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Abstract—Hyperdimensional Computing (HDC) is a neurally- 

inspired computation model working based on the observation 
that the human brain operates on high-dimensional representa-
tions of data, called hypervector. Although HDC is significantly 
powerful in reasoning and association of the abstract information, 
it is weak on features extraction from complex data such as 
image/video. As a result, most existing HDC solutions rely on 
expensive pre-processing algorithms for feature extraction. In this 
paper, we propose StocHD, a novel end-to-end hyperdimensional 
system that supports accurate, efficient, and robust learning over 
raw data. Unlike prior work that used HDC for learning tasks, 
StocHD expands HDC functionality to the computing area by 
mathematically defining stochastic arithmetic over HDC hyper-
vectors. StocHD enables an entire learning application (including 
feature extractor) to process using HDC data representation, en-
abling uniform, efficient, robust, and highly parallel computation. 
We also propose a novel fully digital and scalable Processing 
In-Memory (PIM) architecture that exploits the HDC memory-
centric nature to support extensively parallel computation. Our 
evaluation over a wide range of classification tasks shows that 
StocHD provides, on average, 3.3x and 6.4x (52.3x and 143.Sx) 
faster and higher energy efficiency as compared to state-of-the-art 
HDC algorithm running on PIM (NVIDIA GPU), while providing 
16x higher computational robustness.

I. INTRODUC TION

We face increasing needs for efficient processing for diverse 
cognitive tasks using a vast volume of data generated [l], [2]. 
However, running machine learning algorithms often results in 
extremely slow processing speed and high energy consumption 
on traditional systems or needs a large cluster of application- 
specific integrated chips (ASIC), e.g., deep learning on Google 
TPU [3]. There are two key technical challenges that make it 
difficult to learn in today’s computing devices: computation 
efficiency and robustness to noise.

HyperDimensional Computing (HDC) is introduced as 
a computational model towards high-efficiency and noise- 
tolerant computation [4]. HDC is motivated by the observa-
tion that the human brain operates on high-dimensional data 
representations. In HDC, objects are thereby encoded with 
high-dimensional vectors, called hypervectors, which have 
thousands of elements [5], [6]. It mimics several important 
functionalities of the human memory model with vector opera-
tions, which are computationally tractable and mathematically 
rigorous in describing human cognition [7], [8].

Although HDC is significantly powerful in reasoning and 
association of the abstract information, it is weak on features 
extraction from complex data such as image/video data. This 
forces HDC algorithms to rely on the pre-processing step to 
extract useful information from raw data. For an example 
of image data, HDC solutions rely on signal extracted from 
popular feature extractor algorithms, such as convolution and

histogram of gradient (HOG) [9]. These pre-processing algo-
rithms are not compatible with the HDC learning model, thus 
need to be processed over traditional data representation. The 
existing HDC primitives are abstract and approximate, thus 
cannot support the high precision arithmetic.

Running pre-processing algorithms o traditional data rep-
resentation provides the following challenges: (i) significant 
computation cost that dominates the entire learning efficiency, 
(ii) non-uniform data processing as feature extractors require 
different hardware optimizations, precision, and data repre-
sentation, (iii) a low computational robustness coming from 
non-holographic data representation, making the entire system 
vulnerable to error, and (iv) the necessity of using expensive 
data encoding to map extracted features into high-dimensional 
space. To address these issues, we propose StocHD, a novel 
end-to-end hyperdimensional learning system operating accu-
rate, efficient, and robust learning over raw generated data. 
The main contributions are listed below:
• This is the first effort that fundamentally defines stochastic 

arithmetic over hyperdimensional vectors, enabling highly 
accurate, efficient, and robust computation. unlike all prior 
methods that rely on the expensive pre-processing step, 
StocHD enables an entire learning application (including 
feature extractor) to process using HDC data representation, 
enabling uniform, efficient, robust, and parallel computation.

• Our solution mathematically defines stochastic arithmetic 
over HDC vectors, including weighted addition, subtraction, 
multiplication, division, and comparisons. We exploit these 
arithmetic to revisit the pre-processing algorithms to run 
using uniform HDC data representation without paying the 
cost of decoding data back to the original space.

• We propose a novel processing in-memory architecture 
that exploits inherent parallelism and the memory-centric 
nature of HDC. Our PIM architecture exploits the switching 
characteristics of non-volatile memory to support tensor- 
based computation over hypervector internally in memory. 
We evaluate StocHD efficiency over a wide range of learn-

ing algorithms. Our evaluation shows that StocHD provides, 
on average, 3.3x and 6.4x (52.3x and 143.5x) faster and 
higher energy efficiency as compared to state-of-the-art HDC 
algorithm running on PIM (NVIDIA GTX 1080 GPU). In ad-
dition, as compared to state-of-the-art HDC solutions, StocHD 
provides 16x higher robustness to possible noise.

II. Ba c k g r o u n d  a n d  Rel a t ed Wo r k

Hyperdimensional computing (HDC): is a computational 
model developed based on the observation that the human 
brain operates on high-dimensional data [4]. The fundamental 
units of computation in HDC are “hypervectors”, which are 
constructed using an encoding procedure [6]. Although HDC 
is significantly powerful in reasoning and association of the
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Fig. 1: StocHD framework, an end-to-end HDC learning from 
raw data along with processing in-memory acceleration

abstract information, it is weak in features extraction from 
complex data, e.g., image/video. As a result, most exist-
ing HDC solutions are operating over costly pre-processed 
data [5], [ 10]—[ 12], This pre-processing often takes a large 
portion of the total learning cost.

Stochastic computing (SC): represents numbers in terms 
of probabilities in long independent bit-streams [13], [14]. 
SC supports various encoding modules to map binary data 
to stochastic representation [13]. Arithmetic operations in this 
representation involve simple logic operations on uncorrelated 
and independently generated input bit-streams. SC uses a 
binary sequence to represent real numbers between 0 and 1 via 
the proportion of 1 bits in the sequence. Arithmetic operations 
are done using bitwise operations [15], [16].

Although both SC and HDC use similar redundant high-
dimensional representation, their goals and strengths are com-
plimentary. (i) Representation The SC defines operations over 
vectors that their percentage of Is determines their value. 
While HDC works based on a pattern of neural actively in 
high-dimensional space, where vectors have roughly equal 
numbers of Os and Is. (ii) Application: SC is capable of 
performing efficient and highly parallel arithmetic operations, 
enable us to accelerate feature extractor and signal process-
ing applications. In contrast, HDC is a highly approximate 
cognitive and learning model. This paper is the first effort to 
fundamentally define SC operations over HDC space, expand-
ing HDC functionality to the computing domain. Our solution 
enables HDC to process both pre-processing and learning 
steps, enabling efficient and robust system.

III. StocHD F r a m e w o r k  O v e r v i e w

Figure 1 shows an overview of the StocHD framework 
consisting of HDC learning and computing solutions. As 
Figure 1 @ shows, the existing HDC learning solutions op-
erate over pre-processed data. The pre-processing step is a 
costly feature extractor performing over original data. HDC 
implements efficient and robust learning after maps the ex-
tracted features into high-dimensional space. In this paper, we 
propose a novel solution that expands HDC functionality to the 
computing area, defining stochastic arithmetic operations over

HDC vectors (© ). Our framework translates all data points 
to hyperdimensional space, enabling both feature extraction 
and learning to perform using uniform data representation. For 
example, for image data convolution or Histogram of Gradient 
(HOG) are commonly used feature extractors. StocHD exploits 
HDC arithmetic to revisit the feature extractor algorithm 
to high-dimensional space. As Figure 1©  shows, StocHD 
framework provides: (1) an end-to-end learning solution that 
enables fully HDC learning over raw data, (2) high computa-
tional robustness, as the entire application (including feature 
extractor) can benefit from the holographic data representation, 
and (3) significant efficiency as HDC revisits the complex 
feature extraction with parallel bitwise operations.

HDC has a memory-centric architecture with primitives 
hardware friendly operations and extensive parallelism [10]. 
These features make HDC idea for in-memory acceleration. 
We propose a novel processing in-memory platform that 
supports all StocHD operations directly over digital data 
stored in the memory. This eliminates the data movement 
issue between memory and computing unit, which dominates 
the entire StocHD energy. In Section V, we show how our 
PIM platform can accelerate the entire HDC application, from 
feature extraction to the learning process (© ).

IV. StocHD S t o c h a s t i c  P r i m i t i v e s  

A. HDC Supported Operations
HDC encoding works based on a set of defined prim-

itives [4], Our goal is to exploit the same primitives to 
define SC-based arithmetic operations over HDC vectors. HDC 
is an algebraic structure; it uses search along with several 
key operations (and their inverses): Bundling (+) that acts 
as memorization during hypervector addition. Binding (*) 
that associates multiple hypervectors, and Permutation (p) 
which preserves the position by performing a single rotational 
shift. In HDC, the hypervectors are compositional -  they 
enable computation in superposition, unlike standard neural 
representations. These HDC operations allow us to reason 
about and search through input data that satisfy prespecified 
constraints. To support arithmetic operation, StocHD requires 
the following HDC operations:
HDC Hypervector Generation: We generate a random hyper-
vector with elements ±1 such that +1 appears with probability 
p. This will allow us to construct HDC representations of 
arbitrary numbers via a D  dimensional vector. In our HDC 
system, information is stored with components ±1. We fix a 
random HDC vector Vi to be a Basis vector. A random HDC 
vector Vh (h € [—1,1]) is said to represent the number h 
if S(Vh, Vi) =  h. This is consistent with our notation for Vi 
which means that Vi represents the number 1. Note that based 
on our representation, V_a =  —Va.
Probabilistic Merging: Given n  numbers { a i,a � , .., an } and 
their corresponding probability values, {pi,P� j •••,Pn-i} £ 
[0,1], where pn is defined by ^ ”_ 1 p, =  1, the probabilistic 
merging chooses the number a, with probability p, . This 
operation can be extended to operate n hypervectors, where we 
select each dimension of merged hypervector by probabilistic 
merging of n  elements located in the same dimension of given 
input hypervectors.
Similarity Measurement: Between two HD vectors Vi and 
V2, the similarity defines as £>(Vi ,V2) =  VlDv'2 where D  is
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the number of dimensions and (•) is the vector dot product 
operator. HDC supports other similarity metrics, such as 
Hamming similarity, that measures the number of dimensions 
at which two HDC vectors differ.

B. HDC Arithmetic Operations
Weighted Average: StocHD defines weighted accumulation 

over hypervectors. Given two random HDC vectors Va and V), 
and two probability numbers {p, q} £ [0,1] (p + q =  1), we 
define C  =  pVa ® qVi, to be the random HDC vector whose ith 
component is V* or V,' with probability p and q, respectively. 
This can be extended to probabilistic merging of n  HDC 
vectors Vi, V2,..., Vn and n — 1 probabilities p i ,p 2,
(pn is defined by X«=r Pi =  !)• We can similarly define the 
weighted sum as piV± © p2V2 © • • • (BpnVn-

Let us consider Vc =  0.5Va © 0.5V/,. To verify the correct 
functionality of StocH D, we need to show that c =  © p. Based 
on our definition, Va has similarity a with Vi. As a result it 
has exactly p p  parts components common with Vi. So if 
we randomly chose a dimension i, the probability that the 

component of both Va and Vi match is given by P p .

(a) Addition (b) Multiplication (c) Compare

Ath

O 2k IflSi 1k

Considering the v  ' component of Vc, the probability that 
the ith component is taken from Va and V/, is 0.5 and 0.5 
respectively. Thus, the probability that the i th component of
Vc matches with Vi is given by | P p  + | P p  =  1+^ . 
As a result, 6(Vc-,Vi) =  p p  which is what was claimed. 
Similarly, StocHD supports weighted subtraction given by
0.5ua © 0.5r/_b =  Va^b.
Constructing Representations: Let us define Va =  p p V i © 
i= ^ (—Vi). Note that Va will have P p  components same 
with Vi and P p  component same with — Vi (which has 
components complementary to V!). As a result we have 
() (V„ . V i) =  a and thus we have constructed a representation 
of the number a given by Va =  p p Vi © P p (V _ i). Note that 
if a £ [0,1], then this is equivalent to P p  £ [0,1] and so the 
probabilities for merging are well defined. This operation will 
be the building blocks of all other arithmetic operations. 
Multiplication: Given two HDC representations Va and V/,, 
we show a way to construct Vab. Consider the i th dimension 
of ip  and set it to the i th dimension of Vi if the i th dimension 
of Va and V/, are both +1 or both —1. Otherwise set the ith 
dimension of Vc to be the ith dimension of V_ 1. From this 
construction, the probability that the i th dimension of Vc is the 
same as Vi is given by P p P  Thus, 5(VC, Vi) =  2 p p f  _  1 =  
ab and so Vc =  V,,/,. In a simpler form, V,,/, can be computed 
by element-wise product of Va, V/,, and Vi hypervectors. 
Comparisons: Comparison is another key operation for data 
processing as well as required operation to implement division. 
Suppose we are given hypervectors Va and V/, corresponding 
to a and b values in original space. We can check comparison 
by first calculating =  Va © V_/,. Then we evaluate the_J2
value using ~  r)(V«-6, Vi). Finally, we can check whether

_. 2
is positive, negative or 0.

Division: Consider two vectors Va and V/,. Our aim is to 
construct an HDC vector Va/i,, which would be saturated if ci/b 
lies outside the range of our HDC arithmetic system. Without

Fig. 2: Error for (a) N-Addition, (b) N-Multiplication, and (c) 
comparison between two numbers.

loss of generality, assume a and b are both positive. Then, we 
do the following steps:
• Initialize two vectors Viow t° be V_i and Vhigh to be Vi
• Calculate Vmid ~  tf 5V/ovi, ©0.5Vhigh and Vmidb =  Vmid © 

Vb where we use © to stand for multiplication
• if Vmidb V Va, then do Vhigh i Vmidb
• If Vmidb < Va, then do ViQw -> Vmi dp
• Repeat from step 2 until Vmidb — Va or Vc = V±1, then 

stop.
This process eventually has to end because the difference 
between the evaluation of Viow and Vhigh keeps decreasing 
at each iteration. Thus, we get a representation of a/b which
IS Vmid-
Doubling: Similar to how we defined division, we can also 
define a doubling formula to construct V2a from Va- The way 
to proceed would be to compare Vmid�� with Va rather than 
Vmidb in the algorithm for division.

C. Arithmetic Error Rates
We first discuss the error rates for generating errors. We 

generate a HD-SC representation of a number a £ [—1,1] 
using Va =  © P p(V _!). Let X , be a random variable
with value 1 if the i th dimension of Va and Vi are the same,
and —1 otherwise. Moreover, let S  =_  XL A',

D . We note that
6(Va, Vi) = 2S— 1. Now, X., are independently and identically 
distributed Bernoulli random variable with p =  P p ,  // =  

. Using the Central Limit Theorem, we get 
iV(0,1) is normal distributed. As a result, we have:
1 -\~CL 

2
_  W X A

r i l a v o �� 1  > i g )  =  - © e 2 dx

The similarity of two vectors Va and V/, is calculated using 
5(Va, Vb) =  J2f=i d  *1 Where is the i th component of 
the vector Va. We calculate the Mean Absolute Error (MRE) 
of the representation Va representing the number a £ [—1,1] 
using the formula

E ( W £ . V i ) - q | ) x l 0 0  =  f  l ^ . . v . ) - a , l x l 0 0
2 ^  2Ni= 1

Here, we divide by 2 so that we normalise the length of the 
interval to 1. We use this metric to compare our errors with 
other methods.

Addition/Multiplication: The error in weighted addition 
follows the same theoretical analysis of the generational error. 
This is because the analysis only depends on the relation 
between the probability with which Va and Vi have a common
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dimension, and the value of a itself. The additional advantage 
is that the repeated weighted addition does not result in an 
accumulation of error, which is essential in multiplication 
where we use weighted addition multiple times in a sequence. 
This arises theoretically from the fact that the distribution 
of the components of the added vectors follows the correct 
Bernoulli distribution; thus, the same explained error analysis 
still holds. Figure 2a shows our error analysis for the errors 
of the weighted addition of N  numbers as a function of the 
dimension. Our results indicate that the larger the N , the lower 
the error becomes.

Comparision/Division: Our goal is to find the probability 
that the comparison returns the correct result. We also recall 
that 6(Va-b, Vi) is normally distributed with p  =

and standard deviation a =  y j  1 — {3̂ - ) 2/\ fD .  We assume

y j  1 — i 3̂ ) 2 ~  1 which will give us the upper bound for the
error. The first case is when is positive. The probability 
that the comparison returns the incorrect value is given by

P(<5(Vo-t,, VO <  0) =  \ ^ -  [  e - ^ - ^ d x
2 V 2tr J_00

The second case is when "7 '̂ is negative. The probability 
that the comparison returns the incorrect value can be com-
puted in a similar way. Figure 2c shows the error rate of 
StocHD comparison as a function of closeness of a and b, and 
the hypervector dimensions. Note that, although comparison 
has a much higher error rate in D  =  1024. division does not 
see any appreciable loss of error.

V. P r o c e s s i n g  In -M e m o r y  A r c h i t e c t u r e

In this section, we present a digital-based processing in-
memory architecture, called StocHD, which accelerates a 
wide range of HDC-based algorithms on conventional crossbar 
memory. StocHD supports all essential HDC operations in 
memory in a parallel and scalable way. Figure 1 demonstrates 
an overview of the proposed learning system.

A. StocHD Accelerator

Our digital-based PIM architecture enables parallel com-
puting and learning over the hypervectors stored in memory. 
Unlike prior PIM designs that use large ADC/DAC blocks 
for analog computing [17], [18], StocHD performs all HDC 
computations on the digital data stored in memory. This elimi-
nates ADC/DAC blocks, resulting in high throughput/area and 
scalability. StocHD supports several fundamental operations 
required to accelerate HDC. StocHD uses two blocks for 
performing the computation; a compute block and a search 
block. Each block supports the following set of operations 
(shown in Figure 3a): (i) Arithmetic operations: row-parallel 
NOR-based operation, and (ii) search-based operations: row- 
parallel nearest Hamming distance search.

Row-Parallel PIM-based Arithmetic: StocHD supports 
arithmetic operations directly on digital data stored in memory 
without reading them out of sense amplifiers [19], [20]. 
Our design exploits the memristor switching characteristic 
to implement NOR gates in digital memory [19]. StocHD 
selects two or more columns of the memory as input NOR 
operands by connecting them to ground voltage (Shown in 
Figure 3b). During NOR computation, the output memristor is

Fig. 3: PIM architecture: (a) supported operations, (b) arith-
metic computing, (b) CAM-based search operation, (d) timing 
characteristic of CAM during search. [21]

switched from R o n  to R o f f  when one or more inputs stored 
‘1.’ value (Ro n )- In fact, the low resistance input passes a 
current through an output memristor resulting in writing R af  f  
value on it. This NOR computation performs in row-parallel 
on all the activated memory rows by the row-driver. Since 
NOR is a universal logic gate, it can be used to implement 
other logic operations like AND and XOR operations required 
for HDC automatics. Note that all these arithmetic can be 
supported in parallel over all dimensional of hypervectors, 
enabling significant computational speedup.

Nearest Search: The exact search is one of the native 
operations supported by crossbar memory. During the search, 
a row-driver of the CAM block pre-charges all CAM rows 
(match-lines:M L s )  to supply voltage (V,i,i ). Consider a CAM 
cell (shown in Figure 3c), if a query input matches with 
the stored value in the CAM cell, the M L  voltage will 
stay charged. However, in case of a mismatch between the 
CAM cell and the query data, the CAM starts discharging the 
M L. Conventionally, CAM blocks exploit the M L  discharging 
current to enable the exact search operation. Here, we exploit 
the timing characteristic of each row discharging current to 
detect a row with minimum distance to query data [21], 
As shown in Figure 3c, a CAM row with the minimum 
discharging current will have the highest similarity with the 
query data. However, due to reducing the voltage of M L  
during the search, the M L  discharging current saturates with 
increasing the number of mismatches. This eliminates finding 
a row with minimum Hamming distance. To provide a more 
reliable search, we exploit a voltage stabilizer [21] in each 
CAM row that ensures a fixed M L  voltage during the search. 
We also utilize ganged-circuits [22], as a CAM sense amplifier 
to enable the nearest search in a row-parallel way.
B. Architecture

StocHD exploits row-parallel PIM-based NOR operation 
to accelerate feature extractors, which are mainly based on 
arithmetic operation, i.e., bitwise operations in HDC space. 
The feature extraction can perform by simple bitwise operation 
between hypervectors representing the values. Next, StocHD 
supports permutation and row-parallel XOR operation over the 
high-dimensional features. For example, in case of n  extracted 
features, { / i , / � , --- ■ f „ } ■ StocHD encodes the information 
by: %  =  f i  © p 1 ¡ 2  © • ■ ■ pn~ l f n , where pn denotes n-
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TABLE I: Datasets (n: feature size, k: number of classes)

n k
Feature

Extractor
Train
Size Description

MNIST 784 10 Convolution 60,000 Handwritten Recognition [26], [27]
UCIHAR 561 12 Noise Filter 6,213 Activity Recognition(Mobile) [28]
ISOLET 617 26 MFCC 6,238 Voice Recognition [29]
FACE 608 2 HOG 522,441 Face Recognition [30]

PAMAP 75 5 FFT 611,142 Activity Recognition(IMU) [31]

bit rotational shift. All encoding steps can perform using 
row-parallel NOR operation and shift operation that can be 
implemented by our PIM. StocHD performs classification by 
checking the similarity of an encoded query with a binary 
HDC class hypervectors. A query will assign to data with the 
highest Hamming distance similarity. The inference can be 
supported using the nearest search supported by our PIM.

VI. E x p e r i m e n t a l  E v a l u a t i o n

A. Experimental Setup
We implement StocHD using both software and hardware 

support. In software, we developed a PyTorch-based library 
of Hyperdimensional computing, supporting all required com-
puting and learning operations. In hardware, we design a 
cycle-accurate simulator based on Py Torch [23] that emulates 
StocHD functionality during classification. For hardware, we 
use HSPICE for circuit-level simulations to measure the 
energy consumption and performance of all the StocHD 
operations in 28nm technology. We used system Verilog and 
Synopsys Design Compiler [24] to implement and synthesize 
the StocHD controller. At the circuit-level, we simulate the 
cost of inter-tile communication, while in architecture, we 
model and evaluate intra-tile communications. StocHD works 
with any bipolar resistive technology, which is the most 
commonly used in existing NVMs. In order to have the highest 
similarity to commercially available 3D Xpoint, we adopt the 
memristor device with a VTEAM model [25].

We evaluate StocHD accuracy and efficiency on five pop-
ular datasets such as a large data that includes hundreds of 
thousands of facial data. Table I lists the workloads, their 
corresponding feature extractors, and dataset size.

B. StocHD Learning Accuracy
State-of-the-art Learning Algorithms: We compare 

StocHD classification accuracy with state-of-the-art learning 
algorithms, including Deep Neural Networks (DNN), Support 
Vector Machine (SVM), and AdaBoost. The DNN models 
are trained with Tensorflow, and we exploited the Scikit-learn 
library to train other ML algorithms. We exploit the grid search 
to identify the best hyper-parameters for each model. Our 
evaluation shows that StocHD provides comparable accuracy 
to other state-of-the-art algorithms (only 0.2% lower than 
DNN, and 1.5% and 1.8% higher than SVM and AdaBoost).

Baseline HDC Algorithms: we compare HDC classifica-
tion accuracy in different configurations: (i) without feature 
extractor where learning directly happens over a raw data, 
(ii) with feature extractor running on original data, and (iii) 
using StocHD arithmetic computation to processed feature 
extraction. Our evaluation shows that HDC with no feature 
extraction provides, on average, 59% lower accuracy than 
HDC operating over extracted features. Revisiting the fea-
ture extractor with StocHD stochastic arithmetic can almost 
provide the same result as running feature extraction over 
original data. The quality of StocHD computation depends

( D N N  []SVM  []AdaBoost [] Baseline-HDC (with Extractor) 
IStocHD  (D=4k) □  StocHD (D=3k) □  StocHD (D=2k) □  StocHD (D=lk)

Fig. 4: Comparing StocHD accuracy to state-of-the-art.

on the HDC dimensionality. Using D  =  4,000 dimensions, 
StocHD provides the same accuracy as the baseline algorithm. 
Reducing dimension to D  =  3, 000 and D  =  2, 000 reduces 
StocHD accuracy, on average, by 0.9% and 2.1%, respectively. 
This lower accuracy comes from StocHD accumulative noise 
during the pre-processing step.

C. StocHD Learning Efficiency
PIM & Feature Extraction: Figure 5 compares StocHD 

efficiency with the baseline HDC running on the proposed 
PIM platform. All results are normalized to execution time and 
energy consumption of the baseline HDC running on NVIDIA 
GTX 1080 GPU. In GPU, the feature extraction takes, on 
average, 72% of execution time and 77% of total learning 
energy consumption. As explained in Section V, our proposed 
PIM is an in-memory computing platform that can accelerate 
any tensor-based algorithms, including the feature extractors, 
listed in Table I. To accelerate feature exaction, PIM exploits 
high-precision arithmetic computation, such as addition and 
multiplication, that operates over original data representation. 
However, PIM is sequential and slow in supporting the high- 
precision arithmetic over traditional data. For example, for N - 
bit addition and multiplication, PIM requires 1 oN  +  1 and 
ISA'2 +  16N +  1 NOR cycles, respectively. This makes our 
PIM platform less ideal to operate over traditional data, e.g., 
fixed point or floating-point representation.

StocHD Feature Extraction: Figure 6 shows the break-
down of the execution time in the baseline HDC and StocHD 
running on GPU and PIM platform. Our evaluation shows that 
the slowness of the PIM to support high-precision arithmetic 
further increases a portion that feature extractor from the total 
execution time (88% over all tested applications). In contrast, 
StocHD is an end-to-end HDC-based platform that speeds up 
the feature extraction by simplifying the arithmetic operation 
to highly parallel bitwise operations. The HDC arithmetic are 
extensively parallel and PIM friendly. For example, unlike 
multiplication in original space that performs bit-sequentially, 
PIM can implement StocHD stochastic multiplication with two 
AND operations over hypervectors. Our evaluation shows that 
StocHD using D  =  4,000 provides 3.3x and 6.4x (52.3x 
and 143.5x) faster and higher energy efficiency as compared 
to baseline HDC running on the same PIM (GPU) platform. 
Breakdown: Our evaluation on Figure 6 shows that StocHD 
not only reduces the cost of feature extractor but also di-
minishes the cost of the encoding module. In baseline HDC, 
the encoding requires an extra step for feature quantization 
and non-linear data mapping. In contrast, in StocHD, features 
are already in high-dimensional space. Therefore, a linear 
HDC encoding can aggregate the high-dimensional features 
extracted by our pre-processing method. Our evaluation shows

1199

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 17:32:24 UTC from IEEE Xplore.  Restrictions apply. 



that StocHD reduces the performance overhead of the feature 
extractor and encoding to less than 7% and 4%, respectively. 
Dimensionality: Reducing the dimensionality improves
StocHD computation efficiency. As Figure 5 shows, StocHD 
using D  =  2,000 dimensions provides, on average, 4.2 x and 
8.1 x (67.Ox and 183.9x) faster and higher energy efficiency 
as compared to the baseline HDC running on PIM (GPU).
D. StocHD Robustness

Many advanced technologies typically pose issues for hard-
ware robustness [32]. One of the main advantages of StocHD 
is its high robustness to noise and failure in hardware. 
In StocHD, hypervectors are random and holographic with 
i.i.d. components. Each hypervector stores all the information 
across all its components so that no component is more 
responsible for storing any piece of information than another. 
This makes a hypervector robust against errors in its compo-
nents. StocHD efficiency and robustness highly depend on the 
dimensionality and the precision of each hypervector element. 
Table II compares StocHD robustness to noise in the memory 
devices. StocHD provides significantly higher robustness to 
memory noise than the baseline HDC algorithm. In binary 
representation, an error only flips a reference dimension results 
in minor changes in the entire hypervector pattern. In contrast, 
an error in original space (feature extractor in baseline HDC) 
can happen in most significant bits, which significantly affects 
the absolute value and robustness. Our results indicate that 
10% failure in memory cells results in 0.9% and 14.4% loss 
on StocHD and the baseline HDC accuracy.

Table II also explores the impact of limited NVM endurance 
on StocHD quality of learning. We assume an endurance 
model with // =  107 [33]. Our evaluation shows that after 
a few years of using our PIM-based platform, similar to the 
human brain, StocHD starts forgetting information stored in 
reference hypervector. To address this issue, we perform wear-
leveling to distribute writes uniformly over memory blocks. 
The overhead of wear-leveling is minor as (i) StocHD has 
predictable write pattern, and (ii) wear-leveling can happen 
in long-time periods. Our evaluation shows that the baseline 
HDC has higher sensitivity to the endurance issue. This is 
because feature extractor requires PIM arithmetic operation 
that involves several device switching. In contrast, StocHD 
computes feature extraction with minimal write operation.

VII. C o n c l u s i o n

We propose StocHD, a novel end-to-end hyperdimensional 
system that supports accurate, efficient, and robust learning

TABLE II: Quality loss using noisy and low endurance.
Memory Error 1% 2% 5% 10% 15%

Baseline HDC 1.1% 4.5% 9.3% 14.4% 27.3%
StocHD (D  — 4k) 0.0% 0.0% 0.3% 0.9% 2.1%
StocHD (D  — lk ) 0.0% 0.2% 0.8% 1.8% 3.4%

Endurance Years 1 2 3 4 5

Baseline HDC 0% 1.7% 4.1% 11.5% 24.5%
StocHD (D  — 4k) 0% 0.5% 0.9% 1.8% 2.4%

StocHD (Ì9 =  0.5&) 0.0% 0.8% 1.6% 3.3% 5.2%

over raw data. StocH D expands HDC functionality to the com-
puting area by mathematically defining stochastic arithmetic 
operations over HDC hypervectors. StocHD enables an entire 
learning application (including feature extractor) to process 
using HDC data representation, enabling uniform, efficient, 
robust, and highly parallel computation.
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