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Graph Laplacians computed from weighted adjacency matrices are widely used 
to identify geometric structure in data, and clusters in particular; their spectral 
properties play a central role in a number of unsupervised and semi-supervised 
learning algorithms. When suitably scaled, graph Laplacians approach limiting 
continuum operators in the large data limit. Studying these limiting operators, 
therefore, sheds light on learning algorithms. This paper is devoted to the study 
of a parameterized family of divergence form elliptic operators that arise as the 
large data limit of graph Laplacians. The link between a three-parameter family of 
graph Laplacians and a three-parameter family of differential operators is explained. 
The spectral properties of these differential operators are analyzed in the situation 
where the data comprises of two nearly separated clusters, in a sense which is 
made precise. In particular, we investigate how the spectral gap depends on the 
three parameters entering the graph Laplacian, and on a parameter measuring 
the size of the perturbation from the perfectly clustered case. Numerical results 
are presented which exemplify the analysis and which extend it in the following 
ways: the computations study situations in which there are two nearly separated 
clusters, but which violate the assumptions used in our theory; situations in 
which more than two clusters are present, also going beyond our theory; and 
situations which demonstrate the relevance of our studies of differential operators 
for the understanding of finite data problems via the graph Laplacian. The findings 
provide insight into parameter choices made in learning algorithms which are based 
on weighted adjacency matrices; they also provide the basis for analysis of the 
consistency of various unsupervised and semi-supervised learning algorithms, in the 
large data limit.
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1. Introduction

1.1. Overview

This article presents a spectral analysis of differential operators of the form
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(1.1)

for parameters p, q, r ∈ R fixed. The analysis is focused on the situation where the density � concentrates on 
two disjoint connected sets (clusters), and numerical results extend our conclusions to multiple clusters and 
to more general two cluster data densities � not covered by our analysis. Our motivation is to understand a 
range of algorithms which learn about geometric information in data, and clusters in particular, by means 
of graph Laplacians constructed from adjacency matrices whose edge weights reflect affinities between data 
points at each vertex. Operators of the form (1.1) arise as a large data limit of graph Laplacian operators 
of the form

LN :=

⎧⎨
⎩D

1−p
q−1
N (DN − WN ) D

− r
q−1

N , if q �= 1 ,

DN − WN , if q = 1,
(1.2)

where the symmetric weighted adjacency matrix WN = WN (q) is constructed via a suitably reweighted 
kernel capturing the similarities between discrete data points and DN = DN (q) is an associated weighted 
degree matrix (see Subsection 5.1 for precise definitions of these matrices).

The three primary contributions of this paper are as follows:

1. Under assumptions on � capturing the notion of data approximately clustered into two sets, we study 
the low lying spectrum of L, the corresponding eigenfunctions and their dependence on (p, q, r); amongst 
several results concerning this dependence, we elucidate the special properties of the parametric family 
q = p + r for clustering tasks, and we refer to L and LN as balanced in this case.

2. We present numerical experiments which exemplify the analysis in both the continuum and discrete 
regimes, leading to conjectures concerning aspects of our analysis which are not sharp, and extending 
our understanding to mixture models and to multiple clusters, situations not covered by the analysis.

3. We explain how L arises from LN , and provide numerical simulations illustrating that the characteristic 
behavior identified for the limiting operators L in point 1 also manifests in the finite data setting when 
using LN .

Understanding the spectral behavior of graph Laplacian operators, their continuum counterparts and 
links between them are crucial steps in the consistency analysis for algorithms such as spectral clustering. 
Our work addresses primarily the spectral behavior of the continuum formulations but may, in future works, 
form a useful foundation for analysis of consistency. Our results may also be of independent interest in the 
spectral theory of elliptic differential operators. Subsection 1.2 is devoted to the background to our work, 
and a literature review. In Subsection 1.3 we describe the three contributions above in detail; Subsection 
1.4 contains illustrative numerical experiments which demonstrate our contributions; and Subsection 1.5
concludes the introduction with an outline of the paper, by section.
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1.2. Literature review

Clustering is a fundamental task in data analysis and in unsupervised and semi-supervised learning in 
particular; algorithms in these areas seek to detect clusters, and more generally coarse structures, geometry 
and patterns in data. Our focus is on Euclidean data. Our starting point is a dataset X = {x1, ..., xN }
comprising of N points xi ∈ Rd, assumed to be drawn i.i.d. from a (typically unknown) probability distri-
bution with (Lebesgue) density �. The goal of clustering algorithms is to split X into meaningful clusters. 
Many such algorithms proceed as follows: The data points xi are associated with the vertices of a graph 
and a weighted adjacency matrix WN , measuring affinities between data points, is defined on the edges of 
the graph. From this matrix, and from a weighted diagonal degree matrix DN found from summing edge 
weights originating from a given node, various graph Laplacian matrices LN can be defined. The success 
of clustering algorithms is closely tied to the spectrum of LN . At a high level, k clusters will manifest in 
k small eigenvalues of LN , and then a spectral gap; and the k associated eigenvectors will have geometry 
which encodes the clusters. Unsupervised learning leverages this structure to identify clusters [4,33,41,43]
and semi-supervised learning uses this structure as prior information which is enhanced by labeled data 
[8,9,47]. It is thus of considerable interest to study the spectral properties of LN , and the dependence of the 
spectral properties on the data and on the design parameters chosen in constructing LN .

The operator LN in (1.2) corresponds to different normalizations of the graph Laplacian. A number of 
special cases within this general class arise frequently in the implementation of unsupervised and super-
vised learning algorithms. The unnormalized graph Laplacian refers to the choice (p, q, r) = (1, 2, 0), giving 
the symmetric matrix LN = DN − WN ; another popular choice is the normalized graph Laplacian where 
(p, q, r) = (3/2, 2, 1/2); the choice (p, q, r) = (2, 2, 0) also gives a widely used normalized operator. The 
graph Laplacian for (p, q, r) = (3/2, 2, 1/2) is symmetric and studied in [23,33,36,38,43,44], whereas the 
choice (2, 2, 0) gives an operator that is not symmetric, but can be interpreted as a transition probability 
of a random walk on a graph [14,38]. A number of other choices for (p, q, r) appear in the literature. For 
example, the spectrum of the graph Laplacian with (1, 2, 0) is related to the ratio cut, whereas (2, 2, 0) is 
connected to the Ncut problem. The success of the spectral clustering procedure for the graph Laplacian 
with parameters (1, 1, 0) was investigated in [21] in the setting of non-parametric mixture models; in this 
case the Dirichlet energy with respect to the natural density weighted L2 inner-product is linear in �. In 
[14,45], general choices of p = q ≥ 0 and r = 0 are investigated in the context of diffusion maps with [45]
presenting sharp pointwise error bounds on the spectrum as well as norm convergence of LN to L. In this 
case, the limiting operator L is the generator of a reversible diffusion process, a connection first established 
in the celebrated paper [14] by Coifman and Lafon.

Whilst many different normalizations of the graph Laplacian have been used for a variety of data analysis 
tasks, a thorough understanding of the advantages and disadvantages of different parameter choices is still 
lacking. The papers [43,44] contain comparisons between the normalized, unnormalized and random walk 
Laplacians. But, to the best of our knowledge, there is a gap in the current literature concerning a systematic 
understanding of the effects of the entire family of weighted graph Laplacian matrices LN depending on 
the family of parameters (p, q, r). Of particular interest is the case where N is large, relevant in large data 
applications, and in [44] the authors showed that the normalized and random walk Laplacians give consistent 
spectral clustering as opposed to the unnormalized Laplacian operator in this large N limit. This behavior 
is attributed to different integral operators to which the normalized and unnormalized Laplacians converge. 
The normalized Laplacian converges to a compact perturbation of the identity with a discrete spectrum 
while it is demonstrated that the unnormalized Laplacian may not possess a purely discrete spectrum.

The large data limit convergence of graph Laplacians to integral or differential operators has been the 
subject of many recent studies including [5,6,13,23,20,24,36,39,40,44,45]. The point of departure in these 
papers is a kernel η defined on Rd × Rd, from which the weighted adjacency matrix WN defined on the 
edges of a graph is constructed. In [5,6,25,26,36,39,44] the authors fix a kernel and let N → ∞ obtaining an 
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integral operator as the limit of graph Laplacians. These limiting integral operators are dependent on the 
kernel η and subsequently the results of these articles also depend on the choice of the kernel. In real-world 
applications, fixing the kernel η as N grows results in dense graph Laplacian matrices that are impractical 
to compute with. To alleviate this issue either k-nearest neighbor (k-NN) graphs are employed or the 
bandwidth of η is tuned to control the sparsity of the graph Laplacian. Motivated by these observations, 
more recent articles [12,13,22,23,20,24,40,45] consider the joint limit as N → ∞ and the width of the kernel 
η vanishes sufficiently slowly thereby controlling the local connectivity of the graph and the sparsity of the 
graph Laplacian. It then follows that in taking this joint limit graph Laplacian matrices LN converge to 
differential operators of a similar form to our L operator; under this type of limiting procedure the resulting 
differential operator is independent of the weight kernel η, up to scaling.

The aforementioned articles suggest the potential for further analysis of the continuum limits of graph 
Laplacians as a means to advance our understanding of clustering algorithms on finite but large data 
sets. Such continuum approaches, often refereed to as population level analyses, proceed by studying graph 
Laplacian operators and subsequently spectral clustering algorithms in the continuum regime [21,36,39]. 
The continuum analysis may then be extended to the finite data setting using discrete-to-continuum ap-
proximation results such as those in [13,20,36,45]. We employ the same perspective in this work, focusing 
primarily on the analysis of the continuum operators and providing numerical experiments and formal cal-
culations demonstrating the relevance of the continuum analysis to finite data settings. We note that the 
paper [34] studies consistency of spectral clustering for finite graph problems, and that similar ideas from 
linear algebra are used to study large data limits in [15], albeit with very restrictive assumptions on the 
clusters; no limiting operator is employed, or identified, in [15].

We also note that mathematical studies which are conceptually similar to the spectral analysis that we 
present here have been prevalent in the study of metastability in chemically reacting systems for some time; 
see [16,17,28,37] and the references therein for applications. This body of work has led to very subtle and 
deep analyses of the generators of Markov processes [10,11]; this analysis might, in principle, be used to 
extend some of the work undertaken here to a wider range of sampling densities.

Finally, the tools developed in this paper may be used to study consistency of semi-supervised learning 
algorithms in the continuum setting. In particular, we provide the spectral perturbation results needed to 
generalize the work in [27], which studies consistency of graph-based semi-supervised learning algorithms 
for finite N and using the graph Laplacian LN , to the large data limit where N → ∞ and LN is replaced 
by L.

1.3. Our contributions

We now detail the three contributions outlined in Subsection 1.1. Contribution 1 is summarized in our 
main theoretical result characterizing the low-lying spectrum of L and the effect of the (p, q, r) parameters; 
Contribution 2 extends our theoretical analyses by various numerical experiments (i) in the unbalanced 
regime where q �= p + r, revealing that some of our bounds on the eigenvalues of L can be sharpened, and 
(ii) to the setting of multiple clusters and more general data densities �, suggesting that the theory provided 
under Contribution 1 reveals fundamental concepts that hold in more generality than the specific setting 
considered in Contribution 1; Contribution 3 combines formal calculations and numerical experiments to 
reveal the relationship between the (p, q, r) parameterized family of differential operators L and various 
weightings of discrete graph Laplacians LN .

1.3.1. Contribution 1
Let us define the notion of a perfectly separated density. Let Z ⊂ Rd be bounded and �0 be a (Lebesgue) 

probability density with support Z ′ ⊂ Z strictly contained in Z and concentrated on two disjoint subsets 
Z+ and Z− of Z; that is, Z ′ = Z+ ∪ Z− and Z+ ∩ Z− = ∅. We refer to Z± as clusters, and denote the 
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operator of the form (1.1) based on �0 by L0. Consequently, a nearly separated density comprises a class of 
smooth densities �ε that are O(ε) perturbations of the perfectly separated case �0, with density supported 
everywhere on Z and such that �ε = Cε away from Z ′ with C > 0 a constant1; we define this concept 
precisely in Section 2.2.1. We denote the operator of the form (1.1) based on �ε by Lε. To this end, our 
main theoretical result characterizes the low-lying spectrum of Lε in the nearly separated regime.

Main Result 1.1. Assume q > 0 and p + r > 0.

(i) The first eigenpair of Lε is given by

σ1,ε = 0 , ϕ1,ε = 1
|Z|1/2

�p+r
ε

�r
ε(x)1Z(x), ∀x ∈ Z

where |Z|�p+r
ε

:=
´

Z �p+r
ε (x)dx.

(ii) The second eigenvalue scales as σ2,ε = O(εq) and the corresponding eigenvector is given, approximately 
in a density weighted L2 space, by the formula

ϕ2,ε ≈ 1
|Z ′|1/2

�p+r
ε

�r
ε(x)

(
1Z+(x) − 1Z−(x)

)
, ∀x ∈ Z . (1.3)

(iii) The behavior of the third eigenvalue σ3,ε varies depending on the relationship between the parameters 
q and p + r:
• if p + r < q < 2(p + r), then a spectral ratio gap manifests with σ2,ε/σ3,ε = O(ε2(p+r)−q) as ε → 0;
• if q = p + r, then σ3,ε � 1 and a uniform spectral gap manifests, i.e., σ3,ε − σ2,ε � 1 and σ2,ε/σ3,ε =

O(εq) as ε → 0;
• if q < p + r < 2q, then a spectral ratio gap manifests with σ2,ε/σ3,ε = O(ε2q−(p+r)) as ε → 0.

We precisely state this result, with fully detailed assumptions, in Section 3; the statement is comprised of 
a combination of theorems and corollaries. Part (i) is contained in Theorem 3.2(i) while part (ii) follows by 
combining Theorem 3.2(ii) with Theorem 3.4. Finally part (iii) is encompassed by Corollary 3.3. A roadmap 
of the proofs of these results is explained in Section 3 with the detailed proofs postponed to Section 6.

1.3.2. Contribution 2
We present detailed numerical experiments in Section 4 that both support our Main Result 1.1 and make 

two substantial extensions. These extensions sharpen our results in the unbalanced cases and extend our 
results to K > 2 clusters. In particular, our experiments in case K = 2 demonstrate that the rates for 
σ2,ε/σ3,ε in Main Result 1.1(iii) are sharp in the balanced setting where q = p + r but show clear evidence 
that the theoretical rates obtained in the unbalanced settings where q �= p + r are slower than the observed 
rates. The results obtained by combining Main Result 1.1 and this empirical improvement in the unbalanced 
case are then shown numerically to extend naturally to K > 2 clusters. For clarity we summarize these 
numerical results in the conjecture that follows.

Conjecture 1.2. Suppose that the conditions of Main Result 1.1 are satisfied with the data density �ε con-
centrating on K ≥ 2 clusters in the small ε limit. Then

1 We emphasize that this restrictive assumption on the form of the family of perturbed densities �ε considered here is made for 
the purposes of analysis; numerical experiments indicate that the conclusions are expected to hold beyond this restrictive class – 
see Remark 2.7.
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σK,ε � εq,
σK,ε

σK+1,ε
� εmin{q,p+r}.

Our numerical simulations in Section 4, and in particular Tables 4.1 to 4.3, suggest the above conjecture 
in the binary cluster setting that sharpens the decay rate of σ2,ε/σ3,ε as a function of ε, in the unbalanced 
settings when q �= p + r. Put simply, this conjecture states that when K = 2 and q < p + r the third 
eigenvalue σ3,ε exhibits similar behavior to the balanced setting where q = p + r and hence a uniform 
gap in the spectrum manifests as ε → 0. However, when q > p + r the third eigenvalue σ3,ε vanishes like 
εq−p−r and a spectral ratio gap manifests. Moreover, if this conjecture holds then it allows us to sharpen 
the approximation error of the second eigenfunction ϕ2,ε in Theorem 3.4, as this result heavily depends on a 
lower bound for σ3,ε. We attribute this discrepancy to the lower bound on σ3,ε obtained in Theorem 3.2(iii) 
that in turn relies on a generalization of Cheeger’s inequality from Appendix D.

1.3.3. Contribution 3
We demonstrate the relationship between the (p, q, r) dependent family of operators L in (1.1) showing 

how they arise as the limit of graph Laplacian matrices LN of the form (1.2). Subsection 5.2 presents an 
informal limiting argument to identify the operator L by considering the large data N limit, followed by 
small kernel bandwidth δ limit of LN = LN (δ). Our informal calculations in Subsection 5.3 extend these 
arguments from Dirichlet energies to eigenvalue problems, and indicate that the spectrum of the matrix 
Cδ−2N2r−qLN converges to that of L, for a suitable constant C > 0, as (N, δ−1) → ∞. Our numerical 
experiments in Subsection 5.4 support these informal calculations, demonstrating the convergence of the 
eigenvalues of LN to numerically computed eigenvalues of L for different choices of (p, q, r) and for two 
different types of mixture models. The numerical experiments and informal arguments are developed in the 
following setting: we assume that the data at the N vertices of the graph, {x1, ..., xN }, are sampled i.i.d. 
from the probability density � and we suppose that the resulting weight matrix WN is constructed using a 
kernel ηδ with the parameter δ > 0 controlling the local connectivity of the vertices; see Subsection 5.1 for 
details.

To make a precise theory supporting these observations is beyond the scope of this paper, it is not a 
task which we are addressing in this work; it requires specification of the relationship between N and δ in 
the limiting process (N, δ−1) → ∞. The convergence of LN to L for specific choices of (p, q, r) has been 
established in the literature, and this issue was addressed in those papers. In particular, in [23] convergence 
of the spectrum of LN Γ-converges to that of L, and that the eigenfunctions of LN converge to those of 
L in the TL2 topology. More recently, the articles [13,20,45] further extend these results giving rates for 
the convergence of eigenvalues and eigenfunctions for (p, q, r) = (1, 2, 0) and also for the convergence of LN

on k-NN graphs to L with (p, q, r) = (1, 1 − 2/d, 0). We postulate that the methods of proof introduced in 
[13,20], and extensions to spectral convergence properties proved there, can be generalized to the (p, q, r)-
dependent family of graph Laplacian operators introduced here; with the analysis for k-NN graphs departing 
from the proximity graphs considered here in particular in the construction of the discrete operator LN and 
its normalization with different choices of (p, q, r). A full analysis and rigorous proof of the discrete-to-
continuum connection is left for future work.

1.4. Illustrative numerical experiments

The contributions detailed in the preceding subsection demonstrate that the manner in which clustering 
is manifest in the spectral properties of the graph Laplacian depend subtly on the choice of the parameters 
(p, q, r). Making the balanced choice q = p + r one obtains a family of operators whose second eigenvalue 
decays rapidly, while the gap between the second and third eigenvalues remains of order one as the pa-
rameter ε, measuring closeness to perfect clustering, decreases to zero; this uniform separation of second 
and third eigenvalues does not happen when q > p + r. Furthermore the form of the Fiedler vector (the 
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second eigenfunction), whilst always exhibiting the clusters present in the data, can have different behavior 
away from the clusters, depending on (p, q, r). We demonstrate these facts in Example 1.3, exemplifying 
Contributions 1 and 2. Additionally, Example 1.4 shows that our theory likely applies without the rather 
specific assumptions used to define clustering as mentioned in Contribution 2; furthermore, Example 1.4
illustrates that the spectral properties of the limiting operator L reflect the properties of the discrete graph 
Laplacian arising when N < +∞ as outlined in our Contribution 3.

Example 1.3 (Comparison of unnormalized and normalized graph Laplacians). We study the spectral prop-
erties of operator Lε with parameter choices (p, q, r) given by (1, 2, 0) and (3/2, 2, 1/2) respectively, corre-
sponding to the unnormalized and normalized graph Laplacians respectively. All our numerical experiments 
are for a data density �ε of the form (4.2) with two distinct clusters; see Fig. 1.1(a) for a plot of �ε with 
ε = 0.0125.

In the unnormalized case q > p +r it follows from our Main Result 1.1 that as ε ↓ 0 the second eigenvalue 
of Lε scales as ε2 and that a spectral gap is present only in ratio form. In Fig. 1.1(b) we plot the second 
and third eigenvalues σ2 and σ3 against ε, on a log scale, and calculate best linear fits to the data; this 
demonstrates that they converge to zero like ε2 and ε respectively, in agreement with our Main Result 1.1
(second eigenvalue) and the first component of Conjecture 1.2 (third eigenvalue). We also compute the 
second eigenfunction (Fielder vector) ϕ2,ε shown in Fig. 1.1(d). Note that in this case the pointwise distance 
between ϕ2,ε and the right hand side of (1.3) in Main Result 1.1(ii) is only small within the clusters; this 
reflects the fact that the weighted L2(Z, �p−r

ε )-norm arising in Theorem 3.4 for this choice of (p, q, r) is not 
sensitive to large pointwise values of functions in areas where �ε is small.

For comparison we now consider the normalized setting. For q = p +r our Main Result 1.1 predicts that, as 
ε ↓ 0, there exists a uniform spectral gap between the first two eigenvalues of Lε: for (p, q, r) = (3/2, 2, 1/2), 
the second eigenvalue scales as ε2 and the third is of order one with respect to ε. In Fig. 1.1(c) we plot the 
second and third eigenvalues of Lε against ε in that case, on a log-scale, and provide best fits to the data; 
the results support the theory. The corresponding Fiedler vector ϕ2,ε is shown in Fig. 1.1(e). In this case 
ϕ2,ε appears to converge pointwise to the right hand side of (1.3), in contrast to the unnormalized case.

It is well-known that the Fiedler vectors encode information on the clusters Z± that we are trying to 
detect. They play a significant role in the context of spectral clustering and binary classification [43]. How-
ever, it is noteworthy that the Fiedler vectors in the unnormalized and normalized cases differ substantially 
within Z \ Z ′: in the unnormalized case a smooth transition is made between Z+ and Z−, whereas in the 
normalized case abrupt transitions are made to near zero on the boundaries of Z+ and Z−. �

Since our primary motivation is data clustering, it is relevant to interpret our contributions in that 
context. In the following example we demonstrate that although our theory is developed under rather strict 
assumptions on the sampling density of the data and in the limit N → ∞, our results concerning the 
dependence of spectral ratio gaps on the (p, q, r) parameters appear to generalize to mixture models that 
violate some of our assumptions. The mixture model assumption is a natural model for population level 
analysis of clustering algorithms and is considered in the articles [21,36]. It can be argued to be a more 
realistic data model for the density � than the one for which our theory is developed and it is therefore of 
interest to demonstrate that our theory is predictive in this setting.

Example 1.4 (Clustering a mixture model). Consider the following mixture on the unit square

�ω(t) := 1
2ω

(
1 − exp

(
− 1

ω

))−1 [
exp

(
− t1

ω

)
+ exp

(
t1 − 1

ω

)]
, t = (t1, t2)T ∈ [0, 1]2. (1.4)

This density is simply the mixture of two exponential distributions restricted to the unit interval [0, 1] in the 
t1 direction, with a uniform distribution in the t2 direction; see Fig. 1.2(a). The parameter ω controls the 
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Fig. 1.1. (a) Plot of a density �ε of the form (4.2) with two distinct clusters for ε = 0.0125. (b) Showing log(σ2) and log(σ3), the second 
and third eigenvalues of the unnormalized operator Lε with (p, q, r) = (1, 2, 0) as functions of ε. Values in brackets in the legends 
indicate numerical slope of the lines. (c) Showing log(σ2) and log(σ3) for the normalized operator Lε for (p, q, r) = (3/2, 2, 1/2), as 
functions of ε. (d) and (e) The Fiedler vector of Lε with (p, q, r) = (1, 2, 0) and (p, q, r) = (3/2, 2, 1/2) respectively for ε = 0.0125.

overlap of the mixture components. This model clearly violates our assumptions on the density � outlined in 
Section 2.2, most notably, (i) letting ω → 0 the density �ω concentrates on sets of measure zero as opposed 
to clusters Z± of positive measure, and (ii) we cannot ensure that �ω = Cω outside of clusters since the 
tails of the exponential components decay exponentially as we let ω → 0.

We generate N samples from �ω and construct a weighted proximity graph on this dataset using a weight 
kernel of width δ > 0 as detailed in Subsection 5.4. We then proceed to define a discrete graph Laplacian 
LN of the form (1.2) and compute the first four non-trivial eigenvalues σN,δ of this discrete operator (this 
notation for the eigenvalues is defined in Subsection 5.2). Fig. 1.2(b,c,d) show the variation of the first few 
eigenvalues as a function of ω for N = 213 vertices. We consider three choices of the (p, q, r) parameters, 
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Fig. 1.2. (a) A plot of the mixture density (1.4) for ω = 0.25. (b) The first four non-trivial eigenvalues of the discrete graph 
Laplacian LN with parameters (p, q, r) = (1/2, 2, 1/2) as a function of the mean parameter ω. Values reported in brackets in 
the legends indicate numerical slope of the lines fitted to the data. (c) Showing the first four non-trivial eigenvalues of LN with 
(p, q, r) = (1, 2, 1). (d) Showing the same results for parameters (p, q, r) = (1, 3/2, 1).

a balanced case with (1, 2, 1) and two unbalanced cases with (1/2, 2, 1/2) and (1, 3/2, 1). While our theory 
does not make a prediction regarding the rate at which the second eigenvalue vanishes with ω, we can still 
use our theoretical insights to postulate uniform or ratio gaps between the second and third eigenvalues.

In the balanced case where q = p + r we observe that the second eigenvalue vanishes with ω while the 
rest of the spectrum remains bounded away from zero; in contrast, in the unbalanced case q > p + r the 
third eigenvalue also vanishes and only a spectral ratio gap manifests. The results in the unbalanced case 
q < p + r are less clear since the higher eigenvalues still vanish, but they do so rather slowly; this may be 
attributed to numerical error. The results are in agreement with our analysis and numerical results in the 
continuum limit and suggest that the characteristic behavior we prove for our specific construction of the 
sampling density � is in fact a more general phenomenon that applies for other type of clustered data and 
on finite data sets. Further details regarding this experiment are summarized in Subsection 5.4. �
1.5. Outline

The remainder of the paper is organized as follows. Section 2 sets up the necessary framework and 
notation. Section 3 contains the precise statements of the key results Theorems 3.2 and 3.4, relating to Main 
Result 1.1; proofs of these results are postponed to Section 6. Numerical results illustrating, and extending 
the Main Result 1.1 and leading to the Conjecture 1.2 are presented in Section 4. Section 5 contains the 
informal derivation of (1.1) from the parameterized family of graph Laplacians (1.2), and presents the formal 
calculations and numerical experiments that were summarized under Contribution 3. Our conclusions are 
given in Section 7. Appendices A, B, C, and D contain, respectively: connections between the diffusion maps 
and L; discussion of function spaces; the min-max principle; and a weighted Cheeger inequality.
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2. The set-up

In this section we set-up the functional analytic framework for our theory and numerics. Subsection 2.1
describes the notation and introduces weighted Laplacian operators in this framework, and Subsection 2.2
is devoted to our precise formulation of binary clustered data in the perfect or nearly separated clustered 
data setting.

2.1. Preliminaries

For an open subset Ω ⊆ Z ⊂ Rd with C1,1 boundary, consider a probability density function � satisfying

� ∈ C∞(Ω̄),
ˆ

Ω

�(x)dx = 1, �− < �(x) < �+, ∀x ∈ Ω̄, (2.1)

with constants �−, �+ > 0. We also denote the measure of subsets Ω′ of Ω with respect to � with the 
following notation

|Ω′|� :=
ˆ

Ω′

�(x)dx. (2.2)

Given a continuous probability density function � as above with full support on Ω ⊆ Z we define the 
weighted space

L2(Ω, �s) :=

⎧⎨
⎩u :

ˆ

Ω

|u(x)|2�(x)sdx < +∞

⎫⎬
⎭ , (2.3)

with inner product

〈u, v〉�s :=
ˆ

Ω

u(x)v(x)�s(x)dx, (2.4)

for any s ∈ R. This reduces to the standard L2(Ω) space with norm ‖ · ‖L2(Ω) and inner product 〈·, ·〉 if 
� = 1 on Ω. Furthermore, for � > 0 a.e. on Ω and parameters (p, q, r) ∈ R3, we define the weighted Sobolev 
spaces

H1(Ω, �) :=
{

u

�r
∈ L2(Ω, �p+r) : ‖u‖H1(Ω,�) := 〈u, u〉V < +∞

}
,

where the 〈·, ·〉V inner product is defined as

〈u, v〉V :=
〈

∇
(

u

�r

)
, ∇
(

v

�r

)〉
�q

+
〈

u

�r
,

v

�r

〉
�p+r

, (2.5)

which is the natural inner product induced by the bilinear form 
〈

(L + 1
�r )u, v

�r

〉
�p+r

. We then introduce 

the following subspaces of L2(Ω, �p+r) and H1(Ω, �):

V 0(Ω, �) :=
{

u

�r
∈ L2(Ω, �p+r) :

〈
u

�r
, 1
〉

�p+r

= 〈u, �p〉 = 0
}

,

V 1(Ω, �) :=
{

u ∈ H1(Ω, �) : 〈u, �r〉 = 0
}

⊂ V 0(Ω, �) .
V
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We use H1(Ω) and V 1(Ω) to denote the standard H1 space, and its subspace excluding constants, given 
by H1(Ω, 1Ω) and V 1(Ω, 1Ω). The former coincides with the usual Sobolev spaces while the latter coincides 
with the subspace of H1(Ω) consisting of mean zero functions.

In this work, we focus on the class of weighted Laplacian operators defined by equation (1.1), for an 
appropriate density � and parameters (p, q, r) ∈ R3. We generally suppress the dependence of L on � and the 
constants p, q, r for convenient notation and make the choice of these parameters explicit in our statements. 
As we show next, the operator L is positive semi-definite and since the first eigenpair (σ1, ϕ1) = (0, �r1Ω)
is known it is convenient to work orthogonal to ϕ1 so as to make the operator strictly positive; in other 
words, we consider the operator L on the space V 1(Ω, �).

Lemma 2.1. If � satisfies (2.1), then the bilinear form

〈Lu, v〉�p−r =
〈

�q∇
(

u

�r

)
, ∇
(

v

�r

)〉
, (2.6)

is symmetric and positive definite on V 1(Ω, �) × V 1(Ω, �). In particular, the operator

L : V 1(Ω, �) �→ V 0(Ω, �),

defined in the weak sense, is self-adjoint and strictly positive definite and the inverse operator

L−1 : V 0(Ω, �) �→ V 0(Ω, �),

exists and is compact.

Proof. The fact that L is self-adjoint and strictly positive on V 1(Ω, �) can be verified directly. The fact 
that L−1 is well-defined follows from the Lax-Milgram Lemma [32, Lem. 2.32]. Compactness follows from 
Proposition B.3. �

Following the spectral theorem [19, Thms. D.6, D.7] we then have:

Proposition 2.2. Let (p, q, r) ∈ R3, and suppose � satisfies (2.1). Then L : V 1(Ω, �) �→ V 0(Ω, �) has a 
discrete spectrum with eigenvalues 0 ≤ σ2 ≤ σ3 ≤ . . . and eigenfunctions {ϕj}j≥2 ∈ V 1(Ω, �) that form 
an orthogonal basis in both V 1(Ω, �) and V 0(Ω, �). Furthermore, we may extend L to the operator L :
H1(Ω, �) �→ L2(Ω, �p−r) and include the eigenpair (σ1, ϕ1) = (0, |Ω|1/2

�p+r �r1Ω).

Remark 2.3. Writing u = �ru′ and v = �rv′ we note that the identity (2.6) may be written as

〈
�p−qL(�ru′), v′〉

�q = 〈∇u′, ∇v′〉�q .

From this we see [35] that the operator

G := −�p−q ◦ L ◦ �r

is the generator of the reversible diffusion process

dXt = −∇Ψ(Xt)dt +
√

2dB,

where Ψ = − log(�q), and B denotes a d dimensional Brownian motion. This diffusion process has invariant 
measure proportional to exp(−Ψ) = �q. This observation thus establishes a connection between the operator 
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L and diffusion processes which, when q > 0, concentrate in regions where � is large and sampling density of 
the data is high. For a more detailed discussion on the connections between diffusion maps and the operators 
weighted elliptic operators L, see Appendix A.

2.2. Perturbations of densities

We now consider a specific setting of a density �0 that is supported on a strict subset Z ′ ⊂ Z, consisting 
of two disjoint sets Z+ and Z−. We then consider a sequence of probability densities �ε supported on the 
whole set Z that approximate �0. In the next two subsections we outline our assumptions regarding Z ′, �0
and �ε and introduce weighted Laplacian operators using these densities.

2.2.1. Assumptions on the clusters and densities
We begin by introducing a set of assumptions on the domains Z, Z ′, the density �0, and the approximating 

sequence of densities �ε.

Assumption 2.4. The sets Z, Z ′ = Z+ ∪ Z− ⊂ Rd satisfy the following:

(a) Z is open, bounded and connected.
(b) Z ′ is a subset of Z consisting of two open connected subsets Z+ and Z−.
(c) Z± are disjoint from one another and from ∂Z, the boundary of Z: ∃l, l′ > 0 so that

dist(Z+, Z−) > l > 0, and dist(Z±, ∂Z) > l′ > 0.

(d) ∂Z and ∂Z ′ are at least C1,1.

The assumption that Z± are well separated from ∂Z in Assumption 2.4(c) is not crucial but allows for 
more convenient presentation of our results. We think of Z± as “clusters” in the continuum limit.

Assumption 2.5. The density �0 satisfies the following:

(a) (Supported on clusters) �0 = 0 on Z \ Z̄ ′.
(b) (Probability density function) 

´
Z′ �0(x)dx = 1.

(c) (Uniformly bounded within clusters) ∃�± > 0 so that �− ≤ �0(x) ≤ �+, for all x ∈ Z̄ ′.
(d) (Smoothness) �0 ∈ C∞(Z̄ ′).
(e) (Equal sized clusters) Given p, r ≥ 0, the density �p+r

0 assigns equal mass to Z+ and Z−, i.e.,

ˆ

Z+

�p+r
0 (x)dx =

ˆ

Z−

�p+r
0 (x)dx .

We highlight that Assumption 2.5(b) and (e) are not crucial to our analysis. Condition (b) is natural 
when considering limits of graph Laplacian operators defined from data distributed according to a measure 
with density �0, but all of our analysis can be generalized to integrable �0 simply by observing that the 
eigenfunctions of L are invariant under scaling of �0 by a constant λ, whilst the eigenvalues scale by λq−p−r. 
Condition (e) allows for a more convenient presentation with less cumbersome notation but can be removed 
at the price of a lengthier exposition; see Remark 6.2 below.

Given a density �0 satisfying Assumption 2.5, we consider a sequence of densities �ε with full support 
on Z̄ that converge to �0 as ε → 0 in a suitable sense. We have in mind densities �ε that become more and 
more concentrated in Z ′ as ε → 0. In what follows, we define
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Ωδ := {x : dist(x, Ω) ≤ δ}, (2.7)

for any set Ω ⊆ Z̄ and denote the Minkowski (exterior) boundary measure of Ω as

|∂Ω| := lim inf
δ↓0

1
δ

[|Ωδ| − |Ω|] .

It follows that when ε is sufficiently small, ∃θ > 0 so that

|Ωε \ Ω| ≤ θε|∂Ω|. (2.8)

Assumption 2.6. Let 0 < L := min dist(Z±, ∂Z). Then there is ε0 ∈ (0, L/4) and constants K1, K2 > 0 such 
that, for all ε ∈ (0, ε0), the densities �ε satisfy:

(a) (Full support) supp�ε = Z̄.
(b) (Probability density function) 

´
Z �ε(x)dx = 1.

(c) (Approximation within clusters) ∃K1 > 0 so that ‖�ε − �0‖C∞(Z̄′) ≤ K1ε as ε ↓ 0.
(d) (Vanishing outside clusters) ∃K2 > 0 so that �ε(x) = K2ε for x ∈ Z \ Z ′

ε.
(e) (Controlled derivatives) ∃K3 > 0 so that

|∇�ε(x)| ≤ K3ε−1, ∀x ∈ Z ′
ε \ Z ′.

Once again Assumption 2.6(b) is not crucial to our analysis but is needed to make sure the operator Lε

defined in (2.13) is the continuum limit of a graph Laplacian. As a consequence of Assumptions 2.5(c) and 
2.6(c)-(e), it follows that �ε is uniformly bounded above and below inside Z ′: there exist constants �±

ε0
> 0

so that

�−
ε0

≤ �ε(x) ≤ �+
ε0

, ∀x ∈ Z̄ ′ and ∀ε ∈ (0, ε0) . (2.9)

Note that the upper bound holds on all of Z as well, whereas the lower bound clearly does not in view of 
Assumption 2.6(d).

Remark 2.7. The above set of assumptions on �ε, needed for the theoretical results in Subsection 3.2, are 
rather specific. However, as demonstrated in Example 1.4 (see also the discussion leading to that example) 
the results appear to generalize to settings where Assumption 2.6 is violated. This suggests that the limi-
tations of Assumption 2.6 reflect our method of proof; relaxing these conditions is an interesting direction 
for future research.

Example 2.8. Consider the standard mollifier

g(x) :=

⎧⎪⎨
⎪⎩

C−1 exp
(

− 1
1 − |x|2

)
|x| ≤ 1,

0 |x| > 1.

, gε(x) := 1
εd

g
(x

ε

)
, (2.10)

where C =
´

|x|≤1 exp
(

− 1
1−|x|2

)
dx is a normalizing constant. Now, given ε > 0 and the density �0 (extended 

by zero to all of Z) define

�ε(x) := 1
Kε

(
ε + gε ∗ �0(x)

)
, Kε :=

ˆ

Z

(
ε + gε ∗ �0(x)

)
dx. (2.11)

One can directly verify that the above construction of �ε satisfies Assumption 2.6. �
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2.2.2. Assumptions on the weighted Laplacian operators
With the densities �0 and �ε identified we then consider the operators L0 and Lε in the same form as 

(1.1) as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L0u := − 1
�p

0
div
(

�q
0∇
(

u

�r
0

))
, in Z ′

�q
0

∂

∂n

(
u

�r
0

)
= 0, on ∂Z ′.

(2.12)

Similarly for �ε,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Lεu := − 1
�p

ε
div
(

�q
ε∇
(

u

�r
ε

))
, in Z

�q
ε

∂

∂n

(
u

�r
ε

)
= 0, on ∂Z.

(2.13)

By Lemma 2.1 and Proposition 2.2, the operators

L0 : H1(Z ′, �0) �→ L2(Z ′, �p−r
0 ) and Lε : H1(Z, �ε) �→ L2(Z, �p−r

ε )

are self-adjoint and positive semi-definite. Furthermore, L0 has a zero eigenvalue of multiplicity two while Lε

has a zero eigenvalue of multiplicity one. Both operators have positive, real, discrete eigenvalues after the zero 
eigenvalues. For j = 1, 2, 3, ... let σj,0 and σj,ε denote the eigenvalues of L0 and Lε respectively (in increasing 
order and accounting for repetitions) and let ϕj,0 and ϕj,ε denote the corresponding eigenfunctions. Recall 
that ϕ1,0 = |Z ′|−1/2

�p+r
0

�r
01Z′ and ϕ1,ε = |Z|−1/2

�p+r
ε

�r
ε1Z , both with corresponding zero eigenvalues. Since we are 

interested in the eigenpairs for j ≥ 2 it is more convenient to work orthogonal to the first eigenfunctions 
from now on, that is, to consider the spaces V 1(Z ′, �0) and V 1(Z, �ε) respectively. Thus, we consider the 
pairs {σj,0, ϕj,0} and {σj,ε, ϕj,ε} for j ≥ 2 that solve the eigenvalue problems

〈
�q

0∇
(

ϕj,0

�r
0

)
, ∇
(

v

�r
0

)〉
= σj,0

〈
�p−r

0 ϕj,0, v
〉

, ϕj,0, v ∈ V 1(Z ′, �0), (2.14)

and
〈

�q
ε∇
(

ϕj,ε

�r
ε

)
, ∇
(

v

�r
ε

)〉
= σj,ε

〈
�p−r

ε ϕj,ε, v
〉

, ϕj,ε, v ∈ V 1(Z, �ε). (2.15)

Throughout the article we take ϕj,0 and ϕj,ε to be normalized in L2(Z ′, �p−r
0 ) and L2(Z, �p−r

ε ) respectively.
We collect some definitions and notation concerning the spectral gaps of the operators L0 and Lε and 

Poincaré constants on certain subsets of Z and Z ′; these are used throughout the article.

Definition 2.9 (Standard spectral gap ΛΔ). We say that the standard spectral gap condition holds for a 
subset Ω of Z if the Poincaré inequality is satisfied on Ω with an optimal constant ΛΔ(Ω) > 0, i.e.,

ˆ

Ω

|∇u|2 dx ≥ ΛΔ(Ω)
ˆ

Ω

|u|2dx, ∀u ∈ V 1(Ω). (2.16)

We also define a certain �0 weighted version of the above spectral gap definition.
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Definition 2.10 (L0 spectral gap Λ0). We say that the L0 spectral gap condition holds for a subset Ω of Z ′

if the following weighted Poincaré inequality is satisfied with an optimal constant Λ0(Ω) > 0

ˆ

Ω

�q
0

∣∣∣∣∇
(

u

�r
0

)∣∣∣∣
2

dx ≥ Λ0(Ω)
ˆ

Ω

∣∣∣∣ u

�r
0

∣∣∣∣
2

�p+r
0 dx, ∀u ∈ V 1(Ω, �0). (2.17)

Observe that condition (2.17) is equivalent to the assumption that the second eigenvalue of the operator 
L0 restricted to the set Ω is bounded away from zero. Finally, we define the notion of a uniform spectral 
gap for Lε.

Definition 2.11 (Lε uniform spectral gap Λε). Given ε0 > 0 we say that the Lε uniform spectral gap condition 
holds for a subset Ω of Z if ∀ε ∈ (0, ε0) there exists an optimal constant Λε(Ω) > 0 so that

ˆ

Ω

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx ≥ Λε(Ω)

ˆ

Ω

∣∣∣∣ u

�r
ε

∣∣∣∣
2

�p+r
ε dx, ∀u ∈ V 1(Ω, �ε). (2.18)

Remark 2.12. To connect the spectral gaps of Lε restricted to the clusters Z± with the spectral gaps of 
the limiting operator L0 on these clusters, one can make use of the knowledge that �ε converges to �0

on Z± by Assumption 2.6(c). More precisely, let us suppose (2.17) holds. We show in Theorem 3.1 that 
σ1,0 = σ2,0 = 0 and σ3,0 > 0. Since �ε(x) converges to �0(x) pointwise for every x ∈ Z ′, this spectral 
gap translates to Lε for small enough ε within the set Z ′, and so we can assert (2.18) for Ω = Z±. The 
assumption that the restriction of Lε to Z± has a spectral gap is related to the indivisibility parameter in 
the context of well-separated mixture models of [21].

Remark 2.13. Note that for subsets Ω where �ε is constant, say �ε(x) = cε, condition (2.18) reduces to a 
spectral gap of the standard Laplacian restricted to Ω, with the constant ΛΔ in (2.16) replaced by ΛΔcp+r−q

ε . 
This becomes important when investigating the behavior of Lε away from the clusters Z± and is precisely 
the reason why we obtain a condition on the sign of q − p − r in our main theorems, see for example 
Theorem 3.2.

3. Spectral analysis: statement of theorems

In this section we describe the spectral properties of the operators L0 and Lε in relation to certain 
geometric features in the data summarized in the densities �0 and �ε. We present precise statements of 
our key theoretical results, postponing the proofs to Section 6. We define, and then identify, gaps between 
the second and third eigenvalues of Lε together with concentration properties of the second eigenfunction 
ϕ2,ε as ε ↓ 0. More precisely, we show that the nature and existence of a spectral gap is dependent upon 
the choice of p, q and r and, under general conditions, concentration properties of ϕ2,ε are directly related 
to concentration properties of �ε. In Subsection 3.1 we consider the perfectly clustered case pertaining the 
operator L0 while Subsection 3.2 perturbs this setting and considers the nearly clustered case corresponding 
to the operator Lε.

3.1. Perfectly separated clusters

Recall the concept of perfectly separated clusters from the introduction, the density �0 and the resulting 
operator L0 defined on Z ′. The corresponding low-lying spectrum of L0 can be characterized explicitly:



204 F. Hoffmann et al. / Appl. Comput. Harmon. Anal. 56 (2022) 189–249
Theorem 3.1 (Low-lying spectrum of L0 and Fiedler vector). Suppose (p, q, r) ∈ R3 and Assumptions 2.4
and 2.5 hold. Then L0 is positive semi-definite and self-adjoint on the weighted Sobolev space H1(Z ′, �0). 
Denote its eigenvalues by σ1,0 ≤ σ2,0 ≤ · · · with corresponding eigenfunctions ϕj,0, j ≥ 1. Then it holds 
that:

(i) The first eigenpair is given by

σ1,0 = 0 , ϕ1,0 = 1
|Z ′|1/2

�p+r
0

�r
0(x)1Z′(x), ∀x ∈ Z ′ .

(ii) The second eigenpair is given by

σ2,0 = 0 , ϕ2,0 = 1
|Z ′|1/2

�p+r
0

�r
0(x) (1Z+(x) − 1Z−(x)) , ∀x ∈ Z ′ .

(iii) L0 has a uniform spectral gap, i.e., σ3,0 > 0.

Part (i,ii) of Theorem 3.1 can be verified directly by substituting ϕ1,0 and ϕ2,0 into (2.14). Then it 
remains to show (iii), the lower bound on the third eigenvalue σ3,0 which follows from Proposition 6.1, 
stating that L0 has a spectral gap on Z ′ so long as its restriction to each of the clusters Z± has a spectral 
gap. Since �0 is bounded away from zero on the clusters this condition holds since Z± are assumed to be 
connected sets of positive Lebesgue measure.

3.2. Nearly separated clusters

We now turn our attention to the densities �ε that have full support on Z̄, but concentrate around Z ′

as ε decreases. This represents the practical setting where we do not have perfect clusters Z± and so the 
density �0 is perturbed. A central question here is whether the second eigenpair {σ2,ε, ϕ2,ε} of Lε exhibits 
behavior similar to the second eigenpair {σ2,0, ϕ2,0} of L0 as �ε → �0; that is, in the limit as we approach 
the ideal case of perfect clusters Z±.

In order to establish such a result we first need to approximate the first three eigenvalues of Lε:

Theorem 3.2 (Low-lying eigenvalues of Lε). Let (p, q, r) ∈ R3 satisfy p + r > 0 and q > 0, and suppose 
Assumptions 2.4, 2.5, and 2.6 hold and that ΛΔ(Z \ Z ′

ε0
) > 0 for a sufficiently small ε0 > 0. Then the 

following holds for all (ε, β) ∈ (0, ε0) × (0, 1):

(i) The first eigenpair is given by

σ1,ε = 0 , ϕ1,ε = 1
|Z|1/2

�p+r
ε

�r
ε(x)1Z(x) ∀x ∈ Z .

(ii) The second eigenvalue σ2,ε tends to zero as ε → 0,

0 ≤ σ2,ε ≤ Ξ1εq−β ,

with Ξ1 > 0 a uniform constant independent of ε.
(iii) The third eigenvalue behaves differently depending on the (p, q, r) parameters:
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• if q > p + r, then ∃ Ξ2, Ξ3 > 0 independent of ε such that,

Ξ2ε2(q−p−r) ≤ σ3,ε ≤ Ξ3εq−p−r−2β ,

and so Lε does not have a uniform spectral gap on Z;
• if q = p + r then there exist constants Ξ4, Ξ5 > 0, independent of ε, so that

Ξ4 ≤ σ3,ε ≤ Ξ5,

and so Lε has a uniform spectral gap on Z;
• if q < p + r, then there exist constants Ξ6, Ξ7 > 0, independent of ε, so that

Ξ6εp+r−q ≤ σ3,ε ≤ Ξ7 .

Once again part (i) can be verified directly by substituting ϕ1,ε in (2.15). Part (ii) is a consequence of 
Proposition 6.4 that obtains an upper bound on σ2,ε using a perturbation argument. More precisely, we first 
construct an explicit approximation ϕF,ε of ϕ2,ε as a smoothed out version of ϕ2,0, normalized in V 1(Z, �ε)
and supported on a set slightly larger than Z ′. We choose a parameter β > 0 such that |∇ϕF,ε| is controlled 
by ε−β at the boundary of Z ′. This is precisely the parameter β appearing in Theorem 3.2. By construction, 
we then have that ϕF,ε converges to the normalization of ϕ2,0 as ε → 0. Using this approximate eigenfunction 
as well as ϕ1,ε from part (i) in the min-max principle (see Proposition C.1) yields the desired upper bound 
on σ2,ε.

Part (iii) requires more elaborate arguments as outlined in Subsection 6.2.2. The lower bounds on σ3,ε

follow from Proposition 6.7 that is in turn based on a generalization of Cheeger’s inequality (see Proposi-
tion D.1). The upper bounds follow from Proposition 6.8 the proof of which uses similar ideas as for the 
upper bound of σ2,ε, applying the min-max principle but with a different candidate eigenfunction.

Several interesting conclusions can be drawn from our arguments in Subsection 6.2 aimed at proving 
Theorem 3.2. The existence of spectral gaps for Lε inside the clusters and away from the clusters separately 
allows us to formally deduce bounds on the low-lying spectrum. Consider the set

Z ′
ε := {x : dist(x, Z ′) ≤ ε},

and suppose that for some fixed ε0 > 0, we have ΛΔ(Z \ Z ′
ε0

) > 0, that is, the standard Laplacian has a 
spectral gap away from the clusters according to Definition 2.9. Since �ε(x) = K2ε for x ∈ Z \ Z ′

ε0
, we have 

for all u⊥1Z\Z′
ε0

in V 1(Z \ Z ′
ε0

)

(K2ε)2r−q

ˆ

Z\Z′
ε0

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx ≥ ΛΔ(Z \ Z ′

ε0
)(K2ε)r−p

ˆ

Z\Z′
ε0

∣∣∣∣ u

�r
ε

∣∣∣∣
2

�p+r
ε dx .

This simple calculation shows that Λε(Z \ Z ′
ε0

) = O(εq−p−r), and so the existence of a uniform Lε spectral 
gap away from the clusters is dependent on the relation between q and p + r, in fact we need q ≤ p + r to 
ensure Λε(Z \ Z ′

ε0
) > 0 independent of ε which is in line with the conditions in Theorem 3.2(iii).

Combining parts (ii, iii) of Theorem 3.2 yields the following corollary concerning the existence of uniform 
or ratio gaps in the spectrum of Lε depending on (p, q, r). This corollary is a detailed statement of Main 
Result 1.1(iii).

Corollary 3.3 (Spectral ratio gap when q �= p + r).
Suppose that the conditions of Theorem 3.2 are satisfied and that q �= p + r. Then the following holds for 

all (ε, β) ∈ (0, ε0) × (0, 1):
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(i) if q > p + r then there exists a constant Ξ1 > 0 independent of ε, so that

σ2,ε

σ3,ε
≤ Ξ1ε2(p+r)−q−β ;

(ii) if q < p + r then there exists a constant Ξ2 > 0 independent of ε,

σ2,ε

σ3,ε
≤ Ξ2ε2q−p−r−β .

We note that while this corollary suggests that there may be no spectral ratio gap when q > 2(p + r)
or 2q < p + r, our numerical experiments in Section 4.2 (and in particular Tables 4.1 to 4.3) suggest 
that these bounds on the ratio gaps are not sharp due to the fact that our lower bounds on σ3,ε from 
Theorem 3.2(iii) can be improved to match the upper bounds when q �= p + r. We then conjecture that, 
when q > p +r, σ2,ε

σ3,ε
≤ Ξ1εp+r−β , and when q < p +r we have σ2,ε

σ3,ε
≤ Ξ2εq−β, as summarized in Conjecture 1.2

in Subsection 1.3.2.
Finally with the spectral gap results established we can characterize the geometry of the second eigen-

function ϕ2,ε and show that as ε ↓ 0 this eigenfunction is nearly aligned with the second eigenfunction ϕ2,0
of L0 for certain choices of (p, q, r).

Theorem 3.4 (Geometry of the second eigenfunction ϕ2,ε). Suppose the conditions of Theorem 3.2 are sat-
isfied. Then there exists Ξ, ε0 > 0 so that ∀(ε, β) ∈ (0, ε0) × (0, 1)

∣∣∣∣∣1 −
〈

ϕ2,ε

�r
ε

,
ϕ̄2,0

�r
ε

〉2

�p+r
ε

∣∣∣∣∣ ≤ Ξεmin{ 1
2 , p+r

2 ,−|q−(p+r)|+min{q,p+r}−β} ,

where ϕ̄2,0 denotes the normalization of ϕ2,0 in L2(Z, �p−r
ε ).

We prove this theorem in Subsection 6.3 by bounding the difference between ϕ2,ε and ϕF,ε in Propo-
sition 6.9 and then the difference between ϕ̄2,0 and ϕF,ε in Proposition 6.11 and invoking the triangle 
inequality. Note that the above bound blows up if 2q < p + r in the unbalanced case where q < p + r and if 
2(p + r) < q in the unbalanced case where q > p + r. Put simply, if the difference between q and p + r is too 
large then we may lose convergence of the second eigenfunctions. However, we also expect these conditions 
are not sharp since they rely on our lower bounds on σ3,ε in Theorem 3.2(iii) that we conjectured can be 
sharpened above. Theorem 3.4 is a detailed statement of Main Result 1.1(ii).

Remark 3.5. Two concrete messages follow from Theorems 3.2 and 3.4: (1) Theorem 3.2(iii) tells us that 
particular care is needed when looking for a spectral gap characterizing the number of clusters if q �= p + r

as the gap may only be manifest in ratio form, not absolutely, leading to potential overestimation of the 
number of clusters; (2) Theorem 3.4 tells us the form and geometry of the Fiedler vector which characterizes 
the two clusters, and its dependence on �0 and on ε; whether or not the problem is balanced determines 
whether the Fielder vector is approximately piecewise constant, or whether it exhibits smoother transitions 
across the data. These two observations may be useful to practitioners when interpreting graph Laplacian 
based analysis of large data sets.

4. Numerical experiments in the continuum

In this section we exemplify, and extend, the main theoretical results stated in the previous section. In 
Subsections 4.1 and 4.2 we study binary clustered data. The numerical results in these subsections highlight 
the effects of the parameters (p, q, r) on spectral properties: Subsection 4.1 addresses the balanced case 
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Fig. 4.1. Schematic depiction of the different sets and functions used in construction of ϕF,ε from (6.3) and ϕ̃F,ε from (6.15). Top: 
overhead schematic of the sets Z, Z±, Z±

ε , Z±
ε1

, Z±
ε2

, and Z±
ε3

. Bottom: cross-section view of ρε, ξ+
ε and ξ̃ε close to the subset Z+

along the red line in the top figure. Here, ε1 := ε + εβ , ε2 := ε0 + εβ , and ε3 := ε0 + 2εβ for ε ∈ (0, ε0) and β ∈ (0, 1). The 
function ϕF,ε is constructed using ε1, concentrates on the clusters, and allows to prove an upper bound on σ2,ε; the function ϕ̃F,ε

is constructed using ε2 and ε3, concentrates away from the clusters, and allows to prove an upper bound on σ3,ε. The vertical 
dashed lines indicate the boundaries of the different sets as indicated below the figure.

where q = p + r and Subsection 4.2 the unbalanced case where q > p + r. In Subsection 4.4 we also extend 
the main theoretical results by considering data comprised of three clusters and five clusters, showing that 
the intuition from the binary case extends naturally to more than two clusters.

Our numerical simulations in the binary, unbalanced case extend the main theoretical results as they 
demonstrate the spectral ratio gap of Corollary 3.3, arising when q > p + r is indeed of O(εp+r) and when 
q < p + r is of O(εq) suggesting the lower bound on σ3,ε can be sharpened.

We proceed by outlining the setting of the numerical experiments. Consider the eigenvalue problem (2.15):

〈
�q

ε∇
(

ϕj,ε

r

)
, ∇
(

v
r

)〉
= σj,ε

〈
�p+r

ε

ϕj,ε

r
,

v
r

〉
, ϕj,ε, v ∈ V 1(Z, �ε). (4.1)
�ε �ε �ε �ε
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Fig. 4.2. Plot of the densities �ε of the form (4.2) with three and five clusters for ε = 0.0125.

Our numerics are all performed in dimension d = 2. We solve this by the finite element method using 
the FEniCS software package [31]. We work with the variables ϕj,ε/�r

ε and v/�r
ε , rather than directly 

with ϕj,ε and v, and discretize these �r
ε scaled variables using the standard linear finite element basis 

functions in H1(Z). We approximate �ε using quadratic finite element basis functions. Throughout we take 
Z ≡ (−1, 1) × (−1, 1). We consider ε in the range (1/1280, 1/10). For each value of ε, we approximate 
the eigenvalue problem (4.1) using a mesh of 1.28 × 106 triangular elements defined on a uniform grid of 
800 × 800 nodes. This finite element discretization leads to a generalized matrix eigenvalue problem which 
is solved using a Krylov-Schur eigenvalue solver in PETSc [3] with a tolerance of 10−9.

Throughout this section we use densities of the form

�ε(s) = C−1

(
ε +

K∑
i=1

erf
(
ε−1(θi − |s − ci|)

)
4πθ2

i

)
, ∀s ∈ Z, (4.2)

where | · | is the two dimensional Euclidean norm, K is the number of circular clusters, ci denotes the 
ith cluster center, θi the ith cluster radius, and C is a normalizing parameter to make sure that �ε is a 
probability distribution. In Subsections 4.1 and 4.2 we consider two clusters with parameters c1 = (−0.5, 0.0), 
θ1 = 0.25, c2 = (0.5, 0.3), and θ2 = 0.25 as shown in Fig. 1.1(a). In Subsection 4.4 we consider three and five 
clusters adding the point c3 = (0.4, −0.5) with radius θ3 = 0.15, to make three clusters, and then adding 
c4 = (−0.35, 0.65) and c5 = (−0.6, −0.6) with radii θ4 = 0.20 and θ5 = 0.15, to generate five clusters. We 
plot the resulting densities in Fig. 4.2.

4.1. Binary balanced case: q = p + r

In Fig. 4.3(a) we plot σ2,ε in the balanced case r = p, q = p + r and p ∈ [0.5, 2]. For a given value of p
each symbol denotes the numerical approximation to σ2,ε, and the line denotes the best fit determined via 
linear regression; in the regression we only use data from ε ≤ 0.025 as consistent asymptotic behavior for 
ε ↓ 0 is observed in this regime. Theorem 3.2(ii) predicts that σ2,ε = O(εq−β) for arbitrarily small β > 0. 
Then we expect to observe a slope of approximately 2p for each set of simulations. We report the numerical 
slopes in brackets in the legend of Fig. 4.3(a), and compare the numerical slopes to the analytic prediction 
in the first four rows of Table 4.1.

In Fig. 4.3(b), we plot the ratio σ2,ε/σ3,ε for different values of ε. By Corollary 3.3 we expect σ3,ε to 
be uniformly bounded away from zero implying that σ2,ε/σ3,ε = O(εq−β) and so the numerical slopes in 
Fig. 4.3(b) should be close to 2p We compare the numerical slopes to the analytic slopes for the spectral 
ratio gap in the first four rows of Table 4.1.
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Fig. 4.3. Variation of the second and third eigenvalues of Lε in the balanced case with q = p + r and for various values of p ∈ [0.5, 2]. 
(a, b) consider r = p; (c, d) consider fixed r = 0.5. (a, c) show log(σ2,ε) vs log(ε) while (b, d) show log(σ2,ε/σ3,ε) vs log(ε). The 
values reported in the brackets in the legends are numerical approximations to the slope of the lines for different values of p.

Table 4.1
Comparison between numerical approximation of the rate of decay of log(σ2,ε) and log(σ2,ε/σ3,ε) as functions of log(ε) and the 
analytic predictions in Theorem 3.2 and Corollary 3.3 for the balanced case with q = p + r and different choices of p and r.

log(σ2,ε)
log ε

log(σ2,ε)−log(σ3,ε)
log ε

p r Analytic Numerical Analytic Numerical

0.5 0.5 1.00 1.02 1.00 0.99
1.0 1.0 2.00 2.05 2.00 2.03
1.5 1.5 3.00 3.08 3.00 3.04
2.0 2.0 4.00 4.20 4.00 4.12
1.0 0.5 1.50 1.54 1.50 1.52
1.5 0.5 2.00 2.05 2.00 2.03
2.0 0.5 2.50 2.56 2.50 2.53

In Fig. 4.3(c,d) we repeat the above study of the second and third eigenvalues for the balanced case 
q = p +r but this time we fix r = 0.5 and vary p ∈ (0.5, 2). We see similar results to Fig. 4.3(a,b) in that the 
numerical slopes are in good agreement with the predicted slopes of q = p + r. We compare the numerical 
and analytic slopes for this experiment in the last three rows of Table 4.1.

In summary we note that, in this binary balanced setting the numerical experiments match the theory, 
quantitatively. The slopes are less accurate for higher values of p. We attribute this to the smaller values of 
the eigenvalues in these cases, which are evaluated with less numerical precision.
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Fig. 4.4. Variation of the second and third eigenvalues of Lε in the unbalanced case with q > p + r, and for various values of p, q and 
r. In (a, b) we fix p = r = 0.5 and vary q ∈ [1.5, 3]. In (c, d) we fix r = 0.5, q = p + 1 and vary p ∈ [0.5, 2]. (a, c) show log(σ2,ε) vs 
log(ε) while (b, d) show log(σ2,ε/σ3,ε) vs log(ε). The values reported in the brackets in the legends are numerical approximations 
to the slope of the lines.

4.2. Binary unbalanced case: q > p + r

We now turn our attention to the spectrum of Lε when q > p + r. In Fig. 4.4(a, b) we plot the second 
eigenvalue σ2,ε and the ratio σ2,ε/σ3,ε for p = r = 0.5 and vary q in the range (1.5, 3). As before we fit a line 
to the computed values of the eigenvalue and the ratio for each value of q and report the numerical slope 
in brackets in the legend; once again we fit the line to data points with ε ≤ 0.025 where the ε ↓ 0 regime is 
manifest. We observe that σ2,ε = O(εq) as in the balanced case while the ratio σ2,ε/σ3,ε = O(εp+r) which 
is better than the predicted O(ε2(p+r)−q) rate in Corollary 3.3. As mentioned earlier, these results suggest 
that the lower bound on σ3,ε in Theorem 3.2(iii) can be sharpened to match the upper bound. In Fig. 4.4(c, 
d), we consider another case with q > p + r but this time we fix r = 0.5 vary p ∈ (0.5, 2) and take q = p + 1. 
Once again we observe that σ2,ε ∼ εq, which is consistent with Theorem 3.2(ii), and σ2,ε/σ3,ε ∼ εp+r, which 
is better than the predicted rate in Theorem 3.2(iii); again the results suggest that the lower bound on σ3,ε

can be sharpened to match the upper bound. We compare the numerical slopes with the analytic upper 
bounds and with the conjectured O(εp+r) rate for the spectral ratio gap in Table 4.2.

In summary we note that, in this binary unbalanced setting the numerical experiments are consistent 
with the theory insight that only a spectral ratio gap will manifest between the second and third eigenvalues. 
Furthermore, these experiments suggest that the lower and upper bounds on the third eigenvalue should 



Table 4.2
Comparison between numerical approximation of the rate of decay of log(σ2,ε) and log(σ2,ε/σ3,ε) as functions of log(ε) and the 
analytic predictions in Theorem 3.2 and Corollary 3.3. The last column denotes the conjectured slope of p + r for log(σ2,ε/σ3,ε)
for the unbalanced case q > p + r. Negative analytic rates are omitted.

log(σ2,ε)
log ε

log(σ2,ε)−log(σ3,ε)
log ε

p q r Analytic Numerical Analytic Numerical p + r

0.5 1.50 0.5 1.50 1.51 0.5 0.99 1.0
0.5 2.0 0.5 2.00 2.00 0.0 0.99 1.0
0.5 2.5 0.5 2.49 2.57 – 0.99 1.0
0.5 3.0 0.5 2.96 3.06 – 0.97 1.0
1.0 2 0.5 2.03 2.11 1.0 1.52 1.5
1.5 2.5 0.5 2.54 2.64 1.5 2.03 2.0
2.0 3.0 0.5 3.05 3.20 2.0 2.53 2.5

Table 4.3
Comparison between numerical approximation of the rate of decay of log(σ2,ε) and log(σ2,ε/σ3,ε) as functions of log(ε) and the 
analytic predictions in Theorem 3.2 and Corollary 3.3 for the unbalanced case q < p + r. Compare values in the last column with 
the prescribed values of q. Negative analytic rates are omitted.

log(σ2,ε)
log ε

log(σ2,ε)−log(σ3,ε)
log ε

p q r Analytic Numerical Analytic Numerical

1 0.5 1 0.5 0.56 – 0.49
1 1.0 1 1.0 1.07 0.0 1.02
1 1.5 1 1.5 1.56 1.0 1.74
0.5 0.5 1 0.5 0.50 – 0.49
1.5 1.5 1 1.5 1.58 0.5 1.53
2.0 2.0 1 2.0 2.09 1.0 2.03

match, suggesting tighter bounds on the spectral ratio gap could be achievable forming the foundation for 
the first component of Conjecture 1.2 in Subsection 1.3.2.

4.3. Binary unbalanced case: q < p + r

Next we turn our attention to the spectrum of Lε when q < p + r. Fig. 4.5(a,b) shows the second 
eigenvalues σ2,ε as well as the ratio σ2,ε/σ3,ε for p = r = 1 and q ∈ [0.5, 1.5]. Once again we fit a line to the 
computed values of the eigenvalues and the ratios and report the slopes within brackets in the legends. We 
observe that σ2,ε = O(εq) as in the q ≥ p + r cases; however we also notice that the ratio σ2,ε/σ3,ε = O(εq), 
an observation which suggests that Corollary 3.3(ii) can be improved; this in turn would be possible if we 
could sharpen our lower bound on σ3,ε in Theorem 3.2(iii) to match the upper bound, resulting in a uniform 
spectral gap.

Fig. 4.5(c,d) shows further examples with q < p +r this time with r = 1 fixed and taking q = p ∈ [0.5, 2.0]. 
Once again we observe that σ2,ε = O(εq) while σ2,ε/σ3,ε = O(εq) as well, further reaffirming our conjecture 
that the lower bound in Theorem 3.2(iii) is too pessimistic. We compare the analytic and numerical slopes 
for the second eigenvalues as well as the spectral ratio in Table 4.3.

To summarize we derive two conclusions in this unbalanced case: First, our bounds on the second eigen-
value σ2,ε are sharp but our bounds on the spectral ratio σ2,ε/σ3,ε are not sharp similarly to the q > p + r

case and due to the fact that our lower bound on σ3,ε is too pessimistic. Second, followed by this observation 
we expect a uniform spectral gap to manifest between the second and third eigenvalues in the unbalanced 
regime where q < p + r, similarly to the balanced regime q = p + r. These observations further support the 
first component of Conjecture 1.2 from Subsection 1.3.2.
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Fig. 4.5. Variation of the second and third eigenvalues of Lε in the unbalanced case with q < p + r, and for various values of p, q
and r. In (a, b) we fix p = r = 1 and vary q ∈ [0.5, 1.5]. In (c, d) we fix r = 1.0, q = p and vary p ∈ [0.5, 2]. (a, c) show log(σ2,ε) vs 
log(ε) while (b, d) show log(σ2,ε/σ3,ε) vs log(ε). The values reported in the brackets in the legends are numerical approximations 
to the slope of the lines.

Fig. 4.6. Variation of the third and fourth eigenvalues of Lε in the three cluster setting with q = p + r, r = p and for p ∈ [0.5, 1.5]. 
(a) shows log(σ3,ε) vs log(ε) while (b) shows log(σ3,ε/σ4,ε) vs log(ε). The values reported in the brackets in the legends are 
numerical approximations to the slope of the lines for different values of p.



Fig. 4.7. Variation of the fifth and sixth eigenvalues of Lε in the five cluster case with q = p + r, r = p and for p ∈ [0.5, 1.5]. 
(a) shows log(σ5,ε) vs log(ε) while (b) shows log(σ5,ε/σ6,ε) vs log(ε). The values reported in the brackets in the legends are 
numerical approximations to the slope of the lines for different values of p.

Fig. 4.8. Variation of the third and fourth eigenvalues of Lε in the three cluster setting with q > p + r, r = p = 0.5 and for 
q ∈ [1.5, 3]. (a) shows log(σ3,ε) vs log(ε) while (b) shows log(σ3,ε/σ4,ε) vs log(ε). The values reported in the brackets in the legends 
are numerical approximations to the slope of the lines for different values of q.

4.4. Multiple clusters

We now consider two densities �ε which concentrate, respectively, on three and five clusters for small 
ε; the quantitative details are given in (4.2) and the text following; see Fig. 4.2. In Figs. 4.6 and 4.7 we 
display the behavior of the Kth eigenvalue and the spectral ratio gap related to it, for K = 3 and K = 5
respectively. In both cases we let q = p + r and plot log(σK,ε) and log(σK,ε/σK+1,ε) against log(ε). The 
numerics are consistent with the hypothesis that σK,ε ∼ σK,ε/σK+1,ε ∼ O(εq). This suggests a natural 
extension of Theorem 3.2 and Corollary 3.3 from the binary case to multiple clusters.

In Figs. 4.8–4.11 we collect similar results for the unbalanced regime where q �= p + r. Once again we 
see strong evidence that the multi-cluster setting behaves similarly to the binary case in that σK,ε ∼ εq

while σK,ε/σK+1,ε ∼ εp+r when q > p + r and σK,ε/σK+1,ε ∼ εq when q < p + r in both the three and 
five cluster cases. We provide further evidence for this conjecture in Tables 4.4 and 4.5 where we collect 
numerical approximations to the above rates for different choices of p, q, r in the balanced and unbalanced 
regimes. The above results lead to second component of Conjecture 1.2 appearing in Subsection 1.3.2.
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Fig. 4.9. Variation of the fifth and sixth eigenvalues of Lε in the five cluster case with q > p + r, r = p = 0.5 and for q ∈ [1.5, 3]. 
(a) shows log(σ5,ε) vs log(ε) while (b) shows log(σ5,ε/σ6,ε) vs log(ε). The values reported in the brackets in the legends are 
numerical approximations to the slope of the lines for different values of q.

Fig. 4.10. Variation of the third and fourth eigenvalues of Lε in the three cluster setting with q < p + r, r = p = 1 and for 
q ∈ [0.5, 1.5]. (a) shows log(σ3,ε) vs log(ε) while (b) shows log(σ3,ε/σ4,ε) vs log(ε). The values reported in the brackets in the 
legends are numerical approximations to the slope of the lines for different values of q.

Fig. 4.11. Variation of the fifth and sixth eigenvalues of Lε in the five cluster case with q < p + r, r = p = 1 and for q ∈ [0.5, 1.5]. 
(a) shows log(σ5,ε) vs log(ε) while (b) shows log(σ5,ε/σ6,ε) vs log(ε). The values reported in the brackets in the legends are 
numerical approximations to the slope of the lines for different values of q.
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Table 4.4
Numerical approximation of the rate of decay of log(σ3,ε) and log(σ3,ε/σ4,ε) as functions of log(ε) for different choices of p, q, r in 
the three cluster setting.

p q r
log(σ3,ε)

log ε

log(σ4,ε)−log(σ3,ε)
log ε

q
=

p
+

r

0.5 1.0 0.5 1.04 1.00
1.0 2.0 1.0 2.06 2.03
1.5 3.0 1.5 3.097 3.04
1.0 1.5 0.5 1.55 1.52
1.5 2.0 0.5 2.06 2.03
2.0 2.5 0.5 2.57 2.53

q
>

p
+

r

0.5 1.5 0.5 1.53 1.00
0.5 1.0 0.5 1.04 1.00
0.5 2.0 0.5 2.03 1.00
0.5 2.5 0.5 2.52 1.00
0.5 3.0 0.5 2.92 0.92
1.0 2.0 0.5 2.05 1.52
1.5 2.5 0.5 2.55 2.03
2.0 3.0 0.5 3.07 2.53

q
<

p
+

r

1.0 0.5 1.0 0.56 0.47
1.0 1.0 1.0 1.07 1.03
1.0 1.5 1.0 1.57 1.57
0.5 0.5 1.0 0.54 0.49
1.5 1.5 1.0 1.58 1.54
2.0 2.0 1.0 2.09 2.04

Table 4.5
Numerical approximation of the rate of decay of log(σ5,ε) and log(σ5,ε/σ6,ε) as functions of log(ε) for different choices of p, q, r in 
the five cluster setting.

p q r
log(σ4,ε)

log ε

log(σ5,ε)−log(σ4,ε)
log ε

q
=

p
+

r

0.5 1.0 0.5 1.04 1.03
1.0 2.0 1.0 2.12 2.06
1.5 3.0 1.5 3.17 3.09
1.0 1.5 0.5 1.61 1.55
1.5 2.0 0.5 2.12 2.06
2.0 2.5 0.5 2.63 2.57

q
>

p
+

r

0.5 1.5 0.5 1.59 1.03
0.5 2.0 0.5 2.09 1.04
0.5 2.5 0.5 2.59 1.04
0.5 3.0 0.5 3.14 1.05
1.0 2.0 0.5 2.11 1.56
1.5 2.5 0.5 2.62 2.07
2.0 3.0 0.5 3.16 2.59

q
<

p
+

r

1.0 0.5 1.0 0.58 0.50
1.0 1.0 1.0 1.11 1.08
1.0 1.5 1.0 1.62 1.60
0.5 0.5 1.0 0.57 0.52
1.5 1.5 1.0 1.63 1.59
2.0 2.0 1.0 2.14 2.10

5. From discrete to continuum

In this section we present formal calculations, and numerical experiments, demonstrating that the opera-
tors of the form L in (1.1) arise as the large data limit of LN as in (1.2) for parameters (p, q, r) ∈ R3, and for 
a density � supported on Z according to which the vertices {xn}N

n=1 are i.i.d. Subsection 5.1 discusses the 
construction of the discrete operators LN and their properties including self-adjointness and invariance of 
the spectrum under parameter choices. Subsection 5.2 outlines a roadmap for rigorous proof of convergence 
of LN to L in the framework of [23,40,20] through the study of the convergence of Dirichlet energies, using 
the law of large numbers and localization of the weights. These arguments reveal the relationship between 
the discrete and continuum eigenproblems as well as the correct scaling needed in the discrete setting for 
the spectra to converge, the topic of Subsection 5.3. In Subsection 5.4 we present numerical experiments 
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demonstrating the convergence of discrete graph Laplacians to continuum limit operators of the form (1.1), 
as well as manifestations of the theoretical results of Section 3 in the discrete N < +∞ setting.

5.1. The discrete operator LN

Let XN ∈ Rd×N denote the matrix with columns {xn}N
n=1 sampled i.i.d. from a density � on some domain 

Z. Following [18], we define a similarity graph on XN by defining a weighted similarity matrix W̃N with 
entries

W̃ij =
{

ηδ(|xi − xj |) , i �= j,

0 i = j,

where | · | denotes the Euclidean norm, ηδ(·) = δ−dη(·/δ) for a suitably chosen edge weight profile η :
R≥0 → R≥0 that is non-increasing, continuous at zero and has bounded second moment. Furthermore, let 
D̃N = diag(d̃i) where d̃i :=

∑N
j=1 W̃ij is the degree of node i. Since ηδ is approximately a Dirac distribution 

for small δ > 0 it follows that d̃i is an empirical approximation of �(xi). Without loss of generality we 
assume that the resulting similarity graph has no isolated points: d̃i > 0 for all i. For q ∈ R, we introduce 
the matrix WN = WN (q), a re-weighting of W̃N , with entries

Wij = W̃ij

d̃i
1−q/2

d̃j
1−q/2 ,

with corresponding degree matrix DN = diag(di) where di :=
∑N

j=1 Wij . We now define the graph Laplacian 
LN as in (1.2) for (p, q, r) ∈ R3,

LN :=

⎧⎨
⎩D

1−p
q−1
N (DN − WN ) D

− r
q−1

N , if q �= 1 ,

DN − WN , if q = 1.

Let 〈·, ·〉 denote the usual Euclidean inner product. Given a symmetric matrix A ∈ RN×N and vectors 
u, v ∈ RN , we define

〈u, v〉A := uT Av .

The matrix LN is not self-adjoint with respect to the Euclidean inner product for general (p, q, r) but it is 
self-adjoint with respect to the following (p, q, r)-weighted inner product:

〈· , ·〉(p,q,r) :=

⎧⎨
⎩

〈· , ·〉
D

p−1−r
q−1

N

if q �= 1 ,

〈· , ·〉 if q = 1 .

More precisely, in the case q �= 1, writing v = D
− r

q−1
N u yields

〈u, LN u〉(p,q,r) = 〈D
p−1
q−1
N v, D

1−p
q−1
N (DN − WN ) v〉 = 〈v, (DN − WN ) v〉

= 1
2
∑
i,j

Wij |vi − vj |2 = 1
2
∑
i,j

Wij

∣∣∣∣∣ ui

d
r/(q−1)
i

− uj

d
r/(q−1)
j

∣∣∣∣∣
2

. (5.1)

If q = 1, we have instead
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〈u, LN u〉(p,1,r) = 〈u, (DN − WN ) u〉 = 1
2
∑
i,j

Wij |ui − uj |2 .

It immediately follows that the first eigenvalue of LN is zero with corresponding eigenvector ϕϕϕ1 = D
r/(q−1)
N 1

if q �= 1 and ϕϕϕ1 = 1 if q = 1, where 1 denotes the constant vector of ones. The symmetric expression (5.1)
also shows why the graph Laplacian is a useful tool for spectral clustering: If the corresponding similarity 
graph has more than one disconnected component, then choices of ui that take different constant multiples 
of dr/(q−1)

i (if q �= 1; different constants if q = 1) on each component of the graph set 〈u, LNu〉(p,q,r) to zero. 
As a consequence, a simple continuity argument (highlighted in [33]) demonstrates that the eigenvectors 
corresponding to the low lying spectrum of LN contain information about the clusters in XN . Note also 
that for the more common parameter choices (p, q, r) = (1, 2, 0), (3/2, 2, 1/2) and (1, 1, 0) discussed in the 
introduction (see Subsection 1.2), the weighted inner product 〈· , ·〉(p,q,r) reduces to the usual Euclidean 
inner product. We say (σ, u) is an eigenpair of LN for parameters (p, q, r) if

〈LN u, v〉(p,q,r) = σ〈u, v〉(p,q,r) ∀v ∈ RN ,

and thanks to the assumption that d̃i > 0 for all i, this statement is equivalent to the matrix equality 
LN u = σu.

Remark 5.1. The spectra of two graph Laplacians with parameters (p1, q1, r1) and (p2, q2, r2) are identical 
if

p1 + r1 = p2 + r2 , q1 = q2 . (5.2)

This is true both in the discrete setting for the family LN defined in (1.2), and in the continuum limit 
for the family of weighted elliptic operators L defined in (1.1). Here, we focus on the discrete setting; the 
argument in the continuum limit is analogous.

To see that this result holds, let Li
N denote the graph Laplacian defined by (1.2) with parameters 

(pi, qi, ri), for i = 1, 2. The second condition in (5.2) ensures that the weights WN and degrees DN are the 
same for both graph Laplacians and the first condition suffices to make their spectra identical.

Indeed, assume that (σ, u) is an eigenpair of L1
N in the (p1, q1, r1)-inner product,

〈L1
N u , u〉(p1,q1,r1) = σ〈u , u〉(p1,q1,r1) .

Defining ũ := D
1
2

(
p1−1−r1

q1−1 − p2−1−r2
q2−1

)
N u = D

p1−p2
q1−1

N u, we have

〈u , u〉(p1,q1,r1) = 〈ũ , ũ〉(p2,q2,r2) .

Now writing v := D
− r1

q1−1
N u and ṽ := D

− r2
q2−1

N ũ we realize that ṽ = v for parameter choices (p1, q1, r1) and 
(p2, q2, r2) satisfying (5.2). We conclude that

〈L2
N ũ , ũ〉(p2,q2,r2) = 〈(DN − WN )ṽ , ṽ〉 = 〈(DN − WN )v , v〉

= 〈L1
N u , u〉(p1,q1,r1) = σ〈u , u〉(p1,q1,r1)

= σ〈ũ , ũ〉(p2,q2,r2)

and so (σ, ũ) is an eigenpair of L2
N in the (p2, q2, r2)-inner product.
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Remark 5.2. There are a number of graph-based algorithms which proceed by making a preliminary density 
estimate via a preliminary weight matrix W̃ . In the approach described above, and when q < 2, the rescaling 
of the weights from W̃ to W enlarges affinities between points in regions of low sampling density; this adds 
robustness to graph-based algorithms, minimizing unwanted impact from outliers in the tails of �. This is 
sometimes also achieved through a rescaling within ηδ defining

Wij =
{

ηδ

(
d̃i

1−q/2
d̃j

1−q/2|xi − xj |
)

, i �= j,

0 i = j.

This idea of variable bandwidth originates in the statistical density estimation literature [30,42] and was 
introduced to the machine learning community, in the context of graph based data analysis, in [46]. It would 
be of interest to study limiting continuum operators in this context. Analysis that is relevant to this question 
is undertaken in [7] where aspects of the work of [14] are generalized to the variable bandwidth setting.

5.2. Convergence of Dirichlet energies

In this subsection, we describe why we expect the spectra of discrete operators LN to converge to the 
weighted Laplacian operator L. In simple terms, the limit rests on using the law of large numbers to capture 
the large data limit N → ∞, in tandem with localizing the weight functions ηδ by sending δ → 0 so that 
they behave like Dirac measures. To make these ideas rigorous the two limits need to be carefully linked. 
Here, however, we simply provide intuition about the role of the two limiting processes, considering first 
large N and then small δ.

For a vector u ∈ RN , we define the discrete weighted Dirichlet energy EN,δ : RN → [0, ∞),

EN,δ(u) := N2r−q

δ2 〈u, LN u〉(p,q,r).

This energy can be extended to functions defined on Z. To achieve this, for u : Z → R, we write ui := u(xi). 
Our aim is to study the limiting behavior of the functional EN,δ as N → ∞ and δ → 0 on a formal level. 
In the limit, we obtain the continuous weighted Dirichlet energy E : L2(Z, �p−r) → [0, ∞] defined as

E(u) :=
{

1
2 〈u, Lu〉ρp−r if u ∈ H1(Z, �) ,

∞ if u ∈ L2(Z, �p−r) \ H1(Z, �) .

Once the convergence of the Dirichlet energies has been established, generalizations of the results in [13,20,
23,45] are possible.

The set of feature vectors XN induces the empirical measure μN = 1
N

∑N
i=1 δxi

, which allows one to 
define the weighted Hilbert space L2(Z, μN ) with inner product

〈u, v〉L2(Z,μN ) =
ˆ

Z

u(x)v(x) dμN (x) = 1
N

N∑
i=1

u(xi)v(xi) .

Since the feature vectors xi are i.i.d. according to the law �, we have dμN (x) ⇀ �(x)dx as N → ∞. Further, 
we introduce the functions d̃N,δ, dN,δ : Z → R as follows:

d̃N,δ(x) :=
ˆ

ηδ(|x − y|) dμN (y) ,
Z
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dN,δ(x) :=
ˆ

Z

ηδ(|x − y|)(
d̃N,δ(x)

)1−q/2 (
d̃N,δ(y)

)1−q/2 dμN (y) .

Note that

d̃i = Nd̃N,δ(xi) , di = Nq−1dN,δ(xi) .

For a vector u ∈ RN , we can then rewrite the discrete weighted Dirichlet energy EN,δ using (5.1) (case 
q �= 1):

EN,δ(u) := N2r−q

δ2 〈u, LN u〉(p,q,r) = N2r−q

2δ2

∑
i,j

Wij

∣∣∣∣∣ ui

d
r/(q−1)
i

− uj

d
r/(q−1)
j

∣∣∣∣∣
2

= N2r−q

2δ2

∑
i,j

(
W̃ij

d̃i
1−q/2

d̃j
1−q/2

)∣∣∣∣∣ ui

d
r/(q−1)
i

− uj

d
r/(q−1)
j

∣∣∣∣∣
2

= 1
2δ2N2

∑
i,j

(
ηδ(|xi − xj |)(

d̃N,δ(xi)
)1−q/2 (

d̃N,δ(xj)
)1−q/2

)

×
∣∣∣∣∣ ui

(dN,δ(xi))r/(q−1) − uj

(dN,δ(xj))r/(q−1)

∣∣∣∣∣
2

.

This formulation allows us to extend EN,δ from vectors to functions on Z. More precisely, for u : Z → R, 
we have

EN,δ(u) = 1
2δ2

¨

Z×Z

(
ηδ(|x − y|)(

d̃N,δ(x)
)1−q/2 (

d̃N,δ(y)
)1−q/2

)

×
∣∣∣∣∣ u(x)
(dN,δ(x))r/(q−1) − u(y)

(dN,δ(y))r/(q−1)

∣∣∣∣∣
2

dμN (x)dμN (y) . (5.3)

Now notice that, by the law of large numbers,

d̃N,δ(x) → d̃δ(x) , dN,δ(x) → dδ(x) as N → ∞ ∀x ∈ Z ,

where the functions d̃δ, dδ : Z → R are given by

d̃δ(x) :=
ˆ

Z

ηδ(|x − y|)�(y) dy , dδ(x) :=
ˆ

Z

ηδ(|x − y|)(
d̃δ(x)

)1−q/2 (
d̃δ(y)

)1−q/2 �(y) dy .

Define

s0 :=
ˆ

Z

η(|x|) dx , s2 :=
ˆ

Z

|e1 · x|2η(|x|) dx , (5.4)

with e1 denoting the first unit standard normal vector in Rd. Taking δ → 0 as a second step, we obtain

d̃δ(x) → s0�(x) , dδ(x) → sq−1
0 �q−1(x) ∀x ∈ Z .

Therefore, for smooth enough u : Z → R, expression (5.3) allows us to estimate
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EN,δ(u) = 1
2δ2

¨

Z×Z

(
ηδ(|x − y|)(

d̃N,δ(x)
)1−q/2 (

d̃N,δ(y)
)1−q/2

)

×
∣∣∣∣∣ u(x)
(dN,δ(x))r/(q−1) − u(y)

(dN,δ(y))r/(q−1)

∣∣∣∣∣
2

dμN (x)dμN (y)

N�1≈ 1
2δ2

¨

Z×Z

(
ηδ(|x − y|)(

d̃δ(x)
)1−q/2 (

d̃δ(y)
)1−q/2

)

×
∣∣∣∣∣ u(x)
(dδ(x))r/(q−1) − u(y)

(dδ(y))r/(q−1)

∣∣∣∣∣
2

�(x)�(y) dxdy

δ	1≈ 1
2δ2

¨

Z×Z

(
ηδ(|x − y|)(

d̃δ(x)
)1−q/2 (

d̃δ(y)
)1−q/2

)

×
∣∣∣∣∣∇
(

u(x)
(dδ(x))r/(q−1)

)
· (x − y)

∣∣∣∣∣
2

�(x)�(y) dxdy

δ	1≈ 1
2

s2

s2r+2−q
0

ˆ

Z

1
�(x)2−q

∣∣∣∣∇
(

u(x)
�(x)r

)∣∣∣∣
2

�(x)2 dx

= 1
2

s2

s2r+2−q
0

ˆ

Z

∣∣∣∣∇
(

u(x)
�(x)r

)∣∣∣∣
2

�(x)q dx = s2

s2r+2−q
0

E(u) .

This is the desired result. To develop a theorem based on these calculations requires taking N → ∞
concurrently with δ → 0, and may be done in the framework of [13,20,45].

Remark 5.3. While the above arguments primarily concern proximity graphs; the method of proof in [13]
is more general and can be applied to k-NN graphs as well. However, the resulting limiting process gives 
a different relationship between the continuum operator L with a certain choice of (p, q, r) and the correct 
normalization of the discrete Laplacian LN .

Remark 5.4. Not all graph Laplacian normalizations lead to differential operators of the type (1.1) in the 
large data limit, and this is the motivation for introducing the parameters (p, q, r) as graph Laplacian 
weightings of type (1.2). For example, the operator D−s

N (DN − WN )D−t
N with q = 1 does not correspond to 

a continuum operator of type (1.1) in the same large data limit, for any choice of s, t ∈ R \ {0}.

5.3. Discrete vs continuum eigenproblems

In this subsection, we make explicit the relationship between the discrete and continuum eigenproblems 
and highlight the correct scaling needed in the discrete setting for the spectra to converge. Let (σ, ϕ) be 
an eigenpair of L and take a test function φ ∈ H1(Z, �). The arguments in Subsection 5.2 show that for 
vectors u, v ∈ RN where ui = ϕ(xi), vi = φ(xi), we have

N2r−q

δ2 〈LN u, v〉(p,q,r)
N�1,δ	1≈ s2

2s2r+2−q
0

〈Lϕ, φ〉�p−r .

With a similar argument, one can identify the continuum analogue of the weighted inner product 〈u, v〉(p,q,r)
by rewriting it in terms of ϕ and φ:
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Nr−p〈u, v〉(p,q,r) = Nr−p〈u, D
p−r−1

q−1 v〉 = Nr−p
N∑

i=1
uivid

p−r−1
q−1

i

= Nr−p
N∑

i=1
ϕ(xi)φ(xi)Np−r−1 (dN,δ(xi)

) p−r−1
q−1

=
ˆ

Z

ϕ(x)φ(x)
(
dN,δ(x)

) p−r−1
q−1 dμN (x) .

Recall from Subsection 5.2 that by the law of large numbers, dN,δ(x) → dδ(x) as N → ∞, and taking δ → 0
as a next step, we obtain dδ(x) → sq−1

0 �q−1(x). Therefore,

Nr−p〈u, v〉(p,q,r)
N�1≈

ˆ

Z

ϕ(x)φ(x)
(
dδ(x)

) p−r−1
q−1 �(x) dx

δ	1≈ sp−r−1
0

ˆ

Z

ϕ(x)φ(x)�(x)p−r dx .

In other words, for an eigenpair (σ̃N,δ, u) of the weighted graph Laplacian matrix LN solving

〈LN u, v〉(p,q,r) = σ̃N,δ〈u, v〉(p,q,r) , ∀v ∈ RN (5.5)

we expect that

2sp+r−q+1
0

δ2Nq−p−rs2
σ̃N,δ → σ, as N → ∞, δ → 0,

where σ is an eigenvalue of L,

〈Lϕ, φ〉�p−r = σ〈ϕ, φ〉�p−r .

These considerations imply that the discrete eigenvalues of LN need to be scaled appropriately in order to 
converge to the eigenvalues of L.

Remark 5.5. It is shown in the papers [13,23,40,20] that for the parameter choices (p, q, r) = (1, 2, 0) and 
(3/2, 2, 1/2) and in the limit as N → ∞ and δ := δN → 0 at an appropriate rate with N , the discrete 
operators LN converge to L on Z. Those papers analyze the convergence of the Dirichlet forms associated 
with LN (defined with respect to real-valued functions on the vertices XN ) to those associated with L
(defined with respect to real-valued functions on Z). In particular, [23,40] use Γ-convergence arguments 
based on the TL2 topology to prove convergence. This topology may be used to study Γ-limits of other non-
quadratic functionals defined with respect to real-valued functions on the graph – see [18], for example. A 
similar methodology can be applied to show convergence of LN to L for any choice of parameters (p, q, r) ∈
R3. However, the Γ-convergence framework does not result in rates of convergence for eigenvalues and 
eigenvectors of LN making it difficult to extend continuum analyses, such as our Main Result 1.1, to 
practical discrete problems. In contrast, the more recent articles [13,20,45] take a more direct approach to 
proving the convergence of LN to L and obtain rates. The rigorous study of this limiting procedure for the 
general (p, q, r) family of operators is the subject of future research.

Remark 5.6. The fact that the scaling factor in front of σ̃N,δ has a dependence on Np+r−q once again 
highlights the special role of the balanced case q = p + r.
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5.4. Numerical experiments in the discrete setting

In this subsection we present a set of numerical experiments concerning the spectrum of discrete graph 
Laplacian matrices LN . Our goal here is twofold: 1) we support the theoretical findings in Subsection 5.3 by 
showing that as N → ∞ and δ → 0, the eigenvalues of LN converge to those of L after appropriate scaling 
by N, δ and for different choices of (p, q, r); 2) we show that the continuum spectral analysis of Section 3
manifests for the setting of finitely many samples as well. In particular, we show that a uniform spectral 
gap for LN exists when q = p + r but disappears when q > p + r.

In what follows, we display two numerical examples: choosing � to be (i) a piecewise constant mixture 
model, and (ii) a mixture model with exponential components.

5.4.1. A piecewise constant mixture
For the set-up of our numerical experiments, we choose Z = (0, 1) × (0, 1) ⊂ R2 and define the sequence 

of densities

�ε(t) =
{

ε, t1 ∈ (0.2, 0.8),

2.5 − 1.5ε, t1 ∈ [0, 0.2] ∪ [0.8, 1],
∀t = (t1, t2)T ∈ Z. (5.6)

Thus as ε → 0 the density �ε vanishes inside a strip in the middle of Z while the rest of the probability mass 
is split equally between two rectangles to the sides of Z. Note that �ε is discontinuous by definition and 
so it does not satisfy all of our assumptions from Subsection 2.2. For fixed values of ε we sample vertices 
{xi}N

i=1 i.i.d. with respect to �ε and construct a weighted graph W̃ with entries W̃ij = ηδ(|xi − xj |) as in 
Section 5.1. As for the kernel ηδ we choose

ηδ(t) = 1
πδ2 1[0,δ)(t), ∀t ∈ [0, +∞), (5.7)

for which we can easily compute the normalizing constants defined in (5.4) to be s0 = 1 and s2 = 1/4. 
We can then proceed to define the graph Laplacian matrices LN as outlined in Subsection 5.1 for different 
choices of (p, q, r) ∈ R3. It remains to choose a relationship between δ, N to ensure convergence of the 
spectrum of LN as N → ∞ and δ → 0. Following [13] we choose

δ =
(

log(N)
N

)1/3

. (5.8)

Although this choice is not justified theoretically at this point we find that it is sufficient numerically to 
achieve convergence of the eigenvalues.

In Fig. 5.1 we plot the first four non-trivial eigenvalues σN,δ of LN as a function of N for ε = 2−3 and 
various choices of (p, q, r) in both balanced and unbalanced cases. Each reported eigenvalue was averaged 
over twenty redraws of the vertices. We clearly observe that as N → ∞ the eigenvalues converge although 
the larger eigenvalues appear to converge more slowly. In Fig. 5.2 we plot the relative errors between the 
discrete eigenvalues σN,δ and the continuum eigenvalues σ computed using our finite element solver from 
Section 4 with the density �ε as in (5.6). We observe that in both balanced and unbalanced regimes the 
discrete eigenvalues converge to their continuum counterparts although the convergence plateau’s in the 
q > p + r case at around 1e − 3 most likely due to numerical errors. We observed that convergence improves 
for larger values of ε.

For our next set of experiments we consider the behavior of the discrete eigenvalues σN,δ as ε vanishes. We 
fix N = 213 and choose ε = 2−2, . . . , 2−4. Here we redraw the vertices five times and average the computed 
eigenvalues over these five trials. Fig. 5.3 shows results that are analogous to Fig. 1.1(b,c). We observe that 
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Fig. 5.1. Convergence of the first four non-trivial discrete eigenvalues σN,δ as a function of N for different values of (p, q, r) and 
ε = 2−3 with vertices distributed according to (5.6).

Fig. 5.2. Relative error between the first four non-trivial discrete eigenvalues σN,δ and the continuum eigenvalues σ as a function 
of N for different values of (p, q, r) and ε = 2−3 with vertices distributed according to (5.6).

Fig. 5.3. The dependence of the non-trivial discrete eigenvalues σN,δ as a function of ε for different values of (p, q, r) and N = 213

with vertices drawn from (5.6). The reported values within the brackets in the legend are the slopes of a linear fit to the last three 
data points indicating the rate at which the corresponding eigenvalues vanish with ε.

in the balanced case where q = p + r the second eigenvalue vanishes like εq while the larger eigenvalues 
remain bounded away from zero as predicted by Theorem 3.2 and confirmed by our numerical experiments 
in Subsection 4.1. The case where q > p +r also agrees with Theorem 3.2 as well as our continuum numerical 
experiments in Subsection 4.2 and in turn with the first component of Conjecture 1.2, as we observe that the 
second eigenvalue vanishes like εq while the third eigenvalue vanishes like εp+r. Finally, in the q < p + r case 
we observe a similar behavior to the balanced case where a uniform spectral gap manifests while the second 
eigenvalue appears to vanish at a rate that is slightly faster than εq which we attribute to numerical errors. 
Hence, our discrete experiments are once again in line with continuum experiments from Subsection 4.3 and 
further support the first component of Conjecture 1.2.
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Fig. 5.4. Convergence of the first four scaled discrete eigenvalues σN,δ as a function of N for different values of (p, q, r) and ω = 1.9−3

with vertices distributed according to (1.4).

5.4.2. An exponential mixture
Here we give full details of the numerical experiments presented in Example 1.4 in Subsection 1.3. We 

use the same kernel ηδ and parameterization of δ(N) as in (5.7) and (5.8) respectively. Similarly we choose 
Z = (0, 1) × (0, 1) ⊂ R2 but sample the vertices of the graph from the density �ω as in (1.4), see Fig. 1.2(a) 
for a plot of �ω with ω = 1/4.

In Fig. 1.2(b,c,d) we fix N = 213 and choose ω = (1.9)−5, . . . (1.9)−8. Each data point is obtained by 
averaging the first four eigenvalues of LN over five trials where the vertices of the graph are redrawn from 
�ω. As we already discussed in Example 1.4 our numerical results indicate that the relationship between p, 
q and r has a major impact on the gap between the second and third eigenvalues of LN . In particular, when 
q ≤ p + r a uniform gap is observed while when q > p + r only a ratio gap manifests. We also note that 
the rate of decay of the second and third eigenvalues as a function of ω in Fig. 1.2(b,c,d) is different from 
the rates we obtained as a function of the perturbation parameter ε since �ω vanishes exponentially fast in 
the middle of the domain which violates our assumption that the density satisfies � = Kε away from the 
clusters. Finally, in Fig. 5.4 we plot the first four non-trivial eigenvalues σN,δ of LN for ε = 1.9−6 and for 
different values of N . Analogously to Fig. 5.1 our results show that the first few eigenvalues of LN converge 
as N → ∞ for the exponential mixture model as well.

6. Spectral analysis: proofs

In this section we present proofs of the theorems in Section 3. The essential analytical tools in our spectral 
analysis are the min-max and max-min formulas from Appendix C, together with a new weighted version 
of Cheeger’s inequality given in Appendix D. We adopt the same organizational format as Section 3. In 
Subsection 6.1 we discuss the perfectly clustered case, and then consider small perturbations of this setting, 
the nearly clustered case, in Subsection 6.2. Theorem 3.2 is proved in Subsections 6.2.1, 6.2.2 and while the 
proof of Theorem 3.4 is outlined in Subsection 6.3.

6.1. Proof of Theorem 3.1

As detailed in the discussion following Theorem 3.1 it only remains to characterize the third eigenvalue 
of L0.

Proposition 6.1. Suppose Assumptions 2.4 and 2.5 are satisfied and the L0 spectral gap condition holds on 
the clusters Z± with optimal constants Λ±

0 := Λ0(Z±) > 0 separately. Then σ3,0 ≥ min{Λ+
0 , Λ−

0 } > 0.

Proof. Note that Assumption 2.5(e) ensures that ϕ2,0 = |Z ′|1/2
�p−r

0
�r (1Z+ − 1Z−) belongs to V 0(Z ′, �0). 

Let u ∈ V 1(Z ′, �0) so that u⊥span{ϕ1,0, ϕ2,0} in L2(Z ′, �p−r
0 ). A direct calculation shows that this means 
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the restrictions u|Z± of u to the clusters Z± are orthogonal (with respect to the L2(Z±, �p−r
0 |Z±) inner 

products) to the restrictions �r
0|Z± of �r

0 and belong to V 0(Z±, �0|Z±). Thus following the L0 spectral gap 
assumption, see Definition 2.10, u|Z± satisfy Poincaré inequalities of the form (2.17) on Z± with optimal 
constants Λ±

0 . Hence

ˆ

Z′

∣∣∣∣∇
(

u

�r
0

)∣∣∣∣
2

�q
0dx =

ˆ

Z+

∣∣∣∣∇
(

u

�r
0

)∣∣∣∣
2

�q
0dx +

ˆ

Z−

∣∣∣∣∇
(

u

�r
0

)∣∣∣∣
2

�q
0dx

≥ min{Λ+
0 , Λ−

0 }

⎛
⎝ˆ

Z+

∣∣∣∣ u

�r
0

∣∣∣∣
2

�p+r
0 dx +

ˆ

Z−

∣∣∣∣ u

�r
0

∣∣∣∣
2

�p+r
0 dx

⎞
⎠

= min{Λ+
0 , Λ−

0 }
ˆ

Z′

∣∣∣∣ u

�r
0

∣∣∣∣
2

�p+r
0 dx.

The result now follows from the max-min formula (C.2) in Theorem C.1. �
Remark 6.2. If Assumption 2.5(e) is dropped then the two terms in the definition of ϕ2,0 need to be weighted 
by appropriate constants to ensure 

´
Z′ ϕ2,0(x)�p

0(x)dx = 0 so that ϕ2,0 ∈ V 0(Z ′, �0).

6.2. Proof of Theorem 3.2

We now turn our attention to the densities �ε that have full support on Z̄, but concentrate around Z ′ as 
ε decreases. Throughout this section, we routinely assume that Assumptions 2.4, 2.5 and 2.6 are satisfied 
by the domains Z, Z ′ and densities �0 and �ε. Throughout, the constants Ξ and Ξj for any j are arbitrary 
and can change from one line to the next.

We start by constructing an approximation for ϕ2,ε (the second eigenfunction of Lε) that is used through-
out this section. Fix ε > 0 and define the sets Z±

ε1
and Z±

ε as in (2.7), where ε1 = ε + εβ with a parameter 
0 < β < 1. We choose ε small enough so that Z+

ε1
and Z−

ε1
are disjoint. Consider functions ξ±

ε ∈ C∞(Z̄)
that satisfy

ξ±
ε (x) = 1, x ∈ Z±

ε ,

0 < ξ±
ε (x) < 1, |∇ξ±

ε (x)| ≤ ϑε−β, x ∈ Z±
ε1

\ Z±
ε ,

ξ±
ε (x) = 0, x ∈ Z \ Z±

ε1
,

for some constant ϑ > 0 independent of β. The ξ±
ε are smooth extensions of the set functions 1Z±

ε
. They 

can be constructed by convolution with the standard mollifier gε in the same manner in which �ε was 
constructed in (2.11) (also see [32, Thm. 3.6]). Now define the functions χ±

ε ∈ C∞(Z̄) by renormalizing ξ±
ε

in L2(Z̄, �p−r
ε ),

χ+
ε := b+

ε ξ+
ε , χ−

ε := b−
ε ξ−

ε , (6.1)

where the coefficients b±
ε ∈ R+ are chosen to satisfy

ˆ

Z+
ε1

�p+r
ε χ+

ε dx =
ˆ

Z−
ε1

�p+r
ε χ−

ε dx,

b+ + b− = 2.

(6.2)
ε ε
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The first condition ensures that �r
ε (χ+

ε − χ−
ε ) ∈ V 0(Z, �ε), whereas the second condition is not necessary 

and chosen for closure and convenience in the calculations that follow. For a schematic depiction of these 
constructions, see Fig. 4.1.

We define the following ansatz as an approximation to ϕ2,ε

ϕF,ε(x) = �r
ε(x) [χ+

ε (x) − χ−
ε (x)]∥∥�r

ε(x)
[
χ+

ε (x) − χ−
ε (x)

]∥∥
L2(Z,�p−r

ε )
. (6.3)

Observe that ϕF,ε is simply a smooth approximation to the zero extension of ϕ2,0 to all of Z by an element 
of V 0(Z, �ε). The dependence on β > 0 has been omitted in ϕF,ε for notational convenience. One should 
choose β large enough in order for the set Z ′

ε1
to be close to Z ′

ε. However, this has to be balanced with small 
enough β such that the derivatives ∇χ±

ε are allowed to be steep enough for ϕF,ε to be a good approximation 
of the Fiedler vector ϕ2,0. The following lemma is useful throughout the rest of this section.

Lemma 6.3. Suppose that p + r ≥ 0 and that Assumptions 2.4, 2.5 and 2.6 hold and let b±
ε be as in (6.1). 

Suppose ε ∈ (0, ε0) for a sufficiently small ε0 > 0. Then there exists a constant Ξ > 0, independent of ε so 
that

|b±
ε − 1| ≤ Ξεmin{1,p+r} .

Proof. Consider the ratio

Ξε :=

´
Z+

ε1
�p+r

ε ξ+
ε dx´

Z−
ε1

�p+r
ε ξ−

ε dx
.

Solving (6.2) for b±
ε we obtain b+

ε = 2
1+Ξε

and b−
ε = 2Ξε

1+Ξε
. Thus if we can show that

|Ξε − 1| ≤ Ξ1εmin{1,p+r}, (6.4)

then |Ξε + 1| = |(−2) − (Ξε − 1)| ≥ 2 − |Ξε − 1|, and so

|b±
ε − 1| = |Ξε − 1|

|Ξε + 1| ≤ |Ξε − 1|
2 − |Ξε − 1| ≤ Ξ1εmin{1,p+r}

2 − Ξ1εmin{1,p+r} ≤ Ξεmin{1,p+r},

for some Ξ > 0, which concludes the proof of the lemma. It remains to show (6.4). Following Assump-
tion 2.6(c, d), for sufficiently small ε,

Ξε ≤
´

Z+
ε

�p+r
ε dx + Kp+r

2 εp+r|Z+
ε1

\ Z+|´
Z− �p+r

ε dx

≤

´
Z+(�0 + K1ε)p+rdx +

´
Z+

ε \Z+ �p+r
ε dx + Kp+r

2 εp+r|Z+
(ε0+εβ

0 )
\ Z+|´

Z−(�0 − K1ε)p+rdx
.

Note that 
´

Z+
ε \Z+ �p+r

ε dx ≤ (�+
ε0

)p+r|Z+
ε \Z+| ≤ (�+

ε0
)p+rθε|∂Z+| following the remark after (2.9) and using 

(2.8). For 0 ≤ p + r ≤ 1, we use the inequality (a + b)p+q ≤ (ap+r + bp+r) for any a, b ≥ 0, and obtain

Ξε ≤
´

Z+ �p+r
0 dx + Ξ2εp+r´

Z− �p+r
0 dx − Ξ3εp+r

.

Thanks to Assumption 2.5(e), 
´

+ �p+r
0 dx =

´
− �p+r

0 dx, and so Taylor expanding in Ξ3εp+r yields
Z Z
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Ξε ≤ 1 +
(

Ξ2´
Z− �p+r

0 dx
+ Ξ3

)
εp+r + O

(
ε2(p+r)

)
≤ Ξ1εp+r

since �0 is bounded below uniformly on Z− by Assumption 2.5(c).
If p + r > 1 on the other hand, we simply Taylor expand (�0 + K1ε)p+r and (�0 − K1ε)p+r directly, and 

obtain

Ξε ≤
´

Z+ �p+r
0 dx + Ξ2ε´

Z− �p+r
0 dx − Ξ3ε

≤ 1 + Ξ1ε ,

again using the uniform upper and lower bounds for �0 on Z±. The lower bound on ±(Ξε − 1) follows in a 
similar manner. �
6.2.1. Proof of Theorem 3.2(ii) (second eigenvalue of Lε)

Proposition 6.4 (Second eigenvalue of Lε). Let (p, q, r) ∈ R3 satisfying p + r > 0 and q > 0, and suppose 
Assumptions 2.4, 2.5, and 2.6 hold. Then ∃ ε0 > 0 so that ∀(ε, β) ∈ (0, ε0) × (0, 1),

0 ≤ σ2,ε ≤ Ξεq−β ,

where Ξ > 0 is a uniform constant independent of ε.

Proof. Fix an ε0 > 0 and let ε ∈ (0, ε0]. Recall that ϕF,ε ∈ V 0(Z, �ε) thanks to (6.2) and is normalized with 
respect to the L2(Z, �p−r

ε ) norm. Now consider the Rayleigh quotient

Rε(u) :=

´
Z

∣∣∣∇( u
�r

ε

)∣∣∣2 �q
εdx

´
Z

∣∣∣ u
�r

ε

∣∣∣2 �p+r
ε dx

,

for functions u ∈ span{ϕ1,ε, ϕF,ε}. Note that Rε(ϕ1,ε) = 0, and so Rε(u) ≤ Rε(ϕF,ε). Therefore, we can 
consider u ∈ V 1(Z, �ε). Following the min-max principle (C.1) we simply need to bound Rε(ϕF,ε) to find 
an upper bound for σ2,ε. Let

Ξ0 = inf
ε∈(0,ε0]

‖�r
ε [χ+

ε − χ−
ε ]‖L2(Z,�p−r

ε )

and note that provided ε0 is small enough, Ξ0 > 0 following Lemma 6.3, the fact that χ±
ε have disjoint 

supports, p + r ≥ 0 and using that �ε is bounded above and below on Z ′ by (2.9) (see also Lemma 6.10 in 
Section 6.3 for a more detailed argument). Using 0 < b±

ε < 2 and Assumption 2.6(d), we have

Rε(ϕF,ε) ≤ 4
Ξ0

ˆ

Z

∣∣∇ (ξ+
ε − ξ−

ε

)∣∣2 �q
εdx

= 4
Ξ0

ˆ

Z′
ε1 \Zε

′

∣∣∇ (ξ+
ε − ξ−

ε

)∣∣2 �q
εdx (6.5)

≤ 16Kq
2ϑ2

Ξ0
|Z ′

ε1
\ Zε

′|εq−2β ≤ Ξεq−β ,

since |Z ′
ε1

\ Zε
′| ≤ |Z ′

ε1
\ Z ′| ≤ θ(ε + εβ)|∂Z ′| ≤ Ξ1εβ by (2.8) and since β < 1. It now follows from (C.1)

that σ2,ε ≤ Ξεq−β . �
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6.2.2. Proof of Theorem 3.2 (third eigenvalue of Lε)
We prove the bounds on the third eigenvalue of Lε in a series of propositions and corollaries. In particular, 

part (iii) of Theorem 3.2 follows by combining Propositions 6.7 and 6.8 below. We start with a general result 
that ties the existence of a Lε spectral gap on Z to spectral gaps on subsets of Z.

Proposition 6.5. Let (p, q, r) ∈ R3 satisfying p + r > 0 and q > 0, and suppose Assumptions 2.4, 2.5, and 
2.6 hold. Let

Λ(ε) := min{Λε(Z+
ε0

), Λε(Z \ Z+
ε0

)} ≥ 0 , (6.6)

for some ε0 > 0. Then there exist constants s, t, Ξ1, Ξ2, Ξ3 > 0 independent of ε so that ∀ε ∈ (0, ε0),

σ3,ε ≥ min
{

Λ(ε)(1 − Ξ1εt)
1 + Ξ2Λ(ε)εs

, Λ(ε)
(

1 − Ξ3εmin{t,s}
)}

.

Proof. Note that it is possible that Λ(ε) = 0 if the spectral gap condition in Definition 2.11 is not satisfied 
in Z+

ε0
or Z \ Z+

ε0
. If this happens for some ε ∈ (0, ε0), then the proposition trivially holds. Therefore, we 

assume from now on that Λ(ε) > 0 for all ε ∈ (0, ε0).
Let u ∈ V 1(Z, �ε) and u⊥ϕF,ε with respect to the 〈·, ·〉V -inner product. Without loss of generality 

assume ‖u‖L2(Z,�p−r
ε ) = 1. We will prove the desired lower bound for Rε(u) and use the max-min principle 

(Theorem C.1) to infer the lower bound of σ3,ε.
By definition of Λε we have

ˆ

Z

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx =

ˆ

Z+
ε0

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx +

ˆ

Z\Z+
ε0

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx

≥ Λε(Z+
ε0

)
ˆ

Z+
ε0

∣∣∣∣ u

�r
ε

− ūZ+
ε0

∣∣∣∣
2

�p+r
ε dx

+ Λε(Z \ Z+
ε0

)
ˆ

Z\Z+
ε0

∣∣∣∣ u

�r
ε

− ūZ\Z+
ε0

∣∣∣∣
2

�p+r
ε dx,

where for subsets Ω ⊆ Z we used the notation (recall (2.2))

ūΩ := 1
|Ω|�p+r

ε

ˆ

Ω

(
u

�r
ε

)
�p+r

ε dx. (6.7)

After expanding the squared absolute values and rearrangement we get

1
Λ(ε)

ˆ

Z

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx ≥

ˆ

Z

∣∣∣∣ u

�r
ε

∣∣∣∣
2

�p+r
ε dx

+ ū2
Z+

ε0
|Z+

ε0
|�p+r

ε
+ ū2

Z\Z+
ε0

|Z \ Z+
ε0

|�p+r
ε

(6.8)

− 2ūZ+
ε0

ˆ

Z+
ε0

u�p
ε dx − 2ūZ\Z+

ε0

ˆ

Z\Z+
ε0

u�p
ε dx.

We further discard the terms in the second line as they are positive, which leaves us with the lower bound:
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1
Λ(ε)

ˆ

Z

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx ≥

ˆ

Z

∣∣∣∣ u

�r
ε

∣∣∣∣
2

�p+r
ε dx

− 2
(

ūZ+
ε0

ˆ

Z+
ε0

u�p
ε dx + ūZ\Z+

ε0

ˆ

Z\Z+
ε

u�p
ε0

dx

)
.

Using Hölder’s inequality and the normalization ‖u‖L2(Z,�p−r
ε ) = 1 we obtain

1
Λ(ε)

ˆ

Z

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx

≥
[
1 − 2

(
ūZ+

ε0
|Z+

ε0
|1/2
�p+r

ε
+ ūZ\Z+

ε0
|Z \ Z+

ε0
|1/2
�p+r

ε

)] ˆ
Z

∣∣∣∣ u

�r
ε

∣∣∣∣
2

�p+r
ε dx

=: [1 − 2(T1 + T2)] .

It remains to bound the T1 and T2 terms.
Recall that 〈u, �r

ε〉V = 0, implying that 
´

Z u�p
ε dx = 0 and so

ˆ

Z+
ε0

u�p
ε dx +

ˆ

Z−
ε0

u�p
ε dx = −

ˆ

Z\Z′
ε0

u�p
ε dx. (6.9)

On the other hand since 〈u, ϕF,ε〉V = 0 as well we have that

0 =b+
ε

ˆ

Z

uξ+
ε �p

ε dx + b+
ε

ˆ

Z

�q
ε∇
(

u

�r
ε

)
· ∇ξ+

ε dx

− b−
ε

ˆ

Z

uξ−
ε �p

ε dx − b−
ε

ˆ

Z

�q
ε∇
(

u

�r
ε

)
· ∇ξ−

ε dx.

Using the definition of ξ±
ε we can write

ˆ

Z+
ε0

u�p
ε dx −

ˆ

Z−
ε0

u�p
ε dx =

ˆ

Z+
ε0 \Z+

ε

u�p
ε dx −

ˆ

Z−
ε0 \Z−

ε

u�p
ε dx

− b+
ε

ˆ

Z+
ε1 \Z+

ε

u�p
ε ξ+

ε dx + b−
ε

ˆ

Z−
ε1 \Z−

ε

u�p
ε ξ−

ε dx

+ (1 − b+
ε )
ˆ

Z+
ε

u�p
ε dx − (1 − b−

ε )
ˆ

Z−
ε

u�p
ε dx

− b+
ε

ˆ

Z+
ε1 \Z+

ε

�q
ε∇
(

u

�r
ε

)
· ∇ξ+

ε dx + b−
ε

ˆ

Z−
ε1 \Z−

ε

�q
ε∇
(

u

�r
ε

)
· ∇ξ−

ε dx.

(6.10)

Furthermore, by the Cauchy-Schwartz inequality, and the bound on the derivative of ξ±
ε we obtain

∣∣∣∣∣∣∣
ˆ

± ±

�q
ε∇
(

u

�r
ε

)
· ∇ξ±

ε dx

∣∣∣∣∣∣∣
2

≤ Rε(u)
ˆ

± ±

|∇ξ±
ε |2�q

εdx ≤ Ξ1Rε(u)εq−2β (6.11)

Zε1 \Zε Zε1 \Zε
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for a constant Ξ1 > 0 independent of ε. Combine (6.9), (6.10), (6.11), and the fact that 0 < b±
ε < 2 to get

2

∣∣∣∣∣∣∣
ˆ

Z+
ε0

u�p
ε dx

∣∣∣∣∣∣∣ ≤
ˆ

Z\Z′
ε

|u�p
ε |dx + 2

ˆ

Z′
ε1 \Z′

ε

|u�p
ε |dx

+ max{|1 − b+
ε |, |1 − b−

ε |}
ˆ

Z′
ε

|u�p
ε |dx + 4

√
Ξ1Rε(u)1/2ε

q
2 −β .

Multiple applications of Hölder’s inequality along with Lemma 6.3 then give

2

∣∣∣∣∣∣∣
ˆ

Z+
ε0

u�p
ε dx

∣∣∣∣∣∣∣ ≤ |Z \ Z ′
ε|

1/2
�p+r

ε
+ 2

∣∣Z ′
ε1

\ Z ′
ε

∣∣1/2
�p+r

ε

+ Ξεmin{1,p+r}|Z ′
ε|

1/2
�p+r

ε
+ 4
√

Ξ1Rε(u)1/2ε
q
2 −β .

Furthermore, by Assumption 2.6(d) and (2.8),

|Z \ Z ′
ε|�p+r

ε
= Kp+r

2 εp+r|Z \ Z ′
ε| ≤ Ξ2εp+r ,∣∣Z ′

ε1
\ Z ′

ε

∣∣
�p+r

ε
= Kp+r

2 εp+r|Z ′
ε1

\ Z ′
ε| ≤ Ξ3εp+r+β .

We can repeat the above calculation by replacing Z+ with Z− and vice versa to get the bound
∣∣∣∣∣∣∣
ˆ

Z±
ε0

u�p
ε dx

∣∣∣∣∣∣∣ ≤ Ξ4ε
1
2 min{2,p+r} + 4

√
Ξ1Rε(u)1/2ε

q
2 −β ,

for some constant Ξ4 > 0. Note that by (6.9), we also have
∣∣∣∣∣∣∣
ˆ

Z\Z′
ε0

u�p
ε dx

∣∣∣∣∣∣∣ ≤ 2Ξ4ε
1
2 min{2,p+r} + 8

√
Ξ1Rε(u)1/2ε

q
2 −β .

We conclude that

|T1| + |T2| =
|Z+

ε0
|1/2
�p+r

ε

|Z+
ε0 |�p+r

ε

∣∣∣∣∣∣∣
ˆ

Z+
ε0

u�p
ε dx

∣∣∣∣∣∣∣+
|Z \ Z+

ε0
|1/2
�p+r

ε

|Z \ Z+
ε0 |�p+r

ε

∣∣∣∣∣∣∣
ˆ

Z−
ε0

u�p
ε dx +

ˆ

Z\Z′
ε0

u�p
ε dx

∣∣∣∣∣∣∣
≤ 1

|Z+
ε0 |1/2

�p+r
ε

∣∣∣∣∣∣∣
ˆ

Z+
ε0

u�p
ε dx

∣∣∣∣∣∣∣+ 1
|Z \ Z+

ε0 |1/2
�p+r

ε

⎛
⎜⎝
∣∣∣∣∣∣∣
ˆ

Z−
ε0

u�p
ε dx

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε0

u�p
ε dx

∣∣∣∣∣∣∣
⎞
⎟⎠

≤ Ξ5ε
1
2 min{2,p+r} + Ξ6R1/2

ε ε
q
2 −β .

Thus, we obtain

Rε(u) + Λ(ε)Ξ6R1/2
ε (u)ε

q
2 −β ≥ Λ(ε)

[
1 − 2Ξ5ε

1
2 min{2,p+r}

]
.
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Now if Rε(u) ≥ 1 then Rε(u) ≥ R1/2
ε (u) and we have

Rε(u) ≥
Λ(ε)

[
1 − 2Ξ5ε

1
2 min{2,p+r}

]
1 + 2Λ(ε)Ξ6ε

q
2 −β

.

Alternatively, if Rε(u) < 1 then R1/2
ε (u) < 1 and we instead obtain

Rε(u) ≥ Λ(ε)
[
1 − 2Ξ8ε

1
2 min{2,p+r,q−2β}

]
.

Combining these two bounds we get the desired result so long as p + r > 0, q > 0, and β and ε0 are small 
enough. �

Next, we investigate the consequences of Proposition 6.5 for different parameter choices p, q and r. The 
main point of interest here is to analyze how the parameter Λ(ε) in (6.6) is controlled by ε. We will show in 
Proposition 6.7 that the choice of q in relation to p and r plays a major role in whether Λ(ε) is uniformly 
bounded away from zero and hence, whether a uniform spectral gap exists between σ2,ε and σ3,ε.

Our method of proof relies on isoperimetric-type inequalities for general Dirichlet forms as in [2, Sec. 8.5.1]
viewed as a generalized form of Cheeger’s inequality. For open Ω ⊂ Z define the �q

ε weighted Minkowski 
boundary measure of Ω as follows

|∂Ω|�q
ε

:= lim inf
δ↓0

1
δ

[
|Ωδ|�q

ε
− |Ω|�q

ε

]
. (6.12)

Furthermore, given p, q, r we fix a subset Ω′ ⊆ Z and consider any Ω ⊂ Ω′ ⊆ Z. Define the isoperimetric 
function

J (Ω, �ε) :=
|∂Ω|�q

ε

min{|Ω|�p+r
ε

, |Ω′ \ Ω|�p+r
ε

} . (6.13)

The following lemma is proven in Appendix D similarly to [2, Prop. 8.5.2].

Lemma 6.6. Let (p, q, r) ∈ R3, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Let Ω′ ⊆ Z. Fix ε ∈ (0, ε0). 
Assume there exist h(ε) > 0 so that

h(ε) ≤ inf
Ω

J (Ω, �ε), (6.14)

where the infimum is over open subsets Ω ⊂ Ω′ ⊆ Z such that |Ω|�p+r
ε

≤ 1
2 |Ω′|�p+r

ε
. Then Lε has a spectral 

gap on Ω′ according to Definition 2.11 and (2.18) holds with

Λε(Ω′) ≥ h(ε)2

4

(
inf
Ω′

�p+r−q
ε

)
.

Proposition 6.7. Let r ∈ R, q > 0, p + r > 0, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Then there 
exists Ξ > 0 independent of ε ∈ (0, ε0] so that

σ3,ε ≥ Ξεmax{p+r−q,2(q−p−r)}.

Proof. By Proposition 6.5 we only need to find a lower bound on Λ(ε) which in turn requires us to find 
a lower bound on Λε(Z+

ε0
) and Λε(Z \ Z+

ε0
) separately. We only consider Λε(Z+

ε0
) and note that the same 

argument can be repeated for Λε(Z \ Z+
ε ) possibly with different constants.
0
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We will find a lower bound on infΩ J (Ω, �ε) and use Lemma 6.6 with Ω′ ≡ Z+
ε0

to extend that lower 
bound to Λε(Z+

ε0
). For fixed ε let Ω be a subset of Z+

ε0
satisfying |Ω|�p+r

ε
≤ 1

2 |Z+
ε0

|�p+r
ε

. First, suppose 
|Ω ∩ Z+|�p+r

ε
> 0, i.e., part of Ω lies inside Z+. Then since �ε is uniformly bounded from above in Z+ and 

for sufficiently small ε0 (recall (2.9)) we have

J (Ω, �ε) ≥
(�−

ε0
)q|∂Ω ∩ Z+|

min{|Ω|�p+r
ε

, |Z+
ε0 \ Ω|�p+r

ε
}

≥
(�−

ε0
)q|∂Ω ∩ Z+|

(�+
ε0)p+r|Ω ∩ Z+| + |Ω ∩

(
Z+

ε0 \ Z+
)

|�p+r
ε

≥
(�−

ε0
)q|∂Ω ∩ Z+|

(�+
ε0)p+r|Ω ∩ Z+|

+ O(|Z+
ε0

\ Z+|�p+r
ε

) ≥ Ξ1 ,

where we used Taylor expansions to write the last line. The first ratio is uniformly bounded away from zero 
independent of ε by the standard isoperimetric inequality for the set Ω ∩ Z+ while the second term is small 
following our assumptions on �ε. Thus, in this case J is uniformly bounded from below.

Now consider the case where |Ω ∩Z+|�p+r
ε

= 0, and so Ω lies entirely in the strip Z+
ε0

\Z+ but |Ω ∩Z+
ε |�p+r

ε
>

0. Then it is possible to have |∂Ω ∩ ∂Z+|�q
ε

> 0 or for the boundary of Ω to touch the boundary ∂Z+ on a 
null set. Then similar calculations to the above yield

J (Ω, �ε) =
|∂Ω|�q

ε

min{|Ω|�p+r
ε

, |Z+
ε0 \ Ω|�p+r

ε
}

≥
(�−

ε0
)q|∂Ω ∩ Z+|
|Ω|�p+r

ε

=
(�−

ε0
)q|∂Ω ∩ Z+|

|Ω ∩ Z+
ε |�p+r

ε
+ Kp+r

2 εp+r|Ω ∩
(
Z+

ε0 \ Z+
ε

)
|

≥
(�−

ε0
)q|∂Ω ∩ Z+|

Ξ3ε|∂Ω ∩ Z̄+| + Kp+r
2 εp+r|Ω ∩

(
Z+

ε0 \ Z+
ε

)
|

,

and so the lower bound on J blows up as ε → 0.
Finally, we consider the case where |Ω ∩ Z+

ε |�p+r
ε

= 0, and so ∂Ω is far from ∂Z+. Proceeding as above, 
we write

J (Ω, �ε) ≥
|∂Ω|�q

ε

|Ω|�p+r
ε

= (K2ε)q|∂Ω|
(K2ε)p+r|Ω|

≥ Ξ4εq−p−r,

where Ξ4 depends on Kq−p−r
2 and the standard isoperimetric constant.

Summarizing, if q ≤ p + r, then J is bounded away from zero by a uniform constant independent of 
ε, implying that (6.14) holds with a uniform constant h > 0. Note that infZ+

ε0
�p+r−q

ε = Kp+r−q
2 εp+r−q by 

Assumption 2.6(d). We now investigate the different cases of (p, q, r) separately:

• if q = p + r, we obtain a uniform lower bound on Λε(Z+
ε0

) by Lemma 6.6;
• if q < p + r on the other hand, the lower bound on Λε(Z+

ε0
) is of order εp+r−q;

• if q > p + r, then we have the lower bound J ≥ Ξ4εq−p−r and Lemma 6.6 implies Λε(Z+
ε0

) ≥
Ξ2

4ε2(q−p−r)/4.
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Note that in the final bullet the factor infZ+
ε0

�p+r−q
ε does not play a role here thanks to the uniform 

upper bound on �ε guaranteed in Assumption 2.6(c). The exact same reasoning can be applied for the set 
Ω′ = Z \ Z+

ε0
, where Z− plays the role of Z+, and the region around Z− where �ε is of order ε is simply 

extended up to the boundary of Z+
ε0

. Therefore, similar bounds also hold for Λε(Z \ Z+
ε0

) in each case. By 
combining all the above lower bounds into one expression, Proposition 6.5 yields the existence of a constant 
Ξ > 0 so that σ3,ε ≥ Ξεmax{p+r−q,2(q−p−r)} as claimed. �

The last proposition suggests that when q �= p + r we cannot hope for a spectral gap. Indeed, we are able 
to obtain a vanishing upper bound on σ3,ε for q > p + r and quantify how fast it approaches zero in that 
case and ultimately obtain a spectral ratio gap.

Proposition 6.8. Suppose the conditions of Proposition 6.7 are satisfied.

• If q > p + r and ε0 > 0 is sufficiently small, then there exists a constant Ξ1 > 0 depending only on 
ΛΔ(Z \ Z ′

ε0
) so that ∀(ε, β) ∈ (0, ε0) × (0, 1),

σ3,ε ≤ Ξ1εq−p−r−2β .

• If q ≤ p + r and ε0 > 0 is sufficiently small, then there exists a constant Ξ2 > 0 depending only on 
ΛΔ(Z \ Z ′

ε0
) so that ∀ε ∈ (0, ε0),

σ3,ε ≤ Ξ2 .

Note that according to Definition 2.9, ΛΔ(Z \ Z ′
ε0

) is the second eigenvalue of the standard Laplacian on 
Z \ Z ′

ε0
.

Proof. We apply a similar argument to the proof of Proposition 6.4 using the min-max principle. Let 
ϕ̃2 ∈ H1(Z \ Z ′

ε0
) denote the second eigenfunction of the standard Laplacian on Z \ Z ′

ε0
, i.e., ϕ̃2⊥1Z\Z′

ε0
and

ˆ

Z\Z′
ε0

|∇ϕ̃2|2dx = ΛΔ(Z \ Z ′
ε0

)‖ϕ̃2‖2
L2(Z\Z′

ε0 ).

We proceed by constructing a suitable approximation to ϕ̃2. Let ε2 := ε0 + εβ and ε3 := ε0 + 2εβ for 
0 < β < 1. In a similar manner to (6.3), we define a function ξ̃ε (see Fig. 4.1)

ξ̃ε(x) = 1, x ∈ Z \ Z ′
ε3

,

0 < ξ̃ε(x) < 1, |∇ξ̃ε(x)| ≤ ϑε−β , x ∈ Z ′
ε3

\ Z ′
ε2

,

ξ̃ε(x) = 0, x ∈ Z ′
ε2

.

This allows us to define the function

ϕ̃F,ε := ξ̃εϕ̃2 − �r
ε

|Z \ Z ′
ε2

|�p+r
ε

ˆ

Z\Z′
ε2

ξ̃εϕ̃2�p
ε dx. (6.15)

The shift ensures that ϕ̃F,ε ∈ V 1(Z \ Z ′
ε2

, �ε). The choice of ε2 and ε3 guarantee that the supports of ϕ̃F,ε

and ϕF,ε are disjoint, and so they are orthogonal in V 1(Z, �ε). Now let u ∈ span {ϕF,ε, ϕ̃F,ε}. We wish to 
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bound Rε(u). A straightforward calculation shows that since ϕF,ε⊥ϕ̃F,ε it suffices to bound Rε(ϕF,ε) and 
Rε(ϕ̃F,ε) separately.

For ϕF,ε we showed in the proof of Proposition 6.4 the existence of Ξ1 > 0 so that

Rε(ϕF,ε) ≤ Ξ1εq−β ,

for any β ∈ (0, q). To estimate Rε(ϕ̃F,ε), observe that for ε ∈ (0, ε0] the function ξ̃εϕ̃2 is in H1(Z \ Z ′
ε2

). 
Thus, following our assumptions on �ε we can write

‖ϕ̃F,ε‖2
L2(Z,�p−r

ε )Rε(ϕ̃F,ε) =
ˆ

Z\Z′
ε2

∣∣∣∣∇
(

ϕ̃F,ε

�r
ε

)∣∣∣∣
2

�q
εdx

= Kq−2r
2 εq−2r

ˆ

Z\Z′
ε2

∣∣∇ (ξ̃εϕ̃2
)∣∣2 dx

≤ 2Kq−2r
2 εq−2r

⎛
⎜⎝ ˆ

Z\Z′
ε2

∣∣ξ̃ε∇ϕ̃2
∣∣2 dx +

ˆ

Z\Z′
ε2

∣∣ϕ̃2∇ξ̃ε

∣∣2 dx

⎞
⎟⎠

≤ 2Kq−2r
2 εq−2r

⎛
⎜⎝ ˆ

Z\Z′
ε0

|∇ϕ̃2|2 dx +
ˆ

Z′
ε3 \Z′

ε2

∣∣ϕ̃2∇ξ̃ε

∣∣2 dx

⎞
⎟⎠

≤ 2Kq−2r
2 εq−2r

⎛
⎜⎝ ˆ

Z\Z′
ε0

|∇ϕ̃2|2 dx + ϑ2ε−2β

ˆ

Z\Z′
ε0

|ϕ̃2|2 dx

⎞
⎟⎠

≤ 2Kq−2r
2 εq−2r

(
ΛΔ(Z \ Z ′

ε0
) + ϑ2ε−2β

)
‖ϕ̃2‖2

L2(Z\Z′
ε0 ). (6.16)

Next, we bound ‖ϕ̃F,ε‖2
L2(Z,�p−r

ε ) from below. We have

‖ξ̃εϕ̃2‖2
L2(Z,�p−r

ε ) = Kp−r
2 εp−r

ˆ

Z\Z′
ε0

|ξ̃εϕ̃2|2 dx

≥ Kp−r
2 εp−r

⎛
⎜⎝ ˆ

Z\Z′
ε0

|ϕ̃2|2 dx −
ˆ

Z′
ε3 \Z′

ε0

|ϕ̃2|2 dx

⎞
⎟⎠ ,

and for any k ≥ 2 by Hölder’s inequality,
ˆ

Z′
ε3 \Z′

ε0

|ϕ̃2|2 dx ≤ ‖ϕ̃2‖2
Lk(Z\Z′

ε0
)|Z ′

ε3
\ Z ′

ε0
| k−2

k .

By the Sobolev embedding theorem [1, Thm. 4.12], ϕ̃2 ∈ Lk(Z \ Z ′
ε0

) for k ∈ [2, 2d/(d − 2)) if d > 2 and 
k ∈ [2, ∞) if d ≤ 2; and so using Sobolev inequalities, and the fact that ‖ϕ̃2‖L2(Z\Z′

ε0
) ≤ 1,

‖ϕ̃2‖2
Lk(Z\Z′

ε0 ) ≤ Ξ2‖ϕ̃2‖2
H1(Z\Z′

ε0
) = Ξ2

(
1 + ΛΔ(Z \ Z ′

ε0
))
)

‖ϕ̃2‖2
L2(Z\Z′

ε0
)

≤ Ξ2
(
1 + ΛΔ(Z \ Z ′

ε0
))
)

.
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Since |Z ′
ε3

\ Z ′
ε0

| ≤ Ξ3εβ |∂Z ′
ε0

|, we can write

‖ξ̃εϕ̃2‖2
L2(Z,�p−r

ε ) ≥ Kp−r
2 εp−r

(
‖ϕ̃2‖2

L2(Z\Z′
ε0 ) − Ξ2

(
1 + ΛΔ(Z \ Z ′

ε0
))
)

|Z ′
ε3

\ Z ′
ε0

| k−2
k

)
≥ Kp−r

2 εp−r
(

‖ϕ̃2‖2
L2(Z\Z′

ε0 ) − Ξ4ε
β(k−2)

k

)
. (6.17)

Furthermore, using Assumption 2.6(d), the fact that ϕ̃2⊥1Z\Z′
ε0

in L2(Z \ Z ′
ε0

), Hölder’s inequality, 
‖ϕ̃2‖L2(Z\Z′

ε0
) ≤ 1, and the estimate (2.8), in that order, we can write

�r
ε

|Z \ Z ′
ε2

|�p+r
ε

∣∣∣∣∣
ˆ

Z\Z′
ε2

ξ̃εϕ̃2�p
ε dx

∣∣∣∣∣

= 1
|Z \ Z ′

ε2
|

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε2

ξ̃εϕ̃2dx

∣∣∣∣∣∣∣
= 1

|Z \ Z ′
ε2

|

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε0

ϕ̃2dx −
ˆ

Z′
ε2 \Z′

ε0

ϕ̃2dx +
ˆ

Z′
ε3 \Z′

ε2

(ξ̃ε − 1)ϕ̃2dx

∣∣∣∣∣∣∣
≤ 1

|Z \ Z ′
ε2

|

⎛
⎜⎝ ˆ

Z′
ε2 \Z′

ε0

|ϕ̃2| dx +
ˆ

Z′
ε3 \Z′

ε2

|ξ̃ε − 1| |ϕ̃2| dx

⎞
⎟⎠

≤ 1
|Z \ Z ′

ε2
|

ˆ

Z′
ε3 \Z′

ε0

|ϕ̃2| dx ≤
|Z ′

ε3
\ Z ′

ε0
|1/2

|Z \ Z ′
ε0

| − |Z ′
ε2

\ Z ′
ε0

| ≤ Ξ5εβ/2. (6.18)

To bound ϕ̃F,ε on the outside set, we write explicitly

‖ϕ̃F,ε‖2
L2(Z,�p−r

ε )

=
ˆ

Z

∣∣∣∣∣∣∣ξ̃ε(x)ϕ̃2(x) − �r
ε

|Z \ Z ′
ε2

|�p+r
ε

ˆ

Z\Z′
ε2

ξ̃ε(y)ϕ̃2(y)�p
ε (y) dy

∣∣∣∣∣∣∣
2

�p−r
ε (x) dx

≥ ‖ξ̃εϕ̃2‖2
L2(Z,�p−r

ε ) − 2
|Z \ Z ′

ε2
|�p+r

ε

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε2

ξ̃εϕ̃2�p
ε dy

∣∣∣∣∣∣∣
2

= ‖ξ̃εϕ̃2‖2
L2(Z,�p−r

ε ) −
|Z \ Z ′

ε2
|p+r

�p+r
ε

�2r
ε

⎛
⎜⎝ 2�r

ε

|Z \ Z ′
ε2

|
�

2(p+r)
ε

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε2

ξ̃εϕ̃2�p
ε dy

∣∣∣∣∣∣∣
2⎞
⎟⎠

= ‖ξ̃εϕ̃2‖2
L2(Z,�p−r

ε ) − |Z \ Z ′
ε2

|Kp−r
2 εp−r

⎛
⎜⎝ 2�r

ε

|Z \ Z ′
ε2

|
�

2(p+r)
ε

∣∣∣∣∣∣∣
ˆ

Z\Z′
ε2

ξ̃εϕ̃2�p
ε dy

∣∣∣∣∣∣∣
2⎞
⎟⎠ .

Together with the bounds (6.17) and (6.18), we obtain for small enough ε0,
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‖ϕ̃F,ε‖2
L2(Z,�p−r

ε )

≥ Kp−r
2 εp−r

(
‖ϕ̃2‖2

L2(Z\Z′
ε0 ) − Ξ4ε

β(k−2)
k − Ξ6εβ

)
≥ Ξ7εp−r‖ϕ̃2‖2

L2(Z\Z′
ε0

) .

Finally, following from (6.16), we infer the existence of a constant Ξ, independent of ε ∈ (0, ε0), so that

Rε(ϕ̃F,ε) ≤ Ξεq−p−r−2β ,

which concludes the proof. �
6.3. Proof of Theorem 3.4 (geometry of the second eigenfunction)

First, we prove a key result, that allows us to translate our bounds on the third eigenvalue σ3,ε into an 
upper bound on the error between the second eigenfunction ϕ2,ε and the approximate Fiedler vector ϕF,ε.

Proposition 6.9. Suppose there exist constants Ξ1, Ξ2, Ξ3 ≥ 0, so that for all ε ∈ (0, ε0],

σ3,ε ≥ Ξ1 + Ξ2εq−ϑ + Ξ3εθ−q.

Then for every 0 < β < q, there exists Ξ > 0 so that
∣∣∣∣∣1 −

〈
ϕ2,ε

�r
ε

,
ϕF,ε

�r
ε

〉2

�p+r
ε

∣∣∣∣∣ ≤ Ξεq−β

Ξ1 + Ξ2εq−ϑ + Ξ3εθ−q
.

Proof. Since 
〈

ϕ2,ε

�r
ε

,
ϕF,ε

�r
ε

〉
�p+r

ε

≡ 〈ϕ2,ε, ϕF,ε〉�p−r
ε

we will work with the L2(Z, �p−r
ε ) inner product for brevity. 

It follows from the spectral theorem [19, Thm. D.7] that ϕj,ε form an orthonormal basis in L2(Z, �p−r
ε ). 

Let ϕF,ε =
∑∞

j=1 hjϕj,ε where hj = 〈ϕj,ε, ϕF,ε〉�p−r
ε

. Note that h1 = 0 since ϕF,ε⊥ϕ1,ε. It follows from the 
calculation in (6.5) that for β ∈ (0, q),

Ξεq−β ≥ Rε(ϕF,ε) = 〈L�ε
ϕF,ε, ϕF,ε〉�p−r

ε
= σ2,εh

2
2 +

∞∑
j=3

σj,εh
2
j ,

and hence

σ3,ε

∞∑
j=3

h2
j ≤

∞∑
j=3

σj,εh
2
j ≤ Ξεq−β − σ2,εh

2
2 .

Since ϕF,ε is normalized, it follows that h2
j ≤ 1 for all j ≥ 1 and

1 − h2
2 =

∞∑
j=3

h2
j ≤ Ξεq−β − σ2,εh

2
2

σ3,ε
≤ Ξεq−β

Ξ1 + Ξ2εq−ϑ + Ξ3εθ−q
. �

Now consider

ϕ̄2,0(x) := b0
ε�r

0(x) [1Z+(x) − 1Z−(x)] ∈ L2(Z, �p−r
ε ) ,

obtained by zero extension of ϕ2,0 to all of Z, where
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b0
ε := 1/‖�r

0(x) [1Z+ − 1Z− ] ‖L2(Z,�p−r
ε ) (6.19)

is a normalization constant. Similarly, we denote

ϕF,ε = bF
ε �r

ε(x)
[
χ+

ε (x) − χ−
ε (x)

]
∈ L2(Z, �p−r

ε ) ,

with the normalization constant

bF
ε := 1/‖�r

ε

[
χ+

ε − χ−
ε

]
‖L2(Z,�p−r

ε ) > 0 .

We begin by providing bounds on the normalization constants b0
ε and bF

ε .

Lemma 6.10. Let (p, q, r) ∈ R3 satisfying p + r > 0, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Let 
ε0 > 0 small enough. Then there exist constants Ξ1, Ξ2 > 0, independent of ε so that for all ε ∈ (0, ε0),

∣∣∣∣∣∣∣b
0
ε −

⎛
⎝ˆ

Z′

�p+r
0 dx

⎞
⎠

−1/2
∣∣∣∣∣∣∣ ≤ Ξ1ε ,

∣∣∣∣∣∣∣b
F
ε −

⎛
⎝ˆ

Z′

�p+r
0 dx

⎞
⎠

−1/2
∣∣∣∣∣∣∣ ≤ Ξ2εmin{1,p+r} .

Proof. Using the explicit expression (6.19) write

(b0
ε )−2 =

ˆ

Z′

�2r
0 �p−r

ε dx.

It follows from Assumption 2.6(c) that

�0(x) − K1ε ≤ �ε(x) ≤ �0(x) + K1ε ∀ x ∈ Z ′ . (6.20)

Combining with Assumption 2.5(c), we can find a constant Ξ3 > 0 so that
∣∣∣∣∣∣(b0

ε )−2 −
ˆ

Z′

�p+r
0 dx

∣∣∣∣∣∣ ≤ Ξ3ε . (6.21)

Let b±
ε be as in (6.1). Using Assumption 2.6(d), and the definition of the χ±

ε , we can write

(bF
ε )−2 =

ˆ

Z′
ε1

�p+r
ε (x)

[
(b+

ε )2ξ+
ε (x) + (b−

ε )2ξ−
ε (x)

]
dx

= (b+
ε )2
ˆ

Z+
ε

�p+r
ε dx + (b−

ε )2
ˆ

Z−
ε

�p+r
ε dx

+ Kp+r
2 εp+r

ˆ

Z′
ε1 \Z′

ε

[
χ+

ε − χ−
ε

]2
dx

=
ˆ

Z′

�p+r
ε dx

+ ((b+
ε )2 − 1)

ˆ
�p+r

ε dx + ((b−
ε )2 − 1)

ˆ
�p+r

ε dx
Z+ Z−
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+ (b+
ε )2

ˆ

Z+
ε \Z+

�p+r
ε dx + (b−

ε )2
ˆ

Z−
ε \Z−

�p+r
ε dx

+ Kp+r
2 εp+r

ˆ

Z′
ε1 \Z′

ε

[
χ+

ε − χ−
ε

]2
dx.

The first term is close to 
´

Z′ �p+r
0 dx using (6.20), whereas the terms in the second line can be controlled 

using Lemma 6.3 and the fact that 0 < b±
ε < 2,

∣∣∣∣∣∣(b±
ε − 1)(b±

ε + 1)
ˆ

Z±

�p+r
ε dx

∣∣∣∣∣∣ ≤ 3|b±
ε − 1|

∣∣∣∣∣∣
ˆ

Z±

�p+r
ε dx

∣∣∣∣∣∣ ≤ Ξ4εmin{1,p+r} .

Finally, the last two lines can be estimated using (2.8),

0 ≤ (b+
ε )2

ˆ

Z+
ε \Z+

�p+r
ε dx + (b−

ε )2
ˆ

Z−
ε \Z−

�p+r
ε dx

+ Kp+r
2 εp+r

ˆ

Z′
ε1 \Z′

ε

[
χ+

ε − χ−
ε

]2
dx

≤ 4|Z ′
ε \ Z ′|

(
�+

ε0

)p+r + 4|Z ′
ε1

\ Z ′
ε|Kp+r

2 εp+r ≤ Ξ5εmin{1,p+r+β}

for some Ξ5 > 0. Putting the above estimates together, we obtain
∣∣∣∣∣∣(bF

ε )−2 −
ˆ

Z′

�p+r
0 dx

∣∣∣∣∣∣ ≤ Ξ6εmin{1,p+r} . (6.22)

The lemma then follows from (6.21) and (6.22). �
In order to prove Theorem 3.4, we aim to derive an error bound on the difference between ϕ̄2,0 and ϕ2,ε. 

To this end, we first estimate 〈ϕF,ε, ϕ̄2,0〉�p−r
ε

using the explicit expressions for ϕF,ε and ϕ̄2,0.

Proposition 6.11. Let (p, q, r) ∈ R3 satisfying p + r > 0, and suppose Assumptions 2.4, 2.5 and 2.6 hold. Let 
ε0 > 0 small enough. Then there exists a constant Ξ > 0, independent of ε so that for all ε ∈ (0, ε0),

‖ϕ̄2,0 − ϕF,ε‖2
L2(Z,�p−r

ε ) ≤ Ξεmin{1,p+r} .

Proof. Since Z+ ∩ Z−
ε1

= ∅ and Z− ∩ Z+
ε1

= ∅, we have

〈�r
ε(x)

[
χ+

ε (x) − χ−
ε (x)

]
, �r

0 [1Z+(x) − 1Z−(x)]〉�p−r
ε

=
ˆ

Z

�r
0(x)�p

ε (x)
[
b+

ε ξ+
ε (x)1Z+(x) − b+

ε ξ+
ε (x)1Z−(x)

]
dx

−
ˆ

Z

�r
0(x)�p

ε (x)
[
b−

ε ξ−
ε (x)1Z+(x) − b−

ε ξ−
ε (x)1Z−(x)

]
dx

= b+
ε

ˆ
�r

0�p
ε dx + b−

ε

ˆ
�r

0�p
ε dx
Z+ Z−
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=
ˆ

Z′

�r
0�p

ε dx + (b+
ε − 1)

ˆ

Z+

�r
0�p

ε dx + (b−
ε − 1)

ˆ

Z−

�r
0�p

ε dx .

If p ≥ 0 (and by a similar argument with the order of inequalities reversed if p < 0), (6.20) implies

�p
0(x) − εK1p�p−1

0 (x) + O(ε2) ≤ �p
ε (x) ≤ �p

0(x) + εK1p�p−1
0 (x) + O(ε2) .

By Assumption 2.5(c), we conclude that there exists a constant Ξ1 > 0 such that

∣∣∣∣∣∣
ˆ

Z′

�r
0�p

ε dx −
ˆ

Z′

�p+r
0 dx

∣∣∣∣∣∣ ≤ Ξ1ε .

The above estimate together with Lemma 6.3 implies
∣∣∣∣∣∣
ˆ

Z′

�p+r
0 dx − 〈�r

ε(x)
[
χ+

ε (x) − χ−
ε (x)

]
, �r

0 [1Z+(x) − 1Z−(x)]〉�p−r
ε

∣∣∣∣∣∣ ≤ Ξ2εmin{1,p+r}

for some constant Ξ2 > 0. Combining this bound with Lemma 6.10, and writing

〈ϕF,ε, ϕ̄2,0〉�p−r
ε

= b0
εbF

ε 〈�r
ε(x)

[
χ+

ε (x) − χ−
ε (x)

]
, �r

0 [1Z+(x) − 1Z−(x)]〉�p−r
ε

,

we conclude that there exists a constant Ξ3 > 0 so that
∣∣∣1 − 〈ϕF,ε, ϕ̄2,0〉�p−r

ε

∣∣∣ ≤ Ξ3εmin{1,p+r} .

Finally, we obtain

‖ϕ̄2,0 − ϕF,ε‖2
L2(Z,�p−r

ε ) =
ˆ

Z

|ϕ̄2,0 − ϕF,ε|2 �p−r
ε dx

= ‖ϕ̄2,0‖2
L2(Z,�p−r

ε ) + ‖ϕF,ε‖2
L2(Z,�p−r

ε ) − 2〈ϕF,ε, ϕ̄2,0〉�p−r
ε

= 2
(

1 − 〈ϕF,ε, ϕ̄2,0〉�p−r
ε

)
≤ Ξεmin{1,p+r} . �

We are now ready to provide a quantitative estimate on how close the perturbed second eigenfunction 
ϕ2,ε is to ϕ̄2,0 by comparing both eigenfunctions to the approximate Fiedler vector ϕF,ε.

Proof of Theorem 3.4. We apply Proposition 6.9 with the eigenvalue bounds in Theorem 3.4(ii, iii). De-
pending on (p, q, r), we have different lower bounds on σ3,ε. Writing the bounds from Theorem 3.4 in the 
notation of Proposition 6.9, we have

• If q > p + r, then Ξ1 = 0, Ξ2 > 0, Ξ3 = 0 and ϑ = −q + 2(p + r);
• If q = p + r, then Ξ1 > 0, Ξ2 = Ξ3 = 0;
• If q < p + r, then Ξ1 = Ξ2 = 0, Ξ3 > 0, and θ = p + r.

We obtain that there exists a constant Ξ4 > 0 so that
∣∣∣1 − 〈ϕ2,ε, ϕF,ε〉2

p−r

∣∣∣ ≤ Ξ4ε−|q−p−r|+min{q,p+r}−β , (6.23)

�ε
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for any (p, q, r) ∈ R3 with q > 0 and p + r > 0. Combining estimate (6.23) with Proposition 6.11 gives

∣∣∣1 − 〈ϕ2,ε, ϕ̄2,0〉2
�p−r

ε

∣∣∣
=
∣∣∣∣1 −

(
〈ϕ2,ε, ϕF,ε〉�p−r

ε
+ 〈ϕ2,ε, ϕ̄2,0 − ϕF,ε〉�p−r

ε

)2
∣∣∣∣

≤
∣∣∣1 − 〈ϕ2,ε, ϕF,ε〉2

�p−r
ε

∣∣∣+
∣∣∣〈ϕ2,ε, ϕ̄2,0 − ϕF,ε〉�p−r

ε

∣∣∣ ∣∣∣〈ϕ2,ε, ϕ̄2,0 + ϕF,ε〉�p−r
ε

∣∣∣
≤
∣∣∣1 − 〈ϕ2,ε, ϕF,ε〉2

�p−r
ε

∣∣∣
+ ‖ϕ2,ε‖2

L2(Z,�p−r
ε )‖ϕ̄2,0 − ϕF,ε‖L2(Z,�p−r

ε )

(
‖ϕ̄2,0‖L2(Z,�p−r

ε ) + ‖ϕF,ε‖L2(Z,�p−r
ε )

)
≤ Ξ4ε−|q−p−r|+min{q,p+r}−β + Ξ5ε

1
2 min{1,p+r}

≤ Ξεmin{ 1
2 , p+r

2 ,q−2(q−p−r)−β,q−β,2q−(p+r)−β}

for some Ξ > 0 since ‖ϕ2,ε‖L2(Z,�p−r
ε ) = ‖ϕ̄2,0‖L2(Z,�p−r

ε ) = ‖ϕF,ε‖L2(Z,�p−r
ε ) = 1. �

7. Conclusions

We have studied a three-parameter family of weighted elliptic differential operators, motivated by spectral 
clustering and semi-supervised learning problems in the analysis of large data sets.

We analyzed the perturbative properties of the family (1.1) of elliptic operators L, characterizing the 
sensitive dependence of its low-lying spectrum with respect to the parameters p, q, r in cases where the 
density � concentrates on two clusters. In particular, the theory suggests that there is a major change in 
the behavior of the spectrum of L when q = p + r versus q �= p + r. In the former regime, L has a uniform 
spectral gap between the third and second eigenvalues indicating that two clusters are present in �, while 
in the latter regime only a spectral ratio gap may manifest.

In addition, we provided numerical evidence that exemplified and extended our analysis. Most notably, 
our numerics show that our bounds on the second eigenvalue are sharp and that a uniform spectral gap 
exists between the third and second eigenvalues of L when q ≤ p + r, whereas only a ratio spectral gap is 
present when q > p + r. Therefore, in the q > p + r and q < p + r regimes, comparing with our theoretical 
predictions, our numerics indicate that our lower bounds on the third eigenvalues, and hence on the spectral 
ratio gap, can be sharpened. The question of spectral gaps is of interest from a practical point of view as 
the low-lying spectral properties govern many unsupervised and semi-supervised clustering tasks.

Further, we demonstrated a rigorous connection between the geometry of the low-lying eigenfunctions of 
L and the geometry of the density �. We showed that as � concentrates on two clusters, the span of the 
first two eigenfunctions of L approaches certain weighted set functions on the clusters.

In fact, the family of operators L arises naturally as continuum limits of graph Laplacians LN of the form 
(1.2). We provided a roadmap for rigorous proof of convergence of LN to L as N → ∞ in the framework 
of [23], but for the more general family of any parameter choices (p, q, r); the full proof is the subject of 
future research. To support this analysis, we presented numerical evidence in the discrete graphical settings 
showing the manifestation of our continuum spectral analysis on discrete graph Laplacians that are weighted 
appropriately with respect to the continuum limits, and this can be observed even in the case of more general 
data densities � than our theory provides for.

Finally, we provided numerical evidence that extends our analysis from the binary cluster case to three or 
five clusters, showing strong evidence that similar results can be proven in the setting where � concentrates 
on any number of finitely many clusters.
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Our work may be of independent interest within the spectral theory of elliptic operators. Furthermore it 
can be used to build on the paper [27], which studies consistency of semi-supervised learning on graphs, to 
develop a consistency theory for semi-supervised learning in the continuum limit.

The primary practical take-home message of this work is that graph Laplacian normalizations that satisfy 
q = p + r are likely to be preferable in practical applications such as spectral clustering or semi-supervised 
learning/regression. The primary theoretical take-home message is that there remain a variety of interesting 
problems in analysis in this area, concerning the spectral properties of density-dependent elliptic operators 
with high-contrast coefficients, and their relationship to underlying graph Laplacian problems.
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Appendix A. Diffusion maps and weighted graph Laplacians

We note from Remark 2.3 that when p = q and r = 0 the limiting graph Laplacian L is the generator of 
a reversible diffusion process with invariant density proportional to �q. The connection between the graph 
Laplacian LN in (1.2) and diffusions was first established in the celebrated paper [14] by Coifman and Lafon, 
through the diffusion maps introduced therein. In this appendix we further elucidate these connections.

We fix a probability density � ∈ L1(Ω) for any set Ω ⊂ Rd and introduce the following functions for 
x, y ∈ Ω:

W̃ (x, y) = ηδ(|x − y|)

where η is a rotation-invariant normalized kernel, 
´

Ω ηδ(|x|) dx = 1, with a fixed scale parameter δ, and with 
associated degree function

d̃(x) =
ˆ

Ω

W̃ (x, y)�(y) dy .

Note that d̃(x) approximates �(x) as ηδ converges weakly to the Dirac delta distribution. We suppress the 
dependence of d̃ and W̃ on δ for brevity. Given a parameter α ∈ R, we now construct the weighted kernel

W (x, y) = W̃ (x, y)
d̃(x)αd̃(y)α

with associated degree function

d(x) =
ˆ

Ω

W (x, y)�(y) dy .

The kernel W gives rise to an integral operator K : L1(Ω) → L1(Ω),
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Kf(x) =
ˆ

Ω

W (x, y)f(y)�(y) dy .

Then d(x) = K1Ω(x). Normalizing K gives a Markov operator P : L1(Ω) → L1(Ω),

Pf(x) := 1
K1Ω(x)Kf(x) =

ˆ

Ω

p(x, y)f(y)�(y) dy

with anisotropic Markov transition kernel

p(x, y) = W (x, y)
d(x) .

Observe that P1Ω = 1Ω, and so P leaves constants unchanged.

Discrete setting. Given N samples xj ∼ �, we define analogously to the above the matrix W̃N with entries

W̃ij = W̃ (xi, xj)

with associated degree matrix D̃N ,

D̃ij = diag
(
d̃i

)
, d̃i =

N∑
k=1

W̃ik .

From the above, we construct the weighted similarity matrix WN with entries

Wij = W̃ij

d̃α
i d̃α

j

with associated degree matrix DN ,

Dij = diag (di) , di =
N∑

k=1

Wik .

To make the connection between this discrete setting and the continuous analogue above, we use the degree 
functions of Subsection 5.2,

d̃N (x) = 1
N

N∑
j=1

W̃ (x, xj)

dN (x) = 1
N

N∑
j=1

W (x, xj) = 1
N

N∑
j=1

W̃ (x, xj)(
d̃N (x)

)α (
d̃N (xj)

)α .

They correspond exactly to d(x) and d̃(x) with � substituted by the empirical density μN := 1
N

∑N
i=1 δxi

. 
Then

d̃i = Nd̃N (xi) , di = N1−2αdN (xi) , Wij = 1
N2α

W (xi, xj) ,

and so d̃i/N approximates �(xi) as ηδ converges to the Dirac delta distribution for large N . Finally, the 
operators K and P are approximated empirically by matrices WN /N and PN , where PN has entries
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Pij = W (xi, xj)
NdN (xi)

= N2αWij

N2αdi
,

and so

PN = D−1
N WN .

In [14], the graph Laplacian matrix L̄N is defined as

L̄N = IN − PN

δ
= 1

δ
D−1

N (DN − WN ) = 1
δ

LN ,

where IN denotes the identity matrix, and LN is our graph Laplacian matrix as defined in (1.2) with 
p = q = 2(1 − α) and r = 0. Note that L̄N is not symmetric.

Generator of a diffusion semi-group. Taking δ → 0, we see that

W̃ (x, y) → δx=y ,

d̃(x) → �(x) , d(x) = K1Ω(x) → �(x)1−2α ,

and so P converges to the identity operator Id. Defining the operator

G = Id − P
δ

analogously to the discrete setting, it was shown in [14, Thm. 2] that

lim
δ→0

Gf = −Lf

for f in any finite span of the eigenfunctions of the Laplace-Beltrami operator on a compact submanifold of 
Ω. Here, G is the infinitesimal generator of a Markov chain, and L is the weighted elliptic operator defined in 
(1.1) for the parameter choices p = q = 2(1 −α) and r = 0. In this sense, the operator P is an approximation 
to the semi-group

eδL = Id + δL + O(δ2)

associated with the infinitesimal generator L,

−Lf = 1
�2(1−α) ∇ ·

(
�2(1−α)∇f

)
= Δf + 2(1 − α)�−1∇� · ∇f

= Δf + ∇ log
(

�2(1−α)
)

· ∇f .

More precisely, the operator L is the infinitesimal generator of the reversible diffusion process

dXt = −∇Ψ(Xt)dt +
√

2 dB ,

where B denotes a Brownian motion in Rd with associated potential

Ψ(x) = − log
(

�(x)2(1−α)
)
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and invariant measure proportional to �2(1−α) satisfying L∗e−Ψ = L∗ρ2(1−α) = 0. In this sense, the discrete 
graph Laplacian matrix L̄N introduced above serves as an approximation of the generator −L.

In [14], Coifman and Lafon discuss the cases (i) α = 0 (q = 2) when the graph Laplacian has isotropic 
weights and W = W̃ , (ii) α = 1/2 (q = 1) when the Dirichlet energy of L is linear in �, and (iii) α = 1
(q = 0), when −Lf = Δf , and so the Markov chain corresponding to G converges (as δ → 0) to the 
Brownian motion in Ω with reflecting boundary conditions.

There is a well-known connection between the generator of reversible diffusion processes and Schrödinger 
operators [35]. Following the above connections between limiting graph Laplacians and generators of diffusion 
processes with invariant measures proportional to �(1−2α), we connect the operator L to certain Schrödinger 
operators as follows. Define

Su := Δu − u
Δ
(
�1−α

)
�1−α

,

then we can write for u = f�1−α,

−Lf =
Δ
(
f�1−α

)
�1−α

−
Δ
(
�1−α

)
�1−α

f = Su

�1−α
.

Appendix B. Function spaces

Throughout this section � is taken to be a smooth probability density function with full support on a 
bounded open set Ω ⊂ Rd with C1 boundary which is bounded from above and below by positive constants 
as in (2.1), i.e.,

0 < �− ≤ �(x) ≤ �+ < +∞, ∀x ∈ Ω̄. (B.1)

Our first task is to establish the equivalence between regular Lp(Ω) spaces and the weighted spaces Lp(Ω, �). 
In fact, a straightforward calculation using (B.1) implies the following lemma.

Lemma B.1. Let � be a smooth probability density function on Ω satisfying (B.1) and let u ∈ Lp(Ω) for 
p ≥ 0. Then

�−‖u‖p
Lp(Ω) ≤ ‖u‖p

Lp(Ω,�) ≤ �+‖u‖p
Lp(Ω),

i.e., Lp(Ω) = Lp(Ω, �).

Given constants (p, q, r) ∈ R3 we consider the weighted Sobolev spaces H1(Ω, �) introduced in section 2.1. 
We now have:

Lemma B.2. Let � ∈ C∞(Ω̄) be a smooth probability density function satisfying (B.1) and let u ∈ H1(Ω, �)
with parameters (p, q, r) ∈ R3. Then there exist constants C±(q, �±) > 0 so that

C−
∥∥∥∥ u

�r

∥∥∥∥
2

H1(Ω)
≤ ‖u‖2

H1(Ω,�) ≤ C+
∥∥∥∥ u

�r

∥∥∥∥
2

H1(Ω)
.

Proof. Since � satisfies (B.1) then

(�−)q

∣∣∣∣∇
(

u

�r

)∣∣∣∣
2

dx ≤
ˆ

�q

∣∣∣∣∇
(

u

�r

)∣∣∣∣
2

dx ≤ (�+)q

ˆ ∣∣∣∣∇
(

u

�r

)∣∣∣∣
2

dx.
Ω Ω
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Then the desired result follows immediately by Lemma B.1 applied to L2 norms. �
With the equivalence between the weighted and regular Lp and H1 spaces established. We can present the 

following compact embedding as a consequence of the Rellich-Kondrachov Theorem [19, Ch. 5.7, Thm 1]:

Proposition B.3. Let � ∈ C∞(Ω̄) be a probability density function satisfying (B.1) and fix (p, q, r) ∈ R3. 
Then H1(Ω, �) is compactly embedded in L2(Ω, �p−r).

Appendix C. Min-max principle

The min-max principle [29, Ch. 1 Sec. 6.10] is readily applied to our specific setting to obtain the following:

Proposition C.1. Fix (p, q, r) ∈ R3. For any open bounded set Ω ⊂ Rd with ∂Ω ∈ C1,1, and for a given 
density � ∈ C∞(Ω) satisfying Assumption 2.5, let σ1 ≤ σ2 ≤ ... ≤ σj ≤ ... be the sequence of eigenvalues of 
the Neumann operator

L = − 1
�p

∇ ·
(

�q∇
(

·
�r

))

in V 1(Ω, �), repeated in accordance with their multiplicities, and let {ϕj}j∈N be a corresponding Hilbertian 
basis of eigenvectors in V 1(Ω, �); then

〈
�q∇

(
ϕj

�r

)
, ∇
(

v

�r

)〉
= σj

〈
�p−rϕj , v

〉
, ϕj , v ∈ V 1(Ω, �).

Define the Rayleigh quotient of L by

R(u) :=
〈Lu, u〉�p−r

〈u, u〉�p−r

=

´
Ω

∣∣∣∇( u
�r

)∣∣∣2 �qdx´
Ω |u|2�p−rdx

, u ∈ V 1(Ω, �) .

Denote by Sn the class of all n-dimensional linear subspaces in V 1(Ω, �), and by M⊥ the orthogonal subspace 
of M in V 1(Ω, �). Then we have

σn = min
M∈Sn

max
v∈M,v 
=0

R(v) (C.1)

= max
M∈Sn−1

min
v∈M⊥,v 
=0

R(v) . (C.2)

Appendix D. Weighted Cheeger’s inequality

Given positive measures μ, ν on Ω′ ⊂ Rd, define the isoperimetric function J for any subset Ω ⊂ Ω′ by

J (Ω, μ, ν) := |∂Ω|μ
min{|Ω|ν , |Ω′ \ Ω|ν} .

Here, we use the notation

|Ω|ν := ν(Ω) ,

and define the μ-weighted Minkowski boundary measure of Ω by
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|∂Ω|μ := lim inf
δ↓0

1
δ

[|Ωδ|μ − |Ω|μ] ,

with Ωδ as defined in (2.7),

Ωδ := {x : dist(x, Ω) ≤ δ} .

We show the following weighted version of Cheeger’s inequality.

Proposition D.1 (Weighted Cheeger’s inequality). Let μ, ν be absolutely continuous measures with respect to 
the Lebesgue measure with C∞ densities that are uniformly bounded above and below with positive constants 
on Ω′. Suppose there exists a constant h > 0 so that

h ≤ inf
Ω

J (Ω, μ, ν), (D.1)

where the infimum is over open subsets Ω ⊂ Ω′ such that |Ω|ν ≤ 1
2 |Ω′|ν . Then the following Poincaré 

inequality holds:

(
sup
x∈Ω′

∣∣∣∣dμ

dν
(x)
∣∣∣∣
)−1

h2

4

ˆ

Ω′

|f − f̄Ω′ |2dν ≤
ˆ

Ω′

|∇f |2 dμ ,

where f̄Ω′ denotes the average of f with respect to ν,

f̄Ω′ :=
´

Ω′ f dν

|Ω′|ν
.

This is a generalization of the weighted Cheeger’s inequality as here we may take different measures μ
and ν, whereas μ = ν in [2]. The proof can readily be generalized from [2, Prop. 8.5.2] to this setting.

Proof. It follows from the co-area formula [2, Thm. 8.5.1] that for every Lipschitz function f on Ω′,

∞̂

−∞

|∂S(f, t)|μdt ≤
ˆ

Ω′

|∇f | dμ , (D.2)

where S(f, t) := {x ∈ Ω′ : f(x) > t} for t ∈ R. Now let g be a positive Lipschitz function on Ω such that 
|S(g, t)|ν ≤ 1

2 |Ω′|ν . Then by the hypothesis (D.1) we have for t ≥ 0,

h min{|S(g, t)|ν , |Ω′ \ S(g, t)|ν} ≤ |∂S(g, t)|μ,

which together with (D.2) gives

h

∞̂

0

min{|S(g, t)|ν , |Ω′ \ S(g, t)|ν}dt ≤
ˆ

Ω′

|∇g| dμ . (D.3)

Now let f : Ω′ → R be Lipschitz and denote by m a median of f with respect to ν, i.e., m ∈ R such that

|{x ∈ Ω′ : f(x) ≥ m}|ν ≤ 1 |Ω′|ν , and |{x ∈ Ω′ : f(x) ≤ m}|ν ≤ 1 |Ω′|ν .
2 2
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Proceeding in the same way as in proof of [2, Prop. 8.5.2] we define F+ = max{f − m, 0} and F− =
max{m − f, 0} and by definition of the median we have for t > 0,

|S(F 2
+, t)|ν ≤ 1

2 |Ω′|ν , and |S(F 2
−, t)|ν ≤ 1

2 |Ω′|ν .

Applying (D.3) with g = F 2
+ and g = F 2

− and adding the two inequalities yields

h

ˆ

Ω′

|f − m|2 dν = h

ˆ

Ω′

F 2
+ dν + h

ˆ

Ω′

F 2
− dν

= h

∞̂

0

|S(F 2
+, t)|ν dt + h

∞̂

0

|S(F 2
−, t)|ν dt

≤
ˆ

Ω′

|∇(F 2
+)| dμ +

ˆ

Ω′

|∇(F 2
−)| dμ .

By the Cauchy-Schwartz inequality,

ˆ

Ω′

|∇(F 2
±)| dμ = 2

ˆ

Ω′

F±|∇F±| dμ ≤ 2

⎛
⎝ˆ

Ω′

|F±|2 dμ

⎞
⎠

1/2⎛
⎝ˆ

Ω′

|∇F±|2 dμ

⎞
⎠

1/2

≤ 2

⎛
⎝ˆ

Ω′

|f − m|2 dμ

⎞
⎠

1/2⎛
⎝ˆ

Ω′

|∇F±|2 dμ

⎞
⎠

1/2

≤ 2
(

sup
x∈Ω′

∣∣∣∣dμ

dν
(x)
∣∣∣∣
)1/2

⎛
⎝ˆ

Ω′

|f − m|2 dν

⎞
⎠

1/2⎛
⎝ˆ

Ω′

|∇F±|2 dμ

⎞
⎠

1/2

.

The previous estimate with the fact that F± have disjoint support, gives

(
sup
x∈Ω′

∣∣∣∣dμ

dν
(x)
∣∣∣∣
)−1

h2

4

ˆ

Ω′

|f − m|2 dν ≤
ˆ

Ω′

|∇f |2 dμ ,

for any median of f . Finally, minimizing the left-hand side over m gives the desired lower bound with 
m = f̄Ω′ , which concludes the proof. �
Proof of Lemma 6.6. Apply Theorem D.1 with dμ(x) = �q

ε(x)dx and dν(x) = �p+r
ε (x)dx. Setting u = f�r

ε

yields

(
sup
x∈Ω′

�q−p−r
ε

)−1
h2

4

ˆ

Ω′

|u − ūΩ′�r
ε |2 �p−r

ε dx ≤
ˆ

Ω′

∣∣∣∣∇
(

u

�r
ε

)∣∣∣∣
2

�q
εdx,

which concludes the proof for Lipschitz functions u. The desired result on V 1(Ω′, �ε) then follows by a 
density argument, and noting that ū = 0 in that case. �
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