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Graph Laplacians computed from weighted adjacency matrices are widely used
to identify geometric structure in data, and clusters in particular; their spectral
properties play a central role in a number of unsupervised and semi-supervised
learning algorithms. When suitably scaled, graph Laplacians approach limiting
continuum operators in the large data limit. Studying these limiting operators,
therefore, sheds light on learning algorithms. This paper is devoted to the study
of a parameterized family of divergence form elliptic operators that arise as the
large data limit of graph Laplacians. The link between a three-parameter family of
graph Laplacians and a three-parameter family of differential operators is explained.
The spectral properties of these differential operators are analyzed in the situation
where the data comprises of two nearly separated clusters, in a sense which is
made precise. In particular, we investigate how the spectral gap depends on the
three parameters entering the graph Laplacian, and on a parameter measuring
the size of the perturbation from the perfectly clustered case. Numerical results
are presented which exemplify the analysis and which extend it in the following
ways: the computations study situations in which there are two nearly separated
clusters, but which violate the assumptions used in our theory; situations in
which more than two clusters are present, also going beyond our theory; and
situations which demonstrate the relevance of our studies of differential operators
for the understanding of finite data problems via the graph Laplacian. The findings
provide insight into parameter choices made in learning algorithms which are based
on weighted adjacency matrices; they also provide the basis for analysis of the
consistency of various unsupervised and semi-supervised learning algorithms, in the
large data limit.
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1. Introduction
1.1. Overview

This article presents a spectral analysis of differential operators of the form

Lu = —idiv <QqV (i)> , in Z|
oP o"
Qqﬁ (i) =0, on 0Z,
on \ o"

for parameters p, g, € R fixed. The analysis is focused on the situation where the density g concentrates on

(1.1)

two disjoint connected sets (clusters), and numerical results extend our conclusions to multiple clusters and
to more general two cluster data densities ¢ not covered by our analysis. Our motivation is to understand a
range of algorithms which learn about geometric information in data, and clusters in particular, by means
of graph Laplacians constructed from adjacency matrices whose edge weights reflect affinities between data
points at each vertex. Operators of the form (1.1) arise as a large data limit of graph Laplacian operators
of the form

T

1-p __r_
D;{fl (DN—WN)DNLFI, ifq;ﬁl,
DN—VVN7 ifq:L

LN = (12)

where the symmetric weighted adjacency matrix Wy = Wy (q) is constructed via a suitably reweighted
kernel capturing the similarities between discrete data points and Dy = Dy(q) is an associated weighted
degree matrix (see Subsection 5.1 for precise definitions of these matrices).

The three primary contributions of this paper are as follows:

1. Under assumptions on ¢ capturing the notion of data approximately clustered into two sets, we study
the low lying spectrum of £, the corresponding eigenfunctions and their dependence on (p, ¢, r); amongst
several results concerning this dependence, we elucidate the special properties of the parametric family
q = p + r for clustering tasks, and we refer to £ and Ly as balanced in this case.

2. We present numerical experiments which exemplify the analysis in both the continuum and discrete
regimes, leading to conjectures concerning aspects of our analysis which are not sharp, and extending
our understanding to mixture models and to multiple clusters, situations not covered by the analysis.

3. We explain how L arises from Ly, and provide numerical simulations illustrating that the characteristic
behavior identified for the limiting operators £ in point 1 also manifests in the finite data setting when
using L.

Understanding the spectral behavior of graph Laplacian operators, their continuum counterparts and
links between them are crucial steps in the consistency analysis for algorithms such as spectral clustering.
Our work addresses primarily the spectral behavior of the continuum formulations but may, in future works,
form a useful foundation for analysis of consistency. Our results may also be of independent interest in the
spectral theory of elliptic differential operators. Subsection 1.2 is devoted to the background to our work,
and a literature review. In Subsection 1.3 we describe the three contributions above in detail; Subsection
1.4 contains illustrative numerical experiments which demonstrate our contributions; and Subsection 1.5
concludes the introduction with an outline of the paper, by section.
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1.2. Literature review

Clustering is a fundamental task in data analysis and in unsupervised and semi-supervised learning in
particular; algorithms in these areas seek to detect clusters, and more generally coarse structures, geometry
and patterns in data. Our focus is on Euclidean data. Our starting point is a dataset X = {z1,...,an}
comprising of N points x; € R%, assumed to be drawn i.i.d. from a (typically unknown) probability distri-
bution with (Lebesgue) density o. The goal of clustering algorithms is to split X into meaningful clusters.
Many such algorithms proceed as follows: The data points x; are associated with the vertices of a graph
and a weighted adjacency matrix Wy, measuring affinities between data points, is defined on the edges of
the graph. From this matrix, and from a weighted diagonal degree matrix Dy found from summing edge
weights originating from a given node, various graph Laplacian matrices Ly can be defined. The success
of clustering algorithms is closely tied to the spectrum of Ly. At a high level, k& clusters will manifest in
k small eigenvalues of Ly, and then a spectral gap; and the k associated eigenvectors will have geometry
which encodes the clusters. Unsupervised learning leverages this structure to identify clusters [4,33,41,43]
and semi-supervised learning uses this structure as prior information which is enhanced by labeled data
[8,9,47]. It is thus of considerable interest to study the spectral properties of Ly, and the dependence of the
spectral properties on the data and on the design parameters chosen in constructing Ly .

The operator Ly in (1.2) corresponds to different normalizations of the graph Laplacian. A number of
special cases within this general class arise frequently in the implementation of unsupervised and super-
vised learning algorithms. The unnormalized graph Laplacian refers to the choice (p,q,r) = (1,2,0), giving
the symmetric matrix Ly = Dy — Wy; another popular choice is the normalized graph Laplacian where
(p,q,7m) = (3/2,2,1/2); the choice (p,q,7) = (2,2,0) also gives a widely used normalized operator. The
graph Laplacian for (p,q,r) = (3/2,2,1/2) is symmetric and studied in [23,33,36,38,43,44], whereas the
choice (2,2,0) gives an operator that is not symmetric, but can be interpreted as a transition probability
of a random walk on a graph [14,38]. A number of other choices for (p,q,r) appear in the literature. For
example, the spectrum of the graph Laplacian with (1,2,0) is related to the ratio cut, whereas (2,2,0) is
connected to the Ncut problem. The success of the spectral clustering procedure for the graph Laplacian
with parameters (1,1,0) was investigated in [21] in the setting of non-parametric mixture models; in this
case the Dirichlet energy with respect to the natural density weighted L? inner-product is linear in o. In
[14,45], general choices of p = ¢ > 0 and r = 0 are investigated in the context of diffusion maps with [45]
presenting sharp pointwise error bounds on the spectrum as well as norm convergence of Ly to £. In this
case, the limiting operator L is the generator of a reversible diffusion process, a connection first established
in the celebrated paper [14] by Coifman and Lafon.

Whilst many different normalizations of the graph Laplacian have been used for a variety of data analysis
tasks, a thorough understanding of the advantages and disadvantages of different parameter choices is still
lacking. The papers [43,44] contain comparisons between the normalized, unnormalized and random walk
Laplacians. But, to the best of our knowledge, there is a gap in the current literature concerning a systematic
understanding of the effects of the entire family of weighted graph Laplacian matrices Ly depending on
the family of parameters (p, ¢, ). Of particular interest is the case where N is large, relevant in large data
applications, and in [44] the authors showed that the normalized and random walk Laplacians give consistent
spectral clustering as opposed to the unnormalized Laplacian operator in this large IV limit. This behavior
is attributed to different integral operators to which the normalized and unnormalized Laplacians converge.
The normalized Laplacian converges to a compact perturbation of the identity with a discrete spectrum
while it is demonstrated that the unnormalized Laplacian may not possess a purely discrete spectrum.

The large data limit convergence of graph Laplacians to integral or differential operators has been the
subject of many recent studies including [5,6,13,23,20,24,36,39,40,44,45]. The point of departure in these
papers is a kernel 7 defined on R? x R, from which the weighted adjacency matrix Wy defined on the
edges of a graph is constructed. In [5,6,25,26,36,39,44] the authors fix a kernel and let N — oo obtaining an



192 F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189-249

integral operator as the limit of graph Laplacians. These limiting integral operators are dependent on the
kernel 17 and subsequently the results of these articles also depend on the choice of the kernel. In real-world
applications, fixing the kernel 1 as N grows results in dense graph Laplacian matrices that are impractical
to compute with. To alleviate this issue either k-nearest neighbor (k-NN) graphs are employed or the
bandwidth of 7 is tuned to control the sparsity of the graph Laplacian. Motivated by these observations,
more recent articles [12,13,22,23,20,24,40,45] consider the joint limit as N — oo and the width of the kernel
71 vanishes sufficiently slowly thereby controlling the local connectivity of the graph and the sparsity of the
graph Laplacian. It then follows that in taking this joint limit graph Laplacian matrices Ly converge to
differential operators of a similar form to our £ operator; under this type of limiting procedure the resulting
differential operator is independent of the weight kernel 7, up to scaling.

The aforementioned articles suggest the potential for further analysis of the continuum limits of graph
Laplacians as a means to advance our understanding of clustering algorithms on finite but large data
sets. Such continuum approaches, often refereed to as population level analyses, proceed by studying graph
Laplacian operators and subsequently spectral clustering algorithms in the continuum regime [21,36,39].
The continuum analysis may then be extended to the finite data setting using discrete-to-continuum ap-
proximation results such as those in [13,20,36,45]. We employ the same perspective in this work, focusing
primarily on the analysis of the continuum operators and providing numerical experiments and formal cal-
culations demonstrating the relevance of the continuum analysis to finite data settings. We note that the
paper [34] studies consistency of spectral clustering for finite graph problems, and that similar ideas from
linear algebra are used to study large data limits in [15], albeit with very restrictive assumptions on the
clusters; no limiting operator is employed, or identified, in [15].

We also note that mathematical studies which are conceptually similar to the spectral analysis that we
present here have been prevalent in the study of metastability in chemically reacting systems for some time;
see [16,17,28,37] and the references therein for applications. This body of work has led to very subtle and
deep analyses of the generators of Markov processes [10,11]; this analysis might, in principle, be used to
extend some of the work undertaken here to a wider range of sampling densities.

Finally, the tools developed in this paper may be used to study consistency of semi-supervised learning
algorithms in the continuum setting. In particular, we provide the spectral perturbation results needed to
generalize the work in [27], which studies consistency of graph-based semi-supervised learning algorithms
for finite NV and using the graph Laplacian Ly, to the large data limit where N — oo and Ly is replaced
by L.

1.83. Our contributions

We now detail the three contributions outlined in Subsection 1.1. Contribution 1 is summarized in our
main theoretical result characterizing the low-lying spectrum of £ and the effect of the (p, ¢, r) parameters;
Contribution 2 extends our theoretical analyses by various numerical experiments (i) in the unbalanced
regime where q # p + 7, revealing that some of our bounds on the eigenvalues of £ can be sharpened, and
(ii) to the setting of multiple clusters and more general data densities g, suggesting that the theory provided
under Contribution 1 reveals fundamental concepts that hold in more generality than the specific setting
considered in Contribution 1; Contribution 3 combines formal calculations and numerical experiments to
reveal the relationship between the (p,q,r) parameterized family of differential operators £ and various
weightings of discrete graph Laplacians L.

1.3.1. Contribution 1

Let us define the notion of a perfectly separated density. Let Z C R? be bounded and gy be a (Lebesgue)
probability density with support Z’ C Z strictly contained in Z and concentrated on two disjoint subsets
Zt and Z~ of Z; that is, 2’ = Zt UZ~ and Zt N 2~ = (). We refer to Z* as clusters, and denote the
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operator of the form (1.1) based on gy by Ly. Consequently, a nearly separated density comprises a class of
smooth densities g, that are O(e) perturbations of the perfectly separated case gg, with density supported
everywhere on Z and such that o, = Ce away from Z’ with C' > 0 a constant'; we define this concept
precisely in Section 2.2.1. We denote the operator of the form (1.1) based on g, by L. To this end, our
main theoretical result characterizes the low-lying spectrum of L. in the nearly separated regime.

Main Result 1.1. Assume ¢ > 0 and p+1r > 0.

(i) The first eigenpair of L is given by

1 .
01=0, 01,6 = ——0.(2)1z(x), Vo € Z

ot
where |Z| pir 1= [ 02F" (x)dz.
(i) The second eigenvalue scales as o2 = O(e?) and the corresponding eigenvector is given, approximately
in a density weighted L? space, by the formula

P2, R %Q:(.ﬁ)(ler(x) -1z (a:)), Ve e Z. (1.3)
‘Z |Q€+T
(#ii) The behavior of the third eigenvalue os . varies depending on the relationship between the parameters
q and p+r:
e ifp+r<q<2(p+r), then a spectral ratio gap manifests with o9 /o3 = O(2PT7)79) as e — 0;
o ifg=p+r, then o3 <1 and a uniform spectral gap manifests, i.e., 03 — 02 <1 and 02 /03, =
O(e9) as e — 0;
o ifq<p+r<2q, then a spectral ratio gap manifests with a /o3 = O(2~P*T1)) g5 € — 0.

We precisely state this result, with fully detailed assumptions, in Section 3; the statement is comprised of
a combination of theorems and corollaries. Part (i) is contained in Theorem 3.2(i) while part (ii) follows by
combining Theorem 3.2(ii) with Theorem 3.4. Finally part (iii) is encompassed by Corollary 3.3. A roadmap
of the proofs of these results is explained in Section 3 with the detailed proofs postponed to Section 6.

1.3.2. Contribution 2

We present detailed numerical experiments in Section 4 that both support our Main Result 1.1 and make
two substantial extensions. These extensions sharpen our results in the unbalanced cases and extend our
results to K > 2 clusters. In particular, our experiments in case K = 2 demonstrate that the rates for
09,¢/03, in Main Result 1.1(iii) are sharp in the balanced setting where ¢ = p + r but show clear evidence
that the theoretical rates obtained in the unbalanced settings where g # p + r are slower than the observed
rates. The results obtained by combining Main Result 1.1 and this empirical improvement in the unbalanced
case are then shown numerically to extend naturally to K > 2 clusters. For clarity we summarize these
numerical results in the conjecture that follows.

Conjecture 1.2. Suppose that the conditions of Main Result 1.1 are satisfied with the data density o. con-
centrating on K > 2 clusters in the small € limit. Then

1 We emphasize that this restrictive assumption on the form of the family of perturbed densities o. considered here is made for
the purposes of analysis; numerical experiments indicate that the conclusions are expected to hold beyond this restrictive class —
see Remark 2.7.
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UK,S = emin{va+T}

ke X €, OK+1
,€

Our numerical simulations in Section 4, and in particular Tables 4.1 to 4.3, suggest the above conjecture
in the binary cluster setting that sharpens the decay rate of o2 /03 as a function of ¢, in the unbalanced
settings when ¢ # p + r. Put simply, this conjecture states that when K = 2 and ¢ < p + r the third
eigenvalue o3 . exhibits similar behavior to the balanced setting where ¢ = p 4+ r and hence a uniform
gap in the spectrum manifests as ¢ — 0. However, when ¢ > p + r the third eigenvalue o3 . vanishes like
€?7P~" and a spectral ratio gap manifests. Moreover, if this conjecture holds then it allows us to sharpen
the approximation error of the second eigenfunction s . in Theorem 3.4, as this result heavily depends on a
lower bound for o3 .. We attribute this discrepancy to the lower bound on o3 . obtained in Theorem 3.2(iii)
that in turn relies on a generalization of Cheeger’s inequality from Appendix D.

1.3.3. Contribution 3

We demonstrate the relationship between the (p, ¢, r) dependent family of operators £ in (1.1) showing
how they arise as the limit of graph Laplacian matrices Ly of the form (1.2). Subsection 5.2 presents an
informal limiting argument to identify the operator £ by considering the large data N limit, followed by
small kernel bandwidth ¢ limit of Ly = Ly(d). Our informal calculations in Subsection 5.3 extend these
arguments from Dirichlet energies to eigenvalue problems, and indicate that the spectrum of the matrix
C§2N?* 9Ly converges to that of £, for a suitable constant C' > 0, as (N, ') — co. Our numerical
experiments in Subsection 5.4 support these informal calculations, demonstrating the convergence of the
eigenvalues of Ly to numerically computed eigenvalues of £ for different choices of (p,q,r) and for two
different types of mixture models. The numerical experiments and informal arguments are developed in the
following setting: we assume that the data at the N vertices of the graph, {x1,...,zx}, are sampled i.i.d.
from the probability density o and we suppose that the resulting weight matrix Wy is constructed using a
kernel 75 with the parameter § > 0 controlling the local connectivity of the vertices; see Subsection 5.1 for
details.

To make a precise theory supporting these observations is beyond the scope of this paper, it is not a
task which we are addressing in this work; it requires specification of the relationship between N and § in
the limiting process (N,6~1) — oco. The convergence of Ly to L for specific choices of (p,q,r) has been
established in the literature, and this issue was addressed in those papers. In particular, in [23] convergence
of the spectrum of Ly T'-converges to that of £, and that the eigenfunctions of Ly converge to those of
L in the TL? topology. More recently, the articles [13,20,45] further extend these results giving rates for
the convergence of eigenvalues and eigenfunctions for (p, ¢,r) = (1,2, 0) and also for the convergence of Ly
on k-NN graphs to £ with (p,q,7) = (1,1 — 2/d,0). We postulate that the methods of proof introduced in
[13,20], and extensions to spectral convergence properties proved there, can be generalized to the (p,q,r)-
dependent family of graph Laplacian operators introduced here; with the analysis for k-NN graphs departing
from the proximity graphs considered here in particular in the construction of the discrete operator Ly and
its normalization with different choices of (p,q,r). A full analysis and rigorous proof of the discrete-to-
continuum connection is left for future work.

1.4. Illustrative numerical experiments

The contributions detailed in the preceding subsection demonstrate that the manner in which clustering
is manifest in the spectral properties of the graph Laplacian depend subtly on the choice of the parameters
(p,q,7). Making the balanced choice ¢ = p + r one obtains a family of operators whose second eigenvalue
decays rapidly, while the gap between the second and third eigenvalues remains of order one as the pa-
rameter €, measuring closeness to perfect clustering, decreases to zero; this uniform separation of second
and third eigenvalues does not happen when ¢ > p + r. Furthermore the form of the Fiedler vector (the
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second eigenfunction), whilst always exhibiting the clusters present in the data, can have different behavior
away from the clusters, depending on (p,q,r). We demonstrate these facts in Example 1.3, exemplifying
Contributions 1 and 2. Additionally, Example 1.4 shows that our theory likely applies without the rather
specific assumptions used to define clustering as mentioned in Contribution 2; furthermore, Example 1.4
illustrates that the spectral properties of the limiting operator £ reflect the properties of the discrete graph
Laplacian arising when N < +o00 as outlined in our Contribution 3.

Example 1.3 (Comparison of unnormalized and normalized graph Laplacians). We study the spectral prop-
erties of operator £, with parameter choices (p,q,r) given by (1,2,0) and (3/2,2,1/2) respectively, corre-
sponding to the unnormalized and normalized graph Laplacians respectively. All our numerical experiments
are for a data density g, of the form (4.2) with two distinct clusters; see Fig. 1.1(a) for a plot of g, with
e = 0.0125.

In the unnormalized case ¢ > p+1r it follows from our Main Result 1.1 that as € | 0 the second eigenvalue
of L. scales as €2 and that a spectral gap is present only in ratio form. In Fig. 1.1(b) we plot the second
and third eigenvalues o2 and o3 against €, on a log scale, and calculate best linear fits to the data; this
demonstrates that they converge to zero like €2 and e respectively, in agreement with our Main Result 1.1
(second eigenvalue) and the first component of Conjecture 1.2 (third eigenvalue). We also compute the
second eigenfunction (Fielder vector) o2 . shown in Fig. 1.1(d). Note that in this case the pointwise distance
between @9 . and the right hand side of (1.3) in Main Result 1.1(ii) is only small within the clusters; this
reflects the fact that the weighted L?(Z, oP~")-norm arising in Theorem 3.4 for this choice of (p, ¢, r) is not
sensitive to large pointwise values of functions in areas where o, is small.

For comparison we now consider the normalized setting. For ¢ = p+r our Main Result 1.1 predicts that, as
€ | 0, there exists a uniform spectral gap between the first two eigenvalues of L.: for (p, q,7) = (3/2,2,1/2),
the second eigenvalue scales as €2 and the third is of order one with respect to e. In Fig. 1.1(c) we plot the
second and third eigenvalues of L. against € in that case, on a log-scale, and provide best fits to the data;
the results support the theory. The corresponding Fiedler vector ¢s . is shown in Fig. 1.1(e). In this case
2, appears to converge pointwise to the right hand side of (1.3), in contrast to the unnormalized case.

It is well-known that the Fiedler vectors encode information on the clusters Z* that we are trying to
detect. They play a significant role in the context of spectral clustering and binary classification [43]. How-
ever, it is noteworthy that the Fiedler vectors in the unnormalized and normalized cases differ substantially
within Z\ Z’: in the unnormalized case a smooth transition is made between Z* and Z~, whereas in the
normalized case abrupt transitions are made to near zero on the boundaries of Z+ and Z=. <

Since our primary motivation is data clustering, it is relevant to interpret our contributions in that
context. In the following example we demonstrate that although our theory is developed under rather strict
assumptions on the sampling density of the data and in the limit N — oo, our results concerning the
dependence of spectral ratio gaps on the (p,q,r) parameters appear to generalize to mixture models that
violate some of our assumptions. The mixture model assumption is a natural model for population level
analysis of clustering algorithms and is considered in the articles [21,36]. It can be argued to be a more
realistic data model for the density g than the one for which our theory is developed and it is therefore of
interest to demonstrate that our theory is predictive in this setting.

Example 1.4 (Clustering a mizture model). Consider the following mixture on the unit square

ou(t) = % (1 ~ exp (%))1 {exp (-%) +exp (%)} L t=(Le)Te0,12  (14)

This density is simply the mixture of two exponential distributions restricted to the unit interval [0, 1] in the
t1 direction, with a uniform distribution in the ¢y direction; see Fig. 1.2(a). The parameter w controls the
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Fig. 1.1. (a) Plot of a density g, of the form (4.2) with two distinct clusters for e = 0.0125. (b) Showing log(c2) and log(c3), the second
and third eigenvalues of the unnormalized operator L. with (p, q,r) = (1, 2,0) as functions of e. Values in brackets in the legends
indicate numerical slope of the lines. (c¢) Showing log(oz2) and log(os) for the normalized operator L. for (p,q,r) = (3/2,2,1/2), as
functions of e. (d) and (e) The Fiedler vector of L. with (p,q,r) = (1,2,0) and (p, ¢,r) = (3/2,2,1/2) respectively for e = 0.0125.

overlap of the mixture components. This model clearly violates our assumptions on the density ¢ outlined in
Section 2.2, most notably, (i) letting w — 0 the density g, concentrates on sets of measure zero as opposed
to clusters Z* of positive measure, and (ii) we cannot ensure that g, = Cw outside of clusters since the
tails of the exponential components decay exponentially as we let w — 0.

We generate N samples from g, and construct a weighted proximity graph on this dataset using a weight
kernel of width § > 0 as detailed in Subsection 5.4. We then proceed to define a discrete graph Laplacian
Ly of the form (1.2) and compute the first four non-trivial eigenvalues oy s of this discrete operator (this
notation for the eigenvalues is defined in Subsection 5.2). Fig. 1.2(b,c,d) show the variation of the first few
eigenvalues as a function of w for N = 2!3 vertices. We consider three choices of the (p,q,r) parameters,
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Fig. 1.2. (a) A plot of the mixture density (1.4) for w = 0.25. (b) The first four non-trivial eigenvalues of the discrete graph
Laplacian Ly with parameters (p,q,r) = (1/2,2,1/2) as a function of the mean parameter w. Values reported in brackets in
the legends indicate numerical slope of the lines fitted to the data. (c) Showing the first four non-trivial eigenvalues of Ly with
(p,q,7) = (1,2,1). (d) Showing the same results for parameters (p, ¢, r) = (1,3/2,1).

a balanced case with (1,2,1) and two unbalanced cases with (1/2,2,1/2) and (1,3/2,1). While our theory
does not make a prediction regarding the rate at which the second eigenvalue vanishes with w, we can still
use our theoretical insights to postulate uniform or ratio gaps between the second and third eigenvalues.

In the balanced case where ¢ = p + r we observe that the second eigenvalue vanishes with w while the
rest of the spectrum remains bounded away from zero; in contrast, in the unbalanced case ¢ > p + r the
third eigenvalue also vanishes and only a spectral ratio gap manifests. The results in the unbalanced case
q < p+r are less clear since the higher eigenvalues still vanish, but they do so rather slowly; this may be
attributed to numerical error. The results are in agreement with our analysis and numerical results in the
continuum limit and suggest that the characteristic behavior we prove for our specific construction of the
sampling density g is in fact a more general phenomenon that applies for other type of clustered data and
on finite data sets. Further details regarding this experiment are summarized in Subsection 5.4. <

1.5. Outline

The remainder of the paper is organized as follows. Section 2 sets up the necessary framework and
notation. Section 3 contains the precise statements of the key results Theorems 3.2 and 3.4, relating to Main
Result 1.1; proofs of these results are postponed to Section 6. Numerical results illustrating, and extending
the Main Result 1.1 and leading to the Conjecture 1.2 are presented in Section 4. Section 5 contains the
informal derivation of (1.1) from the parameterized family of graph Laplacians (1.2), and presents the formal
calculations and numerical experiments that were summarized under Contribution 3. Our conclusions are
given in Section 7. Appendices A, B, C, and D contain, respectively: connections between the diffusion maps
and L; discussion of function spaces; the min-max principle; and a weighted Cheeger inequality.
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2. The set-up

In this section we set-up the functional analytic framework for our theory and numerics. Subsection 2.1
describes the notation and introduces weighted Laplacian operators in this framework, and Subsection 2.2
is devoted to our precise formulation of binary clustered data in the perfect or nearly separated clustered
data setting.

2.1. Preliminaries

For an open subset Q C Z ¢ R? with C™! boundary, consider a probability density function ¢ satisfying

o€ C(Q), /@wmx:L o <ole) <ot Ve, (2.1)
Q

with constants o~, 0" > 0. We also denote the measure of subsets Q' of Q with respect to ¢ with the
following notation

1], ::/g(m)dm. (2.2)

Q/

Given a continuous probability density function g as above with full support on 2 C Z we define the
weighted space

L3(Q,0°) = u: /|u(x)\2g(x)5dx < 400 o, (2.3)
Q

with inner product

(o) = [ u(@pl)e(@)da, (2.4)
Q

for any s € R. This reduces to the standard L?*(2) space with norm | - ||;2() and inner product (-,-) if
0 =1 on Q. Furthermore, for ¢ > 0 a.e. on Q and parameters (p,q,7) € R3, we define the weighted Sobolev
spaces

u T
1 (0,0) = { & € 0.7 sl = (wdy <+

where the (-, )y inner product is defined as

wo=(o(2) 5 (), (25,

which is the natural inner product induced by the bilinear form <(£ + Q—lr)u, #> o We then introduce
oPTT
the following subspaces of L?(Q, o?*") and H*(, o):

VO(Q,0) = {% € L*(Q,0"7) - <§,1>

VHQ,0) :={ue H' (Q,0): (u,0")y =0} CV°(Q0).

=w@%=o}

oPtT
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We use H(Q) and V1(Q2) to denote the standard H' space, and its subspace excluding constants, given
by H'(Q,1q) and V1(Q, 1g). The former coincides with the usual Sobolev spaces while the latter coincides
with the subspace of H'() consisting of mean zero functions.

In this work, we focus on the class of weighted Laplacian operators defined by equation (1.1), for an
appropriate density ¢ and parameters (p, q,r) € R3. We generally suppress the dependence of £ on ¢ and the
constants p, g, r for convenient notation and make the choice of these parameters explicit in our statements.
As we show next, the operator L is positive semi-definite and since the first eigenpair (o1, ¢1) = (0, 0"1q)
is known it is convenient to work orthogonal to ¢; so as to make the operator strictly positive; in other
words, we consider the operator £ on the space V1(€, o).

Lemma 2.1. If o satisfies (2.1), then the bilinear form

o= (o5(2)(2)

is symmetric and positive definite on V1(Q, 0) x V(£ 0). In particular, the operator
L:VHQ, 0) — VYQ, o),
defined in the weak sense, is self-adjoint and strictly positive definite and the inverse operator
L71:VY9Q,0) — VQ, o),
exists and is compact.

Proof. The fact that £ is self-adjoint and strictly positive on V1(€, 0) can be verified directly. The fact
that £7! is well-defined follows from the Lax-Milgram Lemma [32, Lem. 2.32]. Compactness follows from
Proposition B.3. O

Following the spectral theorem [19, Thms. D.6, D.7] we then have:

Proposition 2.2. Let (p,q,7) € R3, and suppose o satisfies (2.1). Then L : VY(Q,0) — V°(Q,0) has a
discrete spectrum with eigenvalues 0 < o9 < 03 < ... and eigenfunctions {¢;};>2 € Vl(ﬂ,g) that form
an orthogonal basis in both V(Q,0) and V°(Q,0). Furthermore, we may extend L to the operator L :
HY(Q,0) — L*(Q2, 0P~") and include the eigenpair (o1,¢1) = (0, \Q|;ﬁT 0"1q).

Remark 2.3. Writing u = ¢"u’ and v = ¢"v’ we note that the identity (2.6) may be written as
<gp_q£(gTu’),v'>gq = (Vu', V') .
From this we see [35] that the operator
Gi=—""oLod
is the generator of the reversible diffusion process
dX, = —VU(X,)dt + V2dB,

where ¥ = —log(p?), and B denotes a d dimensional Brownian motion. This diffusion process has invariant
measure proportional to exp(—W) = 9. This observation thus establishes a connection between the operator
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L and diffusion processes which, when ¢ > 0, concentrate in regions where p is large and sampling density of
the data is high. For a more detailed discussion on the connections between diffusion maps and the operators
weighted elliptic operators £, see Appendix A.

2.2. Perturbations of densities

We now consider a specific setting of a density gg that is supported on a strict subset Z’ C Z, consisting
of two disjoint sets Z+ and Z~. We then consider a sequence of probability densities p. supported on the
whole set Z that approximate gg. In the next two subsections we outline our assumptions regarding Z’, g
and g, and introduce weighted Laplacian operators using these densities.

2.2.1. Assumptions on the clusters and densities
We begin by introducing a set of assumptions on the domains Z, Z’, the density gg, and the approximating
sequence of densities ..

Assumption 2.4. The sets Z, 2’ = Z+ U Z~ C R? satisfy the following:

(a) Z is open, bounded and connected.
(b) Z’is a subset of Z consisting of two open connected subsets Z* and Z~.
(c) Z* are disjoint from one another and from 92, the boundary of Z: 31,1’ > 0 so that

dist(Zt,27)>1>0, and  dist(2%,02)>1 > 0.
(d) 0Z and G2’ are at least C11L.

The assumption that Z* are well separated from 9Z in Assumption 2.4(c) is not crucial but allows for
more convenient presentation of our results. We think of Z+ as “clusters” in the continuum limit.

Assumption 2.5. The density g satisfies the following:

(a) (Supported on clusters) oo =0 on Z\ Z'.

(b) (Probability density function) [, oo(x)dx = 1. )

(c) (Uniformly bounded within clusters) Jo* > 0 so that o~ < go(z) < ot, for all 2 € Z'.

(d) (Smoothness) oo € C®(Z2').

e) (Equal sized clusters) Given p,r > 0, the density 07" assigns equal mass to Z* and Z~, i.e.,
0

/ Ot (z)dw = / oy (w)da .

Z+ z-

We highlight that Assumption 2.5(b) and (e) are not crucial to our analysis. Condition (b) is natural
when considering limits of graph Laplacian operators defined from data distributed according to a measure
with density gg, but all of our analysis can be generalized to integrable gy simply by observing that the
eigenfunctions of £ are invariant under scaling of gy by a constant A\, whilst the eigenvalues scale by A77P~".
Condition (e) allows for a more convenient presentation with less cumbersome notation but can be removed
at the price of a lengthier exposition; see Remark 6.2 below.

Given a density gg satisfying Assumption 2.5, we consider a sequence of densities o, with full support
on Z that converge to gy as € — 0 in a suitable sense. We have in mind densities o, that become more and
more concentrated in Z’ as € — 0. In what follows, we define
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Qs := {x : dist(z, Q) < 6}, (2.7)
for any set  C Z and denote the Minkowski (exterior) boundary measure of Q as
|09 := liminfl [192s] — €] -
50 6
It follows that when e is sufficiently small, 360 > 0 so that
|9\ Qf < 0€|0Q. (2.8)

Assumption 2.6. Let 0 < L := mindist(Z%,9Z). Then there is ¢y € (0, L/4) and constants K1, K5 > 0 such
that, for all € € (0,¢p), the densities o, satisfy:

(a) (Full support) suppo. = Z.

(b) (Probability density function) [, oc(x)dx = 1.

(¢) (Approzimation within clusters) 3K1 > 0 so that [|oe — 0ol[co(z) < Ki€ as € | 0.
(d) (Vanishing outside clusters) 3K5 > 0 so that g.(z) = Kqe for x € Z\ Z..

(e) (Controlled derivatives) K3 > 0 so that

|Voc(z)| < Kze™!, VoeZzZ\Z.

Once again Assumption 2.6(b) is not crucial to our analysis but is needed to make sure the operator L.
defined in (2.13) is the continuum limit of a graph Laplacian. As a consequence of Assumptions 2.5(c) and
2.6(c)-(e), it follows that o is uniformly bounded above and below inside Z’: there exist constants o= > 0
so that

0o S 0c(x) < of,, Vo€ Z and Ve e (0,¢). (2.9)

Note that the upper bound holds on all of Z as well, whereas the lower bound clearly does not in view of
Assumption 2.6(d).

Remark 2.7. The above set of assumptions on g., needed for the theoretical results in Subsection 3.2, are
rather specific. However, as demonstrated in Example 1.4 (see also the discussion leading to that example)
the results appear to generalize to settings where Assumption 2.6 is violated. This suggests that the limi-
tations of Assumption 2.6 reflect our method of proof; relaxing these conditions is an interesting direction
for future research.

Example 2.8. Consider the standard mollifier

1
Ctexp (_7) 2] <1, e
9(x) = L= laf? C e =9 (5), (2.10)
0 |z| > 1.

where C' = flrl <1 €XP (—ﬁ) dz is a normalizing constant. Now, given ¢ > 0 and the density gg (extended
by zero to all of Z) define

1

oc(x) := i (6 + ge * Qo(m)), K. = / (6 + ge * go(x))dx. (2.11)
z

One can directly verify that the above construction of g, satisfies Assumption 2.6. <
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2.2.2. Assumptions on the weighted Laplacian operators
With the densities gy and p. identified we then consider the operators £y and L. in the same form as

(1.1) as follows:
Lou = 1d1 (qu<u>> in 2’
= v — , i
o\ g

a (u
gga— (95) =0, on 0Z'.

(2.12)

Similarly for g,

Leu::—ipdiv<qV( )), in Z
Qe A

g2 (LY o, on §Z.
“on \ or

By Lemma 2.1 and Proposition 2.2, the operators

(2.13)

Lo : Hl(Z'7 00) — LQ(Z’, 7 and L. : Hl(Z, 0c) — LQ(Z, oP™")

are self-adjoint and positive semi-definite. Furthermore, £ has a zero eigenvalue of multiplicity two while £
has a zero eigenvalue of multiplicity one. Both operators have positive, real, discrete eigenvalues after the zero
eigenvalues. For j = 1,2, 3, ... let 0, ¢ and o, . denote the eigenvalues of £y and L. respectively (in increasing
order and accounting for repetitions) and let ¢, o and ¢; . denote the corresponding eigenfunctions. Recall
that p1,0 = |2/] plff oplz and @1 . = | Z] ler/f 0r'1z, both with corresponding zero eigenvalues. Since we are
interested in the eigenpairs for j > 2 it 15 more convenient to work orthogonal to the first eigenfunctions
from now on, that is, to consider the spaces V1(2’, g9) and V1(Z, o.) respectively. Thus, we consider the
pairs {00, 9,0} and {0}, @} for j > 2 that solve the eigenvalue problems

v —Tr
< oV (w@JO) v <9_>> = 05000 "pi00),  $i0vEVIE, ), (2.14)
0 0

and

. v .,
<QZV (%) ,V <7>> = 0je <Q§ Qﬁj’e,’U>, V).,V E V(Z,00). (2.15)

Qe Qé

Throughout the article we take ;0 and ¢, to be normalized in L*(Z2’, 05~ ") and L?(Z, gP~") respectively.
We collect some definitions and notation concerning the spectral gaps of the operators £y and £, and
Poincaré constants on certain subsets of Z and Z’; these are used throughout the article.

Definition 2.9 (Standard spectral gap Aa). We say that the standard spectral gap condition holds for a
subset Q of Z if the Poincaré inequality is satisfied on Q with an optimal constant Ax(Q2) > 0, i.e.,

/|Vu|2dx > AA(Q)/|u|2dx, Vu e VHQ). (2.16)
Q Q

We also define a certain gy weighted version of the above spectral gap definition.



F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189-249 203

Definition 2.10 (Ly spectral gap Ay). We say that the Ly spectral gap condition holds for a subset Q of Z’
if the following weighted Poincaré inequality is satisfied with an optimal constant Ay(£2) > 0

q u

o5 |V —
/ 0 (96)
Q

Observe that condition (2.17) is equivalent to the assumption that the second eigenvalue of the operator

2
u

or

0

bt dr, Yu € V1, 0o). (2.17)

dz > AO(Q)Q/

Ly restricted to the set () is bounded away from zero. Finally, we define the notion of a uniform spectral
gap for L..

Definition 2.11 (L. uniform spectral gap A.). Given ¢y > 0 we say that the £, uniform spectral gap condition
holds for a subset Q of Z if Ve € (0, ¢p) there exists an optimal constant A.(Q2) > 0 so that

[l (&)

Remark 2.12. To connect the spectral gaps of L. restricted to the clusters Z* with the spectral gaps of

2
o’ dx, Yu € VR, o0). (2.18)

U
o

€

2
oddx > Ag(Q)/
Q

the limiting operator £y on these clusters, one can make use of the knowledge that o, converges to og
on Z* by Assumption 2.6(c). More precisely, let us suppose (2.17) holds. We show in Theorem 3.1 that
01,0 = 02,0 = 0 and o039 > 0. Since p.(z) converges to go(z) pointwise for every = € Z’, this spectral
gap translates to £. for small enough ¢ within the set Z’, and so we can assert (2.18) for = Z*. The
assumption that the restriction of £, to Z* has a spectral gap is related to the indivisibility parameter in
the context of well-separated mixture models of [21].

Remark 2.13. Note that for subsets {2 where g, is constant, say o.(x) = ¢, condition (2.18) reduces to a
spectral gap of the standard Laplacian restricted to €, with the constant A in (2.16) replaced by AacPt™49.
This becomes important when investigating the behavior of £. away from the clusters Z* and is precisely
the reason why we obtain a condition on the sign of ¢ — p — r in our main theorems, see for example
Theorem 3.2.

3. Spectral analysis: statement of theorems

In this section we describe the spectral properties of the operators Lo and L. in relation to certain
geometric features in the data summarized in the densities gy and g.. We present precise statements of
our key theoretical results, postponing the proofs to Section 6. We define, and then identify, gaps between
the second and third eigenvalues of L. together with concentration properties of the second eigenfunction
@2.c as € | 0. More precisely, we show that the nature and existence of a spectral gap is dependent upon
the choice of p,q and r and, under general conditions, concentration properties of (5 . are directly related
to concentration properties of g.. In Subsection 3.1 we consider the perfectly clustered case pertaining the
operator Ly while Subsection 3.2 perturbs this setting and considers the nearly clustered case corresponding
to the operator L..

3.1. Perfectly separated clusters

Recall the concept of perfectly separated clusters from the introduction, the density oo and the resulting
operator Ly defined on Z’. The corresponding low-lying spectrum of Ly can be characterized explicitly:
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Theorem 3.1 (Low-lying spectrum of Lo and Fiedler vector). Suppose (p,q,r) € R3 and Assumptions 2.
and 2.5 hold. Then Ly is positive semi-definite and self-adjoint on the weighted Sobolev space H'(Z', o).
Denote its eigenvalues by 01,0 < 029 < --- with corresponding eigenfunctions ¢;0, 7 > 1. Then it holds
that:

(i) The first eigenpair is given by

1
01,0 =0, 01,0 = —75-00(%)1z/ (), Ve Z'.
|Z’|1/2 0

oBtr

(ii) The second eigenpair is given by

1
o20=0, 2,0 = ﬁ@g(x) (1z+(z) —1z-(2)), Ve e 2.

| I‘QS+7,
(1it) Lo has a uniform spectral gap, i.e., o309 > 0.

Part (i,ii) of Theorem 3.1 can be verified directly by substituting (1,0 and @2 into (2.14). Then it
remains to show (iii), the lower bound on the third eigenvalue o3¢ which follows from Proposition 6.1,
stating that £y has a spectral gap on Z’ so long as its restriction to each of the clusters Z* has a spectral
gap. Since gp is bounded away from zero on the clusters this condition holds since Z* are assumed to be
connected sets of positive Lebesgue measure.

3.2. Nearly separated clusters

We now turn our attention to the densities g, that have full support on Z, but concentrate around Z’
as € decreases. This represents the practical setting where we do not have perfect clusters Z* and so the
density go is perturbed. A central question here is whether the second eigenpair {2, 2.} of Le exhibits
behavior similar to the second eigenpair {020, p2,0} of Lo as 0. — 0o; that is, in the limit as we approach
the ideal case of perfect clusters Z*.

In order to establish such a result we first need to approximate the first three eigenvalues of L.:

Theorem 3.2 (Low-lying eigenvalues of L.). Let (p,q,r) € R satisfy p+1r > 0 and ¢ > 0, and suppose
Assumptions 2.4, 2.5, and 2.6 hold and that Ax(Z \ Z[ ) > 0 for a sufficiently small ¢ > 0. Then the
following holds for all (e, 8) € (0,€0) x (0,1):

(i) The first eigenpair is given by

1
T@Z(x)lz(:r) Ve e Z.

Ol,e = 07 Pl,e =
12|

ot
(ii) The second eigenvalue oo tends to zero as e — 0,
0 S 02.¢ S Eleq_ﬁv

with Z1 > 0 a uniform constant independent of €.
(iii) The third eigenvalue behaves differently depending on the (p,q,r) parameters:
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o if g >p+r, then 325, =3 > 0 independent of € such that,

Epe? 7P < gy < Eget P
and so L. does not have a uniform spectral gap on Z;
o if ¢ = p+r then there exist constants Z4,Z5 > 0, independent of €, so that
=4 <03, < Es,
and so L. has a uniform spectral gap on Z;
e if g < p+r, then there exist constants =g, 27 > 0, independent of €, so that

!t <03, <E7.

Once again part (i) can be verified directly by substituting ¢, in (2.15). Part (ii) is a consequence of
Proposition 6.4 that obtains an upper bound on o3  using a perturbation argument. More precisely, we first
construct an explicit approximation ¢, of 2 as a smoothed out version of @2 o, normalized in V!(Z, o)
and supported on a set slightly larger than Z’. We choose a parameter § > 0 such that |V | is controlled
by € # at the boundary of Z’. This is precisely the parameter  appearing in Theorem 3.2. By construction,
we then have that ¢ converges to the normalization of ¢ o as € — 0. Using this approximate eigenfunction
as well as ¢1 ¢ from part (i) in the min-max principle (see Proposition C.1) yields the desired upper bound
on 0.

Part (iii) requires more elaborate arguments as outlined in Subsection 6.2.2. The lower bounds on o3 .
follow from Proposition 6.7 that is in turn based on a generalization of Cheeger’s inequality (see Proposi-
tion D.1). The upper bounds follow from Proposition 6.8 the proof of which uses similar ideas as for the
upper bound of o5, applying the min-max principle but with a different candidate eigenfunction.

Several interesting conclusions can be drawn from our arguments in Subsection 6.2 aimed at proving
Theorem 3.2. The existence of spectral gaps for L. inside the clusters and away from the clusters separately
allows us to formally deduce bounds on the low-lying spectrum. Consider the set

Z! = {x : dist(z, Z') < €},

and suppose that for some fixed ey > 0, we have AA(Z\ Z/ ) > 0, that is, the standard Laplacian has a
spectral gap away from the clusters according to Definition 2.9. Since g.(z) = Kae for x € Z\ 2/, we have
for all uJ—]'Z\ZéO in VI(Z \ Zéo)

wor [ ()

2\zl,

2 ul?
— P dx .
Oc

e > Ax(2\ 2, (Kae) 7 [

€0

This simple calculation shows that A.(Z\ 2/ ) = O(¢?7P~"), and so the existence of a uniform L, spectral
gap away from the clusters is dependent on the relation between ¢ and p + r, in fact we need ¢ < p+r to
ensure Ac(Z \ 2/ ) > 0 independent of € which is in line with the conditions in Theorem 3.2(iii).

or ratio gaps in the spectrum of £, depending on (p, ¢, 7). This corollary is a detailed statement of Main
Result 1.1(iii).

Corollary 3.3 (Spectral ratio gap when q #p+r).
Suppose that the conditions of Theorem 3.2 are satisfied and that g # p+r. Then the following holds for
all (67/6) € (an()) X (07 1)
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(i) if ¢ > p+r then there exists a constant =1 > 0 independent of €, so that

g9 —_ —g—
€< :162(P+7“) q ﬁ;
03¢

(i) if g < p+ r then there exists a constant Zo > 0 independent of e,

g9 —_ —p—p—
22 < Eye2aPr B,

03¢

We note that while this corollary suggests that there may be no spectral ratio gap when ¢ > 2(p + )
or 2¢ < p + r, our numerical experiments in Section 4.2 (and in particular Tables 4.1 to 4.3) suggest
that these bounds on the ratio gaps are not sharp due to the fact that our lower bounds on o3, from
Theorem 3.2(iii) can be improved to match the upper bounds when g # p + r. We then conjecture that,

os,
in Subsection 1.3.2.

Finally with the spectral gap results established we can characterize the geometry of the second eigen-

when g > p+r, 22¢ < 5,778 and when g < p+r we have % < Z9€97P as summarized in Conjecture 1.2

function 2 . and show that as € | 0 this eigenfunction is nearly aligned with the second eigenfunction 3 o
of Ly for certain choices of (p,q,r).

Theorem 3.4 (Geometry of the second eigenfunction s ). Suppose the conditions of Theorem 3.2 are sat-
isfied. Then there exists Z, ¢y > 0 so that ¥(e, 3) € (0,€) x (0,1)

, 2
1— <<,02,e 802,0>

where @a,o denotes the normalization of @a in L*(Z,0P7").

< Zemin{3, 25", ~lg—(p+r)|+min{g,p+r}—F}
—_ = 9

We prove this theorem in Subsection 6.3 by bounding the difference between s  and ¢ in Propo-
sition 6.9 and then the difference between @3 and ¢p. in Proposition 6.11 and invoking the triangle
inequality. Note that the above bound blows up if 2¢g < p + r in the unbalanced case where ¢ < p+ r and if
2(p+1) < q in the unbalanced case where ¢ > p+ r. Put simply, if the difference between ¢ and p + r is too
large then we may lose convergence of the second eigenfunctions. However, we also expect these conditions
are not sharp since they rely on our lower bounds on o3, in Theorem 3.2(iii) that we conjectured can be
sharpened above. Theorem 3.4 is a detailed statement of Main Result 1.1(ii).

Remark 3.5. Two concrete messages follow from Theorems 3.2 and 3.4: (1) Theorem 3.2(iii) tells us that
particular care is needed when looking for a spectral gap characterizing the number of clusters if ¢ # p +r
as the gap may only be manifest in ratio form, not absolutely, leading to potential overestimation of the
number of clusters; (2) Theorem 3.4 tells us the form and geometry of the Fiedler vector which characterizes
the two clusters, and its dependence on gy and on ¢; whether or not the problem is balanced determines
whether the Fielder vector is approximately piecewise constant, or whether it exhibits smoother transitions
across the data. These two observations may be useful to practitioners when interpreting graph Laplacian
based analysis of large data sets.

4. Numerical experiments in the continuum
In this section we exemplify, and extend, the main theoretical results stated in the previous section. In

Subsections 4.1 and 4.2 we study binary clustered data. The numerical results in these subsections highlight
the effects of the parameters (p,q,r) on spectral properties: Subsection 4.1 addresses the balanced case
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Fig. 4.1. Schematic depiction of the dlfferent sets and functlons used in construction of ¢ . from (() 3) and @¢p . from (6.15). Top:
overhead schematic of the sets Z, Z+ Z Z Zi, and Z . Bottom: cross-section view of p., £ and £. close to the subset Z+

along the red line in the top figure. Here, €1 := € + e’ ex := €0 + €7, and €3 := €g + 2€° for € € (0,€9) and B € (0,1). The
function ¢ . is constructed using €1, concentrates on the clusters, and allows to prove an upper bound on o3 ¢; the function @¢p .
is constructed using e> and €3, concentrates away from the clusters, and allows to prove an upper bound on o3 . The vertical
dashed lines indicate the boundaries of the different sets as indicated below the figure.

where ¢ = p + r and Subsection 4.2 the unbalanced case where ¢ > p + r. In Subsection 4.4 we also extend
the main theoretical results by considering data comprised of three clusters and five clusters, showing that
the intuition from the binary case extends naturally to more than two clusters.

Our numerical simulations in the binary, unbalanced case extend the main theoretical results as they
demonstrate the spectral ratio gap of Corollary 3.3, arising when g > p + r is indeed of O(e?™") and when
q < p+ris of O(e?) suggesting the lower bound on o3 can be sharpened.

We proceed by outlining the setting of the numerical experiments. Consider the eigenvalue problem (2.15):

(09 (29) 9 () =ae{Ee l), pivevizo) (41)
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Fig. 4.2. Plot of the densities g, of the form (4.2) with three and five clusters for e = 0.0125.

Our numerics are all performed in dimension d = 2. We solve this by the finite element method using
the FEniCS software package [31]. We work with the variables ¢; /ol and v/o], rather than directly
with ¢; . and v, and discretize these g scaled variables using the standard linear finite element basis
functions in H'(Z). We approximate g, using quadratic finite element basis functions. Throughout we take
Z = (-1,1) x (—1,1). We consider ¢ in the range (1/1280,1/10). For each value of €, we approximate
the eigenvalue problem (4.1) using a mesh of 1.28 x 10° triangular elements defined on a uniform grid of
800 x 800 nodes. This finite element discretization leads to a generalized matrix eigenvalue problem which
is solved using a Krylov-Schur eigenvalue solver in PETSc [3] with a tolerance of 1077.
Throughout this section we use densities of the form

K _
0.(s) = €1 (HZM(G 1<9i_|8_ci|))> . Wsez, (4.2)

2
pt 4mo;

where | - | is the two dimensional Euclidean norm, K is the number of circular clusters, ¢; denotes the
ith cluster center, 6; the i*" cluster radius, and C is a normalizing parameter to make sure that o, is a
probability distribution. In Subsections 4.1 and 4.2 we consider two clusters with parameters ¢; = (—0.5,0.0),
01 = 0.25, c3 = (0.5,0.3), and 03 = 0.25 as shown in Fig. 1.1(a). In Subsection 4.4 we consider three and five
clusters adding the point ¢35 = (0.4, —0.5) with radius 65 = 0.15, to make three clusters, and then adding
cqs = (—0.35,0.65) and c; = (—0.6,—0.6) with radii 6, = 0.20 and 65 = 0.15, to generate five clusters. We
plot the resulting densities in Fig. 4.2.

4.1. Binary balanced case: q=p+r

In Fig. 4.3(a) we plot o2 in the balanced case r = p, ¢ = p+r and p € [0.5,2]. For a given value of p
each symbol denotes the numerical approximation to o3, and the line denotes the best fit determined via
linear regression; in the regression we only use data from e < 0.025 as consistent asymptotic behavior for
€ | 0 is observed in this regime. Theorem 3.2(ii) predicts that o9, = O(e?~#) for arbitrarily small 3 > 0.
Then we expect to observe a slope of approximately 2p for each set of simulations. We report the numerical
slopes in brackets in the legend of Fig. 4.3(a), and compare the numerical slopes to the analytic prediction
in the first four rows of Table 4.1.

In Fig. 4.3(b), we plot the ratio og /03, for different values of e. By Corollary 3.3 we expect o3, to
be uniformly bounded away from zero implying that og /03, = O(e7~?) and so the numerical slopes in
Fig. 4.3(b) should be close to 2p We compare the numerical slopes to the analytic slopes for the spectral
ratio gap in the first four rows of Table 4.1.
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Fig. 4.3. Variation of the second and third eigenvalues of L. in the balanced case with ¢ = p+r and for various values of p € [0.5, 2].
(a, b) consider r = p; (c, d) consider fixed r = 0.5. (a, c) show log(c2,.) vs log(e) while (b, d) show log(oz,e/03,c) vs log(e). The
values reported in the brackets in the legends are numerical approximations to the slope of the lines for different values of p.

Table 4.1

Comparison between numerical approximation of the rate of decay of log(os,.) and log(oz,e/03,e) as functions of log(e) and the
analytic predictions in Theorem 3.2 and Corollary 3.3 for the balanced case with ¢ = p + r and different choices of p and r.

log(o2,c) log(o2.c) —log(os.c)
log e log e
p r Analytic Numerical Analytic Numerical
0.5 0.5 1.00 1.02 1.00 0.99
1.0 1.0 2.00 2.05 2.00 2.03
1.5 1.5 3.00 3.08 3.00 3.04
2.0 2.0 4.00 4.20 4.00 4.12
1.0 0.5 1.50 1.54 1.50 1.52
1.5 0.5 2.00 2.05 2.00 2.03
2.0 0.5 2.50 2.56 2.50 2.53

In Fig. 4.3(c,d) we repeat the above study of the second and third eigenvalues for the balanced case
¢ = p+r but this time we fix r = 0.5 and vary p € (0.5, 2). We see similar results to Fig. 4.3(a,b) in that the
numerical slopes are in good agreement with the predicted slopes of ¢ = p 4+ r. We compare the numerical

and analytic slopes for this experiment in the last three rows of Table 4.1.

In summary we note that, in this binary balanced setting the numerical experiments match the theory,

quantitatively. The slopes are less accurate for higher values of p. We attribute this to the smaller values of

the eigenvalues in these cases, which are evaluated with less numerical precision.
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Fig. 4.4. Variation of the second and third eigenvalues of £, in the unbalanced case with ¢ > p+r, and for various values of p, ¢ and
r.In (a, b) we fix p = r = 0.5 and vary ¢ € [1.5,3]. In (c, d) we fix r = 0.5, ¢ = p+ 1 and vary p € [0.5,2]. (a, c) show log(oz,c) vs
log(€) while (b, d) show log(o2,./03,c) vs log(e). The values reported in the brackets in the legends are numerical approximations
to the slope of the lines.

4.2. Binary unbalanced case: ¢ > p+r

We now turn our attention to the spectrum of £, when ¢ > p + r. In Fig. 4.4(a, b) we plot the second
eigenvalue o3 . and the ratio o2 /o3, for p =r = 0.5 and vary ¢ in the range (1.5, 3). As before we fit a line
to the computed values of the eigenvalue and the ratio for each value of ¢ and report the numerical slope
in brackets in the legend; once again we fit the line to data points with € < 0.025 where the € | 0 regime is
manifest. We observe that o2 = O(e?) as in the balanced case while the ratio o2 /05 = O(eP*") which
is better than the predicted (9(62(1’”)"7) rate in Corollary 3.3. As mentioned earlier, these results suggest
that the lower bound on o3 in Theorem 3.2(iii) can be sharpened to match the upper bound. In Fig. 4.4(c,
d), we consider another case with ¢ > p+r but this time we fix » = 0.5 vary p € (0.5,2) and take ¢ = p+ 1.
Once again we observe that oo . ~ €7, which is consistent with Theorem 3.2(ii), and o3 /03, ~ /", which
is better than the predicted rate in Theorem 3.2(iii); again the results suggest that the lower bound on o3 .
can be sharpened to match the upper bound. We compare the numerical slopes with the analytic upper
bounds and with the conjectured O(eP™") rate for the spectral ratio gap in Table 4.2.

In summary we note that, in this binary unbalanced setting the numerical experiments are consistent
with the theory insight that only a spectral ratio gap will manifest between the second and third eigenvalues.
Furthermore, these experiments suggest that the lower and upper bounds on the third eigenvalue should
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Table 4.2

Comparison between numerical approximation of the rate of decay of log(oz2,.) and log(o2,e/03,c) as functions of log(e) and the
analytic predictions in Theorem 3.2 and Corollary 3.3. The last column denotes the conjectured slope of p 4 r for log(oz,c/03,¢)
for the unbalanced case ¢ > p + r. Negative analytic rates are omitted.

log(oa.c) 103(52,5)*105(53,5)
log e log e
p q T Analytic Numerical Analytic Numerical p+r
0.5 1.50 0.5 1.50 1.51 0.5 0.99 1.0
0.5 2.0 0.5 2.00 2.00 0.0 0.99 1.0
0.5 2.5 0.5 2.49 2.57 - 0.99 1.0
0.5 3.0 0.5 2.96 3.06 - 0.97 1.0
1.0 2 0.5 2.03 2.11 1.0 1.52 1.5
1.5 2.5 0.5 2.54 2.64 1.5 2.03 2.0
2.0 3.0 0.5 3.05 3.20 2.0 2.53 2.5

Table 4.3

Comparison between numerical approximation of the rate of decay of log(oz,c) and log(oz,./o3,) as functions of log(e) and the
analytic predictions in Theorem 3.2 and Corollary 3.3 for the unbalanced case ¢ < p + r. Compare values in the last column with
the prescribed values of q. Negative analytic rates are omitted.

log(oa.c) 10%(”2,&*“’%(”3,:)
Tog € Tog €
p q r Analytic Numerical Analytic Numerical
1 0.5 1 0.5 0.56 - 0.49
1 1.0 1 1.0 1.07 0.0 1.02
1 1.5 1 1.5 1.56 1.0 1.74
0.5 0.5 1 0.5 0.50 - 0.49
1.5 1.5 1 1.5 1.58 0.5 1.53
2.0 2.0 1 2.0 2.09 1.0 2.03

match, suggesting tighter bounds on the spectral ratio gap could be achievable forming the foundation for
the first component of Conjecture 1.2 in Subsection 1.3.2.

4.3. Binary unbalanced case: ¢ < p—+r

Next we turn our attention to the spectrum of £, when ¢ < p + r. Fig. 4.5(a,b) shows the second
eigenvalues o . as well as the ratio o9 /03 for p=7r =1 and g € [0.5,1.5]. Once again we fit a line to the
computed values of the eigenvalues and the ratios and report the slopes within brackets in the legends. We
observe that o2 . = O(e9) as in the ¢ > p + r cases; however we also notice that the ratio o2 /03, = O(e9),
an observation which suggests that Corollary 3.3(ii) can be improved; this in turn would be possible if we
could sharpen our lower bound on o3 . in Theorem 3.2(iii) to match the upper bound, resulting in a uniform
spectral gap.

Fig. 4.5(c,d) shows further examples with ¢ < p+r this time with r = 1 fixed and taking ¢ = p € [0.5,2.0].
Once again we observe that o2 . = O(e?) while 09 /03, = O(e?) as well, further reaffirming our conjecture
that the lower bound in Theorem 3.2(iii) is too pessimistic. We compare the analytic and numerical slopes
for the second eigenvalues as well as the spectral ratio in Table 4.3.

To summarize we derive two conclusions in this unbalanced case: First, our bounds on the second eigen-
value o2 ¢ are sharp but our bounds on the spectral ratio o2 /03 . are not sharp similarly to the ¢ > p+r
case and due to the fact that our lower bound on o3 ¢ is too pessimistic. Second, followed by this observation
we expect a uniform spectral gap to manifest between the second and third eigenvalues in the unbalanced
regime where ¢ < p + r, similarly to the balanced regime ¢ = p + r. These observations further support the
first component of Conjecture 1.2 from Subsection 1.3.2.
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Fig. 4.6. Variation of the third and fourth eigenvalues of L. in the three cluster setting with ¢ = p+ r, » = p and for p € [0.5, 1.5].
(a) shows log(os,.) vs log(e) while (b) shows log(o3,c/04,e) vs log(e). The values reported in the brackets in the legends are
numerical approximations to the slope of the lines for different values of p.
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4.4. Multiple clusters

We now consider two densities g which concentrate, respectively, on three and five clusters for small
€; the quantitative details are given in (4.2) and the text following; see Fig. 4.2. In Figs. 4.6 and 4.7 we
display the behavior of the K** eigenvalue and the spectral ratio gap related to it, for K = 3 and K = 5
respectively. In both cases we let ¢ = p + r and plot log(ok ) and log(ok /0K +1.) against log(e). The
numerics are consistent with the hypothesis that ox . ~ ox.c/oK+1,e ~ O(€?). This suggests a natural
extension of Theorem 3.2 and Corollary 3.3 from the binary case to multiple clusters.

In Figs. 4.8-4.11 we collect similar results for the unbalanced regime where g # p 4+ r. Once again we
see strong evidence that the multi-cluster setting behaves similarly to the binary case in that ox . ~ €4
while o ¢/ok11,e ~ €T when ¢ > p+ 7 and ok ,c/0K+1,c ~ € when ¢ < p + r in both the three and
five cluster cases. We provide further evidence for this conjecture in Tables 4.4 and 4.5 where we collect
numerical approximations to the above rates for different choices of p, ¢, r in the balanced and unbalanced
regimes. The above results lead to second component of Conjecture 1.2 appearing in Subsection 1.3.2.
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Table 4.4
Numerical approximation of the rate of decay of log(os,) and log(os,c/0o4,c) as functions of log(e) for different choices of p, ¢, r in
the three cluster setting.

p q r loiigse.s) 103(04,511);153(03.()
0.5 1.0 0.5 1.04 1.00
jr 1.0 2.0 1.0 2.06 2.03
& 1.5 3.0 1.5 3.097 3.04
I 1.0 1.5 0.5 1.55 1.52
o 1.5 2.0 0.5 2.06 2.03
2.0 2.5 0.5 2.57 2.53
0.5 1.5 0.5 1.53 1.00
0.5 1.0 0.5 1.04 1.00
_‘; 0.5 2.0 0.5 2.03 1.00
s 0.5 2.5 0.5 2.52 1.00
A 0.5 3.0 0.5 2.92 0.92
> 1.0 2.0 0.5 2.05 1.52
1.5 2.5 0.5 2.55 2.03
2.0 3.0 0.5 3.07 2.53
1.0 0.5 1.0 0.56 0.47
1.0 1.0 1.0 1.07 1.03
i 1.0 1.5 1.0 1.57 1.57
o 0.5 0.5 1.0 0.54 0.49
v 1.5 1.5 1.0 1.58 1.54
- 2.0 2.0 1.0 2.09 2.04
Table 4.5

Numerical approximation of the rate of decay of log(os,c) and log(os,./06,c) as functions of log(e) for different choices of p, ¢, in
the five cluster setting.

p q r loi();i,d 10g(05.(1)0—gleog(64.()
. 0.5 1.0 0.5 1.04 1.03
+ 1.0 2.0 1.0 2.12 2.06
aQ 1.5 3.0 1.5 3.17 3.09
I 1.0 1.5 0.5 1.61 1.55
S 1.5 2.0 0.5 2.12 2.06
2.0 2.5 0.5 2.63 2.57
0.5 1.5 0.5 1.59 1.03
N 0.5 2.0 0.5 2.09 1.04
+ 0.5 2.5 0.5 2.59 1.04
Q 0.5 3.0 0.5 3.14 1.05
A 1.0 2.0 0.5 2.11 1.56
S 1.5 2.5 0.5 2.62 2.07
2.0 3.0 0.5 3.16 2.59
1.0 0.5 1.0 0.58 0.50
N 1.0 1.0 1.0 1.11 1.08
+ 1.0 1.5 1.0 1.62 1.60
Q, 0.5 0.5 1.0 0.57 0.52
vV 1.5 1.5 1.0 1.63 1.59
S 2.0 2.0 1.0 2.14 2.10

5. From discrete to continuum

In this section we present formal calculations, and numerical experiments, demonstrating that the opera-
tors of the form £ in (1.1) arise as the large data limit of Ly as in (1.2) for parameters (p, q,7) € R?, and for
a density o supported on Z according to which the vertices {x, }N_; are i.i.d. Subsection 5.1 discusses the
construction of the discrete operators Ly and their properties including self-adjointness and invariance of
the spectrum under parameter choices. Subsection 5.2 outlines a roadmap for rigorous proof of convergence
of Ly to £ in the framework of [23,40,20] through the study of the convergence of Dirichlet energies, using
the law of large numbers and localization of the weights. These arguments reveal the relationship between
the discrete and continuum eigenproblems as well as the correct scaling needed in the discrete setting for
the spectra to converge, the topic of Subsection 5.3. In Subsection 5.4 we present numerical experiments
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demonstrating the convergence of discrete graph Laplacians to continuum limit operators of the form (1.1),
as well as manifestations of the theoretical results of Section 3 in the discrete N < +oc0 setting.

5.1. The discrete operator Ly

Let Xy € RN denote the matrix with columns {x,,}»_; sampled i.i.d. from a density o on some domain
Z. Following [18], we define a similarity graph on Xy by defining a weighted similarity matrix Wy with
entries

. ns(lzi —x5), i # 7,
Wij = o

0 =7,
where | - | denotes the Euclidean norm, ns(-) = §~9n(-/) for a suitably chosen edge weight profile 7 :
R>¢ —+ R>( that is non-increasing, continuous at zero and has bounded second moment. Furthermore, let
Dy = diag(d;) where d; := ij:1~Wij is the degree of node i. Since 75 is approximately a Dirac distribution
for small § > 0 it follows that d; is an empirical approximation of o(x;). Without loss of generality we
assume that the resulting similarity graph has no isolated points: d; > 0 for all 7. For ¢ € R, we introduce
the matrix W = Wx(q), a re-weighting of Wy, with entries

W,
Wij = a=m-1-a73
dil q/2dj1 q/2

with corresponding degree matrix Dy = diag(d;) where d; := Zjvzl W,;;. We now define the graph Laplacian
Ly asin (1.2) for (p,q,r) € R3,

Dy (Dy —Wy) D™ ", ifq#1,
DN—WN, ifq=1.

LN =

Let (-,-) denote the usual Euclidean inner product. Given a symmetric matrix A € RY*Y and vectors
u,v € RV, we define

(u,v)4 :=ul Av.

The matrix Ly is not self-adjoint with respect to the Euclidean inner product for general (p, ¢, r) but it is
self-adjoint with respect to the following (p, ¢, )-weighted inner product:

{5 ) p=lor ifg#1,
¢ par = D

More precisely, in the case g # 1, writing v = D" "u yields

p—1 1-p
—1

(W, Ln W) (pg0) = (D5 v, D57 (Dy = W) v) = (v, (Dy — W) v)

1
% ZWij o — w5 = 3 > Wiy
2,7

,J

(173 Uy

Jr/a=1 B J/ a1
J

?

If ¢ = 1, we have instead
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1 2
(0, Lvw)p,1,r) = (0, (Dy = Wy)uw) = 5 > Wi s —
,J

It immediately follows that the first eigenvalue of Ly is zero with corresponding eigenvector ¢ = D;V/(q_l) 1

if ¢ #1 and ¢ = 1 if ¢ = 1, where 1 denotes the constant vector of ones. The symmetric expression (5.1)
also shows why the graph Laplacian is a useful tool for spectral clustering: If the corresponding similarity
graph has more than one disconnected component, then choices of u; that take different constant multiples
of d:/(qfl) (if ¢ # 1; different constants if ¢ = 1) on each component of the graph set (u, Lyu), q.r) to zero.
As a consequence, a simple continuity argument (highlighted in [33]) demonstrates that the eigenvectors
corresponding to the low lying spectrum of Ly contain information about the clusters in X. Note also
that for the more common parameter choices (p,q,r) = (1,2,0), (3/2,2,1/2) and (1,1,0) discussed in the
introduction (see Subsection 1.2), the weighted inner product (-, -)(p,q,) reduces to the usual Euclidean
inner product. We say (o, u) is an eigenpair of Ly for parameters (p, g, ) if

<LNL17 V>(p,q’,‘) = O'<11, V>(p,q,r) Vv € RN s

and thanks to the assumption that d; > 0 for all 4, this statement is equivalent to the matrix equality
Lyu=ou.

Remark 5.1. The spectra of two graph Laplacians with parameters (p1,q1,71) and (p2, g2, 72) are identical
if

p1+r1=p2+r2, q1=q2. (5.2)

This is true both in the discrete setting for the family Ly defined in (1.2), and in the continuum limit
for the family of weighted elliptic operators £ defined in (1.1). Here, we focus on the discrete setting; the
argument in the continuum limit is analogous.

To see that this result holds, let L% denote the graph Laplacian defined by (1.2) with parameters
(pi,qi,ri), for i = 1,2. The second condition in (5.2) ensures that the weights W and degrees Dy are the
same for both graph Laplacians and the first condition suffices to make their spectra identical.

Indeed, assume that (o,u) is an eigenpair of L} in the (p1, g1,71)-inner product,

1 —
<LNu7 u>(p1,th,7“1) = U<u7 u>(p1,¢h,r1) :
%(mflflrl 7172*1*{2) p1—p2
: ~ oL 1 - a2 - _ q1—1
Defining @i := Dy u= Dy u, we have
<u’ u>(p17q1ﬂ”1) = <u7 u>(p2,Q2,T2) :
1 T2

Now writing v := D;,ﬁu and vV := D;,‘”jﬁ we realize that v = v for parameter choices (p1,¢q1,71) and
(p2, g2, r2) satisfying (5.2). We conclude that
(LA, @) (ps,g.2) = (DN = WN)¥, ¥) = (Dn = W)V, V)
= <L}Vu7 u>(p1;‘11,7‘1) =o(u, u>(p1,Q1,T1)

=0(@, 0)(p, g5,12)

and so (o, 1) is an eigenpair of L%; in the (ps, g2, ro)-inner product.
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Remark 5.2. There are a number of graph-based algorithms which proceed by making a preliminary density
estimate via a preliminary weight matrix W. In the approach described above, and when ¢ < 2, the rescaling
of the weights from W to W enlarges affinities between points in regions of low sampling density; this adds
robustness to graph-based algorithms, minimizing unwanted impact from outliers in the tails of p. This is
sometimes also achieved through a rescaling within 7s defining

~1-q/2 5+ 1—q/2 L
Wi = {né(di ! b B i — 24) i # J
0 i= .

This idea of variable bandwidth originates in the statistical density estimation literature [30,42] and was
introduced to the machine learning community, in the context of graph based data analysis, in [46]. It would
be of interest to study limiting continuum operators in this context. Analysis that is relevant to this question
is undertaken in [7] where aspects of the work of [14] are generalized to the variable bandwidth setting.

5.2. Convergence of Dirichlet energies

In this subsection, we describe why we expect the spectra of discrete operators Ly to converge to the
weighted Laplacian operator £. In simple terms, the limit rests on using the law of large numbers to capture
the large data limit N — oo, in tandem with localizing the weight functions 7s by sending 6 — 0 so that
they behave like Dirac measures. To make these ideas rigorous the two limits need to be carefully linked.
Here, however, we simply provide intuition about the role of the two limiting processes, considering first
large N and then small §.

For a vector u € RY, we define the discrete weighted Dirichlet energy Ens : RN — [0, 00),

N2r—q

Ens(u) == 5

(u, Lnu)(p,g,r)-

This energy can be extended to functions defined on Z. To achieve this, for v : Z — R, we write u; := u(z;).
Our aim is to study the limiting behavior of the functional Ex s as N — oo and § — 0 on a formal level.
In the limit, we obtain the continuous weighted Dirichlet energy E : L*(Z, 0P~") — [0, 00] defined as

E(u) Hu, Lu) p-r  if we HY(Z,0),
u) =
0 it ue L*(Z,0")\ H'(Z,0).

Once the convergence of the Dirichlet energies has been established, generalizations of the results in [13,20,
23,45] are possible.

The set of feature vectors Xy induces the empirical measure uy = % Efil 0z;, which allows one to
define the weighted Hilbert space L?(Z, ux) with inner product

N
(0) 2z = [ u()ola) dun(e) = 5 - ulai)ola).

Z

Since the feature vectors x; are i.i.d. according to the law o, we have duy(z) — o(x)dx as N — oco. Further,
we introduce the functions d¥-°, N : Z — R as follows:

VO () 1= / ns(| — y]) dpn (y)

Z
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dN,6 ) = 776(|{l7—y|) . |
(z) Z/(JN,&(x))lq/z (d*N,é(y))lfq/Q pn (y)

Note that
CZZ' = NCZN’(S(iEi) s dl = Nq_ldN’é({L'i) .

For a vector u € RY, we can then rewrite the discrete weighted Dirichlet energy Ey s using (5.1) (case

q#1):

Uj U

g/ /=1
J

N2r—4a N2r—q
Ens(u) = T(uaLNu>(P7QJ') T o2 ZWU

1,9 i
N2r=a ( Wi ) Uu; U ’
=25 (s ) | -
262 — Czil_q/2d~j1_q/2 dz/(q—l) d;/(q—l)
Z( n(s(m ) )
9252 N2 1 2~ 1—q/2
Y N N6 a/ (dN5(z5)) a/
2
(173 Uj

r/(g—1) r/(g—1
(AN (z;)) /(g—1) (AN (x;)) /(q—1)

This formulation allows us to extend Ey s from vectors to functions on Z. More precisely, for u : Z — R,

nd@—yD
Ens(u = 952 // < N5z 1 7/2 (JN,é(y))lq/2>

ZXZ

we have

2

ulo) uly) dpo (@) dpn () (5.3)

(@) (@)Y

Now notice that, by the law of large numbers,
d(z) — d°(z), dNO(z) — d°(z) as N w00 VzeZ,

where the functions d°,d’ : Z — R are given by

d’(z) == T — dy, d(x) = (|7 ~ y)) dy .
@ Z/ me—shol)dy, &) Z/ T

Define

o= [nllahde,  sim Z/ le1 - &Pn(jel) d. (5.4)

zZ

with e; denoting the first unit standard normal vector in R?. Taking 6 — 0 as a second step, we obtain

d°(z) — soo(z), d°(x) — s o () Vre Z.

Therefore, for smooth enough u : Z — R, expression (5.3) allows us to estimate
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na(lx*yl)
EN,& u) 252 // ( dN5 1 q/2 (czNa‘S(y))l_qﬂ)

ZxZ
u(@) u(y) ’
(dN,é(x))T/(fI—l) B (dN75(y))T’/(q—1) dun (z)dpn (y)
Ng! ns(lz —yl)
2522¢ ( d5 1 q/2 (d5( ))1Q/2>
2
u(z) u(y)
x (dé(x))r/(qfl) B (dts(y))r/(qfl) o(z)o(y) dudy

s 1 ns(lz —yl)
o f ((*(@)1 " >)1“”2>

6<1 1 s 1
~ v
2 artema / o(z)?—a

zZ
22r+2q/‘(
zZ

This is the desired result. To develop a theorem based on these calculations requires taking N — oo

concurrently with § — 0, and may be done in the framework of [13,20,45].

Remark 5.3. While the above arguments primarily concern proximity graphs; the method of proof in [13]
is more general and can be applied to k-NN graphs as well. However, the resulting limiting process gives
a different relationship between the continuum operator £ with a certain choice of (p, ¢, r) and the correct
normalization of the discrete Laplacian L.

Remark 5.4. Not all graph Laplacian normalizations lead to differential operators of the type (1.1) in the
large data limit, and this is the motivation for introducing the parameters (p,q,r) as graph Laplacian
weightings of type (1.2). For example, the operator Dy*(Dy — Wy)Dy' with ¢ = 1 does not correspond to
a continuum operator of type (1.1) in the same large data limit, for any choice of s,t € R\ {0}.

5.3. Discrete vs continuum eigenproblems

In this subsection, we make explicit the relationship between the discrete and continuum eigenproblems
and highlight the correct scaling needed in the discrete setting for the spectra to converge. Let (o, ) be
an eigenpair of £ and take a test function ¢ € H'(Z, 0). The arguments in Subsection 5.2 show that for
vectors u,v € RY where u; = ¢(2;),v; = ¢(z;), we have

N2r—a N>15<l S
52 <LNu7 V> (p,q,r) ~ 288744’_2_,1 <£<P7 ¢> oP—T "

With a similar argument, one can identify the continuum analogue of the weighted inner product (u, v)(,.q.n)
by rewriting it in terms of ¢ and ¢:



F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189-249 221

p—r—1

N
N""P(u,v)(pqr) = N "P(u, DU v)=N"""? Z u;vd, !
i=1

4

N p—r—1

= NP ()l NPT (a0 (2g) T

i=1

- / p(@)6(x) (4 ()

Z

p—r—1
q—1

dun(x).

Recall from Subsection 5.2 that by the law of large numbers, d™-°(z) — d’(z) as N — oo, and taking § — 0
as a next step, we obtain d®(z) — s1~'g?"!(z). Therefore,

NP V) gy B / p(@)6(@) (@) T o) da
zZ
Bt [ewtetar s,

In other words, for an eigenpair (Gn .5, u) of the weighted graph Laplacian matrix Ly solving
<LNLI, V>(p,q,r) = &N¢5<u, V>(p,q,7‘) R Vv € RN (55)

we expect that

2Sg+r—q+1

m@']\],gﬁa, aSN-)OO76—>O,

where o is an eigenvalue of L,

(Lo, @) gp—r = (P, D) pp—r -

These considerations imply that the discrete eigenvalues of Ly need to be scaled appropriately in order to
converge to the eigenvalues of L.

Remark 5.5. It is shown in the papers [13,23,40,20] that for the parameter choices (p,q,r) = (1,2,0) and
(3/2,2,1/2) and in the limit as N — oo and § := oy — 0 at an appropriate rate with N, the discrete
operators Ly converge to £ on Z. Those papers analyze the convergence of the Dirichlet forms associated
with Ly (defined with respect to real-valued functions on the vertices Xy) to those associated with £
(defined with respect to real-valued functions on Z). In particular, [23,40] use I'-convergence arguments
based on the T'L? topology to prove convergence. This topology may be used to study I'-limits of other non-
quadratic functionals defined with respect to real-valued functions on the graph — see [18], for example. A
similar methodology can be applied to show convergence of Ly to £ for any choice of parameters (p,q,r) €
R3. However, the I'-convergence framework does not result in rates of convergence for eigenvalues and
eigenvectors of Ly making it difficult to extend continuum analyses, such as our Main Result 1.1, to
practical discrete problems. In contrast, the more recent articles [13,20,45] take a more direct approach to
proving the convergence of Ly to £ and obtain rates. The rigorous study of this limiting procedure for the
general (p, q,r) family of operators is the subject of future research.

Remark 5.6. The fact that the scaling factor in front of Gy, has a dependence on NPT"~7 once again
highlights the special role of the balanced case g = p + r.
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5.4. Numerical experiments in the discrete setting

In this subsection we present a set of numerical experiments concerning the spectrum of discrete graph
Laplacian matrices Ly. Our goal here is twofold: 1) we support the theoretical findings in Subsection 5.3 by
showing that as N — oo and § — 0, the eigenvalues of Ly converge to those of £ after appropriate scaling
by N, 6 and for different choices of (p,q,7); 2) we show that the continuum spectral analysis of Section 3
manifests for the setting of finitely many samples as well. In particular, we show that a uniform spectral
gap for Ly exists when ¢ = p + r but disappears when ¢ > p + r.

In what follows, we display two numerical examples: choosing ¢ to be (i) a piecewise constant mixture
model, and (ii) a mixture model with exponential components.

5.4.1. A piecewise constant mixture
For the set-up of our numerical experiments, we choose Z = (0,1) x (0,1) C R? and define the sequence
of densities

Yt = (t1,t2)" € Z. (5.6)

€, 1 02,08,
&(t):{ t1 € ( )

2.5 —1.5¢, t €[0,0.2]U[0.8,1],

Thus as € — 0 the density g. vanishes inside a strip in the middle of Z while the rest of the probability mass
is split equally between two rectangles to the sides of Z. Note that o, is discontinuous by definition and
so it does not satisfy all of our assumptions from Subsection 2.2. For fixed values of ¢ we sample vertices
{;}N, ii.d. with respect to g, and construct a weighted graph W with entries Wi; = ns(|z; — 2;|) as in
Section 5.1. As for the kernel ns we choose

1
775(75) = ml[o,é) (t)’ vt € [Oa +OO)7 (57)

for which we can easily compute the normalizing constants defined in (5.4) to be sp = 1 and sy = 1/4.
We can then proceed to define the graph Laplacian matrices Ly as outlined in Subsection 5.1 for different
choices of (p,q,r) € R3. It remains to choose a relationship between 6, N to ensure convergence of the
spectrum of Ly as N — oo and § — 0. Following [13] we choose

5= <1°g]E[N)>1/3. (5.8)

Although this choice is not justified theoretically at this point we find that it is sufficient numerically to
achieve convergence of the eigenvalues.

In Fig. 5.1 we plot the first four non-trivial eigenvalues oy s of Ly as a function of N for ¢ = 273 and
various choices of (p,q,r) in both balanced and unbalanced cases. Each reported eigenvalue was averaged
over twenty redraws of the vertices. We clearly observe that as N — oo the eigenvalues converge although
the larger eigenvalues appear to converge more slowly. In Fig. 5.2 we plot the relative errors between the
discrete eigenvalues oy s and the continuum eigenvalues o computed using our finite element solver from
Section 4 with the density o, as in (5.6). We observe that in both balanced and unbalanced regimes the
discrete eigenvalues converge to their continuum counterparts although the convergence plateau’s in the
q > p+r case at around le — 3 most likely due to numerical errors. We observed that convergence improves
for larger values of e.

For our next set of experiments we consider the behavior of the discrete eigenvalues oy s as € vanishes. We
fix N = 2% and choose e = 272, ...,27%. Here we redraw the vertices five times and average the computed
eigenvalues over these five trials. Fig. 5.3 shows results that are analogous to Fig. 1.1(b,c). We observe that
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Fig. 5.1. Convergence of the first four non-trivial discrete eigenvalues on s as a function of N for different values of (p, g,r) and
e = 273 with vertices distributed according to (5.6).
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Fig. 5.2. Relative error between the first four non-trivial discrete eigenvalues on,s and the continuum eigenvalues o as a function

of N for different values of (p, q,
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Fig. 5.3. The dependence of the non-trivial discrete eigenvalues o 5 as a function of € for different values of (p,q,r) and N = 213
with vertices drawn from (5.6). The reported values within the brackets in the legend are the slopes of a linear fit to the last three
data points indicating the rate at which the corresponding eigenvalues vanish with e.

in the balanced case where ¢ = p + r the second eigenvalue vanishes like € while the larger eigenvalues
remain bounded away from zero as predicted by Theorem 3.2 and confirmed by our numerical experiments
in Subsection 4.1. The case where g > p+r also agrees with Theorem 3.2 as well as our continuum numerical
experiments in Subsection 4.2 and in turn with the first component of Conjecture 1.2, as we observe that the
second eigenvalue vanishes like €4 while the third eigenvalue vanishes like €77, Finally, in the ¢ < p+7 case
we observe a similar behavior to the balanced case where a uniform spectral gap manifests while the second
eigenvalue appears to vanish at a rate that is slightly faster than €2 which we attribute to numerical errors.
Hence, our discrete experiments are once again in line with continuum experiments from Subsection 4.3 and
further support the first component of Conjecture 1.2.
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Fig. 5.4. Convergence of the first four scaled discrete eigenvalues oy s as a function of N for different values of (p, ¢,r) and w = 1.973
with vertices distributed according to (1.4).

5.4.2. An exponential mizture

Here we give full details of the numerical experiments presented in Example 1.4 in Subsection 1.3. We
use the same kernel 7y and parameterization of 6(N) as in (5.7) and (5.8) respectively. Similarly we choose
Z =(0,1) x (0,1) C R? but sample the vertices of the graph from the density g, as in (1.4), see Fig. 1.2(a)
for a plot of g, with w = 1/4.

In Fig. 1.2(b,c,d) we fix N = 213 and choose w = (1.9)7%,...(1.9)~%. Each data point is obtained by
averaging the first four eigenvalues of Ly over five trials where the vertices of the graph are redrawn from
0w- As we already discussed in Example 1.4 our numerical results indicate that the relationship between p,
q and r has a major impact on the gap between the second and third eigenvalues of L. In particular, when
q < p+ r a uniform gap is observed while when ¢ > p 4+ r only a ratio gap manifests. We also note that
the rate of decay of the second and third eigenvalues as a function of w in Fig. 1.2(b,c,d) is different from
the rates we obtained as a function of the perturbation parameter e since g, vanishes exponentially fast in
the middle of the domain which violates our assumption that the density satisfies ¢ = Ke away from the
clusters. Finally, in Fig. 5.4 we plot the first four non-trivial eigenvalues oy s of Ly for e = 1.976 and for
different values of N. Analogously to Fig. 5.1 our results show that the first few eigenvalues of Ly converge
as N — oo for the exponential mixture model as well.

6. Spectral analysis: proofs

In this section we present proofs of the theorems in Section 3. The essential analytical tools in our spectral
analysis are the min-max and max-min formulas from Appendix C, together with a new weighted version
of Cheeger’s inequality given in Appendix D. We adopt the same organizational format as Section 3. In
Subsection 6.1 we discuss the perfectly clustered case, and then consider small perturbations of this setting,
the nearly clustered case, in Subsection 6.2. Theorem 3.2 is proved in Subsections 6.2.1, 6.2.2 and while the
proof of Theorem 3.4 is outlined in Subsection 6.3.

6.1. Proof of Theorem 3.1

As detailed in the discussion following Theorem 3.1 it only remains to characterize the third eigenvalue
of Eo.

Proposition 6.1. Suppose Assumptions 2.4 and 2.5 are satisfied and the Ly spectral gap condition holds on
the clusters Z* with optimal constants AT := Ao(ZF) > 0 separately. Then 039 > min{AJ, Ay} > 0.

1/2
ob "

Let u € VI(Z’, o) so that uLlspan{p1,0, 20} in L2(Z’,05""). A direct calculation shows that this means

Proof. Note that Assumption 2.5(e) ensures that po = |2'|',2, 0" (1z+ — 1z-) belongs to VO(Z’, gg).
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the restrictions u|z+ of u to the clusters Z* are orthogonal (with respect to the L?(Z%, ob~"|z+) inner

products) to the restrictions gfj|z= of g and belong to V(2% go|z=). Thus following the £y spectral gap
assumption, see Definition 2.10, u|z+ satisfy Poincaré inequalities of the form (2.17) on Z* with optimal

2 2
ggda:/’v (“) ggder/‘V (“)
Qo Qo
Z+ Z-

constants A(jf. Hence

JF (&)

2
oddx

2 2
> min{AJ, Ay } (Z/ % gg”daﬂr/ o Qgﬂ‘dx
|1 J 1%
u |2
:min{Aar,Aa}/ o o dx.
0

zZ!

The result now follows from the max-min formula (C.2) in Theorem C.1. O

Remark 6.2. If Assumption 2.5(e) is dropped then the two terms in the definition of 2 ¢ need to be weighted
by appropriate constants to ensure [, ¢20(x)of(x)dz = 0 so that @29 € VO(Z', 00).

6.2. Proof of Theorem 3.2

We now turn our attention to the densities g, that have full support on Z, but concentrate around 2’ as
€ decreases. Throughout this section, we routinely assume that Assumptions 2.4, 2.5 and 2.6 are satisfied
by the domains Z, Z’ and densities go and g.. Throughout, the constants = and =; for any j are arbitrary
and can change from one line to the next.

We start by constructing an approximation for o9 . (the second eigenfunction of £.) that is used through-
out this section. Fix € > 0 and define the sets th1 and ZF as in (2.7), where ¢; = € + ¢’ with a parameter
0 < B < 1. We choose € small enough so that Z1 and Z_ are disjoint. Consider functions (£ € C*°(Z2)
that satisfy

gei(x):]w :L'GZEi,
0< 5?(1}) <1, |V§ei(a:)| < Pe P, T € Zeil \Zei,

for some constant ¥ > 0 independent of 3. The £ are smooth extensions of the set functions 1 z+. They
can be constructed by convolution with the standard mollifier g. in the same manner in which p. was
constructed in (2.11) (also see [32, Thm. 3.6]). Now define the functions x* € C*(Z) by renormalizing £
in L2(Z,0077),

X&=0reh xd=hoel, (6.1)
where the coefficients b* € R, are chosen to satisfy
[andan= [ @t s,
z4 Z5 (6.2)

b+ b = 2.
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The first condition ensures that o” (xI — x-) € V°(Z, o.), whereas the second condition is not necessary
and chosen for closure and convenience in the calculations that follow. For a schematic depiction of these
constructions, see Fig. 4.1.

We define the following ansatz as an approximation to ¢

oc(x) X& (z) = xe (@)]
||g§($) [Xj(m) — Xe (x)] HL2(Z7Q€—T) - (63)

PFe(T) =

Observe that ¢ . is simply a smooth approximation to the zero extension of ¢3¢ to all of Z by an element
of VO(Z, 0.). The dependence on 3 > 0 has been omitted in g for notational convenience. One should
choose /3 large enough in order for the set Z/ to be close to Z/. However, this has to be balanced with small
enough #3 such that the derivatives VI are allowed to be steep enough for ¢ F,c to be a good approximation
of the Fiedler vector ¢ ¢. The following lemma is useful throughout the rest of this section.

Lemma 6.3. Suppose that p+r > 0 and that Assumptions 2./, 2.5 and 2.6 hold and let bt be as in (6.1).
Suppose € € (0,¢9) for a sufficiently small g > 0. Then there exists a constant Z > 0, independent of € so
that

| _ 1‘ <= m1n{1,p+7} )

Proof. Consider the ratio

f = o0l d
fz FTTES da

Solving (6.2) for b we obtain b} = T >~ and b, = 2; Thus if we can show that
2, — 1] < 5yeminllrtr} (6.4)

then |, + 1| = |[(=2) — (2. — 1)| > 2 — |2 — 1], and so

= min{1,p+r
=1 { ; = mm{Lp—i—r}

|:|EE—1|< 2 — 1

€
bE — <E
1b¢ Ec+1] ~ 2— B — 1] = 2 — Ejemin{lptr} =

for some = > 0, which concludes the proof of the lemma. It remains to show (6.4). Following Assump-
tion 2.6(c, d), for sufficiently small e,

f[or 8o+ KET @220\ 2]
Jz- ot dx
fz+ oo+ EKr€)P dr + [54 50 08T dr + KP+T€p+7“|Z(tO+E€) \ 2
T, (oo = KodPde |

Ee <

Note that [+ 5, 087 dx < (0 )P77|25\ 27| < (of )77 0e|0Z| following the remark after (2.9) and using
(2.8). For 0 < p+r <1, we use the inequality (a + b)p+q < (aP*" + bPtT) for any a,b > 0, and obtain

fz+ 0f " da + EpePt
fz of " dx — Egertr

=
e

Thanks to Assumption 2.5(e), [ ohdr = [ - ob"" dz, and so Taylor expanding in ZzeP*" yields
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[1]

St [ 4 B | P O (E04) < Fy et
(fz— ot da

since gp is bounded below uniformly on Z~ by Assumption 2.5(c).
If p+r > 1 on the other hand, we simply Taylor expand (0o + K1€)P™" and (g9 — K1¢)P*" directly, and
obtain

=, < [z 0 dx + Sne
T [, oh T dr — Ese

S1+Elev

again using the uniform upper and lower bounds for gy on Z*. The lower bound on +(Z, — 1) follows in a
similar manner. 0O

6.2.1. Proof of Theorem 3.2(ii) (second eigenvalue of L)

Proposition 6.4 (Second eigenvalue of L.). Let (p,q,7) € R3 satisfying p+r > 0 and g > 0, and suppose
Assumptions 2./, 2.5, and 2.6 hold. Then 3¢y > 0 so that V(e, 8) € (0,¢0) x (0,1),

0 S 02.¢ S EEQ?B;
where E > 0 is a uniform constant independent of €.

Proof. Fix an ¢y > 0 and let € € (0, ¢g]. Recall that ¢ € VY(Z, o) thanks to (6.2) and is normalized with
respect to the L?(Z, ¢?~") norm. Now consider the Rayleigh quotient

_Je v () et

Jz

for functions u € span{y1 c, ¢r.}. Note that Re(p1,) = 0, and so Re(u) < Re(pre). Therefore, we can
consider u € V1(Z, g.). Following the min-max principle (C.1) we simply need to bound R.(¢p.) to find
an upper bound for o3 . Let

RG(U) : 2 ’
o’ dx

u
=
Qc

= (PO )

=0 eel(r()l,fso] loebe = ]”Lz(zvng)
and note that provided ¢ is small enough, =y > 0 following Lemma 6.3, the fact that x* have disjoint
supports, p + r > 0 and using that g, is bounded above and below on Z’ by (2.9) (see also Lemma 6.10 in
Section 6.3 for a more detailed argument). Using 0 < b* < 2 and Assumption 2.6(d), we have

Roloro) < o [1V(68 - &) ot
Z
4 n N2
— / IV (& - &) gtda (6.5)
zL\2
16 K392

< _72|Zé1 \ Z/|e1728 < 5e17P,
=0

since |2 \ 2| < |ZL \ Z'| < 0(e + €°)[02'| < E1€” by (2.8) and since 8 < 1. It now follows from (C.1)
that oo < =P 0O
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6.2.2. Proof of Theorem 3.2 (third eigenvalue of L)

We prove the bounds on the third eigenvalue of L. in a series of propositions and corollaries. In particular,
part (iii) of Theorem 3.2 follows by combining Propositions 6.7 and 6.8 below. We start with a general result
that ties the existence of a L. spectral gap on Z to spectral gaps on subsets of Z.

Proposition 6.5. Let (p,q,7) € R? satisfying p+7r > 0 and ¢ > 0, and suppose Assumptions 2./, 2.5, and
2.6 hold. Let

Ale) :==min{A(Z1),A(Z\ 20)} > 0, (6.6)

for some ey > 0. Then there exist constants s,t,Z1,E2,23 > 0 independent of € so that Ve € (0, ),

03, = min {/\()(1——(5

1 ) _ = min{t,s}
1+._QA )ES aA(€) (1 Z3€ )}

Proof. Note that it is possible that A(e) = 0 if the spectral gap condition in Definition 2.11 is not satisfied
in Zj(‘) or Z\ ZE‘;. If this happens for some € € (0, €y), then the proposition trivially holds. Therefore, we
assume from now on that A(e) > 0 for all € € (0, €p).

Let u € VY(Z,0.) and ulpp, with respect to the (-, -)y-inner product. Without loss of generality
assume ||uHL2(Z)Q€7T) = 1. We will prove the desired lower bound for R.(u) and use the max-min principle
(Theorem C.1) to infer the lower bound of o3 .

By definition of A, we have

2 2 2
/‘V(%) gﬁdmz/’V(%) oldr + / ‘V(%) oldx
QC Qe QS

z zH 2\24,
v 2
ZAe(Zjo)/ — —iigy| odz
24
2
(2\2y) [ |-y @i
2\z2d, ‘

where for subsets 2 C Z we used the notation (recall (2.2))

1 u
UQ = ———— — p+rd.’1}. 6.7
; |ﬂ|gg+r9/ () o0

After expanding the squared absolute values and rearrangement we get

1 U 2 U

- V _ de> _

A<e>/‘ (g:) o —/gr
Z Z

€
G |28 | e + WG 5 |2\ 2| e (6.8)

2
X" dx

_2ﬂz$/ugfdx—2ﬂz\z$ / uoldz.
23 2\24

We further discard the terms in the second line as they are positive, which leaves us with the lower bound:
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1 u\|? u |?
— V{— Q‘gde/ — Q€+Td.73
A(e)/’ (92) or
z z
—2<uz:5/“£7€dx+“z\z:5 / uggodx).
z4 Z\ZF

Using Holder’s inequality and the normalization [[ul| ;. (z,07-7) = 1 we obtain

o [F ()

_ 172 _ 1/2
[1 - 2(“22[)22_0 Qé+r +uZ\Z$\Z\Z:‘O ggaw)} / 0
z

= [1- 2T + ).

2
oldx

Y

2
o’ dx

It remains to bound the T} and T5 terms.
Recall that (u, o!)y = 0, implying that [, ugPdz =0 and so

/ uoldx + / uplder = — / ugfdz. (6.9)
z Z5 Z\Z{,
On the other hand since (u, pr.)v = 0 as well we have that

Ozbj/ugjggdm—i-bj/ggv (%) -Vérda
z z

€

—b;/ugggfdx—b;/ggv (i) - VEda,
Z Z ¢

€

Using the definition of ¢ we can write

/ugfd;ﬂf /ugi’d:n: / upldxr — / upldx

z% Z5 zh\zd Zoo\2e

— bj / ugi’{:'dx + b / uel¢_ dx

zh\z2d za\2c

Jr(lfbj)/ugfdxf(lfb;)/ugfdx

z& 2o

—bF / ggv<§>-v5€+dm+b; / ggv<§>-v5;da¢.

€
zi\zd Zo\2&

(6.10)

Furthermore, by the Cauchy-Schwartz inequality, and the bound on the derivative of (X we obtain

2

/ Y (%) -foda: < Re(u) / |V§€i|29‘€1dm < Ele(u)eq_w (6.11)

€
E\z& zE\z&
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for a constant =; > 0 independent of . Combine (6.9), (6.10), (6.11), and the fact that 0 < b¥ < 2 to get

2 /ugfdx < / |ugl|dz + 2 / |uof |dx

v
& 2\Z{ ZLN\Z

4 max{]1 - b7, [1 — b} / lug?|dz + 4y/ErRe(w)/2ed~
Z/
Multiple applications of Holder’s inequality along with Lemma 6.3 then give

2| [ uatae| <12\ 22 +2]2\ 2L

+
€0

_’_'—Emln{17p+r}|zl 1£3—T +4 / R 1/2 ——B
Furthermore, by Assumption 2.6(d) and (2.8),

12\ Zé|g?+r = KYTTer T2\ 2]| < Byt
2 2 20 2

We can repeat the above calculation by replacing Z+ with Z~ and vice versa to get the bound

/ugeda: < Zuermin{2etrl 4y /2 1 Re(u)%e i
%

for some constant =4 > 0. Note that by (6.9), we also have

/ upldr| < 254e% min{2,p+r} +8\/51R6(u)1/2e%*[3

\2!,

We conclude that

)+ 11y = 2 s / paa| . / P + / Pd
1 o =m ugedr| + o — uotdx upldz
Zalge |4 | T B 2 e |/ |
Z5 . Z\Z],
1 1
< - - -
iz 7 /ugﬁ’da& + Z\ 2z 73 /ugeda: + / upldx
p+T p+r _
iz, % \Z{,

< Sgez min{2ptr} | 2R 23 P,
Thus, we obtain

Re(u) + A(€)Z¢RY2(u)ed ~# > A(e) |1 — 255¢2 min{?vﬁr}} ,
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Now if R (u) > 1 then R.(u) > ’Ri/2 (u) and we have

Afe) [1 = 2Z5eb mint2in) ]
Re(u) > 7
) 1+ 2A(e)Zge2 A

Alternatively, if R.(u) < 1 then Riﬂ(u) < 1 and we instead obtain

Re(u) 2 Afe) [1 - 25ged mint2atra=2 ]

Combining these two bounds we get the desired result so long as p+r > 0, ¢ > 0, and 8 and ¢y are small
enough. 0O

Next, we investigate the consequences of Proposition 6.5 for different parameter choices p, ¢ and r. The
main point of interest here is to analyze how the parameter A(e) in (6.6) is controlled by e. We will show in
Proposition 6.7 that the choice of ¢ in relation to p and r plays a major role in whether A(e) is uniformly
bounded away from zero and hence, whether a uniform spectral gap exists between o3 and 3.

Our method of proof relies on isoperimetric-type inequalities for general Dirichlet forms as in [2, Sec. 8.5.1]
viewed as a generalized form of Cheeger’s inequality. For open Q C Z define the ¢ weighted Minkowski
boundary measure of (2 as follows

o1
|09 ya := hrgﬁ)nfg (19108 — [ 2] - (6.12)

Furthermore, given p,q,r we fix a subset Q' C Z and consider any 2 C @’ C Z. Define the isoperimetric
function

|aQ|Q?
min{\Q|Q€+r, |7\ Q|Q€+T}'

J(Q,0) = (6.13)

The following lemma is proven in Appendix D similarly to [2, Prop. 8.5.2].

Lemma 6.6. Let (p,q,r) € R3, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Let Q' C Z. Fiz € € (0,¢p).
Assume there exist h(e) > 0 so that

h(e) < irglzfj(ﬁge), (6.14)

where the infimum is over open subsets Q C Q' C Z such that |Q p+r < %‘Q/|Q€+r. Then Le has a spectral
gap on Q' according to Definition 2.11 and (2.18) holds with

h(Z)2 (lgf Qiﬂrrfq) .

Proposition 6.7. Let r € R, ¢ > 0, p+r > 0, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Then there
exists Z > 0 independent of € € (0,¢€g] so that

A (D) >

O3 > Zemax{p+r—q,2(g—p—r)}

Proof. By Proposition 6.5 we only need to find a lower bound on A(e) which in turn requires us to find
a lower bound on A (Z}) and A(Z\ Z) separately. We only consider A.(Z}) and note that the same
argument can be repeated for A(Z\ ZF) possibly with different constants.
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We will find a lower bound on info J (€, o) and use Lemma 6.6 with Q' = ZI to extend that lower
bound to Ac(ZF). For fixed € let 2 be a subset of Z satisfying Q|+ < 3123 oo+ First, suppose
2N Z+|Q€+r > 0, i.e., part of Q lies inside Z*. Then since o, is uniformly bounded from above in Z% and
for sufficiently small €y (recall (2.9)) we have

(00 > (0c,)|0QN 27|

’ - min{‘Q|g§+r,|Z€t \Q|Q€+T}

. (0,)"102 0 2|

T (0PN ZH |+ QN (25 \ ZF) | e

(0z,)%0QN Z7|
= (0d)PtTIQN 2|

+O(1ZE\ 2| pir) > E1

where we used Taylor expansions to write the last line. The first ratio is uniformly bounded away from zero
independent of € by the standard isoperimetric inequality for the set QN ZT while the second term is small
following our assumptions on g.. Thus, in this case J is uniformly bounded from below.

Now consider the case where [2NZ7] -+ = 0, and so 2 lies entirely in the strip ZZ\Z* but [(QNZF| p+r >
0. Then it is possible to have |92 N 8Z+|gg > 0 or for the boundary of € to touch the boundary 9ZF on a
null set. Then similar calculations to the above yield

|‘9Q|Q‘é

j(Qvge) =
min{|Q| p+r, [26 \ Qf o}

(0z,)%0QN Z7|
19 pr

v

(05,)"on 2|

QN 23| pir + KT Ter QN (25)\ 25) |
(05) 02N 27|

E3€|0QN ZH| + Ky ertriQn (25 \ 25) |

Y

and so the lower bound on J blows up as € — 0.
Finally, we consider the case where [N Z| o+ =0, and so 00 is far from OZT. Proceeding as above,
we write

0955 (K26)?]09)]
Q, 00 > G
j( , O ) - |Q‘g§’+“" (KQG)p+T|Q|

Z E4Eq7pirv
where =4 depends on KJ 7" and the standard isoperimetric constant.

Summarizing, if ¢ < p + 7, then J is bounded away from zero by a uniform constant independent of
€, implying that (6.14) holds with a uniform constant i > 0. Note that ian:B ol = KT deptr—a by
Assumption 2.6(d). We now investigate the different cases of (p, g, r) separately:

o if ¢ =p+r, we obtain a uniform lower bound on A(Z}) by Lemma 6.6;

+ if ¢ < p+r on the other hand, the lower bound on A (Z7) is of order eP*"~;

o if ¢ > p+ r, then we have the lower bound J > Z4e¢9"?~" and Lemma 6.6 implies A (Z}) >
Z2e2(a=p=7) /4,
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Note that in the final bullet the factor inf 2t 0P*t"=4 does not play a role here thanks to the uniform
upper bound on g, guaranteed in Assumption 2.6(c). The exact same reasoning can be applied for the set
Q' =Z\ Z:g, where Z~ plays the role of ZT, and the region around Z~ where o, is of order € is simply
extended up to the boundary of Z. Therefore, similar bounds also hold for A.(Z \ Z1) in each case. By
combining all the above lower bounds into one expression, Proposition 6.5 yields the existence of a constant
Z > 0 s0 that o3, > Zem@{p+r=0.2(4=P=1)} a5 claimed. O

The last proposition suggests that when ¢ # p+ r we cannot hope for a spectral gap. Indeed, we are able
to obtain a vanishing upper bound on o3, for ¢ > p 4+ r and quantify how fast it approaches zero in that
case and ultimately obtain a spectral ratio gap.

Proposition 6.8. Suppose the conditions of Proposition 6.7 are satisfied.

o If ¢ > p+r and €y > 0 is sufficiently small, then there exists a constant Z1 > 0 depending only on
AA(Z\ Z[)) so that V(e, B) € (0,€0) x (0,1),

= —p—r—2
03¢ < .:1€q p ﬁ.

e If ¢ < p+r and ey > 0 is sufficiently small, then there exists a constant Z5 > 0 depending only on
AA(Z\ Z])) so that Ve € (0, €),

03¢ S EZ .

Note that according to Definition 2.9, Aa(Z'\ Z ) is the second eigenvalue of the standard Laplacian on
Z\Z,.

Proof. We apply a similar argument to the proof of Proposition 6.4 using the min-max principle. Let
P2 € HY(Z\ Z/ ) denote the second eigenfunction of the standard Laplacian on Z\ Z/ , i.e., ¢2J_13\Zéo

and
[ R WA A A
Z2\Z/,
We proceed by constructing a suitable approximation to @s. Let €5 = €y + €® and e3 1= ¢y + 2¢° for

0 < B < 1. In a similar manner to (6.3), we define a function &, (see Fig. 4.1)

g}(x):L reZ\Z,,
0<éle) <1, [Vél(z)] <de?, z € 2\ Z,,
ge(x) =0, T € Zéz.

This allows us to define the function

# / £.320P d. (6.15)

T
€
L
+r
ezl0?
2\

@F,e = 569272 -
z1

The shift ensures that pr. € VI(Z\ Z/.,0¢). The choice of €; and €3 guarantee that the supports of @r
and ¢, are disjoint, and so they are orthogonal in V!(Z, g.). Now let u € span {¢p., pr.}. We wish to
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bound R.(u). A straightforward calculation shows that since ¢ . L@p, it suffices to bound R.(pr.) and
Re(Pr.e) separately.
For ¢r . we showed in the proof of Proposition 6.4 the existence of Z; > 0 so that

Re (‘pF,e) S E1 €q7ﬁ7

for any 8 € (0,q). To estimate R.(@r.), observe that for ¢ € (0,¢] the function &.@g is in H'(Z\ Z!).
Thus, following our assumptions on g, we can write

~ 2
= 2 ~ QDF,e q
orelz o Relord = [ [ (20)] g
z\z,,
_ 1r9—2r _q—2r F o~ \|2
— K1 / IV (£.52)| da
Z\Z[,

< 2K§727‘€q—2r / |§6V¢2|2 dr + / ]@V&\Q dx
E\ZL, Z\ZL,

< 2KITFream?r /|V¢2\2d:r+ / {¢2v£€|2dx
Z\Z, 2L,\2.,

<org e | [ VaPdoree® [ jala
Z\Z! Z\Z!
o ]

S2KITH I (A (2 2L) + 92 |\¢2||§2(2\Zé0). (6.16)

Next, we bound ||@p || from below. We have

2
L2(Z,0¢7")

||ge<;52||22 p—ry — Kg—rep—r ‘55@2|2d$
L (Z;Qe )
2\Z/,

sxgre | [ aPa- [ el
\Z:, 2L \ZL,
and for any k£ > 2 by Holder’s inequality,
- 5 k=2
[ 18P o < 1l oz 120\ 201 F
2L \ZL

By the Sobolev embedding theorem [1, Thm. 4.12], @5 € L*(Z\ 2/ ) for k € [2,2d/(d — 2)) if d > 2 and
k € [2,00) if d < 2; and so using Sobolev inequalities, and the fact that HSZ’QHL?(Z\Z;O) <1,

||¢2H%k(z\zgo) < 52”852”%11(2\2;0) =5 (1+Aa(2\ 20))) ||952||%2(Z\Zé0)

< (1+Aa(2)\ 2)))) -

(1]
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3 ! !/ —_ / .
Since |2/, \ Z/ | < E3€°|0Z] |, we can write

z o~ —r o (1] ~ - k=2
|EetallZa z ppry 2 BB (IB2lR2(z1 2y, — B2 (L+Aa(Z\ 20,) |21, \ 20, |F)
—r 5 . Bk—2)
> K5 (I @alfagzzy,) —Bae 7 ) - (6.17)

Furthermore, using Assumption 2.6(d), the fact that @¢a11 z\z,, in L?2(Z \ Z/ ), Hoélder’s inequality,
||S52||L2(Z\zg0) < 1, and the estimate (2.8), in that order, we can write

/ 55902
Z\Z!

EAEApS
1 / ~
=Tz Eepada
12\ Z,
E\Z.,
_ /~d / Bodx + /(5~ 1)@od
= ©poadxr — p20ax e — 1)p20x
|Z \ Zé2 ’ ’ ’ ’ ’
E\Z!, ZL0\ZL, ZL0\ZL,

1 / 5 ~ -
<L (ol dz + / € — 1|2 da
2\ 2.,

iy \2L, Zi0\2,
1 / |20, \ 2,12 2
< (ol da < : < Ee?. (6.18)
AN BEASEAY
253 €0
To bound ¢F . on the outside set, we write explicitly
187l go-r)
2
- e - g [ dwamaua| o@a
z exler z\z;,
2
. 2
= 18eellpaz pp-r) - |z\z o / Eepadl dy
iy 2 12\ Z, |pp+r 20" / £
e I A% npres [ B
= .l e\ LR e | G
<2 L2(Z,0¢77) €2 2 |Z\Z(-:2| 2(P+1‘) 6<)02 ¢

Together with the bounds (6.17) and (6.18), we obtain for small enough e,
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H<:5F76| 12(2,9577‘)
> K3 (I@al}aznz,,) — Sae * — Eoe)
= E7€pir||¢2”2L2(Z\Zé0) :
Finally, following from (6.16), we infer the existence of a constant =, independent of € € (0, €y), so that
Re(Pre) < Eeq—p—r—w,
which concludes the proof. O

6.3. Proof of Theorem 3./ (geometry of the second eigenfunction)

First, we prove a key result, that allows us to translate our bounds on the third eigenvalue o3 . into an
upper bound on the error between the second eigenfunction s . and the approximate Fiedler vector ¢g ..

Proposition 6.9. Suppose there exist constants Eq1,Z2,Z35 > 0, so that for all € € (0, €],
03, > =1+ Egeq_ﬂ + Egég_q.

Then for every 0 < B < q, there exists = > 0 so that

2
1— <<p2,e QOF,€>
or T of /[ e

Proof. Since <@;i£ , “09236 >9P+T = (P2, Q0F7E>Q€—r we will work with the L?(Z, o?~") inner product for brevity.

Zea=F

El + Egeqfﬁ + 53697‘1 ’

<

It follows from the spectral theorem [19, Thm. D.7] that ¢;. form an orthonormal basis in L*(Z, o?™").
Let ope = Z]Oil hjpj.e where h; = <s0j7€,QOF7E>Q€—r. Note that hy = 0 since ¢r Ly . It follows from the
calculation in (6.5) that for 8 € (0, q),

o0
qu—ﬁ 2 RE(SOF,E) = <£.9590F,67 (PF76>Q€_T = JQ,ehg + Z Jj,eh? 9
j=3
and hence
o0 o0
03, Z h; < Z ojeh; < et P — oy 3.
j=3 =3
Since ¢ is normalized, it follows that h? <1forall j>1and

o
Zel=P — 09 h3 Zet=F
1-h3=> h’< 22 < .0
=3

03.¢ - El + Egeqfﬁ + Eg€97g

5

Now consider

P20(z) = bloh(2) [1z+(2) — 1z-(x)] € L*(Z,007"),

obtained by zero extension of ¢ o to all of Z, where
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b= 1/|leh(x) [1z+ —1z-] ||L2(z,g§*"‘) (6.19)

is a normalization constant. Similarly, we denote

pre= bl oi(@) [ (2) —xc(2)] € L*(Z,0077),

with the normalization constant

bf = 1/llef [ = xZ] 22,007y > 0-
We begin by providing bounds on the normalization constants b2 and b%".

Lemma 6.10. Let (p,q,r) € R3 satisfying p +r > 0, and suppose Assumptions 2./, 2.5 and 2.6 hold. Let
€0 > 0 small enough. Then there exist constants Z1,Z2 > 0, independent of € so that for all € € (0, €g),

—1/2 —-1/2

b — (Z/ bt da < Zie, - (Z/ ot da < Fyemind{bptr}

Proof. Using the explicit expression (6.19) write
)2 = [ drorran
Z/

It follows from Assumption 2.6(c) that
00(z) — Ki€ < o.(x) < go(x) + K€ VeeZ. (6.20)

Combining with Assumption 2.5(c), we can find a constant 23 > 0 so that

(bg)*Q—/g’S” dz| < Zze. (6.21)
Z/

Let b be as in (6.1). Using Assumption 2.6(d), and the definition of the xF, we can write

002 = [ @) [0 26 @) + 006 @] do

—0F [ e 00 [ o da
zt zs

+ KEtrertr / Xt —x7]" do
z\z!

z/

()2 - 1) / e+ ((07)2 — 1) / e

Z+ z-
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vorp [ ey [ et
zh\z+ Z2o\2-
+ Kbtrertr / x& - X;]Q dx.

ZUNZL

The first term is close to [, g@”dm using (6.20), whereas the terms in the second line can be controlled
using Lemma 6.3 and the fact that 0 < bF < 2,

(bf—l)(bf+1)/g§+"dx < 3[bE — 1] /g§+’"dx < Zyemin{lptr}
+

z+
Finally, the last two lines can be estimated using (2.8),
0 < (b)? / P dx + (b)? / P dx
zh\z+ Zo\2-

+ K§+T6p+r / [XE+ - X;]z dx
ZL\ZL

<A|ZIN\Z'| (0F)"T + 4|20\ ZLRETT et < Sgemin{lptr )

for some Z5 > 0. Putting the above estimates together, we obtain

(b5)~* — / o da) < Zgenintrt) (6.22)

=z

The lemma then follows from (6.21) and (6.22). O

In order to prove Theorem 3.4, we aim to derive an error bound on the difference between @2 o and 2 ..
To this end, we first estimate (g, @2,0>g€77« using the explicit expressions for pr . and @2 .

Proposition 6.11. Let (p,q,7) € R? satisfying p+r > 0, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Let
€o > 0 small enough. Then there exists a constant Z > 0, independent of € so that for all € € (0, €),

H@Z,O - @F,e”ig(Z’g;g—r) S Eemin{LPJrr} .

Proof. Since Z* NZ, =0 and Z- N Z} =0, we have
(00 (x) X (2) = xc (@)], 0p [Lz+(2) = 1z (2)]) v

€

- / g (x) g (&) [bFEF (@) 12+ (2) — b7 EF (2)15- (2)] d
zZ

- [ @)@ bt @z @)~ b & @)1z @) do

=bF /@ogedfwrb /QerdI

Z+ z-
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= /9695 dr + (b — 1) / ooofdr + (b — 1) / Qooldz .
z Z+ z-
If p > 0 (and by a similar argument with the order of inequalities reversed if p < 0), (6.20) implies
oh(x) — eKpoh " (x) + O(e®) < ol(w) < of(w) + eK1poy *(z) + O(%).
By Assumption 2.5(c), we conclude that there exists a constant Z; > 0 such that

/gggfdx—/@g"rrdx < Eje.

’ zZ/

The above estimate together with Lemma 6.3 implies
[ et de = (@) [ @)~ X @] [z 2) = Lz ()] | < Spem 00
Z/
for some constant Zy > 0. Combining this bound with Lemma 6.10, and writing
(PFer P2,0) o = b0 (0L (x) [ (@) — xZ ()], 0f 12+ (2) — 12— (2)]) o ,
we conclude that there exists a constant Z3 > 0 so that

< Zyemin{lptr)

'1 — {pFe; P2,0) o

Finally, we obtain
— — 2 _
2,0 — <PF,6||%2(Z,Q€_T) = / |20 — prel” 0F7" dx
z

= ||@270H12(2,95—T) + ||§0F7€||312(37913—T) - 2<90F763¢270>g§*“"
=9 (1 _ <SDF,67 952,O>Q§*T) < Eemin{l,p-i-r} . O

We are now ready to provide a quantitative estimate on how close the perturbed second eigenfunction
p2.c is to P29 by comparing both eigenfunctions to the approximate Fiedler vector ¢ ..

Proof of Theorem 3.4. We apply Proposition 6.9 with the eigenvalue bounds in Theorem 3.4(ii, iii). De-

pending on (p, ¢,7), we have different lower bounds on o3 .. Writing the bounds from Theorem 3.4 in the
notation of Proposition 6.9, we have

e If g>p+r, then 2y =0, >0,23=0and 9 = —q+2(p+r);

e If g=p+r, then Z; > 0, Hy = 0;
e Ifg<p+r,thenZ; =Z3=0,E3 >0,and 0 =p+r.

—_
=2
—

:2 =

We obtain that there exists a constant =4 > 0 so that

L= (2,6, pre)%pr| < Bgelapriimintantr} =4, (6.23)
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for any (p,q,r) € R? with ¢ > 0 and p + r > 0. Combining estimate (6.23) with Proposition 6.11 gives

)1 - <§02,57 @2,0)5577”

2
=11~ (<S02,57 SOF,E>Q€—T + <S02,67 @2,0 - SOF,5>Q§—T)

IN

1- <()02,€7 <)0F,e>zf*T

+ ‘<<p2,ea @2,0 - <)0F,e>g§*7‘ ‘<(p2,ea @2,0 + <)0F,E>QE*T

S 1- <§02,e7 @F,e)ig—r

1922z oy 1920 = PEll 2z gy (18200l 2z, g0y + I0mel oz o))

< Byelamporitmin{apry =5 |z 5 min{lp+r}

< Zemin{3, 2" q—2(q—p—r)=B,a—B.2¢— (p+r) -5}

for some = > 0 since ||902,€||L2(z,g€*“) = \|<,5270||L2(Z’Q€7T) = ||<pF,€||L2(Z’Q€7T) =1 O
7. Conclusions

We have studied a three-parameter family of weighted elliptic differential operators, motivated by spectral
clustering and semi-supervised learning problems in the analysis of large data sets.

We analyzed the perturbative properties of the family (1.1) of elliptic operators £, characterizing the
sensitive dependence of its low-lying spectrum with respect to the parameters p,q,r in cases where the
density ¢ concentrates on two clusters. In particular, the theory suggests that there is a major change in
the behavior of the spectrum of £ when ¢ = p + r versus g # p + r. In the former regime, £ has a uniform
spectral gap between the third and second eigenvalues indicating that two clusters are present in g, while
in the latter regime only a spectral ratio gap may manifest.

In addition, we provided numerical evidence that exemplified and extended our analysis. Most notably,
our numerics show that our bounds on the second eigenvalue are sharp and that a uniform spectral gap
exists between the third and second eigenvalues of £ when g < p + r, whereas only a ratio spectral gap is
present when g > p + r. Therefore, in the ¢ > p + r and ¢ < p + r regimes, comparing with our theoretical
predictions, our numerics indicate that our lower bounds on the third eigenvalues, and hence on the spectral
ratio gap, can be sharpened. The question of spectral gaps is of interest from a practical point of view as
the low-lying spectral properties govern many unsupervised and semi-supervised clustering tasks.

Further, we demonstrated a rigorous connection between the geometry of the low-lying eigenfunctions of
L and the geometry of the density g. We showed that as o concentrates on two clusters, the span of the
first two eigenfunctions of £ approaches certain weighted set functions on the clusters.

In fact, the family of operators £ arises naturally as continuum limits of graph Laplacians Ly of the form
(1.2). We provided a roadmap for rigorous proof of convergence of Ly to £ as N — oo in the framework
of [23], but for the more general family of any parameter choices (p,q,r); the full proof is the subject of
future research. To support this analysis, we presented numerical evidence in the discrete graphical settings
showing the manifestation of our continuum spectral analysis on discrete graph Laplacians that are weighted
appropriately with respect to the continuum limits, and this can be observed even in the case of more general
data densities o than our theory provides for.

Finally, we provided numerical evidence that extends our analysis from the binary cluster case to three or
five clusters, showing strong evidence that similar results can be proven in the setting where o concentrates
on any number of finitely many clusters.
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Our work may be of independent interest within the spectral theory of elliptic operators. Furthermore it
can be used to build on the paper [27], which studies consistency of semi-supervised learning on graphs, to
develop a consistency theory for semi-supervised learning in the continuum limit.

The primary practical take-home message of this work is that graph Laplacian normalizations that satisfy
q = p + r are likely to be preferable in practical applications such as spectral clustering or semi-supervised
learning/regression. The primary theoretical take-home message is that there remain a variety of interesting
problems in analysis in this area, concerning the spectral properties of density-dependent elliptic operators
with high-contrast coeflicients, and their relationship to underlying graph Laplacian problems.
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Appendix A. Diffusion maps and weighted graph Laplacians

We note from Remark 2.3 that when p = ¢ and r = 0 the limiting graph Laplacian £ is the generator of
a reversible diffusion process with invariant density proportional to ¢?. The connection between the graph
Laplacian Ly in (1.2) and diffusions was first established in the celebrated paper [14] by Coifman and Lafon,
through the diffusion maps introduced therein. In this appendix we further elucidate these connections.

We fix a probability density o € L*(Q2) for any set  C R? and introduce the following functions for
x,y €

W(z,y) =ns(|z —yl|)

where 7 is a rotation-invariant normalized kernel, [, 75(|z|) dz = 1, with a fixed scale parameter §, and with
associated degree function

ﬂm=/Wumaw@.
Q
Note that d(x) approximates o(x) as 75 converges weakly to the Dirac delta distribution. We suppress the

dependence of d and W on § for brevity. Given a parameter o € R, we now construct the weighted kernel

W (z,y)

W@ 9) = Fayedy)»

with associated degree function

d(z) = / Wz, 9)o(y) dy.

Q

The kernel W gives rise to an integral operator K : L'(Q) — L1(Q),
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:/W(x,y)f(y)g(y) dy .
Q

Then d(z) = K1g(z). Normalizing K gives a Markov operator P : L1(Q) — L1(€),

1
PI@) = @) = [ e e dy
Q
with anisotropic Markov transition kernel
_ W(z,y)

Observe that Plg = 1, and so P leaves constants unchanged.

Discrete setting. Given N samples z; ~ o, we define analogously to the above the matrix W with entries

Wij = W(IZ, Ij)

with associated degree matrix Dy,

N
Dij = diag (CZI) 3 CZZ = ZW}C
k=1

From the above, we construct the weighted similarity matrix Wy with entries

W - J
RO NOC ~a
di*ds
with associated degree matrix Dy,
N
Dij = diag (d,) 5 di = Z Wik .

To make the connection between this discrete setting and the continuous analogue above, we use the degree
functions of Subsection 5.2,

(I?$J

2 |

S
i

N ~
1 W ( j
(z,2;) :NZ (. 2)

They correspond exactly to d(x) and d(z) with ¢ substituted by the empirical density iy = + Zi\; Oz,
Then

dNi = NCZN(J}l) 5 di = Nl_QadN(l‘i) 5 Wij = W(Ii,.’lﬁj) ;

N2o¢

and so d; /N approximates o(x;) as ns converges to the Dirac delta distribution for large N. Finally, the
operators K and P are approximated empirically by matrices Wy /N and Py, where Py has entries



F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189-249 243

W(%i,l‘j) NQaWij

Pi' = - )
NdN(IEZ) N2adl'

and so
Py = Dy'Wy .
In [14], the graph Laplacian matrix Ly is defined as

- I —P 1__ 1
LN:¥:SDN1 (DN—WN):ELNa

where Iy denotes the identity matrix, and Ly is our graph Laplacian matrix as defined in (1.2) with

p=gq=2(1—a)and r = 0. Note that Ly is not symmetric.

Generator of a diffusion semi-group. Taking 6 — 0, we see that

W(z,y) = 0p—y,
d(z) = o(z),  d(z)=Kla(z) = o(z) >,

and so P converges to the identity operator Id. Defining the operator

1d-P

=73

analogously to the discrete setting, it was shown in [14, Thm. 2] that
li =—
lim gf=-Lf

for f in any finite span of the eigenfunctions of the Laplace-Beltrami operator on a compact submanifold of
). Here, G is the infinitesimal generator of a Markov chain, and L is the weighted elliptic operator defined in
(1.1) for the parameter choices p = ¢ = 2(1—«) and r = 0. In this sense, the operator P is an approximation
to the semi-group

e =1d + 6L + O(5?)
associated with the infinitesimal generator L,
—Lf = #v (P
- QQ(l—a) e

=Af+2(1—-a)o 'Vo-Vf
:u;ﬂ+ng(£“—@)-Vf.
More precisely, the operator £ is the infinitesimal generator of the reversible diffusion process
dX, = —VU(X,)dt + V2dB,

where B denotes a Brownian motion in R? with associated potential

W(x) = — log (o(x)21~)



244 F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189-249

and invariant measure proportional to g2(1=®) satisfying £*e~¥ = £*p?(1=®) = 0. In this sense, the discrete
graph Laplacian matrix Ly introduced above serves as an approximation of the generator —£.

In [14], Coifman and Lafon discuss the cases (i) & = 0 (¢ = 2) when the graph Laplacian has isotropic
weights and W = W, (ii) & = 1/2 (¢ = 1) when the Dirichlet energy of £ is linear in o, and (iii) o = 1
(g = 0), when —Lf = Af, and so the Markov chain corresponding to G converges (as § — 0) to the
Brownian motion in 2 with reflecting boundary conditions.

There is a well-known connection between the generator of reversible diffusion processes and Schrédinger
operators [35]. Following the above connections between limiting graph Laplacians and generators of diffusion
processes with invariant measures proportional to o(!=2%) we connect the operator £ to certain Schrédinger
operators as follows. Define

then we can write for u = fo'™¢,

A(fe'™?) A(gl“’)f Su

_Ef — _
Qlfa Qlfoc

Appendix B. Function spaces

Throughout this section p is taken to be a smooth probability density function with full support on a
bounded open set  C R? with C'! boundary which is bounded from above and below by positive constants
as in (2.1), i.e.,

0<o0 <oz) <ot < +oo, Vr € Q. (B.1)

Our first task is to establish the equivalence between regular L?(2) spaces and the weighted spaces L? (€2, o).
In fact, a straightforward calculation using (B.1) implies the following lemma.

Lemma B.1. Let ¢ be a smooth probability density function on Q satisfying (B.1) and let v € LP(Q) for
p>0. Then

ol < Il gy < 0F Il
i.e., LP(Q) = LP(Q, o).

Given constants (p, q,7) € R we consider the weighted Sobolev spaces H!((2, o) introduced in section 2.1.
We now have:
Lemma B.2. Let o € C%®(Q) be a smooth probability density function satisfying (B.1) and let u € H (S, o)
with parameters (p,q,r) € R3. Then there exist constants C*(q, 0*) > 0 so that

2 2

u

Q’I”

Q’I"

H(2)

ﬂm@m@<0ﬂ

H(Q)

Proof. Since p satisfies (B.1) then
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Then the desired result follows immediately by Lemma B.1 applied to L? norms. O

With the equivalence between the weighted and regular LP and H' spaces established. We can present the
following compact embedding as a consequence of the Rellich-Kondrachov Theorem [19, Ch. 5.7, Thm 1]:

Proposition B.3. Let o € C°(Q) be a probability density function satisfying (B.1) and fix (p,q,r) € R3.
Then H (S, 0) is compactly embedded in L*($2, o?~").

Appendix C. Min-max principle
The min-max principle [29, Ch. 1 Sec. 6.10] is readily applied to our specific setting to obtain the following:

Proposition C.1. Fiz (p,q,7) € R3. For any open bounded set Q@ C R? with 9Q € C*', and for a given
density o € C>(Q) satisfying Assumption 2.5, let 01 < 09 < ... < oj < ... be the sequence of eigenvalues of

)

in V1(, 0), repeated in accordance with their multiplicities, and let {p;}

the Neumann operator

jeN be a corresponding Hilbertian

basis of eigenvectors in V1(Q, 0); then

P

Define the Rayleigh quotient of L by

2
(Lu,u) o Jo ’V (%)‘ oldx
R(u) := @ = , uwe VHQ, o).
( ) <’LL, ,u>gp_r fQ |u|2gp—'r'dm ( Q)

Denote by S,, the class of all n-dimensional linear subspaces in V1(S2, ), and by M+ the orthogonal subspace
of M in VY(,0). Then we have

onp = min  max R(v) (C.1)
MeS,, veM,v#0
= max min  R(v). (C.2)

MES,—1 veM+L v#£0

Appendix D. Weighted Cheeger’s inequality

Given positive measures u, v on ' C R?, define the isoperimetric function J for any subset Q C Q' by

- |092]
(T AR
Here, we use the notation
€, := (),

and define the pu-weighted Minkowski boundary measure of {2 by
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00,0 = lim inf = [19], 2
5l0 4§
with Qs as defined in (2.7),
Qs :={z : dist(z,Q) < 6}
We show the following weighted version of Cheeger’s inequality.

Proposition D.1 (Weighted Cheeger’s inequality). Let p, v be absolutely continuous measures with respect to
the Lebesgue measure with C°° densities that are uniformly bounded above and below with positive constants
on Q. Suppose there exists a constant h > 0 so that

h < Héfj(ﬂa s V), (D.1)

where the infimum is over open subsets Q@ C Q' such that |Q|, < 1|Q'|,. Then the following Poincaré

_1 B2 - ,
) [t s 195t an.
194 94

where for denotes the average of f with respect to v,

inequality holds:

su d—'u(x)
zeg’ dv

fT ;= fQI fdl/
Qr = |Q/|V .

This is a generalization of the weighted Cheeger’s inequality as here we may take different measures p
and v, whereas u = v in [2]. The proof can readily be generalized from [2, Prop. 8.5.2] to this setting.

Proof. It follows from the co-area formula [2, Thm. 8.5.1] that for every Lipschitz function f on ',

/ S (f.)|udt < / IV f|dp. (D.2)
— 0o Q/

where S(f,t) := {x € Q' : f(x) > t} for t € R. Now let g be a positive Lipschitz function on € such that
|S(g,t)|, < 1|, Then by the hypothesis (D.1) we have for t > 0,

hmin{|S(g, t)],, [\ S(g,t)[»} < [0S(g,1) s

which together with (D.2) gives

h / min{[S(g, )] |\ 5(g,1)], }dt < / Vol di. (D3)
0 &

Now let f : ' — R be Lipschitz and denote by m a median of f with respect to v, i.e., m € R such that

(e e f@)>ml < L. and [z eQ: f@) <mly < 2|
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Proceeding in the same way as in proof of [2, Prop. 8.5.2] we define Fy = max{f — m,0} and F_ =
max{m — f,0} and by definition of the median we have for ¢ > 0,

1 1
SELOL < 51200, and S0, < 51,

Applying (D.3) with g = FJQr and ¢ = F? and adding the two inequalities yields

h/\f—m\QdV:h/Fidy—i—h/FEdu
o) o)

Q/

- /|5 |dt+h/|5 t)l, dt

< [Iv@EDldn+ [ [92)au.

By the Cauchy-Schwartz inequality,

1/2 1/2

[t =2 [ ravedae<e | [1mpa) | 192
Q/ Q/ ! /

1/2 1/2

<9 /|f—m|2du /WFiqu
2 2

1/2 1/2

) / fomia) | [1VELP

The previous estimate with the fact that F1 have disjoint support, gives

) b [k i< [
Q/ Q/

for any median of f. Finally, minimizing the left-hand side over m gives the desired lower bound with

<2 ( sup
e

dp
<acsé1£ dv(

m = fq/, which concludes the proof. O

Proof of Lemma 6.6. Apply Theorem D.1 with du(z) = 04(z)dz and dv(z) = oP*"(x)dz. Setting u = fo

yields
2
<Sup o " T) /|u—ugg ? 0P~ ’dx</’v <lr>
zeQ) o Qe

which concludes the proof for Lipschitz functions u. The desired result on V1(, o.) then follows by a

oldz,

density argument, and noting that « = 0 in that case. O
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