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Abstract. The increasing availability of data presents an opportunity to calibrate unknown parameters which
appear in complex models of phenomena in the biomedical, physical, and social sciences. However,
model complexity often leads to parameter-to-data maps which are expensive to evaluate and are
only available through noisy approximations. This paper is concerned with the use of interacting
particle systems for the solution of the resulting inverse problems for parameters. Of particular
interest is the case where the available forward model evaluations are subject to rapid fluctuations, in
parameter space, superimposed on the smoothly varying large-scale parametric structure of interest.
A motivating example from climate science is presented, and ensemble Kalman methods (which
do not use the derivative of the parameter-to-data map) are shown, empirically, to perform well.
Multiscale analysis is then used to analyze the behavior of interacting particle system algorithms
when rapid fluctuations, which we refer to as noise, pollute the large-scale parametric dependence
of the parameter-to-data map. Ensemble Kalman methods and Langevin-based methods (the latter
use the derivative of the parameter-to-data map) are compared in this light. The ensemble Kalman
methods are shown to behave favorably in the presence of noise in the parameter-to-data map,
whereas Langevin methods are adversely affected. On the other hand, Langevin methods have the
correct equilibrium distribution in the setting of noise-free forward models, while ensemble Kalman
methods only provide an uncontrolled approximation, except in the linear case. Therefore a new
class of algorithms, ensemble Gaussian process samplers, which combine the benefits of both ensemble
Kalman and Langevin methods, are introduced and shown to perform favorably.
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1. Introduction. The focus of this work is on the solution of inverse problems in the setting
where only noisy approximations of the forward problem (the parameter-to-data map) are
available and where the evaluations are expensive. The methodological approaches we study
are all ensemble based. The take-home message of the paper is that judicious use of ensemble
Kalman methodology and generalizations may be used to remove the pitfalls associated with
gradient-based methods in this setting, but still retain the advantages of gradient descent; the
conclusions apply to both optimization and sampling approaches to inversion. We provide
theoretical and numerical studies which allow us to differentiate between existing ensemble-
based approaches, and we propose a new ensemble-based method. Subsection 1.1 provides
the setup in which we work, subsection 1.2 is devoted to a literature review, while subsection
1.3 overviews the contributions of the paper and describes its organization.

1.1. The setting. The problem we study is this: we seek to infer z € R? given observations
y € RE related to evaluation of Go(z) and observational noise ¢ by

(1.1) y = Go(z) +¢.

The specific instance of £ is not known, but its distribution is; to be concrete we assume that
£ ~ N(0,T), with strictly positive-definite covariance I' € RE*K_ We refer to Go(-) as the
forward model. After imposing a prior probability measure x ~ A (m, ), application of the
Bayes rule shows that the resulting posterior distribution is given by!

(1.2) mo(z) oc e~ Vo),

1 1
(13) Vole) i= 51y — Go(@)lp + 5z — mi.

This is the standard setting of Bayesian inversion [36]. The objective is either to generate
samples from target distribution my(z) (Bayesian approach) or to compute minimizers of the
energy landscape Vp(x) (maximum a posteriori estimation—the optimization approach). The
specific focus of this paper is the setting where Gy(+) is expensive to evaluate and only a noisy
approximation, G¢(-), is available.? The parameter ¢ < 1 characterizes the lengthscale, in the
space of the unknown parameter x, on which the noisy approximation varies.

In order to understand this setting we define

(1.4) Ge(z) = Go(x) + G1(x/e).

Our goal is to solve the inverse problem (1.1) defined by G, using only evaluations of G, not
of Gy. In this context it is also useful to define the multiscale potential

1 1
(15) Ve(w) = 5ly = Ge(w) B+ 5lw — ml

'Let (-,-), |-| denote Euclidean inner-product and norm. Throughout, for positive-definite symmetric matrix
A, we use the notation (-, )4 = (,A™') and |- |4 = |A7% -

2In general it is important to distinguish between the observational noise &, appearing in the observations
y, and the concept of noisy evaluations of the forward model; however, there are links between them in the
motivating example in section 2.
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and the associated multiscale posterior distribution me o< exp(—Ve). Settings in which G is
both random and periodic will be considered. Specifically, we will provide a computational
example, arising in climate modeling, of the setting where G represents random fluctuations
caused by finite time-average approximations G, of the desired ergodic averaging operator Gy,
demonstrating desirable practical performance of ensemble Kalman methods for both Bayesian
and optimization approaches in this setting. And, in order to provide deeper theoretical
understanding, we will use multiscale analysis to compare ensemble Kalman algorithms and
ensemble Langevin algorithms, for solution of the inverse problem (1.1) where G is periodic.

The central message of the paper can now be conveyed by reference to two different
classes of stochastic differential equations (SDEs), both defined in terms of G, but compared
on the basis of their ability to solve the inverse problem defined by (1.1). The first is the
ensemble Kalman sampler (EKS), which requires only evaluations of G(-). The second is the
ensemble Langevin sampler (ELS), which requires evaluations of V() and its gradient, and
hence requires evaluations of the action of the gradient of G.(-). In both cases the ensemble
size is N.

The EKS comprises N coupled SDEs in R?, for X} indexed by i = 1,..., N, and is given
by

N
. 1 _ A .
dXi = — (N S {GXT) — G Ge(XT) — y>FX,?) dt — C,X "N (X] — m)dt
(16) n=1
d+1, ., — .
+ %(Xg ~X,) dt + /20, dW;

here the W* are standard independent Brownian motions in R% and

_ 1 X _ 1 Y
(1.7a) X = anltha Ger = N;Ge(X?)7
1 & - -
(1.7b) Ct:NZ(XgZ_Xt)®(XZL_Xt)~
n=1

Thus X; denotes the mean of the ensemble {X i}fil, C} is its empirical covariance, and ée,t
is the mean of the image of the ensemble under G..

Using the same notation X} for the ensemble members, and for W}, independent Brownian
motions in R, the ELS may be written as, for i =1,..., N,

(1.8) dX' = —C(X)VVi(X]) dt + Vi - C(Xy) dt + /2C(Xy)dW.

Here C : RN4 — R%*? denotes the empirical covariance function of arbitrary collection of N
vectors {2/} | in R? and X; = {X/}N .3

In the setting where G, is linear the SDEs defining the EKS and the ELS coincide; they
are, however, different from one another in general. Ostensibly, both the EKS and ELS

3Note that C'(X¢) = Cy as defined in (1.7b); however, the function C(-) on RV is needed to define the ELS
because of the presence of the divergence contribution V_:C(-) in the ELS.
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as defined above are targeting the distribution m.; however, they differ drastically in their
behavior as the small lengthscale € goes to zero. As we shall see, as ¢ — 0 the EKS (1.6)
behaves as if G, were replaced by Gy and hence performs well in recovering solutions of the
inverse problem (1.1). In contrast the ELS (1.8) is dominated by the fluctuations arising from
G and does not perform well in recovering solutions of the inverse problem (1.1). The EKS
effectively denoises G, while the ELS gets stuck in the noise. Motivated by the potential
success of the EKS for sampling from models with noisy likelihoods, and by the wish to
make controlled approximations of the posterior, we propose here a new class of ensemble
method—the ensemble Gaussian process sampler (EGPS)—which can sample effectively from
rough distributions without making the ansatz of a Gaussian posterior distribution that is
used in the EKS. The strategy underpinning this method involves evolving an ensemble of
particles according to overdamped Langevin dynamics using a surrogate Gaussian Process
(GP) emulator to replace the noisy, and potentially expensive, log-likelihood term.

The multiscale analysis and computational experiments that we present lead to an im-
portant dichotomy between different classes of ensemble methods which resonates with the
conclusions of [57]: (a) those which calculate the gradient of the log-posterior density for
every particle within the ensemble and then aggregate this to update the particle positions;
(b) those which evaluate the log-posterior for every particle and then compute a gradient, or
approximate gradient. We show that those in class (b) are robust to the roughness of the
posterior landscape and produce approximations of the posterior (1.2), using only evaluations
of G¢, but with relaxation times independent of ¢; in contrast the performance of those in
class (a) deteriorates as the characteristic lengthscale € of the roughness converges to zero and
do not solve the inverse problem defined by the smooth component Gy, but rather solve a
different inverse problem exhibiting order one corrections.

1.2. Literature review. The focus of this paper is the solution of Bayesian inverse prob-
lems, via optimization or probabilistic approaches. Due to the intractability of the posterior
distribution associated to a typical Bayesian inversion problem, sampling methods play an
important role in exploring the posterior distribution and providing systematic uncertainty
quantification. Due to their wide applicability and practical success, Markov chain Monte
Carlo (MCMC) methods based on Metropolis—Hastings (MH) transition kernels remain the
de facto approach to sampling from high-dimensional and/or complex posterior distributions.
Given sufficient computational effort, an MCMC scheme can return an arbitrarily accurate
approximation to an expectation of a quantity of interest; however, this often requires large
numbers of iterations to provide an accurate characterization of the posterior distribution
[22]. For Bayesian models with computationally expensive likelihoods, such as those typically
arising in climate modeling [34], the geophysical sciences [51, 9], and agent-based models [27],
this may render MCMC-based methods computationally prohibitive, as they require at least
one likelihood evaluation per MCMC step.

The EKS (1.6) is an ensemble-based approach for sampling the posterior distribution asso-
ciated to a Bayesian inverse problem. It was introduced in [18], without the linear correction
term proportional to d + 1. The linear correction was identified in [47, 19] and ensures that,
in the case where the forward map G is linear, the one-particle marginals of the Gaussian
invariant measure deliver the solution of the Bayesian linear inverse problem for G, subject
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to additive noise distributed as A (0,T") and subject to prior A/(0,X). In the case where G is
linear and when initialized with positive-definite initial covariance Cj, this system converges
exponentially fast, at a problem-independent rate, to a Gaussian measure given as a solution
to the linear inverse problem for G subject to additive noise distributed as A(0,T") and prior
N(0,%) [18, 8]. In the nonlinear case, the invariant measure is not known explicitly; however,
the output of the finite ensemble SDE may be used as a key component in other algorithms
for solution of the inverse problem [10, 55] which come equipped with rigorous bounds for the
approximation of the posterior.

When the forward map G is differentiable and its derivative can be computed efficiently,
then sampling methods which make use of the gradient of the log-posterior density provide
means of exploring the state-space effectively. For example, one may consider the overdamped
Langevin process [56], given by the solution of the following SDE:

Here K is symmetric and positive-definite, but otherwise is an arbitrary preconditioner. Under
mild conditions [56], the Markov process (x¢)¢>0 will be ergodic with unique invariant distribu-
tion given by 7 o exp(—V), so that x; will converge in distribution to 7 as t — co. Sampling
methods based on discretizations of (1.9) include the unadjusted Langevin algorithm [61] as
well as its metropolized counterpart, the Metropolis adjusted Langevin algorithm (MALA)
[6], and variants such as the preconditioned Langevin version of the pCN algorithm [11] and
the Riemmanian manifold MALA algorithm [23]. Hybrid (also known as Hamiltonian) Monte
Carlo-based methods also exploit the gradient of V' to explore the state-space [12] and have
been generalized to the Riemannian manifold setting in [23]. The ELS (1.8) is defined by
allowing an ensemble of N copies of (1.9) to interact through a common preconditioner C'(X;)
depending on the solution of the ensemble of equations. Assuming that C(Xy) is positive
definite, then C'(X) is positive definite for all ¢ > 0 and so X; converges in distribution to
7 = 7®N [19]. This idea follows from the more general concept of ensemble-based sampling
methods which accelerate the Markov chain dynamics by introducing preconditioners com-
puted from ensemble information (e.g., sample covariance) [42, 19, 8, 14]. Since, in the case of
a linear forward operator, (1.6) coincides with (1.8) [18], this connects the ELS with some of
the previously cited literature on the EKS. Quantitative estimates on the rate of convergence
to equilibrium in the setting of preconditioned interacting Langevin equations can be found
in [19, 8].

A number of other ensemble-based sampling methods have been proposed, building on the
EKS and related work. In [55], the authors propose a multiscale simulation of an interacting
particle system, which delivers controllable approximations of the true posterior; it is rather
slow in its basic form but can be made more efficient when preconditioned by covariance
information derived from the output of the EKS. Other such ensemble methods include replica
exchange [65, 43] as well as MH-based approaches [28, 7, 35, 32]. The recent work [45] also
employs an ensemble of particles for evolving density estimation using kernel methods with
the objective of approximating solution of a Fokker—Planck equation.

The presence of multiple modes in the target posterior distribution is a key cause of slow
sampler convergence, as any ergodic Markov chain must spend the majority of its time ex-
ploring around a single mode, with rare transitions between modes. Mitigating this issue
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has various extensions to standard MH-based MCMC including delayed-rejection methods
[29, 30], adaptive MCMC, and methods based on ensembles to promote better state-space
exploration, e.g., parallel tempering [43] and others. This issue is further exacerbated for
models with posterior distributions exhibiting “roughness” characterized by a nonconvex,
nonsmooth posterior with large numbers of local maxima, such as inverse problems arising in
climate modeling [13], Bayesian models in geoscience [9], frustrated energy landscape models
in molecular models of protein structures, glassy models in statistical physics, and similar
models in the training of neural networks [4]. In the context of Bayesian inverse problems,
such pathologies may arise naturally if the forward model exhibits multiscale behavior [15],
particularly when only sparse data is available, giving rise to identifiability issues. Alterna-
tively, this may occur if one only has access to a noisy estimate of the likelihood, e.g., for
some classes of intractable likelihoods such as those arising from SDE models with sparse
observations. Similarly, rough posteriors may also arise if one is fitting a Bayesian inverse
problem based on estimators of sufficient statistics of the forward model [46]; this setting
arises in parameter estimation problems of the type described in [10], where time-averaged
quantities are used for parameter estimation in chaotic dynamical systems. In the special case
where one has an unbiased estimator of the likelihood, then pseudomarginal MCMC methods
[1] provide means of sampling from the exact posterior distribution, but the performance of
these methods degrades very quickly with increasing dimension. In the context of uncertainty
quantification, GPs were first used to model ore reserves for mining [40], leading to the krig-
ing method, which is now well established in the geostatistics community [63]. Subsequently,
GPs have been very successfully used to provide black-box emulation of computationally
expensive codes [62], and in [37] a Bayesian formulation of the underpinning framework is
introduced. Emulation methods based on GPs are now widespread, finding applications in
computer code calibration [31], global sensitivity analysis [49], uncertainty analysis [48], and
MCMC [41].

Surrogate GP models to accelerate MCMC have been considered before, for example,
in [41] higher order derivatives of the log-likelihood required in the calculation of Riemann-
ian manifold Hamiltonian Monte Carlo were calculated via a GP emulator. Similarly, in
[64] a nonparametric density estimator based on an infinite dimensional exponential family
was used to approximate the log-posterior and then compute the derivatives required for
HMC. Surrogate models to augment existing MCMC methods through a delayed rejection
scheme have been considered in [69] for GPs and [67] for neural network surrogates. In the
context of ensemble methods there have been a number of recent works which make use
of interpolation in reproducing kernel Hilbert spaces (RKHS) for density estimation and/or
gradient estimation which are subsequently used to formulate an ensemble sampling scheme
[58, 45, 59, 53].

Our analysis and evaluation of the algorithms is based on deploying multiscale methodol-
ogy to determine the effect of small-scale structures on the large scales of interest; in particular
we apply the formal perturbation approach to multiscale analysis which was systematically
developed in [5], and which is presented pedagogically in [54]. To simplify the analysis we
perform the multiscale analysis for mean field limit problems, requiring the study of nonlinear,
nonlocal Fokker—Planck equations; previous use of multiscale methods for nonlinear, nonlocal
Fokker—Planck equations arising from mean field limits may be found in [26, 25].
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1.3. Our contributions. In this paper we make the following contributions to the analysis
and development of ensemble-based methods for the solution of inverse problem (1.1), based
on forward model Gy(-), given only access to the noisy approximation G.(-) in the form (1.4):

e we present a parameter estimation problem from climate modeling which naturally
leads to the solution of an inverse problem of the form (1.2), in which only noisy
evaluations of the forward model are available, demonstrating favorable behavior of
ensemble Kalman-based methods in a setting where G is random;

e by means of multiscale analysis in the setting where G is periodic, we demonstrate
that the EKS (1.6) (which does not use gradients of the forward model) exhibits an
averaging property that leads to recovery of the SDEs applied with G1(-) = 0;

e in the same multiscale setting, we demonstrate that the ELS (1.8) (which uses gradients
of the forward model) exhibits a homogenization property which causes the algorithm
to slow down and recover an SDE different from the one with G;(-) = 0;

e we introduce the EGPS, which combines the benefits of the EKS (averaging out noisy
forward model evaluations) with the benefits of Langevin-based sampling (exact gradi-
ents and exact posteriors), overcoming the drawbacks of the two methods (uncontrolled
approximation of the posterior, and slow performance in presence of noisy forward
model evaluations, respectively);

e we employ numerical experiments to illustrate the averaging and homogenization ef-
fects of the EKS and Langevin samplers, and to show the benefits of the EGPS.

The paper is organized as follows. Section 2 describes the parameter estimation problem
arising in climate modeling that serves to motivate our subsequent analysis. In section 3 we
define the EKS and study its application to noisy forward models by means of multiscale aver-
aging. In section 4 we define a class of interacting Langevin samplers and study its application
to noisy forward models by means of multiscale homogenization. Section 5 introduces the new
EGPS. Numerical results for all three methods are presented in section 6 and concluding re-
marks are made in section 7. The appendices contain details of the climate modeling example
and of the multiscale analysis.

2. Motivating example. We present a specific problem of learning parameters from time-
averaged data in an idealized climate model. Subsection 2.1 describes the abstract problem
of learning parameters in a dynamical system from time-averaged data; noisy fluctuations are
introduced when finite time-averaging is used to approximate a desired but intractable infinite
time-average. In subsection 2.2 this setting is applied to the specific motivating example of
learning parameters in a GCM (general circulation model). Subsection 2.3 describes the
application of ensemble Kalman methods to solve the problem. The example serves two
primary purposes: (i) we provide an explicit instance of a noisy energy landscape V; resulting
from a noisy forward model, and (ii) we demonstrate the favorable properties of ensemble
Kalman methods when solving optimization or sampling based inverse problems defined by
such a landscape. In particular, the random white noise fluctuations that appear in this
example provide a severe test of the ensemble Kalman methodology; in this context the results
of this section are very positive regarding the performance of ensemble Kalman methods. This
motivates the analysis which follows in subsequent sections.

We label the unknown as 6 and use Gy, G1, and G, to denote, respectively, the infinite time-
average model, the random fluctuations about it, and the noisy forward model (G, = Gy + G1)
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resulting from finite time-averages to which we have access. We use the calligraphic G,
rather than G, to distinguish from the multiscale analysis (in subsequent sections) where
the lengthscale € is precisely defined through periodic fluctuations in parameter space. In
what follows G, is subject to white noise, and hence to arbitrarily short lengthscale € for the
fluctuations; in practice, however, a value of € satisfying 0 < ¢ < 1 can still be defined as
the minimal separation between the points in #-space at which G, is evaluated. Therefore G,
should be understood with such a choice of € in the random setting.

2.1. Parameter inference from time-averaged data. Our point of departure is the fol-
lowing parameter-dependent dynamical system:

(2.1) o= F(u;6), u(0) = uo.

We assume that this dynamical system is ergodic and mixing. We let u(t;6) denote the
parameter-dependent solution of this problem. Our goal is to learn 6 from data y computed
from finite time-averages of a function ¢(-), defined on the state-space, over a time-interval of
duration 7. In detail, we have data y given by

(22) Yy = ge(e) + fobsy

where
T
Ge(0) = 111/0 o(u(s;0))ds,

and where s ~ N (0, Ayps) is observational noise. We note that G, depends on initial condi-
tion ug, which we view as a random variable distributed according to the invariant measure
of (2.1). For ergodic, mixing dynamical systems a central limit theorem may sometimes be
proven to hold [2], or empirically observed, for data drawn at random from the invariant
measure. In this setting

Ge(0) = Go(0) + G1(9),
G1(0) ~ N (0,771 A(9)),

where Gy is the infinite time-average which, by ergodicity, is independent of the initial con-
dition ug. The central limit theorem requires that 7" is chosen greater than the timescale of
mixing (the Lyapunov time). In this case, G¢(-) may be viewed as a noisy perturbation Gy (+)
(covariance scaling with T—!) of the function Go(-) where the noise induced by the unknown
initial condition uy appears only in G; and not in Gy. Whenever we evaluate G, at different 6
this noisy evaluation should be thought of as being evaluated independently with respect to
random initial condition ug. Hence, evaluations of G, contain rapid fluctuations that are white
in f-space; as mentioned earlier € can be thought of, in practice, as the minimal separation
between 6 values at which time-averages are evaluated.

We approximate T~ 'A(f) by a constant covariance A,,,q¢; estimated from a single long-
run of the (ergodic and mixing) model at a fixed parameter #7 and batched into windows
of length T. If we let &noger ~ N (0, Apoder), and assume that the observation error &ps is
independent of the initial condition ug, then we can rewrite inverse problem (2.2) as

(2.3) y=Go(0) +¢&,
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where & = Eups + Emodel ~ N (0, Agps + Apnoder)- In this recasting of the inverse problem in
terms of Gy the noise £ is the sum of the original observational noise £,,s and the model noise
Emoder- In this way, by means of the central limit theorem, we recast problem (2.2) as an
analogue of (1.1) with I' = Agps + Apodel, and Go replaced by Gp. In analogy to section 1.1,
given a sample of data y and using only evaluations of a noisy approximation G, of Gy, our
goal is to solve the inverse problem (2.3). In practice, to obtain a sample of data y, one can
either (i) evaluate (2.3) by approximating Gy (e.g., by averaging over a time > T') and add a
sample of &, or (ii) evaluate (2.2) at a random wup drawn from the invariant measure (e.g., by
including a spin-up period longer than the mixing timescale, before evaluating G.) and then
add a sample of £,s. For computational expedience follow the latter approach. Within the
ensemble algorithms we employ in what follows, we use the same time period T to generate
the data and to evaluate G..

2.2. Parameter estimation in a general circulation model. Climate modeling provides a
significant application where the setup of the preceding subsection is relevant. While numerical
weather prediction is entwined with learning the initial condition ug of the system, in the
setting of climate modeling ug is a nuisance parameter of no intrinsic interest. It is thus
natural to calibrate models to time-averaged data, with the goal being the prediction of climate
statistics into the future. In this setting it is natural to solve the inverse problem relating to
infinite time-averages, since the nuisance parameter ug disappears from this problem, but to
do so given only the ability to evaluate finite time-averages, because infinite time-averaging is
not feasible in practice.

We consider an idealized moist GCM detailed in [17, 50]. The GCM comprises three
space-dimensional time-dependent coupled partial differential equations (PDEs) describing
the large-scale atmospheric motions of an aquaplanet,” representing conservation of mass,
momentum, and energy. The PDEs are coupled with parameterizations to resolve the subgrid-
scale dynamics, notably of moist convection, turbulence, and radiation. In the experiments
reported, the GCM has a spherical spectral discretization of (32,64,20) discrete latitudes, lon-
gitudes, and vertical layers (unevenly spaced in the vertical, with more discrete layers near the
planet surface). The time discretization is based on operator-splitting, combining a leapfrog
method (explicit) with a Robert—Asselin time filter (implicit)—a standard approach for spec-
trally discretized atmospheric models [60, 3, 66]. The simulated aquaplanet is statistically
homogeneous in the longitudinal direction, and statistically stationary in time, after an initial
burn-in period. The computational experiments with these discretizations are stable and take
approximately 1-2s per simulated day when distributed over 8 CPU cores.

A Bayesian formulation of the inverse problem of learning two subgrid-scale convection
parameters, the relative humidity RH and the relaxation time 7, is presented in [13]. The
quasi-equilibrium moist convection scheme used to describe subgrid-scale phenomena relaxes
temperature and specific humidity toward moist-adiabatic reference profiles with a fixed rel-
ative humidity RH. As data we take three longitudinally averaged (due to symmetry) and
time-averaged climate statistics: free-tropospheric relative humidity, daily precipitation, and

“The original observational noise £,5s may also be thought of as representing model error, in the sense
introduced in [38].
5A planet covered with a 1m thick slab ocean layer on the inner boundary with no surface topography.
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the probability of 90th percentile precipitation. These statistics are known to be informative
about the unknown parameters [16]. Observing these quantities latitudinally and averaging
over a window of 7' = 30 days, we obtain data in R?. The Lyapunov time is empirically
Tr, =~ 15 days for this system, and so the choice of T = 277, is reasonable to expect the
theory of section 2.1 to hold. The specific formulation of the model, along with details on
how the instance of data y and the covariances Agps and A,,oder are constructed, is deferred
to Appendix A.

2.3. Ensemble Kalman algorithms for parameter inference. We seek to solve the inverse
problem (2.3) using the EKS algorithm [18], by evolving a set of N particles {Oin N | over
a discrete set of algorithmic time-steps 0 = tg < t; < ...% such that At, = t,4 1 — tpn, to
approximate the posterior distribution over 6. Note that we distinguish between the EKS,
which is an SDE, and the EKS algorithm, which refers to a discretization of the SDE (1.6)
to obtain an implementable methodology. The mean and covariance under the prior on the
unknown parameter 6 are denoted (m, ). We define M(t,) = (I + At,C,X7"), where Cy,
is the empirical covariance of the particles {Hin z‘]\ir We consider the approximate posterior
sampling approach proposed in [18] which has the form

M(t,)8;" =6 + At,Cp, 7 'm

tnt1
1 X _ . _
(2.4) + Ao (5 D(GAOL) = ety = Gel0],)r (67, B1,))
n=1
(2.4b) for = 00+ V200G, 641,

fori=1,...,20, where &H i (0,1)," and T' = A, 041 + Aops, and where 63, and Gey, are

the ensemble averages of {f;, }~, and {G(6] )}V, respectively. This is a linearly implicit
split-step scheme for the SDE (3.1), but we do not use the finite system size correction,
proportional to N1 and identified in [19, 47], because the effect is small for this example, but
it is easily incorporated. We also consider the ensemble Kalman inversion (EKI) version of this
algorithm in which M (¢,,) = I and the white noise contribution is dropped; this corresponds
to time discretization of the ordinary differential equation (ODE) found by dropping the last
three terms on the right-hand side of (1.6).

We run both EKS and EKI from algorithmic time ¢y = 0 until (approximately in the EKS
case) time 5. For EKI we use 125 fixed steps, At, = 0.04 for all n.® For EKS we use an
adaptive time-step At, that takes values 0.011,0.038,0.11 for n = 0,1,2, and At, ~ 0.1 for
n > 3; we terminate after 49 iterations. For the EKS we use the simple adaptive time-step
At,, proposed for the EKI algorithm in [39] and generalized to the EKS in [18]. We choose
N = 20 and in all our numerical examples we evaluate time-averages with T' = 30 days, the
same time-interval used to create the data. An initial ensemble of particles of size 20 is drawn
from the prior.

SNot to be confused with physical time s appearing in (2.1).

"The algorithms we use here do not add additional perturbations of y for each ensemble member, as is often
performed [33].

8In practice, EKI is stable and produces qualitatively similar solutions over a wide range of choices of
At, < 1.
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Figure 1. Objective function Ve along a line of 200 parameter values; we vary one parameter and hold the
other fized at the value found from EKI (at time 5, and for the run At = 0.04). The parameter values used
to generate the data realization are shown with a blue dashed line; the mean value of the final EKI iteration
is a black solid line. The key observation is that EKI produces excellent minimizers despite the rough energy
landscape.

We may now visualize the landscape V. given by (1.5) with G, replaced by G.. Figure 1
shows one-dimensional slices through this landscape; in each we hold one parameter at the
optimal value of the objective (taken from the EKI run at time 5) while varying the other in
uniform increments over 200 values. The objective evaluations (blue circles) are noisy, leading
to rapid fluctuations around a visible convex objective function (defined by the, in practice
uncomputable, infinite time-average limit.) Furthermore the optimal parameter set (black
vertical line), defined as the mean of the final iteration of the EKI run at time ¢ = 5, provides
a satisfactory approximate minimizer of the convex objective function buried underneath the
noisy objective function constructed from noisy forward model evaluations available to the
algorithm, and this is achieved with initialization of the algorithm ensemble from the prior,
which is both broad and far from the truth. The bias of the objective function with respect to
the true parameters (blue dashed vertical line) is to be expected and is due to the optimization
being performed with a single realization of the noisy data. The behavior of the EKS algorithm
is demonstrated in Figure 2; it too captures the true parameter very well, despite the noise
present in the objective function, and also quantifies uncertainty in the estimate, through the
spread of the pink samples.

This ability of ensemble Kalman methods to identify approximate minimizers, and gener-
ate approximate posterior samples, in noisy energy landscapes is remarkable. It leads to the
conjecture that these derivative-free ensemble methods share a common behavior of “seeing
through the noise” in model evaluations of G, enabling solution of the inverse problem (2.3)
defined by Gy. On this basis we will, in the next two sections, compare derivative-free ensemble
methods with gradient-based interacting particle systems.
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Figure 2. Convergence of the 20 member EKS ensemble in parameter space over artificial time 0 to 5
with variable time-step as detailed in the main text. The totality of all ensemble members is shown in gray
(noting that some points lie outside of the plotting region). The final ensemble (the 49th) is given in pink. The
parameter set used to generate the data realization is given by the intersection of the blue dashed lines. The
green line tracks the ensemble mean over the iterations shown by diamonds. The key observation is that EKS
produces excellent samples despite the rough energy landscape.

3. Derivative-free sampling. The previous section demonstrates that algorithms based
on the EKS (1.6) and its discretizations provide remarkable ability to denoise rough energy
landscapes and identify underlying smooth landscapes relevant for optimization and sampling,
in the context of a complex problem arising in climate modeling. In this section we study this
problem, returning to the general setup of the introduction; we work in continuous time and
with the superimposed rapid fluctuation in the forward model assumed to be periodic. This
simple setting yields clean theoretical insight, and experience from the homogenization and
averaging literature [5] suggests that similar results are to be expected for rapid random and
periodic fluctuations, and so can provide an explanation of the remarkable behavior observed
in the climate modeling example. In subsection 3.1 we introduce the mean field limit of (1.6)
which is our starting point; subsection 3.2 is devoted to analysis of this mean field SDE, using
averaging methods, with detailed calculations left for an appendix. The central conclusion
from the work in this section is that the EKS recovers solution to the inverse problem defined
by Go when only evaluation of G, is available.

3.1. Ensemble Kalman sampling. Here we study the EKS given by (1.6), where G is
defined by (1.4), and evaluate the relationship of the SDE to the inverse problem for Gy
defined by (1.1). Our approach is to apply averaging techniques to the mean field limit of this
system. The mean field limit is given by

(3.1) dry = —F(xy, p) dt — C(p)X " oy dt + /2C(p) dW5,
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where W is a standard Brownian motion (independent of the initial condition) in R? and, for
density 7 on R?, we define the functions X, G, and C of 7, and F of (m,x), by

(3.2) X(m) = y X'n(X"dX', G(m)= y G (Xm(X"dX',

(3.3) Cr) = /R (X F(m) ® (X~ () (X)X

(3.4) Fla,m) = ([ (G(X) = G(x), Gula) = y)r X'm(X)dX").

R4
Here p is the time-dependent density of the process, and self-consistency implies that it satisfies
the nonlinear Fokker—Planck equation

(3.5) Oup =V (V- (C(p)p) + Fla,p)p).
It is useful to notice that C(p) depends only on t and not = and that hence we may also write
(3.6) 0ip=C(p): D2p+ Vo (F(z,p)p).-

In (3.5) the outer divergence acts on vectors, the inner one on matrices; in (3.6) the Frobenius
inner-product : between matrices is used.

Carrillo and Vaes [8] established stability estimates in the Wasserstein distance for so-
lutions of (3.5) in case of linear G, recovering convergence toward equilibrium results by
Garbuno-Inigo et al.; see [18].

3.2. The small € limit. In order to understand the performance of the EKS algorithm
when rapid fluctuations are present in the forward model on the EKS algorithm, we proceed
to analyze it under the following assumption.

Assumption 3.1. The forward model (1.4) satisfies
(3.7) Ge(z) = Go(x) + Gi(x/e),

Go € CY(RY,RF), Gy € CYTRE), and [14 G1(y)dy = 0.

Here T? denotes the d dimensional unit torus: G; is a l—periodic function in every
direction. Although the periodic perturbation is a simplification of the typical noisy models
encountered in practice, such as the class presented in section 2, it provides a convenient form
for analysis which is enlightening about the behavior of algorithms more generally; furthermore
the multiscale ideas we use may be generalized to stationary random perturbations and similar
conclusions are to be expected [5].

We use formal multiscale perturbation expansions to understand the effect of the rapidly
varying perturbation G1(-) on the smooth envelope of the forward model, Gy(-), in the context
of the EKS, using the mean field limit. To describe the result of this multiscale analysis we
define the averaged mean field limit equations, found from (3.1) and (3.5) with G1(-) = 0 so
that G¢(-) may be replaced with Go(-):

(3.8) dry = —Folxy, po) dt — Cpo) X ay dt + /2C(po) AW,
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with

Go(m) = 9 Go(X)m(X")dX,

Folw, ) = /R {Go(X') = Golm), Go(x) — y)r X'm(X)dX"

To be self-consistent the density po(z,t) € C((0,00); L'(R%R™)) must satisfy the nonlinear
Fokker—Planck equation

(3.9) dpo = Vg - (Vx - (C(po)po) + Folz, Po)Po)-

The following result is derived in Appendix B and it shows that, as e — 0, (3.5) is approximated
by (3.9).

Formal Perturbation Result 3.1. Let Assumption 3.1 hold with 0 < € < 1. If the solution
of (3.5) is expanded in the form p = po + €p1 + €2pa + - -+, then formal multiscale analysis
demonstrates that po satisfies (3.9).

Remark 3.1.

e The result shows that, as € — 0, the mean field SDE (3.1) and the nonlinear Fokker—
Planck equation (3.5) for its density are approximated by the SDE (3.8), and the
nonlinear Fokker—Planck equation (3.9) for its density. This means that the EKS
algorithm simply behaves as if G; = 0 and ignores the rapid O(1) fluctuations on
top of Gy; this is a very desirable feature for computations whose goal is to solve the
inverse problem (1.1) defined by Gy but where only black box evaluations of G, given
by (1.4) are available.

e This result is consistent with what we observed empirically in the behavior of ensemble
Kalman-based algorithms used to learn parameters in a GCM.

e We choose to formulate this result in terms of the mean field limit because this leads to
a transparent derivation of the relevant result. The analysis is cleaner in this limit as
it concerns a nonlinear Fokker-Planck equation with spatial domain R? x T¢: similar
results may also be obtained for the finite particle system by considering a linear
Fokker-Planck equation with spatial domain RN? x TN,

e Rigorous justification of the formal expansion could be approached by using the It6
formula (see Chapters 17 and 18 in [54], for example); the main technical difficulty
in this setting is the need to derive bounds from below on the covariance operator,
something which is considered in [19] where the finite particle system is proved to be
ergodic.

4. Derivative-based sampling. We now study the ELS (1.8) and study its relation to
solution of the Bayesian inverse problem defined by (1.1). In subsection 4.1 we introduce the
mean field limit of the ELS, which is our starting point; subsection 4.2 is devoted to analysis
of this mean field SDE, using homogenization methods with detailed calculations left for an
appendix. The central conclusion from the work in this section is that, in contrast to the
EKS studied in the previous section, the ELS performs poorly at recovering a solution to the
inverse problem defined by Gy when only evaluation of G, is available.
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4.1. Ensemble Langevin sampling. The mean field limit of the ELS (1.8) takes the form

dry = —C(pt)VVE(xt) + v QC(p)th,

where function C(-) on densities is as in (3.3) and V is given in (1.5). By self-consistency, the
associated nonlinear Fokker—Planck equation for the time-dependent density of the process
p € C((0,00); LY (R4 R™)) is given by

(4.1) 0ip = V- (Clp) (Vap + ViVep) ).

Similarly to the previous section, this may be rewritten as
(4.2) op =C(p) : (D?Cp +V, (Vﬂép)).

4.2. The small € limit. As an ensemble scheme, the system described by (1.8) aggregates
information from individual particles to obtain a better informed direction in which to explore
the posterior distribution. Unlike the EKS, these approaches compute the gradient before
aggregating across particles. We show that this causes the resulting sampler to be poorly
performed with respect to the presence of rapid fluctuations in the evaluation of the likelihood.
The following result is derived in Appendix C. It characterizes the evolution of the O(1) leading
order term of p solving (4.1). Unlike the setting in the previous section for the EKS, the limit
is not the same as the Fokker—Planck equation obtained from applying the ELS methodology
to the inverse problem defined by forward model G with posterior given by (1.2).

Formal Perturbation Result 4.1. Let Assumption 3.1 hold with 0 < e < 1. If the solution
of (4.1) is expanded in the form p = po + €p1 + €2pa + - -+, then formal multiscale analysis
demonstrates that po satisfies the following mean field PDE:

(4.3) ipo = Va - (D(po) (Vapo + VaVpo))

where V.= Vy —log Z(z), Z(x) = [ra e V1(®2) dz, and

D(po) = Z(la:) /Td (I + sz(x,z))TC(po)(I + sz(x,z))efv dz.

Here x : R% x T4 — R is a solution to the following second order PDE in z, parameterized
by x:
\ (C(po)e_v(x)(vzx(x, z) + I)) =0, (2,2)€R%xT

Furthermore, for arbitrary ¢ € RY,

(4.4) ¢"D(po)¢ < ¢T M(po)C.

Remark 4.1.
e The homogenized mean field equations in the ¢ — 0 limit describe the evolution of a
density po with unique invariant distribution given by 7(z) o mo(z)Z(x). This invari-
ant distribution will generally not be equal to the invariant distribution g, associated

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/22 to 131.215.248.145 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1554 DUNBAR, DUNCAN, STUART, AND WOLFRAM

with the smoothed inverse problem (1.1), defined in (1.2) because of the presence of
Z(z). This indicates that using an ensemble of coupled Langevin particles applied
with potential V. derived from the noisy forward problem G, will not result in an
“averaging out” to obtain samples from the posterior of the smoothed inverse problem
with potential Vf derived from the smooth forward problem Gg; indeed there will in
general be an O(1) deviation from the target invariant distribution.

e A second effect that is caused by the fast-scale perturbation is a slowdown of conver-
gence to equilibrium, specifically (4.4) implies that the spectral gap associated with
the mean field equation (4.3) will be generally smaller than that associated with the
slowly varying forward operator Gp.

e The same considerations described in the third and fourth bullets of Remark 3.1 also
apply here.

5. The best of both worlds. In this section we detail a gradient-free ensemble method
which makes use of smooth estimates of the log-likelihood over the ensemble of particles to
estimate the gradient from the available noisy log-likelihood evaluations. This approximation
is then used to evolve each particle forward according to overdamped Langevin dynamics in
the implied smoothed potential. The proposed method has the advantage of the EKS (robust
to noisy energy landscapes) and of the ELS (works with gradients and provides controllable
approximation of the invariant measure). In particular, we expect the convergence to the
invariant distribution to be faster compared to EKS to due the exploitation of the approximate
gradient, which is insensitive to the local noise-induced fluctuations.

To this end, we model the partially observed potential

1

Vi(z) =Sy - G(z), T (y — G(2)))

as a GP f ~ GP(0,k), where k is an appropriately chosen positive definite kernel on R
This idea is inspired by the paper [45], which uses a closely related approach, with the goal
of approximating solutions to a Fokker—Planck equation. In this work, we choose k to be a
Gaussian radial basis function kernel of the form k(z,y;\, 1) = Aexp(— ||z — y||?/2[?), where
A > 0 is the kernel amplitude and [ > 0 is the kernel bandwidth. Given (noisy) evaluations
of the potential at the ensemble of points X; = (X}, ..., X}N) € RV*4 we seek a function f
such that, for some o > 0,

V(X)) = f(X]) + o€, €= (&...,&Y) ~N(0,1).

The corresponding GP posterior for f has mean function

Vi(z;0,M,1) kaX“/\lK(Xa/\l) Wi (X)), zeRY
t,j=1

and covariance function

N
Y(z,y; 0, 1) = K(x,y;0,\,1) — Z k(z, X\ M\ DK(X; 0, )\,l);jlk(Xg,y;)\,l).
ig—1
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Here K(X);; = 026, + k(X! X]). The gradient of the posterior mean is well-defined and
given by

N
VVi(mio A 0) = Y Vek(e, XE A DK (X0, 1) 5 V(X))
ij=1
The particles in the ensemble are then evolved forward according to overdamped Langevin
dynamics, i.e.,

5.1 X! = VYV (XL o\ 1) dt — S X dt + V2 dW,.
t t t

In simple situations the learned energy T//Z is updated every time-step. The three hyper-
parameters (o, A, 1) are chosen to reflect the spread and local variation in the data and hence,
as the conditioning points are updated, these parameters are also adjusted accordingly. We
impose log-normal priors on the amplitude A and observation noise standard deviation ¢ and
a Gamma prior on the lengthscale I. These prior modeling choices on the hyperparameters
ensure that the posterior mean does not introduce any short-scale variations below the levels
of the available data [10, 20, 21]. As is standard in the training of GPs we center and rescale
the training data to have mean zero and variance one. To select the hyperparameters we
employ an empirical Bayesian approach: we compute the maximum a posteriori values of the
hyperparameters after marginalizing out f. This entails selecting (o, A, 1) which maximize the
log marginal posterior,

N
1 —~ . - .
MLP(o,\1; X) glog g Vi (X} 0, DK (X500, D)WV (XT 0,0, 1)
ij=1

1
—5 logdet K (X;0,A, 1)+ logpo(o, A1),

where pg denotes the prior density over the hyperparameters.

In simulations we employ an Euler-Maruyama discretization of (5.1), coupled with a gra-
dient descent scheme for adaptively selecting the hyperparameters. Let X,, = (X}, ... ,X,]LV ) €
RN*4 denote the particle ensemble at time-step n. The algorithm for evolving the particles
forward to time-step n + 1 is summarized as follows:

e Fori=1,...,N: .

— Set X!, = XI — AtVVL(X; 00, A, 1n) — ASTIXE + V2ALE,, where & ~
N(0,1) iid.

e Update (0n11, Ant1,lnt1) = (Ons Ay In) + 0tV (g 3 )y M LP (0, Ans bns Xng1).-
In the above At and 0t are step-sizes for the Langevin updates and the hyperparameter
gradient descent, respectively. The choice of At and dt is problem-dependent. While it is
possible that integration with EGP (and EKS) is stiff during the initial transient phase, this
can be remedied by using simple adaptive time-stepping. Moreover, for the EGP we see that
one of the effects of the smoothing effect of the kernel is to reduce scale separation within the
posterior, thus resulting in less stiff dynamics.

If we are in a situation where evaluating the likelihood is computationally intensive, then
we may consider a straightforward modification of these dynamics where time is split into
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a fixed set of epochs where we keep the same conditioning points within the same epoch,
performing several steps of Langevin updates and hyperparameter tuning based on the same
conditioning points. This permits effective exploration of the posterior distribution but with
a fixed number of log-likelihood evaluations. Note that while we have based the proposed
scheme on an underlying GP model, the use of other nonparametric regression models would
be possible, provided that gradients can be readily computed.

6. Numerical results. In this section we illustrate the performance of the different meth-
ods analyzed or introduced in the preceding three sections, comparing their performance on
three different numerical examples. In particular we compare the EKS defined in (1.6), the
ELS as defined in (1.8), and the EGPS as introduced in section 5. Our results show the
desirable behavior of the EKS with respect to its ability to avoid the rapid fluctuations im-
posed on the smooth parametric structure of interest and rapidly converge to the desired
smooth posterior; they show the undesirable slowing down of the ELS, but do not illustrate
the modified limiting posterior as their slow performance means that this equilibrium distri-
bution is not reached in a reasonable number of iterations. They also demonstrate that the
EGPS has the same quality of performance as the EKS, with further improved rate of con-
vergence in continuous time; however, in the units of evaluations of the (assumed expensive)
forward model the EKS may still remain competitive. The three examples considered are a
perturbed linear model, in subsection 6.1, the Lorenz ’63 system with parameter estimation
through time-averaged data (as for the GCM) in Subsection 6.2, and a multimodal example
in Subsection 6.3.

6.1. A linear model. As a first pedagogical example we consider solving the inverse prob-
lem of the form (1.1) for a forward map G of the form, for z = (z1, z2),

Ge(z) = Go(x) + Gy (x/e),
(6.1) Go(z) = Az, Gi(x) = [sin (2rz1) ,sin (27z)] ",

A= (4 5)-

The objective is to recover the posterior distribution associated with a “slowly varying” com-
ponent of the forward model Go(z) = Az, based on evaluations of the multiscale forward map
G.. To this end, we generate observed data y € R? for a true value of 2 given by 7 = (—1,1)
and observational covariance I' = 42I with v2 = 0.05. We impose a Gaussian prior on the
unknown parameter x with zero mean and covariance ¥ = 0?1, with o2 = 0.05. In the absence
of the multiscale perturbation G; in the forward model, the resulting posterior is Gaussian
with mean and covariance given by

—712 0 ) % 0
Mpost = o 2 Y and Cpost =7 4o 1 s
0 4402 0 4402

respectively. Setting e = 0.1, each of the the three methods is used to evolve an ensemble of
1000 particles from a U[0, 1]? initial distribution, over a total of 10 time units. The step-size
employed for each method is selected differently to ensure stability.
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Figure 3. Plot of the particle ensemble for each of the three processes after simulating 10 time units. The
contour plot indicates the posterior distribution for the “slowly varying” forward model. The red dot denotes
the truth. Note the different scaling of the azes in plots (a)—(c). The bottom left plot shows the evolution of
negative log-likelihood as a function of time-step.

Figure 3 shows the particles ensemble at the final time (blue), the true solution (red
dot), as well as the posterior 7y (1.2) associated with the slowly varying part of the for-
ward model G (black contour lines). We observe that particles get stuck in the many local
minima for the ELS, shown in Figure 3(a). This is consistent with Formal Perturbation
Result 4.1, which indicates that the multiscale perturbation will slow down the dynamics
and will result in a significant deviation of the invariant measure of the SDE from the case
G1 = 0. This is not the case for both the EKS and EGPS, which are able to recover the
slowly varying target distribution correctly; see Figures 3(b), and 3(c), respectively. Figure
3(d) shows the negative log-likelihood for N (mypost, Cpost) averaged across all the particles
in the ensemble, as the algorithm progresses. Both the EKS and the EGPS rapidly move
toward the mode of the slowly varying target distribution, with the EGPS converging faster
due to the use of the approximate gradient. On the other hand the Langevin sampler is
strongly influenced by the multiscale perturbations, and after 10 time units remains distant
from the desired Gaussian posterior distribution, stuck in local minima caused by fluctuations
(1. While the EGPS converges the fastest, it is sensitive to the initial selection of hyper-
parameter values and step-sizes; these were initially set through a preliminary tuning phase
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for the displayed results. On the other hand, the EKS is remarkably robust to the choice of
step-size.

6.2. The Lorenz '63 model. Here we work in the setting of parameter inference from time-
averaged data, introduced in subsection 2.1. Rather than work with the complex GCM studied
in section 2, we work with the Lorenz ’63 model in order to present controlled experiments at
cheaper cost.

The three-dimensional Lorenz equations [44] are given in the form

(6.2a) 1 = o(x2 — x1),

(6.2b) Ty =rr1 — T2 — T123,

(6.2¢) I3 = x172 — bg,

with parameters o, r, b € Ry. In the following we fix the parameter ¢ = 10 and focus

on the inverse problem of identifying r and b from time-averaged data. To this end, we
impose a multivariate log-normal prior on 6 = (r,b) with mean m = (3.3,1.2) and covariance
¥ = diag(0.152,0.5%); to be concrete this defines the prior distribution satisfied by log(#).

In the notation of subsection 2.1 we take 7" = 10 and define ¢: R3 — R given by

2 2 2 )
SO(:E) = ($1,$2,$3,l’l,$2,$3,x1x2,:€21’3,m1x3),

this defines forward model G, as a time-average of first and second moments of the solution
over 10 time units. In the experiments that follow data y is found simply from a single
evaluation of the random (with respect to initial condition) function Ge.

Data is generated for the parameter set (o,rT,b") = (10,28, %), for which system (6.2)
exhibits chaotic behavior. Matrix A is set to zero. We estimate A(6), with a matrix A, oqe;
computing a single long trajectory of (6.2) at 7 = (rT,b"), over 360 time units. This is split
into windows of size 10 (neglecting the first 30 units) and we set A,,04e; to be the empirical
covariance of gg(eT) over the windows.

We then solve the inverse problem using the time discretization of the EKS SDE (1.6).
To ensure that there is minimal correlation between subsequent evaluations of the forward
map, we set the initial condition of (6.2), at each step of the sampling algorithm and for each
ensemble member, to be the state of the dynamical system from the previous ODE solve, for
the same ensemble member, evaluated at a large random time ¢ > 10.

Given observation data y and noisy forward model G, we define the negative log-likelihood
function

(63) Vi(0) = 5 {0y~ Ge(0), Ayl — Gel0)).

Figure 4 shows the profile of V7, versus r for a fixed (truth) value of b = 28. We denote by
V() the negative log-posterior density found by adding the prior quadratic form to V.

The EKS, ELS, and EGPS processes were all simulated for one algorithmic time unit, with
the step-size adjusted to ensure process stability. Each process is simulated with N = 103
particles, with initial condition distributed as U([27,29] x [2.25,3.5]). In Figure 5(a)—(c) we
plot the particle ensemble at the final time for each method, overlaid with a contour plot of
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Figure 4. Profile of the noisy negative log-likelihood over r for b fixed at optimal value. The blue dashed
line denotes the “true” value r = 8/3.

the negative log-posterior density V(6). In Figure 5(d) we plot the negative log-likelihood
function averaged over the finite time ensemble for each process, as the algorithms progress.
It is clear from the plots in Figures 5 that the EKS and EGPS have concentrated around the
true value and are distributed according to a smoothed version of the posterior. On the other
hand, the particles undergoing ELS dynamics remain trapped around the local minima of
the multiscale posterior distribution, preventing the particles from concentrating in a similar
fashion; indeed the ELS is visibly close to the initial (uniform on a rectangle) distribution of
the ensemble.

In summary the results of this subsection, where the forward model is random, closely
mirror those from the previous subsection, where the forward model is periodic. This sub-
stantiates our claim that the analysis of the periodic case, contained in sections 3 and 4, is
informative beyond the confines of the theory.

6.3. Multimodal posteriors. It is well-known that multimodal posteriors pose a signifi-
cant challenge for ensemble Kalman-based approaches, since such approaches are constructed
using a Gaussian ansatz. Recent work on ensemble-based interacting particle systems in [59]
has shown the potential for designing new interacting particle systems which address this
multimodal challenge; these methods are based on approximating nonlinear Fokker—Planck
equations arising from mean field dynamics, by means of particle-based RKHS methods. In
the following we illustrate that, unsurprisingly, the EGPS can achieve similar success, since it
is follows similar principles to those underlying the work in [59].

We consider the inverse problem for the form (1.1) for the unknown parameter z € R2
given a multiscale forward map of the form G, defined, for = = (x1,x2), by

(6.4a) Ge(x) = Go(z) + Gi(x/e),
(6.4b) Go(z) = (22 —1)* + (23 — 1)%,  Gi(x) = v(sin(2mz;) + sin(272)),
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Figure 5. The true parameter value is 0 = (r,b) = (28,8/3). Comparison of ELS, EKS, and EGPS after
simulating the ensemble for 1 unit of time. The contour plot indicates the posterior distribution V(6) while the
dots denote the ensemble at the final time. The bottom right plot shows the evolution of negative log-likelihood
as a function of time.

and where I' = 42I. To demonstrate the three proposed methods we generate observation
data y € R for the truth zf = (+1,-1), where v = % and v? = 0.05. We impose a
Gaussian N (0, 0%I) prior on the unknown parameter z, where 02 = 0.1. As the slowly varying
component of the forward map is the noninjective function Go(x) = (22 — 1)? + (23 — 1)2,
the associated posterior density exhibits four global modes. The ELS, EKS, and EGPS were
each simulated for an ensemble of N = 1000 particles for 10 time units starting from a
U(]—2,2] x [-2,2]) distribution. Note that a significantly smaller step-size was selected for
the Langevin sampler to ensure stability of the process. We plot the final ensemble in Figure
6. As in the two previous subsections, we observe that the ELS struggles to explore the large-
scale features of the posterior, in this case remaining concentrated on a single mode. The
effect of the multiscale perturbations can be clearly seen in the final-time ensemble as the
particle distribution appears “corrugated” due to the influence of the sinusoidal component
of the forward model. The EKS appears to be unaffected by the fine-scale structure in the
forward model, but concentrates in a region at the center of the posterior, reflecting the fact
that the EKS is based on a Gaussian ansatz, tending to promote unimodal distributions.
Note, however, that with different initializations the EKS may concentrate on any one of
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(a) ELS (b) EKS (c) EGPS

Figure 6. Comparison of the three approaches after simulating the ensemble for 10 units of time for
the Bayesian inverse problem highlighted in section 6.3. The contour plot indicates the posterior distribution
associated with the slowly varying forward map Go, while the points denote the ensemble at the final time.

the four modes of the posterior, rather than a compromise between all of them. Finally, we
observe that the EGPS sampler manages to effectively explore the large-scale structure of the
posterior, sampling from all four modes of the distribution.

7. Conclusions. In this paper we discussed and analyzed different ensemble methods for
solving inverse problems with noisy and expensive likelihoods. Such likelihoods commonly
appear in practice, for example, when using time-averaged statistics as data from a chaotic
dynamical system. A formal multiscale analysis approach was employed to characterize the
influence of rapid fluctuations on sampling when the objective is to explore the large-scale
smoothly varying structure of the posterior distribution. Within this framework we contrasted
the long-term behavior between sampling schemes which use gradient information and those
which are gradient free, using the ensemble Langevin sampler (ELS) and ensemble Kalman
sampler (EKS) as specific examples.

Both the formal analysis and computational experiments (which include both small-scale
toy problems for comparison of methods and a large-scale practical problem from climate
science) illustrate the robustness of EKS to noisy and periodic perturbations of the forward
model and demonstrate its ability to efficiently characterize the underlying large-scale struc-
tures of the resulting noisy posterior. This is not the case for Langevin methods, whose
long-time behavior is significantly impacted by the rapid fluctations: these methods do not
identify the correct smoohtly varying large-scale structure in statistical equilibrium, and are
also slowed down by the presence of small-scale structure, tending to get stuck near the in-
tialization of the ensemble. Motivated by the success of the EKS in this setting, we propose a
new class of ensemble based methods, the EGPS, which are also robust to noisy perturbations
of the forward model, but still employ gradient information to effectively explore the posterior
distribution, and without making any assumptions on the distribution of the posterior.

While computational experiments have demonstrated the strong performance of the EGPS,
it is evident that this method requires careful tuning of hyperparameters, which is currently
achieved using a preliminary tuning stage. Gaining an understanding of how to select these
parameters based on the multiscale structure of the forward map will be important for fur-
ther algorithmic development. Furthermore, issues of efficiency, relating to the frequency,
in algorithmic time, with which the GP is updated, needed to be fully explored. Another
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potential “best of both worlds” solution is to directly emulate G, with a GP and apply
EKS/ELS (a philosophy taken in [10, 13]); direct emulation can achieve greater emulator
accuracy but at an increased computational cost when G, have a high-dimensional output
space. Such algorithmic trade-offs should be investigated in different practical problems.

On the theoretical front, it would be of interest to make the presented formal multiscale
arguments rigorous. This might prove challenging as it would require bounds on the solution
of the cell problem, a Poisson PDE which characterizes the large-scale influence of small-
scale perturbations. Any such analysis would require tight lower bounds on the eigenvalues
of the empirical covariance process uniformly over time. While this has been shown to be
positive definite in [19], obtaining quantitative lower bounds on the eigenvalues remains an
open problem for future study. Another interesting problem is to characterize the long-time
behavior of the EGPS. In particular, identifying conditions for stability and ergodicity along
with quantifying the asymptotic bias are questions which we leave for future study.

Appendix A. Details of the general circulation model. In this section we provide
explicit details of the model formulated in section 2.2. It is physically natural that we choose
the relative humidity RH € [0, 1] and relaxation time 7 € [0,00). In order to accommodate
Gaussian priors we introduce the transformation

-

0 = T((RH, 7)) = (logit(RH), 1n (7)),

which maps [0, 1] x [0, c0) into R%. The GCM is a single-valued function of (RH, 7), and hence
of §, since T is invertible. We impose Gaussian priors on § ~ N([0,10.17]7, I), resulting in in-
dependent priors on the physical parameters 7 ~1(6) which are the logit-normal and lognormal
distributions, RH ~ Logitnormal(0, 1) and 7 ~ Lognormal(12 h, (12 h)?), respectively.

Given this, we now detail how the specific instance of data, y, and the covariances Aps
and Ajodel, are constructed. The matrix A,,04e 1S constructed as follows, noting that for the
atmosphere it is known that 7' > 15 days is sufficient to obtain statistical equilibrium [68].
The data is generated from a control simulation, where the parameters are fixed at reference
values, collected in the vector 87 such that 7-1(6") = (RH' = 0.7,7F = 2 h). Following |10,
section 5] we estimate the covariance A, o4¢; using long-time series data. To average in time,
the control simulation outputs data in 1/4-day time-steps that are then averaged over 30-day
windows to form each data sample; we generate 650 of these samples, discarding the first
50 to remove out-of-equilibrium initial condition bias. We construct A,,.qer, the variance of
Emodel, empirically from the resulting 600 samples. We choose the variance A of &ops as
detailed in [13]; it is designed to be no more than 10% of the variance arising from finite time-
averaging, and also to ensure physically reasonable data y (e.g., precipitation data > 0), with
high probability. The data y is then constructed by drawing at random one of the 600 30-day
samples, representing a draw from Gy (OT) + &model, and adding to it a draw Eyps ~ N (0, Agps),
representing observation error. In particular we have unified ¢! = 30 days. In a similar
fashion, any evaluation of the forward model G, requires a draw of a random initial condition
from the invariant measure. We implement this by initializing simulations at the end state of
a previous run; we then run for a time 2¢~!, discarding the first e as spin-up.

Appendix B. Multiscale analysis for EKS. In this section we derive Formal Perturbation
Result 3.1 concerning averaging for the mean field limit of the EKS. To carry out the analysis
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we extend the spatial domain of the mean field system from R% to R? x T? as is standard in
the perturbation approach described in [5, 54]. The analysis will be streamlined by making
the following definitions. For economy of notation we reuse the notation p(-,t), F (-, p), now to
denote functions with input domain extended from R? to R? x T%; specifically, this naturally
generalizes the definitions of p(-,t), F (-, p) in section 3.

In the following 7 : R¢ x T¢ — R* denotes a probability density on R? x T¢ and 7 : R? —
R* denotes a probability density on R?. Using this notation we define

X(n) = / a7 (z, z)dxdz,
RIxT4

Go(m) = / Go(z)m(x, 2)dxdz, Gi(m) = / G1(2)m(x, z)dzdz,
RdxTd Rd x Td
C(m) = / (z—X(m) ® (z — X(nm))7(z, z)dzdz,
RdxTd
Flo,z,m) = / (Go(a") + G1(2") = Go(m) — Gi(m), Go(x) + G1(z) — y)yra'n (2!, 2')da'd2,
R4 xTd
o) = [ (o= F(m) @ (2 = o)) mo(e)da,
Fo(z,m) = /d<G0($/) — Go(mo), Go(x) — y)ra'mo(a)dz’.
R
Note that in employing this notation, C, viewed as a matrix-valued functional on densities,
is extended from its definition in section 3 to now act on densities on R? x T?¢. However if

density p is constant in z, then we recover the definition of C(p) from section 3; in this case
C(p) = Co(p). We also define the following differential operators:

Bo(p)e =V - (vz : (C(P)’))a
Bi(p)e =2V - (Vx ‘ (C(P)')) + V- (]:(x,z,p)O),
Ba(p)e = Vs - (Va - (Cp)®)) + Vi - (Fla 2, p)o).

Under Assumption 3.1 on G = G the finite particle system (1.6) is

N
. 1 _ _ . )
ax} = — (5 DoUGo(X]) + G1(X[ /) = o = Grp, Go(X]) + Ga(Xi/e) = yyr X7 ) e
n=1
1~ d+1 i ~ / i
where

S ~ _1¢ a _1ly
X, = N;Xt", Gou = N;Go(Xt”), Gre= N;Gmm/e),

and C; = % ZN 1 (XgZ - Yt) ® (XgI — Yt) . If we introduce Z; = X} /e, then we obtain

n=
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N
. 1 _ _ . .
ax; = — (5 D (Go(XP) + G1(Z7) = Gy — G, Go( X)) + Gr(Z]) — y)r XT') dt
n=1
1y d+1 o, — forT 117
(BQ&) - Ctz Xt dt + T(Xt — Xt) dt + 2Ct th 5
. 1 Y _ _ A ,
dZ} = (55 YoUGo(X]) + G1(Z7) = Gy — G, Gol(Xi) + G (Z3) — y)r X7 dit
n=1
—1 i d+1 i i
(B.2b) — CX X dt + (X7 — Xy) dt + /2C; dW},

N
where now we may write

_ 1 n
Gri= > G(zp).

Now consider the mean field SDE defined by this system. Similarly to the exposition in
section 3 this takes the form

(B.3a) de = —F(z,z, p)dt + /2C(p)dW,
(B.3b) edz = —F(x, z, p)dt + /2C(p)dW,

where, to be self-consistent, the density p(x, z,t) must satisfy the equation

1 1
(B.4) Op = 5 Bo(p)p + —Bi(p)p + Ba(p)p.
We seek a solution in the form
(B-5) p=po+epi+Ept

and assume the normalizations

(B.6a) / po(z, z,t)dxdz = 1,
Rd x T4

(B.6b) / pj(z,z,t)dedz =0, j>1;
R4 x T4

this ensures that p integrates to 1. We now expand the operators By(p), Bi(p), B2(p) about
po- To this end we first note that

(B.7) C(p) = C(po) + €Cy1 + €*Co;
we will not need the precise forms of C; and Co in what follows. From this we deduce that

(B.8a) Bo(p)e = Bo(po) @ +€V. - (V.- (C10)) + €2V, - (V. - (Ca0)),
(B.8b) Bi(p)e = Bi(po) ® +2€V. - (V- (Cre)) + €V - (D, F(z, 2, po)p10).
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Using these expressions, and substituting (B.5) into (B.4) and equating terms of size O(e2),
O(e71), and O(1), respectively, gives the following equations:

(B.9a) Bo(po)po = 0,

(B.9b) Bo(po)p1 = =Bi(po)po — V= - (V= - (Cipo)),

Bo(po)p2 = —Bi(po)p1 — V= - (V= - (Capo)) — 2V - (V. - (Cip1))
— V. - (DpyF(u,v, po)p1) — Ba(po)po + Orpo.

(B.9¢)

Note that By(po) is a differential operator in z only and that its nullspace comprises constants
in z. We see that (B.9a) is solved by assuming that po(z,t) only, and is independent of z,
because By(po) has constants with respect to z in its nullspace. We now turn to (B.9b), noting
that the operator By(pp) is self-adjoint. Thus the Fredholm alternative requires that the right-
hand side of (B.9b) is orthogonal to constants on T¢ in z for a solution p; to exist; this is
a condition which is automatically satisfied because the right-hand side is a divergence with
respect to z. Using this structure we find a solution p; which we make unique by imposing
(B.6b). We again apply the Fredholm alternative, now to ensure existence of a solution of
(B.9¢c). The condition that the right-hand side is orthogonal to constants on T? in z then
gives, noting that divergences in z again contribute nothing,

Opo =V V- <Co(p0)p0) + V- ( » F(x, z,po)dzpo).

Using the fact that pg is independent of z, and since G has mean zero on T¢, it follows that

Opo=Vyg V- (Co(po)m) +V,- (fo(u’v, po)Po)-

This is the nonlinear Fokker-Planck equation (3.9) associated with the desired averaged mean-
field limit equations, after noting that Cy(pg) is the same as C(pg), with the latter using the
notation for matrix-valued functional C as defined in section 3.

Appendix C. Multiscale analysis for ensemble Langevin dynamics. In this section we
derive Formal Perturbation Result 2. This result concerns homogenization of the mean field
limit for ensembles of coupled particles undergoing overdamped Langevin dynamics defined
by noisy forward model G.. In the mean field limit the particle is ergodic with respect to

7w o e~ Ve, where

Vilw) = {0 = Gel@), T (y = Gelw)) + 3,7 '),

and G, is given by (1.4). The mean field density p satisfies the following nonlinear PDE:
(C.1) Op = Vo - (M(p) (Vep+ VaVep))

where M is a bounded linear operator on the vector-valued Hilbert space L?(R%;R9).
We write Ve(z) = V(z,z/€) = Vo(x) + Vi(z,z/€) where
1

Vo(a) = 3{(y — Go()), Ty = Gola))) + 5w 512,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/22 to 131.215.248.145 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1566 DUNBAR, DUNCAN, STUART, AND WOLFRAM

and
Vi(a, 2) = %(Gl(x, 2, T Ga(x, 2)) + ((y — Go(@)), TG (x, 2)).

Also writing V,, +— V,+¢ 1V, in (C.1), and viewing p as a function of (x, 2, t), we can rewrite
the nonlinear Fokker—Planck equation as

(C2) @w=é&@m+%&wm+BAMm

where
Bo(p)e = V.- (M(p)(V:e+V.Ve)),
Bi(p)e =V - (M(p) (V.0 +V.Ve)) + V.- (M(p)(Vye+V,Ve)),
Ba(p)e = Vi - (M(p) (Vy e +ViVe)).

As in Appendix B we have extended the spatial domain of the mean field equation from R?
to R? x T¢ and p(-, -, t) is a probability density function on R% x T? for each fixed t.

Similarly to the analysis in Appendix B, By(p) is a differential operator in z only, but now
the nullspace has nontrivial variation in z: it comprises functions of the form exp(—Vl(a?, z))
In this homogenization setting we should not expect the leading order term of the solution, py,
to be independent of the fast-scale fluctuations, nor should we expect pointwise convergence
of p to pg. We thus introduce the following rescaling of the standard perturbation expansion
to account for the fast-scale fluctuations in p, as in [24, section 6.2]:

(C.3a) p=po+epr+epat -
(C.3b) =eV (xo +ex1 + €2xa + .. )

where x; = xi(z, 2,t) and V(z, z) = Vo(x) + Vi(z, z). We impose the conditions

/ / Xo(t,x,z)efv(z’z) drdz =1,
R4 JTd

/ / Xi(t,z,2)e V" de =0, j>1.
R4 JTd

We have po(z, 2,t) = e V@2 (z,z,t). Similarly to the derivation in Appendix B, we assume

that M admits the following regular expansion:
(C.4) M(p) = M(po) + My + EMa + ..,

where M; and My are independent of e. In particular, both the possible choices of M
identified in section 4 admit such an expansion. From this we observe that we can express
Bo(p)e and Bi(p)e in terms of By(po)e and Bi(po)e, respectively, as follows:

By(p)e = Bo(po) ® —i—eB(()l) . —i—eQB(()Q) o+...,
Bi(p)e = Bi(po) @ +eBM o+ ..
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where the linear operators {ng )} acting on the space of probability density functions are
defined by

BVe = V.- (My(V. e +V.Ve))),
B(()Q)o =V, M2(V,e+V,Ve))),
B§1). = Vm : (Ml (Vz L] +VZV.)) + VZ : (Ml (V-T ® +v‘rv.)) )

BPe =V, (My(V.e+V.Ve))+ V. (My(V,e+V,Ve)).

Using these expressions in (C.2), substituting the expansion (C.3), and equating terms of size
O(e72),0(e71), and O(1), respectively, gives the following equations:

(C.5) Bo(po)po = 0,
(C.6) Bo(po)pr = ~Bi(po)po — B po,
(C.7) Bo(po)p2 = Otpo — Bi(po)p1 — B(()I)Pl — BN po - B(()Q)Po — Ba(po) po-

Noting that V.,V = V.,V it follows that the O(e~2) equation (C.5) can be expressed as
V. - (M(po)e V1V.x0) = 0.

This equation may be solved by noting that yo must be a constant with respect to z since
the operator acting on xo has only constants in its nullspace; thus xo(z, 2z,t) = xo(z,t). The
second equation (C.6) for the O(e~!) terms gives

V., - (M(po)e_vlvle) =-V,- (/\/l(po)e_vlvx)(o) .

The operator acting on i is self-adjoint with only constants in its nullspace. Thus, by the
Fredholm alternative the equation has a solution since the right-hand side is divergence free.
We can write this solution in the form x; = x - VX0 where x satisfies the following PDE:

V.- (M(po)e_vl(vzx +1)) =0.

Multiplying this identity by x and integrating by parts implies the following identity,
which we will use at the end of this section to study properties of the homogenized limit:

(C.8) / Vox M(po)Vaxe 1 dz = —/ M(po)V.xe 1 dz.
Td Td

We now consider the O(1) terms and (C.7). Again invoking the Fredholm alternative
requires that the integral of the right-hand side integrates to zero with respect to z. We note
that every term appearing in the expression

B§" o1 + B{Y po + B po

is a divergence with respect to z with the exception of one divergence with respect to x which
is identically zero. It follows that

/ (6tp0 = Bi(po)p1 — B2(PO)P0) dz = 0.
Td
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Evaluating this integral, we obtain

/ Opodz = / Vo (M(po)(Vapr + V.Vp1)) dz
Td Td
+ /d V. (M(po) (Vap1r + ViVp1)) dz
T

+ y Va - (M(po)(Vapo + VaVpo)) dz.

The second term on the right-hand side drops out by the divergence theorem. Noting that
M(po) does not depend on the fast variable z we then obtain

(©.9) /ﬂ‘d Orpodz =V - (M(PO) /er (V.p1+ V.Vp1) dz)
9

+ VY, (M(po) /T (Vapo + YV o) dz.) |

V' we obtain

Substituting p1 = x1e”" = x - Vaxoe~
Vop+ VoV =e VVoxa = eV VaxVaxo.
Similarly substituting po = xoe™" yields
Vapo+ ViV = e_VVx(poev) = e V' V0.

Thus (C.9) becomes

8tXO(fVO/ e Vdy = Vi - <6V0 |: M(pO)ei‘/l szdz] VxXO)
Td Td
+V, - <6_V0 [ ) M(pg)e™™ dz] wa()) :
T

We now define

o= [
Td

and

1 _
D(po, ) = 202 M(po)e V(I + V.x) dz;

we write Z and D(pg), suppressing explicit dependence on x in some of what follows. The
effective dynamics becomes

athe_VOZ =Vg- (e_VOZD(p0>vaO)'

To conclude the limit argument, let ¢ € Cg’; then we have formally that
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L, [ o@nn@odea: <% [ [ s@miz s
Td JR Td JRd
= [ [ s@notee e dz s
Rd Td
= [ ool [ eV dzdo
R4 Td
:/ o(x)xo(x, t)e” 0@ Z(2) d dz.
Td JRd

Thus we identify the leading order term in the expansion for the density as po(x,t) =
xo(t, z)e="(®) Z(z). This is the average over the torus of py(z,z,t) and we overload nota-
tion for pg deliberately to avoid proliferation of symbols. The equation for py = po(z,t)
is

Aupo = V.- (Dlpo)e™ 2o/ (e72)) ) = V.o (Do) (Vo + V.V o).

where V(z) = Vo(z) — log Z(x). This is the mean field limit for a system of overdamped
Langevin particles evolving in a potential V with density dependent diffusion tensor D(pp).

The equilibrium solution of this equation is given by 7(dz) o< e~Y0(*) Z(z). For general
forward problems, this will be different from the posterior distribution my(dz) o< e~"0(®) dz
associated with the unperturbed forward model Gj.

Furthermore, we also note the introduction of a slowdown in the evolution of pg(-,t) to
equilibrium as ¢ — oo, in comparison with the original ensemble Langevin dynamics in the
smooth potential V. This may be seen by comparing the linear operator D(-, z), arising in
the homogenized equation for pg with M(-). Indeed, using (C.8), we can rewrite this effective
diffusion operator D(pg, z) as

1 _
D(PO7$) = m L M(pg)e Vi (I + VZX) dz
1
= —— | M(pg)e 1@ dz—/ V.x " M(po)V.xe V12 dz
Z(ZL') Td Td

= M(pO) - /Ed szTM(pO)szG_Vl(%Z) dz.

Thus, for arbitrary ¢ € L?(R% R?), (4.4) holds. This demonstrates that the effective diffusion
is always smaller than or equal to that in the potential defined by Gy, in the sense of spectrum.
For a single particle in a multiscale potential, this slowing-down phenomenon is analyzed in
[52].
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