
Robust In-Memory Computing with
Hyperdimensional Stochastic Representation

Prathyush Poduval⇤, Mariam Issa†, Farhad Imani?, Cheng Zhuo††, Xunzhao Yin††, Hassan Najafi‡, Mohsen Imani†
⇤Indian Institute of Science, ?University of Connecticut, ††Zhejiang University, ‡University of Louisiana

†University of California Irvine
Corresponding Author: m.imani@uci.edu

Abstract—Brain-inspired HyperDimensional Computing
(HDC) is an alternative computation model working based
on the observation that the human brain operates on high-
dimensional representations of data. Existing HDC solutions rely
on expensive pre-processing algorithms for feature extraction.
In this paper, we propose StocHD, a novel end-to-end
hyperdimensional system that supports accurate, efficient,
and robust learning over raw data. StocHD expands HDC
functionality to the computing area by mathematically defining
stochastic arithmetic over HDC hypervectors. StocHD enables
an entire learning application (including feature extractor)
to process using HDC data representation, enabling uniform,
efficient, robust, and highly parallel computation. We also
propose a novel fully digital and scalable Processing In-Memory
(PIM) architecture that exploits the HDC memory-centric
nature to support extensively parallel computation.

I. INTRODUCTION

HyperDimensional Computing (HDC) is introduced as
a computational model towards high-efficiency and noise-
tolerant computation [1]. HDC is motivated by the observa-
tion that the human brain operates on high-dimensional data
representations. In HDC, objects are thereby encoded with
high-dimensional vectors, called hypervectors, which have
thousands of elements [2]–[6]. It mimics several important
functionalities of the human memory model with vector opera-
tions, which are computationally tractable and mathematically
rigorous in describing human cognition [3], [7].

Although HDC is significantly powerful in reasoning and
association of the abstract information, it is weak on features
extraction from complex data such as image/video data. This
forces HDC algorithms to rely on the pre-processing step to
extract useful information from raw data. For an example
of image data, HDC solutions rely on signal extracted from
popular feature extractor algorithms, such as convolution and
histogram of gradient (HOG) [8]. These pre-processing algo-
rithms are not compatible with the HDC learning model, thus
need to be processed over traditional data representation. The
existing HDC primitives are abstract and approximate, thus
cannot support the high precision arithmetic.

Running pre-processing algorithms o traditional data rep-
resentation provides the following challenges: (i) significant
computation cost that dominates the entire learning efficiency,
(ii) non-uniform data processing as feature extractors require
different hardware optimizations, precision, and data repre-

sentation, (iii) a low computational robustness coming from
non-holographic data representation, making the entire system
vulnerable to error, and (iv) the necessity of using expensive
data encoding to map extracted features into high-dimensional
space. To address these issues, we propose StocHD, a novel
end-to-end hyperdimensional learning system operating accu-
rate, efficient, and robust learning over raw generated data.
The main contributions are listed below:
• This is the first effort that fundamentally defines stochastic

arithmetic over hyperdimensional vectors, enabling highly
accurate, efficient, and robust computation. unlike all prior
methods that rely on the expensive pre-processing step,
StocHD enables an entire learning application (including
feature extractor) to process using HDC data representation,
enabling uniform, efficient, robust, and parallel computation.

• Our solution mathematically defines stochastic arithmetic
over HDC vectors, including weighted addition, subtraction,
multiplication, division, and comparisons. We exploit these
arithmetic to revisit the pre-processing algorithms to run
using uniform HDC data representation without paying the
cost of decoding data back to the original space.

• We propose a novel processing in-memory architecture
that exploits inherent parallelism and the memory-centric
nature of HDC. Our PIM architecture exploits the switching
characteristics of non-volatile memory to support tensor-
based computation over hypervector internally in memory.
We evaluate StocHD efficiency over a wide range of learn-

ing algorithms. Our evaluation shows that StocHD provides,
on average, 3.3⇥ and 6.4⇥ (52.3⇥ and 143.5⇥) faster and
higher energy efficiency as compared to state-of-the-art HDC
algorithm running on PIM (NVIDIA GTX 1080 GPU). In ad-
dition, as compared to state-of-the-art HDC solutions, StocHD
provides 16⇥ higher robustness to possible noise.

II. BACKGROUND AND RELATED WORK

Hyperdimensional computing (HDC): is a computational
model developed based on the observation that the human
brain operates on high-dimensional data [1]. The fundamental
units of computation in HDC are “hypervectors”, which are
constructed using an encoding procedure [9]–[12]. Although
HDC is significantly powerful in reasoning and association
of the abstract information, it is weak in features extraction
from complex data, e.g., image/video. As a result, most
existing HDC solutions are operating over costly pre-processed978-1-6654-0959-9/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

N
an

os
ca

le
 A

rc
hi

te
ct

ur
es

 (N
A

N
O

A
R

C
H

) |
 9

78
-1

-6
65

4-
09

59
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

N
A

N
O

A
R

C
H

53
68

7.
20

21
.9

64
22

37

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

Feature
Extractor HDC

EncoderHigh-
Dimension

Data

Hyperdimensional Space
HDC

LearningFeature
Extractor HDC

Encoder

Original Space

High-
Dimension

Data

Hyperdimensional Space

HDC
Learning

✓Simplify Arithmetic
✓Highly Parallel
✓Robust to Noise
✓PIM Compatible

Hyperdime
nsional

Hypervector

0
1

✓Add/Sub
✓Mul/Divd

HDC Neural Activity ✓HDC Primitive
✓HD Arithmetic
✓Nearest Search
✓Data Transfer

A

B

C

D

Software
Interface

PIM Architecture

HDC Learning with pre-processed Data

Propose HDC Stochastic Arithmetic

Learning from Raw Data (HDC-based Feature Extractor)

PIM Platform for HDC Acceleration

Fig. 1: StocHD framework, an end-to-end HDC learning from raw data along with processing in-memory acceleration

data [2], [13], [14]. This pre-processing often takes a large
portion of the total learning cost.

Stochastic computing (SC): represents numbers in terms
of probabilities in long independent bit-streams [15], [16].
SC supports various encoding modules to map binary data
to stochastic representation [15]. Arithmetic operations in this
representation involve simple logic operations on uncorrelated
and independently generated input bit-streams. SC uses a
binary sequence to represent real numbers between 0 and 1 via
the proportion of 1 bits in the sequence. Arithmetic operations
are done using bitwise operations [17], [18].

Although both SC and HDC use similar redundant high-
dimensional representation, their goals and strengths are com-
plimentary. (i) Representation The SC defines operations over
vectors that their percentage of 1s determines their value.
While HDC works based on a pattern of neural actively in
high-dimensional space, where vectors have roughly equal
numbers of 0s and 1s. (ii) Application: SC is capable of
performing efficient and highly parallel arithmetic operations,
enable us to accelerate feature extractor and signal process-
ing applications. In contrast, HDC is a highly approximate
cognitive and learning model [19]–[22]. This paper is the
first effort to fundamentally define SC operations over HDC
space, expanding HDC functionality to the computing domain.
Our solution enables HDC to process both pre-processing and
learning steps, enabling efficient and robust system.

III. StocHD FRAMEWORK OVERVIEW

Figure 1 shows an overview of the StocHD framework
consisting of HDC learning and computing solutions. As
Figure 1•A shows, the existing HDC learning solutions op-
erate over pre-processed data. The pre-processing step is a
costly feature extractor performing over original data. HDC
implements efficient and robust learning after maps the ex-
tracted features into high-dimensional space. In this paper, we
propose a novel solution that expands HDC functionality to the
computing area, defining stochastic arithmetic operations over
HDC vectors (•B). Our framework translates all data points
to hyperdimensional space, enabling both feature extraction
and learning to perform using uniform data representation. For
example, for image data convolution or Histogram of Gradient

(HOG) are commonly used feature extractors. StocHD exploits
HDC arithmetic to revisit the feature extractor algorithm
to high-dimensional space. As Figure 1•C shows, StocHD

framework provides: (1) an end-to-end learning solution that
enables fully HDC learning over raw data, (2) high computa-
tional robustness, as the entire application (including feature
extractor) can benefit from the holographic data representation,
and (3) significant efficiency as HDC revisits the complex
feature extraction with parallel bitwise operations.

HDC has a memory-centric architecture with primitives
hardware friendly operations and extensive parallelism [23].
These features make HDC idea for in-memory acceleration.
We propose a novel processing in-memory platform that
supports all StocHD operations directly over digital data
stored in the memory. This eliminates the data movement
issue between memory and computing unit, which dominates
the entire StocHD energy. In Section V, we show how our
PIM platform can accelerate the entire HDC application, from
feature extraction to the learning process (•D).

IV. StocHD STOCHASTIC PRIMITIVES

A. HDC Supported Operations
HDC encoding works based on a set of defined prim-

itives [1]. Our goal is to exploit the same primitives to
define SC-based arithmetic operations over HDC vectors. HDC
is an algebraic structure; it uses search along with several
key operations (and their inverses): Bundling (+) that acts
as memorization during hypervector addition, Binding (*)
that associates multiple hypervectors, and Permutation (⇢)
which preserves the position by performing a single rotational
shift. In HDC, the hypervectors are compositional – they
enable computation in superposition, unlike standard neural
representations. These HDC operations allow us to reason
about and search through input data that satisfy prespecified
constraints. To support arithmetic operation, StocHD requires
the following HDC operations:
HDC Hypervector Generation: We generate a random hyper-
vector with elements ±1 such that +1 appears with probability
p. This will allow us to construct HDC representations of
arbitrary numbers via a D dimensional vector. In our HDC
system, information is stored with components ±1. We fix a

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

random HDC vector ~V1 to be a Basis vector. A random HDC
vector ~Vh (h 2 [�1, 1]) is said to represent the number h
if �(~Vh, ~V1) = h. This is consistent with our notation for ~V1

which means that ~V1 represents the number 1. Note that based
on our representation, ~V�a = �~Va.
Probabilistic Merging: Given n numbers {a1, a2, .., an} and
their corresponding probability values, {p1, p2, ..., pn�1} 2

[0, 1], where pn is defined by
P

n

i=1 pi = 1, the probabilistic
merging chooses the number ai with probability pi. This
operation can be extended to operate n hypervectors, where we
select each dimension of merged hypervector by probabilistic
merging of n elements located in the same dimension of given
input hypervectors.
Similarity Measurement: Between two HD vectors ~V1 and
~V2, the similarity defines as �(~V1, ~V2) =

~V1·~V2
D

where D is
the number of dimensions and (·) is the vector dot product
operator. HDC supports other similarity metrics, such as
Hamming similarity, that measures the number of dimensions
at which two HDC vectors differ.

B. HDC Arithmetic Operations
Weighted Average: StocHD defines weighted accumulation

over hypervectors. Given two random HDC vectors ~Va and ~Vb

and two probability numbers {p, q} 2 [0, 1] (p+ q = 1), we
define C = p~Va�q~Vb to be the random HDC vector whose ith

component is ~Vi
a

or ~Vi

b
with probability p and q, respectively.

This can be extended to probabilistic merging of n HDC
vectors ~V1, ~V2, ..., ~Vn and n � 1 probabilities p1, p2, ..., pn�1

(pn is defined by
P

n

i=1 pi = 1). We can similarly define the
weighted sum as p1~V1 � p2~V2 � · · ·� pn~Vn.

Let us consider ~Vc = 0.5~Va � 0.5~Vb. To verify the correct
functionality of StocHD, we need to show that c = a+b

2 . Based
on our definition, ~Va has similarity a with ~V1. As a result it
has exactly a+1

2 parts components common with ~V1. So if
we randomly chose a dimension i, the probability that the
ith component of both ~Va and ~V1 match is given by 1+a

2 .
Considering the ith component of ~Vc, the probability that
the ith component is taken from ~Va and ~Vb is 0.5 and 0.5
respectively. Thus, the probability that the ith component of
~Vc matches with ~V1 is given by 1

2
1+a

2 + 1
2
1+b

2 =
1+ a+b

2
2 .

As a result, �(~Vc, ~V1) = a+b

2 which is what was claimed.
Similarly, StocHD supports weighted subtraction given by
0.5va � 0.5v�b = v a�b

2
.

Constructing Representations: Let us define ~Va = a+1
2

~V1�
1�a

2 (�~V1). Note that ~Va will have 1+a

2 components same
with ~V1 and 1�a

2 component same with �~V1 (which has
components complementary to ~V1). As a result we have
�(~Va, ~V1) = a and thus we have constructed a representation
of the number a given by ~Va = a+1

2
~V1�

1�a

2 (~V�1). Note that
if a 2 [0, 1], then this is equivalent to 1±a

2 2 [0, 1] and so the
probabilities for merging are well defined. This operation will
be the building blocks of all other arithmetic operations.
Multiplication: Given two HDC representations ~Va and ~Vb,
we show a way to construct ~Vab. Consider the ith dimension
of ~Vc and set it to the ith dimension of ~V1 if the ith dimension
of ~Va and ~Vb are both +1 or both �1. Otherwise set the ith

dimension of ~Vc to be the ith dimension of ~V�1. From this

construction, the probability that the ith dimension of ~Vc is the
same as ~V1 is given by ab+1

2 . Thus, �(~Vc, ~V1) = 2ab+1
2 � 1 =

ab and so ~Vc ⌘
~Vab. In a simpler form, ~Vab can be computed

by element-wise product of ~Va, ~Vb, and ~V1 hypervectors.
Comparisons: Comparison is another key operation for data
processing as well as required operation to implement division.
Suppose we are given hypervectors ~Va and ~Vb corresponding
to a and b values in original space. We can check comparison
by first calculating ~V a�b

2
= ~Va � ~V�b. Then we evaluate the

value using a�b

2 ⇠ �(~V a�b
2
, ~V1). Finally, we can check whether

a�b

2 is positive, negative or 0.
Division: Consider two vectors ~Va and ~Vb. Our aim is to
construct an HDC vector ~Va/b, which would be saturated if a/b
lies outside the range of our HDC arithmetic system. Without
loss of generality, assume a and b are both positive. Then, we
do the following steps:
• Initialize two vectors ~Vlow to be ~V�1 and ~Vhigh to be ~V1

• Calculate ~Vmid = 0.5~Vlow � 0.5~Vhigh and ~Vmidb = ~Vmid ⌦

~Vb where we use ⌦ to stand for multiplication
• If ~Vmidb > ~Va, then do ~Vhigh ! ~Vmidb

• If ~Vmidb < ~Va, then do ~Vlow ! ~Vmidb

• Repeat from step 2 until ~Vmidb = ~Va or ~Vc = ~V±1, then
stop.

This process eventually has to end because the difference
between the evaluation of ~Vlow and ~Vhigh keeps decreasing
at each iteration. Thus, we get a representation of a/b which
is ~Vmid.
Doubling: Similar to how we defined division, we can also
define a doubling formula to construct ~V2a from ~Va. The way
to proceed would be to compare ~Vmid/2 with ~Va rather than
~Vmidb in the algorithm for division.

C. Arithmetic Error Rates
We first discuss the error rates for generating errors. We

generate a HD-SC representation of a number a 2 [�1, 1]
using ~Va = a+1

2
~V1�

1�a

2 (~V�1). Let Xi be a random variable
with value 1 if the ith dimension of ~Va and ~V1 are the same,
and �1 otherwise. Moreover, let S =

P
i Xi

D
. We note that

�(~Va, ~V1) = 2S�1. Now, Xi are independently and identically
distributed Bernoulli random variable with p = 1+a

2 , µ =
1+a

2 ,� =
p
1�a2

2 . Using the Central Limit Theorem, we get
N(0, 1) is normal distributed. As a result, we have:

P
✓
|�(~Va, ~V1)� a| �

2�✏
p
D

◆
=

1
p
2⇡

Z 1

✏

e�
x2

2 dx

The similarity of two vectors ~Va and ~Vb is calculated using
�(~Va, ~Vb) =

P
D

i=1

~Vi
a·~V

i
b

D
, Where ~Vi

a
is the ith component of

the vector ~Va. We calculate the Mean Absolute Error (MRE)
of the representation ~Va representing the number a 2 [�1, 1]
using the formula

E(|�(~Va, ~V1)� a|)

2
⇥ 100 =

NX

i=1

|�(~Vai , ~V1)� ai|

2N
⇥ 100

Here, we divide by 2 so that we normalise the length of the
interval to 1. We use this metric to compare our errors with
other methods.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

D
im

en
si

on
NN

D
im

en
si

on

(a) Addition (b) Multiplication (c) Compare

a-b

10

8

6

4

2

0

1000

800

600

400

200

8k

4k

2k

1k

512

256

128
1 2 3 0.1 0.2 0.3

D
im

en
si

on

8k

4k

2k

1k

512

256

128
2 4 6 8 10

4

3

2

1

0

4

3

2

1

0

Fig. 2: Error for (a) N-Addition, (b) N-Multiplication, and (c)
comparison between two numbers.

Addition/Multiplication: The error in weighted addition
follows the same theoretical analysis of the generational error.
This is because the analysis only depends on the relation
between the probability with which ~Va and ~V1 have a common
dimension, and the value of a itself. The additional advantage
is that the repeated weighted addition does not result in an
accumulation of error, which is essential in multiplication
where we use weighted addition multiple times in a sequence.
This arises theoretically from the fact that the distribution
of the components of the added vectors follows the correct
Bernoulli distribution; thus, the same explained error analysis
still holds. Figure 2a shows our error analysis for the errors
of the weighted addition of N numbers as a function of the
dimension. Our results indicate that the larger the N , the lower
the error becomes.

V. PROCESSING IN-MEMORY ARCHITECTURE

In this section, we present a digital-based processing in-
memory architecture, called StocHD, which accelerates a
wide range of HDC-based algorithms on conventional crossbar
memory. StocHD supports all essential HDC operations in
memory in a parallel and scalable way. Figure 1 demonstrates
an overview of the proposed learning system.

A. StocHD Accelerator
Our digital-based PIM architecture enables parallel com-

puting and learning over the hypervectors stored in memory.
Unlike prior PIM designs that use large ADC/DAC blocks
for analog computing [24], [25], StocHD performs all HDC
computations on the digital data stored in memory. This elimi-
nates ADC/DAC blocks, resulting in high throughput/area and
scalability. StocHD supports several fundamental operations
required to accelerate HDC. StocHD uses two blocks for
performing the computation; a compute block and a search
block. Each block supports the following set of operations
(shown in Figure 3a): (i) Arithmetic operations: row-parallel
NOR-based operation. and (ii) search-based operations: row-
parallel nearest Hamming distance search.

Row-Parallel PIM-based Arithmetic: StocHD supports
arithmetic operations directly on digital data stored in memory
without reading them out of sense amplifiers [26], [27].
Our design exploits the memristor switching characteristic to
implement NOR gates in digital memory [23], [28]. StocHD
selects two or more columns of the memory as input NOR
operands by connecting them to ground voltage (Shown in
Figure 3b). During NOR computation, the output memristor is
switched from RON to ROFF when one or more inputs stored
‘1.’ value (RON). In fact, the low resistance input passes a
current through an output memristor resulting in writing Roff

SAML

ML

BL BL’ cnt

SA

Voltage
Stabilizer

1.2

0

0.6

Baseline
CAM

Voltage
Stabilizer

Li
ne

ar

Sa
tu

ra
te

150

80

10

Time (ps)

Vo
lta

ge
 (V

)

1-mis
2-mis
3-mis

4-mis
5-mis
6-mis
7-mis

Legend
1-mis
2-mis
3-mis

4-mis
5-mis
6-mis
7-mis

Legend

0 500 1000

Cu
rr

en
t (

m
A)

Se
ar

ch
-b

as
ed

 P
IM

A
rit

hm
et

ic
 P

IM

cc

Saturate

bb

1500

in1 in2

Vw

out

Vw
0

× ×

A B A
+B C D

C
×DA B A
+B C D

C
×DA B A
+B C D

C
×DA B A
+B C D

C
×D

×

A B A
+B C D

C
×D

Se
ar

ch
A

rit
h-

m
et

ic
Se

ar
ch

A
rit

h-
m

et
ic

Tr
an

s
-f

er Bit-Serial Data Transfer
Row-Parallel Copy

Bitwise NOR Operation
Addition/Multiplication

Exact Search
Nearest Hamming

Search Se
ar

ch
A

rit
h-

m
et

ic
Tr

an
s

-f
er Bit-Serial Data Transfer

Row-Parallel Copy

Bitwise NOR Operation
Addition/Multiplication

Exact Search
Nearest Hamming

Search

Su
pp

or
te

d
O

ps

aa

<V0/2 >V0/2

A B C

out

V0

No Switching

+

-

A B C

out

V0

No Switching

+

-

A B C

out

V0

Switching

A B C

out

V0

Switching

+

-
<V0/2 >V0/2

A B C

out

V0

No Switching

+

-

A B C

out

V0

Switching

+

-

SAML

ML

BL BL’ cnt

SA

Voltage
Stabilizer

1.2

0

0.6

Baseline
CAM

Voltage
Stabilizer

Li
ne

ar

Sa
tu

ra
te

150

80

10

Time (ps)

Vo
lta

ge
 (V

)

1-mis
2-mis
3-mis

4-mis
5-mis
6-mis
7-mis

Legend

0 500 1000

Cu
rr

en
t (

m
A)

Se
ar

ch
-b

as
ed

 P
IM

A
rit

hm
et

ic
 P

IM

c

Saturate

b

1500

in1 in2

Vw

out

Vw
0

×

A B A
+B C D

C
×D

Se
ar

ch
A

rit
h-

m
et

ic
Tr

an
s

-f
er Bit-Serial Data Transfer

Row-Parallel Copy

Bitwise NOR Operation
Addition/Multiplication

Exact Search
Nearest Hamming

Search

Su
pp

or
te

d
O

ps

a

<V0/2 >V0/2

A B C

out

V0

No Switching

+

-

A B C

out

V0

Switching

+

-

Fig. 3: PIM architecture: (a) supported operations, (b) arith-
metic computing, (b) CAM-based search operation, (d) timing
characteristic of CAM during search. [14]

value on it. This NOR computation performs in row-parallel
on all the activated memory rows by the row-driver. Since
NOR is a universal logic gate, it can be used to implement
other logic operations like AND and XOR operations required
for HDC automatics. Note that all these arithmetic can be
supported in parallel over all dimensional of hypervectors,
enabling significant computational speedup.

Nearest Search: The exact search is one of the native
operations supported by crossbar memory. During the search,
a row-driver of the CAM block pre-charges all CAM rows
(match-lines:MLs) to supply voltage (Vdd). Consider a CAM
cell (shown in Figure 3c), if a query input matches with
the stored value in the CAM cell, the ML voltage will
stay charged. However, in case of a mismatch between the
CAM cell and the query data, the CAM starts discharging the
ML. Conventionally, CAM blocks exploit the ML discharging
current to enable the exact search operation. Here, we exploit
the timing characteristic of each row discharging current to
detect a row with minimum distance to query data [14].
As shown in Figure 3c, a CAM row with the minimum
discharging current will have the highest similarity with the
query data. However, due to reducing the voltage of ML
during the search, the ML discharging current saturates with
increasing the number of mismatches. This eliminates finding
a row with minimum Hamming distance. To provide a more
reliable search, we exploit a voltage stabilizer [14] in each
CAM row that ensures a fixed ML voltage during the search.
We also utilize ganged-circuits [11], as a CAM sense amplifier
to enable the nearest search in a row-parallel way.
B. Architecture
StocHD exploits row-parallel PIM-based NOR operation

to accelerate feature extractors, which are mainly based on
arithmetic operation, i.e., bitwise operations in HDC space.
The feature extraction can perform by simple bitwise operation
between hypervectors representing the values. Next, StocHD
supports permutation and row-parallel XOR operation over the
high-dimensional features. For example, in case of n extracted
features, {~f1, ~f2, · · · , ~fn}, StocHD encodes the information
by: ~H = ~f1 � ⇢1 ~f2 � · · · ⇢n�1 ~fn, where ⇢n denotes n-
bit rotational shift. All encoding steps can perform using
row-parallel NOR operation and shift operation that can be

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Datasets (n: feature size, k: number of classes)

n k
Feature

Extractor
Train
Size Description

MNIST 784 10 Convolution 60,000 Handwritten Recognition [32], [33]
UCIHAR 561 12 Noise Filter 6,213 Activity Recognition(Mobile) [34]
ISOLET 617 26 MFCC 6,238 Voice Recognition [35]

FACE 608 2 HOG 522,441 Face Recognition [36]
PAMAP 75 5 FFT 611,142 Activity Recognition(IMU) [37]

implemented by our PIM. StocHD performs classification by
checking the similarity of an encoded query with a binary
HDC class hypervectors. A query will assign to data with the
highest Hamming distance similarity. The inference can be
supported using the nearest search supported by our PIM.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
We implement StocHD using both software and hardware

support. In software, we developed a PyTorch-based library
of Hyperdimensional computing, supporting all required com-
puting and learning operations. In hardware, we design a
cycle-accurate simulator based on PyTorch [29] that emulates
StocHD functionality during classification. For hardware, we
use HSPICE for circuit-level simulations to measure the
energy consumption and performance of all the StocHD

operations in 28nm technology. We used system Verilog and
Synopsys Design Compiler [30] to implement and synthesize
the StocHD controller. At the circuit-level, we simulate the
cost of inter-tile communication, while in architecture, we
model and evaluate intra-tile communications. StocHD works
with any bipolar resistive technology, which is the most
commonly used in existing NVMs. In order to have the highest
similarity to commercially available 3D Xpoint, we adopt the
memristor device with a VTEAM model [31].

We evaluate StocHD accuracy and efficiency on five pop-
ular datasets such as a large data that includes hundreds of
thousands of facial data. Table I lists the workloads, their
corresponding feature extractors, and dataset size.

B. StocHD Learning Accuracy
State-of-the-art Learning Algorithms: We compare

StocHD classification accuracy with state-of-the-art learning
algorithms, including Deep Neural Networks (DNN), Support
Vector Machine (SVM), and AdaBoost. The DNN models
are trained with Tensorflow, and we exploited the Scikit-learn
library to train other ML algorithms. We exploit the grid search
to identify the best hyper-parameters for each model. Our
evaluation shows that StocHD provides comparable accuracy
to other state-of-the-art algorithms (only 0.2% lower than
DNN, and 1.5% and 1.8% higher than SVM and AdaBoost).

Baseline HDC Algorithms: we compare HDC classifica-
tion accuracy in different configurations: (i) without feature
extractor where learning directly happens over a raw data,
(ii) with feature extractor running on original data, and (iii)
using StocHD arithmetic computation to processed feature
extraction. Our evaluation shows that HDC with no feature
extraction provides, on average, 59% lower accuracy than
HDC operating over extracted features. Revisiting the fea-
ture extractor with StocHD stochastic arithmetic can almost
provide the same result as running feature extraction over
original data. The quality of StocHD computation depends

DNN SVM AdaBoost Baseline-HDC (with Extractor)
StocHD (D=4k) StocHD (D=3k) StocHD (D=2k) StocHD (D=1k)

85

90

95

100

Ac
cu

ra
cy

 (%
)

Fig. 4: Comparing StocHD accuracy to state-of-the-art.

Sp
ee

du
p

(G
PU

=1
)

En
er

gy
 E

ffi
ci

en
cy

Im

pr
ov

. (
G

PU
=1

)

100

101

102

103

100

101

102

Baseline-HDC StocHD (D=4k) StocHD (D=3k) StocHD (D=2k) StocHD (D=1k)

Fig. 5: StocHD efficiency running on PIM platform.

on the HDC dimensionality. Using D = 4, 000 dimensions,
StocHD provides the same accuracy as the baseline algorithm.
Reducing dimension to D = 3, 000 and D = 2, 000 reduces
StocHD accuracy, on average, by 0.9% and 2.1%, respectively.
This lower accuracy comes from StocHD accumulative noise
during the pre-processing step.

C. StocHD Learning Efficiency
PIM & Feature Extraction: Figure 5 compares StocHD

efficiency with the baseline HDC running on the proposed
PIM platform. All results are normalized to execution time and
energy consumption of the baseline HDC running on NVIDIA
GTX 1080 GPU. In GPU, the feature extraction takes, on
average, 72% of execution time and 77% of total learning
energy consumption. As explained in Section V, our proposed
PIM is an in-memory computing platform that can accelerate
any tensor-based algorithms, including the feature extractors,
listed in Table I. To accelerate feature exaction, PIM exploits
high-precision arithmetic computation, such as addition and
multiplication, that operates over original data representation.
However, PIM is sequential and slow in supporting the high-
precision arithmetic over traditional data. For example, for N -
bit addition and multiplication, PIM requires 13N + 1 and
13N2 + 16N + 1 NOR cycles, respectively. This makes our
PIM platform less ideal to operate over traditional data, e.g.,
fixed point or floating-point representation.
Dimensionality: Reducing the dimensionality improves
StocHD computation efficiency. As Figure 5 shows, StocHD
using D = 2, 000 dimensions provides, on average, 4.2⇥ and
8.1⇥ (67.0⇥ and 183.9⇥) faster and higher energy efficiency
as compared to the baseline HDC running on PIM (GPU).

D. StocHD Robustness
Many advanced technologies typically pose issues for hard-

ware robustness [14]. One of the main advantages of StocHD
is its high robustness to noise and failure in hardware.
In StocHD, hypervectors are random and holographic with
i.i.d. components. Each hypervector stores all the information
across all its components so that no component is more

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Quality loss using noisy and low endurance.

Memory Error 1% 2% 5% 10% 15%

Baseline HDC 1.1% 4.5% 9.3% 14.4% 27.3%
StocHD (D = 4k) 0.0% 0.0% 0.3% 0.9% 2.1%
StocHD (D = 1k) 0.0% 0.2% 0.8% 1.8% 3.4%

Endurance Years 1 2 3 4 5

Baseline HDC 0% 1.7% 4.1% 11.5% 24.5%
StocHD (D = 4k) 0% 0.5% 0.9% 1.8% 2.4%
StocHD (D = 0.5k) 0.0% 0.8% 1.6% 3.3% 5.2%

responsible for storing any piece of information than another.
This makes a hypervector robust against errors in its compo-
nents. StocHD efficiency and robustness highly depend on the
dimensionality and the precision of each hypervector element.
Table II compares StocHD robustness to noise in the memory
devices. StocHD provides significantly higher robustness to
memory noise than the baseline HDC algorithm. In binary
representation, an error only flips a reference dimension results
in minor changes in the entire hypervector pattern. In contrast,
an error in original space (feature extractor in baseline HDC)
can happen in most significant bits, which significantly affects
the absolute value and robustness. Our results indicate that
10% failure in memory cells results in 0.9% and 14.4% loss
on StocHD and the baseline HDC accuracy.

Table II also explores the impact of limited NVM endurance
on StocHD quality of learning. We assume an endurance
model with µ = 107 [38]. Our evaluation shows that after
a few years of using our PIM-based platform, similar to the
human brain, StocHD starts forgetting information stored in
reference hypervector. To address this issue, we perform wear-
leveling to distribute writes uniformly over memory blocks.
The overhead of wear-leveling is minor as (i) StocHD has
predictable write pattern, and (ii) wear-leveling can happen
in long-time periods. Our evaluation shows that the baseline
HDC has higher sensitivity to the endurance issue. This is
because feature extractor requires PIM arithmetic operation
that involves several device switching. In contrast, StocHD

computes feature extraction with minimal write operation.
VII. CONCLUSION

We propose StocHD, a novel end-to-end hyperdimensional
system that supports accurate, efficient, and robust learning
over raw data. StocHD expands HDC functionality to the com-
puting area by mathematically defining stochastic arithmetic
operations over HDC hypervectors. StocHD enables an entire
learning application (including feature extractor) to process
using HDC data representation, enabling uniform, efficient,
robust, and highly parallel computation.

ACKNOWLEDGMENT
This work was supported in part by National Science

Foundation (NSF) #2127780 and #2019511, Semiconductor
Research Corporation (SRC) Task No. 2988.001, Department
of the Navy, Office of Naval Research, grant #N00014-21-
1-2225, generous gifts from Cisco, and Louisiana Board of
Regents Support Fund LEQSF(2020-23)-RD-A-26.

REFERENCES

[1] P. Kanerva, “Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors,” Cog-
nitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[2] M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in CLOUD. IEEE, 2019, pp. 435–446.

[3] ——, “Revisiting hyperdimensional learning for fpga and low-power archi-
tectures,” in HPCA. IEEE, 2021.

[4] A. Hernández-Cano et al., “A framework for efficient and binary clustering
in high-dimensional space,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 1859–1864.

[5] A. Kazemi et al., “Mimhd: Accurate and efficient hyperdimensional infer-
ence using multi-bit in-memory computing,” in 2021 IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design (ISLPED). IEEE,
2021, pp. 1–6.

[6] Z. Zou et al., “Spiking hyperdimensional network: Neuromorphic
models integrated with memory-inspired framework,” arXiv preprint
arXiv:2110.00214, 2021.

[7] A. Mitrokhin et al., “Learning sensorimotor control with neuromorphic
sensors: Toward hyperdimensional active perception,” Science Robotics,
vol. 4, no. 30, 2019.

[8] S. Hou et al., “Dualnet: Learn complementary features for image recogni-
tion,” in ICCV, 2017, pp. 502–510.

[9] A. Hernandez-Cano et al., “Onlinehd: Robust, efficient, and single-pass
online learning using hyperdimensional system,” in DATE. IEEE, 2021.

[10] A. Hérnandez-Cano et al., “Prid: Model inversion privacy attacks in
hyperdimensional learning systems,” in IEEE/ACM Design Automation
Conference (DAC), 2021.

[11] M. Imani, X. Yin et al., “Searchd: A memory-centric hyperdimensional
computing with stochastic training,” TCAD, vol. 39, no. 10, pp. 2422–2433,
2019.

[12] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional
computing for efficient speech recognition,” in 2017 IEEE international
conference on rebooting computing (ICRC). IEEE, 2017, pp. 1–8.

[13] Z. Zou et al., “Edge-based hyperdimensional learning system with brain-
like neural adaptation,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
2021.

[14] M. Imani et al., “Dual: Acceleration of clustering algorithms using digital-
based processing in-memory,” in MICRO. IEEE, 2020, pp. 356–371.

[15] A. Alaghi et al., “Survey of stochastic computing,” ACM TECS, vol. 12,
no. 2s, pp. 1–19, 2013.

[16] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” TCAS I, vol. 37, no. 8, pp. 1515–1531, 2017.

[17] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic com-
puting in deep neural networks,” in DAC, 2016, pp. 1–6.

[18] S. Liu et al., “Energy efficient stochastic computing with sobol sequences,”
in DATE. IEEE, 2017, pp. 650–653.

[19] P. Poduval et al., “Cognitive correlative encoding for genome sequence
matching in hyperdimensional system,” in IEEE/ACM Design Automation
Conference (DAC), 2021.

[20] A. Hérnandez-Cano et al., “Reghd: Robust and efficient regression in
hyper-dimensional learning system,” in IEEE/ACM Design Automation
Conference (DAC), 2021.

[21] P. Poduval et al., “Stochd: Stochastic hyperdimensional system for efficient
and robust learning from raw data,” in IEEE/ACM Design Automation
Conference (DAC), 2021.

[22] Z. Zou et al., “Manihd: Efficient hyper-dimensional learning using mani-
fold trainable encoder,” in DATE. IEEE, 2021, pp. 850–855.

[23] M. Imani et al., “Deep learning acceleration with neuron-to-memory trans-
formation,” in HPCA. IEEE, 2020, pp. 1–14.

[24] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” in ISCA. IEEE, 2016, pp. 14–26.

[25] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ISCA. IEEE Press,
2016, pp. 27–39.

[26] M. Imani et al., “Floatpim: In-memory acceleration of deep neural network
training with high precision,” in ISCA. ACM, 2019, pp. 802–815.

[27] S. Kvatinsky et al., “Magic—memristor-aided logic,” TCAS II, vol. 61,
no. 11, pp. 895–899, 2014.

[28] M. Imani et al., “Rapidnn: In-memory deep neural network acceleration
framework,” arXiv preprint arXiv:1806.05794, 2018.

[29] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in NIPS, 2019, pp. 8026–8037.

[30] “Synopsys,” http://www. synopsys. com.
[31] S. Kvatinsky et al., “Vteam: A general model for voltage-controlled mem-

ristors,” TCAS II, vol. 62, no. 8, pp. 786–790, 2015.
[32] Y. LeCun et al., “Gradient-based learning applied to document recognition,”

Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[33] D. Ciregan et al., “Multi-column deep neural networks for image classifi-

cation,” in CVPR. IEEE, 2012, pp. 3642–3649.
[34] D. Anguita et al., “Human activity recognition on smartphones using a

multiclass hardware-friendly support vector machine,” in AAL. Springer,
2012, pp. 216–223.

[35] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[36] A. Angelova et al., “Pruning training sets for learning of object categories,”

in CVPR. IEEE, 2005.
[37] A. Reiss et al., “Introducing a new benchmarked dataset for activity

monitoring,” in ISWC. IEEE, 2012, pp. 108–109.
[38] J. B. Kotra et al., “Re-nuca: A practical nuca architecture for reram based

last-level caches,” in IPDPS. IEEE, 2016, pp. 576–585.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on January 20,2022 at 16:17:44 UTC from IEEE Xplore. Restrictions apply.

