. To accelerate feature exaction, PIM exploits
high-precision arithmetic computation, such as addition and
multiplication, that operates over original data representation.
However, PIM is sequential and slow in supporting the high-
precision arithmetic over traditional data. For example, for N -
bit addition and multiplication, PIM requires 1 oN + 1 and
ISA'2 + 16N + 1 NOR cycles, respectively. This makes our
PIM platform less ideal to operate over traditional data, e.g.,
fixed point or floating-point representation.

StocHD Feature Extraction: Figure 6 shows the break-
down of the execution time in the baseline HDC and StocHD
running on GPU and PIM platform. Our evaluation shows that
the slowness of the PIM to support high-precision arithmetic
further increases a portion that feature extractor from the total
execution time (88% over all tested applications). In contrast,
StocHD is an end-to-end HDC-based platform that speeds up
the feature extraction by simplifying the arithmetic operation
to highly parallel bitwise operations. The HDC arithmetic are
extensively parallel and PIM friendly. For example, unlike
multiplication in original space that performs bit-sequentially,
PIM can implement StocHD stochastic multiplication with two
AND operations over hypervectors. Our evaluation shows that
StocHD using D = 4,000 provides 3.3x and 6.4x (52.3x
and 143.5x) faster and higher energy efficiency as compared
to baseline HDC running on the same PIM (GPU) platform.
Breakdown: Our evaluation on Figure 6 shows that StocHD
not only reduces the cost of feature extractor but also di-
minishes the cost of the encoding module. In baseline HDC,
the encoding requires an extra step for feature quantization
and non-linear data mapping. In contrast, in StocHD, features
are already in high-dimensional space. Therefore, a linear
HDC encoding can aggregate the high-dimensional features
extracted by our pre-processing method. Our evaluation shows

1199

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

that StocHD reduces the performance overhead of the feature
extractor and encoding to less than 7% and 4%, respectively.
Dimensionality: Reducing the dimensionality improves
StocHD computation efficiency. As Figure 5 shows, StocHD
using D = 2,000 dimensions provides, on average, 4.2 x and
8.1 x (67.Ox and 183.9x) faster and higher energy efficiency
as compared to the baseline HDC running on PIM (GPU).
D. StocHD Robustness

Many advanced technologies typically pose issues for hard-
ware robustness [32]. One of the main advantages of StocHD
is its high robustness to noise and failure in hardware.
In StocHD, hypervectors are random and holographic with
i.i.d. components. Each hypervector stores all the information
across all its components so that no component is more
responsible for storing any piece of information than another.
This makes a hypervector robust against errors in its compo-
nents. StocHD efficiency and robustness highly depend on the
dimensionality and the precision of each hypervector element.
Table II compares StocHD robustness to noise in the memory
devices. StocHD provides significantly higher robustness to
memory noise than the baseline HDC algorithm. In binary
representation, an error only flips a reference dimension results
in minor changes in the entire hypervector pattern. In contrast,
an error in original space (feature extractor in baseline HDC)
can happen in most significant bits, which significantly affects
the absolute value and robustness. Our results indicate that
10% failure in memory cells results in 0.9% and 14.4% loss
on StocHD and the baseline HDC accuracy.

Table II also explores the impact of limited NVM endurance
on StocHD quality of learning. We assume an endurance
model with // = 107 [33]. Our evaluation shows that after
a few years of using our PIM-based platform, similar to the
human brain, StocHD starts forgetting information stored in
reference hypervector. To address this issue, we perform wear-
leveling to distribute writes uniformly over memory blocks.
The overhead of wear-leveling is minor as (i) StocHD has
predictable write pattern, and (ii) wear-leveling can happen
in long-time periods. Our evaluation shows that the baseline
HDC has higher sensitivity to the endurance issue. This is
because feature extractor requires PIM arithmetic operation
that involves several device switching. In contrast, StocHD
computes feature extraction with minimal write operation.

VII. C o n c l u s i o n

We propose StocHD, a novel end-to-end hyperdimensional
system that supports accurate, efficient, and robust learning

TABLE II: Quality loss using noisy and low endurance.
Memory Error 1% 2% 5% 10% 15%

Baseline HDC 1.1% 4.5% 9.3% 14.4% 27.3%
StocHD (D — 4k) 0.0% 0.0% 0.3% 0.9% 2.1%
StocHD (D — lk) 0.0% 0.2% 0.8% 1.8% 3.4%

Endurance Years 1 2 3 4 5

Baseline HDC 0% 1.7% 4.1% 11.5% 24.5%
StocHD (D — 4k) 0% 0.5% 0.9% 1.8% 2.4%

StocHD (Ì9 = 0.5&) 0.0% 0.8% 1.6% 3.3% 5.2%

over raw data. StocH D expands HDC functionality to the com-
puting area by mathematically defining stochastic arithmetic
operations over HDC hypervectors. StocHD enables an entire
learning application (including feature extractor) to process
using HDC data representation, enabling uniform, efficient,
robust, and highly parallel computation.

A c k n o w l e d g m e n t
This work was partially supported by Semiconductor Re-

search Corporation (SRC) Task No. 2988.001 and Department
of the Navy, Office of Naval Research.

R e f e r e n c e s

[1] X.-W. Chen and X. Lin, “Big data deep learning: challenges and perspectives,” IEEE
access, vol. 2, pp. 514-525, 2014.

[2] F. Bonomi et al., “Fog computing and its role in the internet of things,” in MCC
workshop on Mobile cloud computing, 2012, pp. 13-16.

[3] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,” in
ISCA. IEEE, 2017, pp. 1-12.

[4] P. Kanerva, “Hyperdimensional computing: An introduction to computing in dis-
tributed representation with high-dimensional random vectors,” Cognitive Computa-
tion, vol. 1, no. 2, pp. 139-159, 2009.

[5] M. Imani et al., “A framework for collaborative learning in secure high-dimensional
space,” in CLOUD. IEEE, 2019, pp. 435-446.

[6] A. Rahimi et al., “A robust and energy-efficient classifier using brain-inspired hyper-
dimensional computing,” in ISLPED. ACM, 2016, pp. 64-69.

[7] A. Mitrokhin et al., “Learning sensorimotor control with neuromorphic sensors:
Toward hyperdimensional active perception,” Science Robotics, vol. 4, no. 30, 2019.

[8] M. Imani et al., “Revisiting hyperdimensional learning for fpga and low-power
architectures,” in HPCA. IEEE, 2021.

[9] S. Hou et al., “Dualnet: Learn complementary features for image recognition,” in
ICCV, 2017, pp. 502-510.

[10] H. Li et al., “Hyperdimensional computing with 3d vrram in-memory kernels: Device-
architecture co-design for energy-efficient, error-resilient language recognition,” in
1EDM. IEEE, 2016, pp. 16-1.

f 11] M. Nazemi et al., “Synergicleaming: Neural network-based feature extraction for
highly-accurate hyperdimensional learning,” arXiv preprint arXiv:2007.15222, 2020.

f 12] A. Hernandez-Cano et al., “Onlinehd: Robust, efficient, and single-pass online learning
using hyperdimensional system,” in DATE. IEEE, 2021.

f 13] A. Alaghi et al., “Survey of stochastic computing,” ACM TECS, vol. 12, no. 2s, pp.
1-19, 2013.

f 14] A. Alaghi, W. Qian, and J. R Hayes, “The promise and challenge of stochastic
computing,” TCAS I, vol. 37, no. 8, pp. 1515-1531, 2017.

f 15] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic computing in deep
neural networks,” in DAC, 2016, pp. 1-6.

f 16] S. Liu et al., “Energy efficient stochastic computing with sobol sequences,” in DATE.
IEEE, 2017, pp. 650-653.

f 17] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in ISCA. IEEE, 2016, pp. 14-26.

f 18] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in ISCA. IEEE Press, 2016, pp. 27-39.

f 19] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network training
with high precision,” in ISCA. ACM, 2019, pp. 802-815.

[20] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS II, vol. 61, no. 11, pp.
895-899, 2014.

[21] M. Imani et al., “Dual: Acceleration of clustering algorithms using digital-based
processing in-memory,” in MICRO. IEEE, 2020, pp. 356-371.

[22] M. Imani, X. Yin et al., “Searchd: A memory-centric hyperdimensional computing
with stochastic training,” TCAD, vol. 39, no. 10, pp. 2422-2433, 2019.

[23] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” in MPS, 2019, pp. 8026-8037.

[24] “Synopsys,” http://www. synopsys. com.
[25] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled memristors,”

TCAS II, vol. 62, no. 8, pp. 786-790, 2015.
[26] Y. LeCun et al., “Gradient-based learning applied to document recognition,” Proceed-

ings o f the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[27] D. Ciregan et al., “Multi-column deep neural networks for image classification,” in

CVPR. IEEE, 2012, pp. 3642-3649.
[28] D. Anguita et al., “Human activity recognition on smartphones using a multiclass

hardware-friendly support vector machine,” in AAL. Springer, 2012, pp. 216-223.
[29] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[30] A. Angelova et al., “Pruning training sets for learning of object categories,” in CVPR.

IEEE, 2005.
[31] A. Reiss et al., “Introducing a new benchmarked dataset for activity monitoring,” in

ISWC. IEEE, 2012, pp. 108-109.
[32] T. F. Wu et al., “Brain-inspired computing exploiting carbon nanotube fets and resistive

ram: Hyperdimensional computing case study,” in ISSCC. IEEE, 2018, pp. 492-494.
[33] J. B. Kotra et al., “Re-nuca: A practical nuca architecture for reram based last-level

caches,” in IPDPS. IEEE, 2016, pp. 576-585.

1200

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore. Restrictions apply.

