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Sorting data is needed in many application domains. Traditionally, the data is read from memory and sent to a general-purpose
processor or application-speci�c hardware for sorting. The sorted data is then written back to the memory. Reading/writing
data from/to memory and transferring data between memory and processing unit incur signi�cant latency and energy
overhead. In this work, we develop the �rst architectures for in-memory sorting of data to the best of our knowledge. We
propose two architectures. The �rst architecture is applicable to the conventional format of representing data, i.e., weighted
binary radix. The second architecture is proposed for developing unary processing systems, where data is encoded as uniform
unary bit-streams. As we present, each of the two architectures has di�erent advantages and disadvantages, making one or
the other more suitable for a speci�c application. However, the common property of both is a signi�cant reduction in the
processing time compared to prior sorting designs. Our evaluations show on average 37⇥ and 138⇥ energy reduction for
binary and unary designs, respectively, compared to conventional CMOS o�-memory sorting systems in a 45nm technology.
We designed a 3⇥ 3 and a 5⇥ 5Median �lter using the proposed sorting solutions, which we used for processing 64⇥ 64 pixel
images. Our results show a reduction of 14⇥ and 634⇥ in energy and latency, respectively, with the proposed binary, and
5.6⇥ and 152⇥103 in energy and latency with the proposed unary approach compared to those of the o�-memory binary and
unary designs for the 3⇥3 Median �ltering system.

Additional Key Words and Phrases: In-memory computation, sorting networks, unary processing, stochastic computing,
memristor, median �ltering, ReRAM.

1 INTRODUCTION
Sorting is a fundamental operation in computer science, used in databases [23, 24], scienti�c computing [18],
scheduling [58], arti�cial intelligence and robotics [11], image [35], video [14], and signal processing [46]. The
latency and energy consumptions of the sorting algorithm directly a�ect the e�ciency of these systems. A sizeable
body of research has focused on harnessing the computational power of many-core Central Processing Unit
(CPU)- and Graphics Processing Unit (GPU)-based systems for e�cient sorting [12, 13, 56]. For high-performance
applications, sorting is implemented in hardware using either Application Speci�c Integrated Circuits (ASICs) or
Field Programmable Gate Arrays (FPGAs) [15, 31, 44]. The parallel nature of hardware-based solutions allows
them to outperform software-based solutions executed on CPUs/GPUs.

The usual approach for hardware-based sorting is to wire up a network of Compare-and-Swap (CAS) units in
a con�guration called a Batcher (or bitonic) network [8]. Batcher networks provide low-latency solutions for
hardware-based sorting [2, 20]. Each CAS block compares two input values and, if required, swaps the values
at the output. Fig. 1(a) shows the schematic symbol of a CAS block. Fig. 1(b) shows the CAS network for an
8-input bitonic sorting network, made up of 24 CAS blocks. Batcher sorting networks are fundamentally di�erent
from software algorithms for sorting (such as the quicksort, merge sort, and the bubble sort), since the order of
comparisons is �xed in advance. That is, in contrast to software algorithms, the order is data-dependent [40].
The implementation cost of a batcher network is a direct function of the number of CAS blocks and the cost of
each block. A CAS block is conventionally designed based on the weighted binary radix representation of data.
The CAS design consists of an =-bit comparator and two =-bit multiplexers, where = is the data-width of the
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Fig. 1. (a) Schematic symbols of a CAS block (b) CAS network for an 8-input bitonic sorting.
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Fig. 2. Logic design of a CAS block: (a) conventional binary design processing data (b) parallel unary design processing unary
bit-streams.

input data1. Fig. 2(a) shows the conventional design of a CAS unit. In the conventional binary design, increasing
the data-width increases the complexity of the design.
All these prior sorting designs were developed based on the Von-Neumann architecture, separating the

memory unit where the data is stored and the processing unit. where the data is processed (i.e., sorted). A
signi�cant portion of the total processing time and the total energy consumption is wasted on 1) reading the
data from memory, 2) transferring the data between memory and processing unit, and 3) writing the result
back into the memory [7] [30] [53] [32] [63]. In-Memory Computation (IMC) or Processing in Memory (PIM)
is an emerging computational approach that o�ers the ability to both store and process data within memory
cells [5, 26, 27, 52, 60, 62, 66, 69]. This technique eliminates the high overhead of transferring data betweenmemory
and processing unit, improving the performance and reducing the energy consumption by processing data in
memory. Memristive storage is a Non-Volatile Memory (NVM) with high storage density and IMC capability. This
emerging technology is one of the most promising candidates for the next generation of storage systems. The IMC
capability of NVM devices allows accelerating sorting by avoiding the overheads of transferring the data between
memory and processing unit. New sorting approaches based on NVM technology are on the table to increase the
e�ciency of the hardware-based sorters. Some previous studies worked on optimizing sorting algorithms for NVM
and presented NVM-friendly sorting algorithms [9] [17]. Prasad et al. [49] proposed RIME which provides an API
library for sorting algorithms using a bit-level search operation within the memory. They use some additional
CMOS circuitry including a sensing circuit to compute the minimum and maximum values by performing XOR
1We note that later on, we take the precision of binary to unary conversion (for unary sorting solution) to be also equal to =, the data-width.
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operation on the memory peripheral circuits. Some previous studies focused on near storage/memory computing
techniques for providing e�cient sorting algorithms. Li et al. [36] proposed IMC-Sort, an in-memory parallel
sorting architecture using the hybrid memory cube. Their architecture incorporates a custom parallel sorting
unit to accelerate the sort workloads in DRAM based on 3D stacking technology. Pugsey et. al. [50] suggested
3D-stacked near-data processing for sorting data in DRAM. Processing units and memory are integrated with
3D stacking technology using through-silicon vias. Salamat et al. [54] proposed a near-storage accelerator for
databases sort based on the bitonic sort. Their accelerator utilizes an NVMe �ash drive with an onboard FPGA
chip. The authors in [51] propose FANS; an FPGA accelerated near-storage sorting system. Their system is able
to sort hundreds of gigabytes of data on a single Samsung SmartSSD. The authors in [55] introduced Bonsai, an
adaptive FPGA-based near-memory sorting solution. Their design considers the o�-chip memory bandwidth
and on-chip resources to optimize sorting time. Casper and Olukotun [50] presented three hardware accelerator
designs to perform near-memory database operations including sort. Evaluation results by implementing their
designs on FPGA showed close to ideal utilization of available memory bandwidth. These prior works sort the
data near-memory or in-memory within peripheral circuitry. None of them perform sorting in memory within
the memory array. For a detailed classi�cation of di�erent near- and in-memory computing methods, the readers
are referred to [42].

In this paper, we take advantage of IMC to implement sorting units on memristive memory arrays. To the best
of our knowledge, this work introduces the �rst in-array architectures for high-performance and energy-e�cient
sorting of data completely in memory (CIM-A using the [42] terminology). Our work is di�erent from the
aforementioned prior works in the sense that all computation results are produced within the memory array.
We then go further to show how we can bene�t from the concept of Unary Computing [40, 48] to improve the
sorting hardware further for particular applications. We propose two di�erent architectures. The �rst architecture,
"Binary Sorting," is based on the conventional weighted binary representation and is applicable to conventional
systems that store the data in memory in the binary format. The second architecture, "Unary Sorting," is based on
the non-weighted unary representation. For each of these designs, we �rst discuss the basic operation of sorting
two =-bit data (i.e., a CAS block). We then elaborate on the design of complete sorting networks, which are made
up of the proposed in-memory CAS units. We showcase the role and importance of the achieved gains in the
context of a median �lter used in image processing applications. Our experiments demonstrate a reduction of
14⇥ and 634⇥ in energy and latency for the proposed binary, and 5.6⇥ and 152⇥103 in energy and latency for the
proposed unary approach compared to those of the o�-memory binary and unary designs when implementing a
3⇥3 Median �ltering system.

The rest of this paper is structured as follows. Section 2 provides a brief overview of memristive IMC and the
unary processing technique used in this work. Section 3 and Section 4 present the proposed in-memory Binary
and Unary Sorting designs. Section 5 compares the performance of the proposed designs with the conventional
o�-memory CMOS-based designs and applies the proposed architectures to an important application of sorting,
i.e., median �ltering. Finally, conclusions are drawn in Section 7.

2 BACKGROUND
2.1 Memristive IMC
One of the promising technologies for IMC is memristive technology. Among various memristive-based IMC
methods, stateful logic such as Material Implication (IMPLY) [10], Memristor-Aided Logic (MAGIC) [33], FE-
LIX [25], and Single-cycle In-Memristor XOR (SIXOR) [59] are of the most e�cient solutions. In stateful logic,
the input and output are both presented as the state of input and output memristors. Hence, no access to the
world outside the array (e.g., read or write) is necessary for stateful logic operations. In this work, we use MAGIC
NOR operation, which can be used to implement any Boolean logic. MAGIC considers two states of memristors:
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Fig. 3. (a) NOT and NOR logical operations in MAGIC and their truth tables. Low Resistance State (LRS) and High Resistance
State (HRS) represent logical ‘1’ and logical ‘0’, respectively. (b) Crossbar implementation of NOT and NOR logical operations.

LRS as logical ‘1’ and HRS as logical ‘0’. Fig. 3(a) shows how NOR and NOT logical operations can be implemented
in MAGIC [33], where the memristors connected to the ground are output memristors [33]. Before starting the
execution of an operation, the output memristors are �rst initialized to LRS. By applying a speci�c voltage (+0) to
the negative terminal of the input memristors, the output memristors may experience a state change from LRS to
HRS, depending on the states of the inputs [33]. The truth tables embedded in Fig. 3(a) show all possible cases of
the input memristors’ states and switching of the output memristors. Fig. 3(b) shows how MAGIC NOT and NOR

can be realized in a crossbar memory. These operations can be natively executed within memory with a high
degree of parallelism. Thus, parallel architectures such as sorting networks can bene�t greatly from such IMC
logic operations.

2.2 In memory Comparator
Comparison is an essential operation in implementing sorting functions. Comparing memory content has been
always challenging in computing systems. Content-addressable memory (CAM) [45] uses a dedicated equality
comparator circuit to return the location of the matching data. CAMs help searching architectures and can be
applied to packet forwarding in network routers. Authors in [49] propose a method for �nding the minimum and
maximum values within a set of numbers in memory. They employ bitwise column search to design a bit-serial
algorithm for �nding the minimum and maximum value. The sorting mechanisms proposed in [36] and [50] are
based on a bitonic sorting network and include some comparison units. The comparison units in these works are
implemented at the logic layer, which is integrated with 3D stacking DRAM memory banks using through-silicon
vias technology. The authors in [1] and [29] further propose two in-memory equality comparators for SRAM
memories.
Authors in [16] developed a multivalued 1T1R memristor method for in-memory computing. They exploit

the multivalued resistance for performing a 1-bit in-memory comparison and then expand the design to a 4-bit
magnitude comparator. Angizi et al propose an in-memory magnitude comparator in [6]. Their design uses
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Fig. 4. Generic logic design of (a) a 4-bit binary magnitude comparator and (b) a multi-bit binary 2-to-1 multiplexer for
Max/Min selection.

in-memory XOR operations to perform a bit-wise comparison between corresponding bits of two data beginning
from the most signi�cant bit towards the least signi�cant bit. However, the comparison process involves reading
the output of the XOR operations and the data from memory by the control unit. Therefore, its latency (i.e., number
of processing cycles) is non-deterministic and depends on the data being compared. In Section 3.1, we propose
an in-memory magnitude comparator with deterministic latency and no memory read operations (a stateful
comparator). Our in-memory comparator does not also need multivalued memristors.

2.3 Unary Sorting
Unary (or burst) processing [47, 48] is an alternative computing paradigm to conventional binary o�ering simple
and noise-tolerant solutions for complex arithmetic functions [19, 28, 37–40, 57, 64, 65]. The paradigm borrows
the concept of averaging from stochastic computing [4, 21], but is deterministic and accurate. In unary processing,
unlike weighted binary radix, all digits are weighted equally. Numbers are encoded uniformly by a sequence
of one value (e.g., 1) followed by a sequence of the other value (e.g., 0) in a stream of 1’s and 0’s– called a
unary bit-stream. The value of a unary bit-stream is determined by the frequency of the appearance of 1’s in the
bit-stream. For example, 11000000 is a unary bit-stream representing 2/8 or 1/4.
Unary computing was �rst used in [40, 41] for the simple and low-cost implementation of sorting network

circuits. Zhang et al. [68] developed an SC-based neural network accelerator by employing a bit-stream-based
bitonic sorting network for simultaneously implementing the accumulation and activation functions. With unary
bit-streams and also when using correlated stochastic bit-streams [3], minimum and maximum functions (the
main operations in a CAS block) can be implemented using simple standard AND and OR gates. In a serial manner,
one AND and one OR gate implements a CAS block by processing one bit of the two bit-streams at each cycle.
Hence, a total of 2= processing cycles is needed to process two 2=-bit bit-streams (equivalent to two =-bit binary
data since we chose the precision of binary to unary conversion to be equal to the data-width, that is, equal to =).
More than 90% saving in the hardware cost is reported for a 256-input serial unary sorting circuit at the cost of
processing time [40]. Alternatively, the bit-streams can be processed in one cycle by replicating the logic gates
and performing the logical operations in parallel. Fig 2(b) shows the parallel unary design of a CAS block. 2=
pairs of AND and OR gates sort two 2=-bit bit-streams.

3 PROPOSED IN-MEMORY BINARY SORTING
In this section, we present our proposed method for in-memory sorting of binary radix data. First, we discuss the
implementation of a basic sorting unit and then generalize the architecture to complete sort systems.
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Fig. 5. (a) NOR-based logic design of a 4-bit binary comparator. (b) MAGIC-based 4-bit binary in-memory comparator.
⌧8 memristor holds the output of the 8-th gate. ⇠8 memristor copies the state of⌧8 memristor. The second number shown on
each memristor (e.g., 2 in G5,2) determines the processing cycle in which the memristor operates. (WL = Word Line, BL = Bit
Line)

3.1 Basic Binary Sorting Unit
A basic binary sorting unit (CAS unit) requires one comparator and two multiplexers. Implementing an =-bit
comparator by using basic logic gates requires (11= � 2) NOR and (7= � 2) NOT logic gates. Figs. 4(a) and 5(a)
show the generic logic and the NOR-based logic design of a 4-bit binary comparator. Fig. 5(b) shows our proposed
in-memory implementation using MAGIC. As shown, implementing this comparator using MAGIC NOR and NOT

operations requires a crossbar with 4 ⇥ 14 memory cells. The input data (i.e., A and B) in binary format is stored
in two di�erent columns (BL1 and BL2), each column containing = memristors, where = is the size of the data
being compared (in this example, = = 4). The computation includes NOR, NOT, and copy operations. Each ⌧8, 9

memristor in Fig. 5(b) shows participation in a logical gate (operation) 8 in Fig. 5(a).⇠8, 9 s on the other hand, show
the copy operation 8 , in which the state of ⌧8 memristor is duplicated. The index 9 marks the cycle number in
which an operation is performed. In some cases, a memristor participates in two operations. For example, the
memristor at the right-bottom end of Fig. 5(b) (WL4, BL14) is once used at cycle 21 in gate (operation) 21 and
once at cycle 27 in gate (operation) 25.

To execute these operations, in each clock cycle, the memristor controller applies the proper voltage to crossbar
columns and rows to execute some NOR or NOT operations concurrently. All memristors with the same cycle
number produce their output value at the same time. When possible, we reuse memristors to avoid increasing
area, i.e., the number of used memristors. The memristors that are being re-used as an output must be initialized
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Fig. 6. (a) NOR-based logic design of a multi-bit binary 2-to-1 multiplexer and (b) in-memory MAGIC-based 4-bit binary
multiplexer for Max/Min selection. The second number shown on each memristor (e.g., 3 in P0,3) determines the processing
cycle in which the memristor operates. (WL = Word Line, BL = Bit Line)

to LRS in an additional clock cycle before reusing. The comparison result (i.e., the output of gate 24) is ready at
cycle 23 on (WL4, BL13). At this time, some copies from the comparison result and its complement must be made.
These will be used as the select inputs of the maximum and minimum multiplexers shown in Fig. 4(b) and Fig. 6.
To this end, �rst, we make three copies of the output of gate 24 on three memristors in the same column (BL13)
and then invert these memristors on another column (BL14) to make the required complements. This leads to a
total processing time of 27 cycles plus one initialization cycle.

After the comparison process, we need values of only four columns (BL1 and BL2 for the two input data, and
BL13 and BL14 for the two comparison results) to implement the multiplexer part of the sorting unit. Hence, we
could reuse the rest of the memristors. Fig. 4(b) and Fig. 6 show the generic logic and the NOR-based logic circuit for
a multi-bit 2-to-1 multiplexer. Fig. 6(b) shows our MAGIC-based in-memory design for the two 4-bit multiplexers
the sorting circuit requires to select the maximum and minimum data. In implementing the multiplexers, we
re-use the memory cells of the comparison step. To this end, we initialize the columns used in the comparison
step (BL3 to BL12) to LRS in one clock cycle. The input data is inverted in two clock cycles, cycles 1 and 2 (on BL4
and BL5) shown in Fig. 6(b). The �rst multiplexer produces the maximum value on BL10 in cycles 3 to 6. The
minimum value is produced on BL11 by the second multiplexer through cycles 7 to 10. Since three columns used
by the �rst multiplexer (i.e., P, Q, T) are being re-used by the second multiplexer, an additional cycle is considered
for the initialization of these columns before execution of the second multiplex operation. The execution of
the multiplexers, therefore, takes two initialization and 10 operation cycles. Hence, execution of the proposed
in-memory basic binary sorting takes a total of 39 processing cycles plus one initialization cycle.
We extend the proposed design from sorting of 4-bit data to higher data-widths, namely 8-, 16-, 32-, and in

general =-bit data. We veri�ed the correct functionality of the proposed design by high-level simulation and
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Table 1. The Required Resources and Number of Processing Cycles for the Proposed Basic Binary Sorting Unit

Data-Width Required # of Initialized # of Reused # of Logical # of Copies Reused init Total # of Energy
Dimension Memristors Memristors Operation Cycles [Copy Cycles] Cycles Cycles (? � )

4 4⇥14 40 44 21 6 (12) 6 39 199.4
8 8⇥22 88 88 25 14 (28) 10 63 417
16 16⇥38 184 176 33 30 (60) 18 111 845
32 32⇥70 376 352 49 62 (124) 34 207 1728
= = ⇥ (8+2=-2) 12= � 8 11= 18+(=-1) 2=-2 [2(2=-2)] = + 2 6= + 15 -

Table 2. Number of Processing Cycles, Size of Crossbar Memory, and Energy Consumption (=� ) to Implement Di�erent
Bitonic Sorting Networks (DW = Data-Width, BL = Bit-Stream Length)

Network
Size

Binary Sorting DW = 4 DW = 8 DW = 16 DW = 32
Cycles Size Energy Cycles Size Energy Cycles Size Energy Cycles Size Energy

4 128 4⇥28 1.2 200 8⇥44 2.5 344 16⇥76 5.1 632 32⇥140 10
8 280 4⇥56 4.7 424 8⇥88 10 712 16⇥152 20 1288 32⇥280 41
16 544 4⇥112 15 784 8⇥176 33 1264 16⇥304 68 2224 32⇥560 138
32 1048 4⇥224 47 1408 8⇥352 100 2128 16⇥608 205 3568 32⇥1120 415

Network
Size

Unary Sorting BL = 16 BL = 64 (DW = 6) BL = 256 (DW = 8) BL = 1024 (DW = 10)
Cycles Size Energy Cycles Size Energy Cycles Size Energy Cycles Size Energy

4 26 16⇥10 1.37 26 64⇥10 5.4 26 256⇥10 21.88 26 1024⇥10 87
8 76 16⇥20 5.4 76 64⇥20 21 76 256⇥20 87 76 1024⇥20 350
16 194 16⇥40 18 194 64⇥40 72 194 256⇥40 291 194 1024⇥40 1168
32 538 16⇥80 54 538 64⇥80 218 538 256⇥80 875 538 1024⇥80 3503
64 1406 16⇥160 153 1406 64⇥160 613 1406 256⇥160 2452 1406 1024⇥160 9809
128 3624 16⇥320 408 3624 64⇥320 1635 3624 256⇥320 6540 3624 1024⇥320 26159
256 9176 16⇥640 1051 9176 64⇥640 4204 9176 256⇥640 16817 9176 1024⇥640 67268

measured the energy and delay numbers by circuit-level simulation using Cadence Virtuoso. Table 1 reports the
required resources, the number of cycles, and energy consumption. Further details on circuit-level simulations
and the parameter values used in estimating the energy numbers will be discussed in Section 5.1. We see that the
area, the latency, and the energy consumption of the proposed basic binary sorting design increase linearly by
increasing the data-width.

3.2 Complete Binary Sort System
A complete sort network is made of basic sorting units (i.e., CAS blocks). In bitonic sorting, the network recursively
merges two sets of size # /2 to make a sorted set of size # [22]. Fig. 1 shows the CAS network for an 8-input
bitonic sorting. As it can be seen, the network is made of 24 CAS units. In general, an # -input bitonic sorting
network requires

*⇠�( = # ⇥ ;>62 (# ) ⇥ (;>62 (# ) + 1)/4 (1)
CAS units. These CAS units can be split into

( = ;>62 (# ) ⇥ (;>62 (# ) + 1)/2 (2)

steps (also known as stages), each with # /2 CAS units that can operate in parallel [20].
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Gupta et al [25] propose a memory partitioning method to improve the in-memory parallelism. In a similar
fashion, we split the memory into multiple partitions to enable parallel execution of di�erent CAS operations in
each bitonic CAS stage. Fig. 7 shows how we implement an 8-input bitonic sorting network in memory. The
memory is split into four partitions, namely partitions A, B, C, and D (each marked on a black vertical line in the
bitonic network representation). The number of partitions is decided based on the number of CAS units that can
run in parallel (i.e., # /2.). Each partition includes two out of the eight unsorted input data. The sorting process is
split into six steps equal to the number of CAS groups (stages). In the �rst step, the two inputs in each partition
are sorted using the basic sorting operation proposed in Section II-A. In the second step, each maximum number
(i.e., the larger number between the two in the partition) found by the sorting operations of the �rst step is copied
to another partition where it is needed. The bitonic network determines the destination partition. For instance,
the maximum found by executing the sorting operation in partition A (i.e., the input with a value of 7 in the
example of Fig. 7) will be copied into partition B to be compared with the minimum number between the two
initial data in partition B of the �rst step. Similarly, in each one of the next steps (i.e., steps 3 to 6), one output
data from each partition is copied to another partition, and a sorting operation is executed.

In each step, the sortings in di�erent partitions are executed in parallel. After six steps and the execution of a
total of 24 (=4 ⇥ 6) basic sorting operations, the sorted data is ready in the memory. Each basic sorting operation
is implemented based on the in-memory basic binary sorting proposed in Section 3.1. Table 2 shows the total
number of processing cycles, the required size of crossbar memory, and the energy consumption of di�erent
sizes of in-memory bitonic networks. The total number of processing cycles, %⇠C , is calculated using

%⇠C = ( ⇥ (1 + %⇠1) +⇠%, (3)

where %⇠1 is the number of processing cycles necessary to execute a basic sorting operation, ⇠% is the number
of copy operations, and ( the number of sorting steps. The required size of crossbar memory ("C ) is found by

"C = = ⇥ #

2
⇥"1, (4)

where"1 is the size of the crossbar memory required for one basic sorting unit2.

4 PROPOSED IN-MEMORY UNARY SORTING
In this section, we propose a novel method for sorting unary data in memory to avoid the overheads of o�-memory
processing in the unary systems. We �rst discuss the basic operation of sorting two unary bit-streams in memory
and then elaborate on the design of a complete unary sorting network.

4.1 Basic Unary Sorting Unit
The maximum and minimum functions are the essential operations in a basic sorting unit. Performing bit-wise
logical AND on two unary bit-streams with the same length gives the minimum of the two bit-stream. Bit-wise
logical OR, on the other hand, gives the maximum of the two unary bit-streams with the same length. Fig. 8
shows an example of the maximum and the minimum operation on two unary bit-streams. The example presents
these operations in a serial manner by processing one bit of the input bit-streams at each cycle. While the serial
approach is extremely simple to implement with only one pair of AND and OR gates, it incurs a long latency
proportional to the length of the bit-streams. In this work, we choose the precision of binary to unary conversion
equal to the data-width, =. This means an =-bit data in the binary domain corresponds to a 2=-bit bit-stream in the
unary domain. This implies a latency of 2= cycles with a serial unit. Parallel sorting of two =-bit precision data
represented using two 2=-bit bit-streams requires performing 2= logical AND operations (to produce the minimum
bit-stream), and 2= logical OR operations (to produce the maximum bit-stream) in parallel as shown in Fig 2(b).
2We remember that = is the data-width and # is the network size or the total number of items to be sorted.
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Fig. 7. High-level flow of 8-input Bitonic Sorting in Memory.

Fig. 8. Example of performing maximum and minimum operations on unary bit-streams.

The suitability of the memristive crossbar for running parallel logical operations in memory makes it a perfect
place for low-latency parallel sorting of unary bit-streams.

Fig. 9 shows our proposed design forMAGIC-based in-memory execution of minimum andmaximum operations
on two unary bit-streams. As shown in Fig. 9, implementing this sorting unit usingMAGIC NOR and NOT operations
requires a memristor crossbar proportional to the length of the bit-streams. The unsorted unary data (i.e., A and
B bit-streams) are stored in two di�erent columns (BL1 and BL2). Both inputs have the same length of 2= . As
shown in Fig. 9(a), the AND operation (minimum function) is realized by �rst inverting the bit-streams through
MAGIC NOT and then performing bit-wise MAGIC NOR on the inverted bit-streams. This e�ectively implements
the AND operation as � ^ ⌫ = � _ ⌫. The �rst and the second bit-stream are inverted on BL3 and BL4 in the �rst
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Fig. 9. Proposed in-memory unary sorting (a) in-memory minimum operation and (b) in-memory maximum operation on
two unary bit-streams.(WL = Word Line, BL = Bit Line)

Table 3. The Required Resources, Number of Processing Cycles, and Energy Consumption of the Proposed Basic Unary
Sorting

BitStream
Length

Required
Dim.

# of Initialized
Memristors

# of Reused
Memristors

# of NOR
Operations

# of NOT
Operations

Initial
Cycles

Operation
Cycles

Energy
(? � )

24 16 ⇥ 5 64 32 32 48 1 5 227
26 64 ⇥ 5 256 128 128 192 1 5 910
28 256 ⇥ 5 1024 512 512 768 1 5 3640
210 1024 ⇥ 5 4096 2048 2048 3072 1 5 14558

and the second cycle, respectively. The NOR operation is executed in the third cycle on BL5. As shown in Fig. 9(b),
the OR operation (maximum function) is achieved by �rst performing MAGIC NOR on the input bit-streams and
then MAGIC NOT on the outputs of the NOR operations. Hence, the execution of the OR operation takes two cycles.
The columns that we use during the execution of the AND operation to store the inverted version of the

bit-streams (e.g., the third and fourth columns in Fig. 9(a)) are re-used in the execution of the OR operation to
avoid using additional memristors. In contrast to the proposed in-memory binary sorting of Section 3.1, which
has a variable latency dependent on the width of the input data, the processing latency of the proposed unary
sorting is �xed at �ve cycles and does not change with the data-width. Table 3 shows the required resources,
number of cycles, and energy consumption of the proposed basic sorting unit for di�erent bit-stream lengths.
The number of memristors is directly proportional to the length of the bit-streams. In a fully parallel design

approach, the size of the memory, particularly the number of rows, de�nes an upper-limit on the maximum data-
width for the to-be-sorted unary data. In such a system, bit-streams with a length longer than the number of rows
can be supported by splitting each bit-stream into multiple shorter sub-bit-streams, storing each sub-bit-stream in
a di�erent column, and executing the CAS operations in parallel. The sub-results will be �nally merged to produce
the complete minimum and maximum bit-streams. This design approach sorts the data with reduced latency as
the primary objective. A di�erent approach for sorting long bit-streams is to perform CAS operations on the
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sub-bit-streams in a serial manner by re-using the CAS unit(s). The above approach reduces the area (number
of used memristors) at the cost of additional latency. In this case, after sorting each pair of sub-bit-streams, the
result is saved, and a new pair of sub-bit-stream is loaded for sorting. Assuming that each input bit-stream is split
into # sub-bit-streams, the number of processing cycles to sort each pair of input data increases by a factor of # .
Some additional processing cycles are also needed for saving each sub-output and copying each pair of sub-input.
Combining the parallel and the serial approach is also possible for further trade-o�s between area and delay.
These approaches increase the range of supported data-widths but incur a more complicated implementation and
partition management.

4.2 Complete Unary Sort System
Implementing a bitonic sorting network in the unary domain follows the same approach as presented in Section 3.2
for binary implementation of sorting networks. The number of sorting steps and the required number of basic
sorting operations are exactly the same as those of the binary sorting network design. The essential di�erence,
however, is that in the unary sorting system, the data is in the unary format. Therefore, the basic 2-input sorting
operation should be implemented based on the unary sorting unit proposed in Section 4.1. Table 2 shows the
number of processing cycles and the required size of memory for implementing unary bitonic networks of
di�erent sizes. We report the latency, area, and energy of these networks as well.

5 COMPARISON AND APPLICATION
5.1 Circuit-Level Simulations
We implemented a 16⇥16 crossbar and necessary control signals in Cadence Virtuoso for circuit-level evaluation of
the proposed designs. For memristor simulations, we used the Voltage Controlled ThrEshold Adaptive Memristor
(VTEAM) model [34]. The Parameters used for the VTEAM model can be seen in Table 4. We evaluated the
designs in an analog mixed-signal environment by using the Spectre simulation platform with 0.1=B transient
step. For MAGIC operations, we applied +(⇢)=2.08+ with 1=B pulse-width to initialize the output memristors to
LRS. For the simplicity of controller design, we consider the clock cycle period of 1.25=B and +0 pulse-width of
1=B for all operations. +0 voltage for NOT, 2-input NOR, 3-input NOR, and 4-input NOR is 1.1+ , 950<+ , 1.05+ , and
1.15+ , respectively. We perform the copy operations by using two consecutive NOT operations.

To estimate the total energy of in-memory computations, we �rst �nd the energy consumption of each
operation. The energy number measured for each operation depends on the states of input memristors (i.e., LRS,
HRS). We consider all possible cases when measuring the energy of each operation. For example, the 3-input
NOR has eight possible combinations of input states. We consider the average energy of these eight cases as the
energy of 3-input NOR. The average measured energy of di�erent operations is reported in Table 5. Note that
higher energy consumption for NOT operation compared to 2-input NOR is due to using a higher +0 voltage for
NOT. The reported energy for the proposed in-memory sorting designs is the sum of the energy consumed by all
operations.

5.2 Comparison of In- and O�-Memory
We compare the latency and energy consumption of the proposed in-memory binary and unary sorting designs
with the conventional o�-memory CMOS-based designs for the case of implementing bitonic networks with a
data-width of eight. For a fair comparison, we assume that the to-be-sorted data are already stored in memristive
memory when the sorting process begins and hence do not consider the delay for initial storage. We do not
consider this latency because it is the same for both cases of the proposed in-memory and the o�-memory
counterparts. For the case of o�-memory binary designs, we assume 8-bit precision data are read from and written
to a memristive memory. For the case of o�-memory unary design, we evaluate two approaches: 1) unary data
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Table 4. Memristor Parameter Values from [33] for the VTEAM Model [34].

Parameter Value Parameter Value
'>= 1 k⌦ G> 5 5 3 =<
'> 5 5 300 k⌦ :>= -216.2 m/sec
+)>= -1.5 V :> 5 5 0.091 m/sec
+)> 5 5 300 mV U>= 4
G>= 0 nm U> 5 5 4

Table 5. The Average Measured Energy Consumption of Each Operation Based on VTEAM Model.

Operation Average Energy
memristor initialization 2350 5 �

memristor copy 40.08 5 �
NOT 20.04 5 �

2-input NOR 9.01 5 �
3-input NOR 37.24 5 �
4-input NOR 54.51 5 �

(i.e., 256-bit bit-streams) are read from and written to memory, and 2) 8-bit binary data are read from and written
to memory. For the second approach, the conversion overhead (i.e., binary to/from unary bit-stream) is also
considered. This conversion is performed o�-memory using combinational CMOS logic [40]. The conventional
CMOS-based o�-memory sorting systems read the raw data from memory, sort the data with CMOS logic, and
write the sorted data into memory. These read and write operations take the largest portion of the latency and
energy consumption. We use the per-bit read and write latency and per-bit energy consumption reported in [67]
to calculate the total latency and energy of reading from and writing into the memristive memory. For the
proposed in-memory designs, the entire processing step is performed in memory, and so there is no read and
write operations from and to the memory. For the o�-memory cases, we do not incorporate the transferring
overhead between the memory and the processing unit as it depends on the interconnects used. We implemented
the o�-memory processing units using Verilog HDL and synthesized them using the Synopsys Design Compiler
v2018.06-SP2 with the 45nm NCSU-FreePDK gate library.

Table 6 shows the summary of performance results. As reported, the proposed in-memory designs provide a
signi�cant latency and energy reduction, compared to the conventional o�-memory designs. That is, on average
14⇥ and 37⇥, respectively, for the binary sorting. For the unary design, the average latency and energy reductions
are 1200⇥ and 138⇥, respectively. For the unary systems with the data stored in memory in a binary format, the
proposed in-memory design can reduce the latency and energy by a factor of up to 65⇥ and 9.7⇥, respectively.
For a realistic and more accurate energy consumption comparison, however, the overhead of transferring data on
the interconnect between the memory and the processing unit must be added for the o�-memory cases. We note
that these numbers are highly dependent on the architecture of the overall system and the interconnects used.
Therefore, di�erent system architectures may substantially change these numbers; however, they do not change
the fact that our proposed method is more advantageous. In fact, they only change the extent of this improvement
(and further increase it) since no data transfer happens in the in-memory sorting solution. Hence, by eliminating
them, we present the minimum improvement obtained by our method and leave the further improvement to the
�nal implementation details of designers.
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Table 6. Energy Consumption (=� ) and Latency (`B) of the Implemented In-Memory and O�-Memory Bitonic Sorting Designs
with Data-Width=8 (E: Energy, L: Latency)

Network Size 8 16 32 64 128 256
Design Method E L E L E L E L E L E L

O�-Memory Binary Sorting (+ Binary R/W) 850 6.5 1701 13 3403 26 6806 52 13613 104 27227 209
Proposed In-Memory Binary Sorting 10 0.55 33 1.02 100 1.8 281 3.4 794 6.8 1927 14

O�-Memory Unary Sorting (+ Binary R/W) 851 6.5 1703 13 3406 26 6811 52 13622 104 27244 209
O�-Memory Unary Sorting (+ Unary R/W) 27226 210 54452 419 108904 839 217809 1679 435618 3358 871236 6717

Proposed In-Memory Unary Sorting 87 0.10 291 0.25 875 0.7 2452 1.8 6,540 4.7 16,817 12
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Fig. 10. Processing Steps and Memory Partitioning of the 3⇥3 Median Filter Design.

5.3 Application to Median Filtering
Median �ltering has been widely used in di�erent applications, from image and video to speech and signal
processing. In these applications, digital data is often a�ected by noise. A median �lter —which replaces each
input data with the median of all the data in a local neighborhood (e.g., a 3⇥3 local window)— is used to �lter
out impulse noises and smoothen the data [43]. A variety of methods for the implementation of Median �lters
have been proposed. Sorting network-based architectures made of CAS blocks are one of the most common
approaches [40]. The incoming data is sorted as it passes the network. The middle element of the sorted data is
the median. We developed in-memory architectures for a 3⇥ 3 and a 5⇥ 5median �ltering based on our proposed
in-memory binary and unary sorting designs.

Fig. 10 and Fig. 11 depict a high-level �ow of memory partitioning for our in-memory 3 ⇥ 3 and 5 ⇥ 5 Median
�lter design. Similar to our approach in implementing the complete sort system, the memory is split into multiple
partitions. For the 3 ⇥ 3 design, partitions are A, B, C, D, and E (�ve partitions), and for the 5 ⇥ 5 design, they are
A to T (20 partitions). Each sorting unit sorts the data in one particular partition. Some partitions are initialized
with the input data in the �rst step and the others are initialized and used in the following steps. The process is
split into eight steps for the 3 ⇥ 3, and to 18 steps for the 5 ⇥ 5 design, each step executing some basic sorting
operations in parallel. After each step, to prepare data for the next step, some data must be transferred between
partitions similar to what we did in sorting. These data transfers are done by using copy operations. Compared
to a complete sorting network, fewer sorting units are required as only the median value is targeted.
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Fig. 11. Processing Steps and Memory Partitioning of the 5⇥5 Median Filter Design.

We evaluated the implementation of these basic sorting operations using both the proposed binary and unary
bit-stream-based in-memory architectures. Table 7 reports the latency, the number of required memristors, and
the energy consumption of the developed designs for (i) a single 3 ⇥ 3Median �lter and a single 5 ⇥ 5Median
�lter and (ii) a 3 ⇥ 3 and a 5 ⇥ 5Median �lter image processing system that process images of 64 ⇥ 64 size. The
corresponding latency and energy consumption of the o�-memory CMOS-based binary and unary designs are
also reported in Table 7. As it can be seen, the proposed in-memory binary and unary designs reduce the energy
by a factor of 14⇥ and 5.6⇥, respectively, for the 3 ⇥ 3-based image processing system, and 3.1⇥ and 12⇥ for the
5 ⇥ 5-based image processing system, compared to their corresponding o�-memory designs. The latency of the
binary and unary design is also reduced by a factor of 634⇥ and 152⇥103 ⇥ with the 3⇥ 3 window, and by a factor
of 110⇥ and 19.2⇥103 ⇥ with the 5 ⇥ 5 window, for the 64 ⇥ 64 image processing system.

Note that we did not incorporate the overhead latency and the energy of transferring data on the bus or other
interconnects for the o�-memory cases, which is a large portion of energy of consumption in transferring data
between memory and processing unit [30]. By considering this overhead, our approach would have a signi�cantly
larger advantage over others in a complete system.

6 DISCUSSION
The high latency and energy overhead of reading from and writing to memory, and transferring data between
the processing unit and memory, take up a signi�cant amount of resources in sorting data in the conventional
systems. IMC is a promising solution to mitigate these overheads. IMC is particularly bene�cial for 1) applications
with large data or a large number of memory accesses and 2) applications with extensive parallelism that can
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Table 7. The Required Resources ("C ), Latency (L), and Energy Consumption (E) of the Implemented Median Filter Designs

Median Filter 3 ⇥ 3
Design %⇠C "C E (` J) L (` s) Design E (` J) L (` s)

Proposed Binary 544 8 ⇥ 110 0.0085 0.68 O�-Memory Binary 0.121 0.94
Proposed Unary 72 256 ⇥ 25 0.069 0.09 O�-Memory Unary 3.882 30.17

64 ⇥ 64 Image Processor
Proposed Binary 4896 208 ⇥ 1980 35 6.1 O�-Memory Binary 490 3870
Proposed Unary 684 2048 ⇥ 1425 283 0.81 O�-Memory Unary 1590 123578

Median Filter 5 ⇥ 5
Design %⇠C "C E (` J) L (` s) Design E (` J) L (` s)

Proposed Binary 1416 8 ⇥ 440 0.049 1.77 O�-Memory Binary 0.151 1.19
Proposed Unary 259 256 ⇥ 100 0.401 0.324 O�-Memory Unary 4841 38.02

64 ⇥ 64 Image Processor
Proposed Binary 35400 328 ⇥ 1760 200 44.25 O�-Memory Binary 620 4875
Proposed Unary 6475 2048 ⇥ 2000 1643 8.09 O�-Memory Unary 19829 155739

independently run a large number of operations in parallel. Sorting is one of the applications that has both
properties. As we showed, implementing sorting in memory can save signi�cant time and energy by avoiding
the overheads of memory access and o�-chip data transfer. This is particularly important for the unary systems,
where data are stored in memory in the form of long bit-streams. Reading and writing long bit-streams from
and to memory make o�-memory unary sorting highly ine�cient. However, one should note that the size of the
memory array puts an upper limit on the size of the sorting network and the data-width. For example, given a
(memristive) memory array of 1024⇥1024, the proposed binary sorting approach supports the complete sorting of
64 8-bit and 128 4-bit input data. For the proposed unary approach, an array of that size (1Mb or 128kB) supports
the complete sorting of 256 1024-bit unary bit-streams. For the larger bit-streams or data-width, or larger number
of data to be sorted, we would need to partition the data into di�erent arrays. That means a more complex control
and partition management mechanism, which reduces the bene�ts of fully in-array sorting.
Memristive technology is an emerging technology still in evolution, with many competing implementation

methods in the process of maturation [61]. Properties such as the delay, power, and energy consumption are
heavily dependent on the used technology and change considerably from one to another. In this article, the
experimental results are provided by simulation tools using the VTEAM model. Using di�erent memristive
technologies and models, LRS and HRS values, as well as programming or reading pulses with di�erent amplitude
or width, a�ect the actual delay and energy numbers reported here. The actual memristive implementation is a
showcase of the feasibility and meaningfulness of such an in-memory sorting design. That is, there exists an
in-memory implementation (namely using the memristive technology we have used here) to be signi�cantly
bene�cial. Therefore, we consider the properties and comparison of other ways of implementing our proposed
architecture (using CMOS IMC, other memristor technologies, or other emerging memory technologies) as an
exciting future work but outside the current article’s scope. Nonetheless, we would like to point out that we have
provided the number of memristors (memory cells) and the number of operation cycles that are technology-
independent. Therefore, others can independently evaluate and compare their own implementations with ours in a
technology-agnostic fashion and using the number of memory cells and the number of cycles their implementation
needs (regardless of the LRS and HRS values or pulse amplitude and width).
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7 CONCLUSION
Thus far, sorting solutions were based on the conventional approach of processing o�-memory, incurring a high
overhead of reading/writing from/to memory and transferring between the memory and the processing unit.
In this paper, for the �rst time -to the best of our knowledge- we developed two methods for in-array sorting
of data: a binary and a unary sorting design. We compared the area, latency, and energy consumption of the
basic and the complete sorting systems for di�erent data-widths and network sizes. The latency and energy
are signi�cantly reduced compared to prior o�-memory CMOS-based sorting designs. Further, we developed
in-memory binary and unary designs for an important sorting application, median �ltering. In future works,
we plan to extend the proposed architectures to other applications of sorting, for instance, e�cient in-memory
implementation of weighted and adaptive median �lters. We will also explore applications of in-memory sorting
in communications and coding domains.
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