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Abstract— This paper considers the robustness of game-
theoretic approaches to distributed submodular maximiza-
tion problems, which have been used to model a wide
variety of applications such as competitive facility location,
distributed sensor coverage, and routing in transportation
networks. Recent work showed that in this class of games,
if k agents suffer a technical fault and cannot observe the
actions of other agents, Nash equilibria are still guaranteed
to be within a factor of k + 2 of optimal. However, our
paper shows that at a Nash equilibrium with a very low
objective function value, the total payoffs of compromised
agents are very close to the payoffs they would receive at
an optimal allocation. At the extreme worst-case equilibria,
all agents are perfectly indifferent between their equilibrium
and optimal action; hence, the equilibria have low stability.
Conversely, we show that if agents’ equilibrium payoffs are
much higher than their optimal-allocation payoffs (i.e., the
equilibrium is “stable”), then this ensures that the equi-
librium must be of relatively high quality. To demonstrate
how this phenomenon may be exploited algorithmically,
we perform simulations using the log-linear learning algo-
rithm and show that average performance on worst-case
instances is far better even than our improved analytical
guarantees.

Index Terms— Game Theory, Multiagent Control, Sub-
modular Maximization

[. INTRODUCTION

AME-THEORETIC approaches to distributed control

of multiagent systems have been proposed for such
diverse systems as distributed power generation, swarming
of autonomous vehicles, network routing, and more [1]-[4].
Here, a system designer assigns a utility function to each agent
and programs the agent with an algorithm to optimize its own
utility function. By selecting the utility functions properly, a
system designer can guarantee that the local algorithms drive
the agents’ collective behavior to a state which is globally
desirable. This approach leverages the broader literature on
learning in games to arrive at generalizable convergence
and performance guarantees [5], [6]. Furthermore, previous
work [7], [8] provides background and a framework for
analyzing games in which agents have limited knowledge of
other agents’ strategies.

Applying these game-theoretic techniques to multiagent
submodular maximization (a problem with applications in a
wide variety of engineering contexts) yields a class of games
known as valid utility games [9]-[11]. It has long been known
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that in any valid utility game, every Nash equilibrium is always
within a factor of 2 of optimal; it is said that the price of
anarchy of valid utility games is 1/2 [12].

However, recent work has suggested that the derived game-
theoretic algorithms may lack robustness to unanticipated
changes in problem structure [13]. Accordingly, recent years
have seen a growing interest in the role played by commu-
nication and observation among agents in these approaches;
for instance, by investigating optimal communication topolo-
gies [14] and studying the harm induced by communication or
observation failures [15], [16]. This is also related to similar
work on the robustness of other distributed algorithms for
submodular maximization [17].

Building on this, the recent work in [18] identifies a
class of tight worst-case guarantees for communication-denied
multiagent submodular maximization problems. There, it is
shown that if k& agents cannot observe the actions or de-
tect the contributions of other agents (we call these agents
compromised), then the price of anarchy guarantee worsens
from 1/2 to 1/(k + 2). This bound is shown to be tight
via finely-tuned worst-case problem instances; however, small
perturbations to agent utility functions can easily destabilize
the low-quality Nash equilibria and thereby greatly improve
worst-case performance. In essence, the specific worst-case
examples presented in [18] are fragile.

In the present paper, we show that this fragility is generic
and is exhibited by all worst-case problem instances in this
class of games; furthermore, we show a fundamental relation-
ship between this fragility and the quality of equilibria.

First, we show the following general principle analytically:
if an instance of a communication-denied valid utility game
has a very low-quality Nash equilibrium, then at that equi-
librium, the agents are collectively very close to selecting
an optimal action profile: the low-quality equilibrium is not
stable. Specifically, if agents switch from their equilibrium
actions to system-optimal actions, their total payoff loss is
very small. Conversely, if at equilibrium all agents strongly
“prefer” their equilibrium actions to their optimal actions (i.e.,
the equilibrium is stable), the equilibrium must have relatively
high quality. All low quality equilibria have low stability, and
all highly stable equilibria are of high quality.

To make this notion precise, we write S to denote the
payoff stability of a game, defined as the the total payoff
loss of compromised agents at system-optimal actions relative
to equilibrium. This stability is analogous to the magnitude
of a perturbation to agent utility functions which would
be sufficient to cause agents to deviate from a suboptimal
equilibrium to an optimal action profile. Our main theoretical



result states that if G is a game with £ > 1 compromised
agents, then the price of anarchy of G satisfies

1
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In other words, games in which all compromised agents
strongly prefer their equilibrium actions (i.e., S is large)
necessarily have equilibria that are relatively close to optimal.
Here, S is a measure of the “stability” of worst-case equilibria:
a very small S means that compromised agents experience
a very small payoff loss if they switch from equilibrium to
system-optimal actions.

The above bound holds for all valid utility games, but
we also show that if all agents are assigned the specific
marginal cost utility function that the worst-case bound im-
proves slightly to 1/(1+ k — S).

Our main theoretical result thus suggests a simple algorith-
mic approach to mitigate the harm of observation or communi-
cation failures: program all agents to select randomly among
their high-payoff actions, using a payoff-sensitive algorithm
such as log-linear learning [19]. The fact that all stable equi-
libria are high-quality suggests that this approach will typically
not harm high-quality equilibria. Conversely, the fact that all
low-quality equilibria are very unstable suggests that under this
approach, agents may frequently select their system-optimal
actions, leading to large performance gains. In Section IV
we provide empirical evidence for this using the log-linear
learning algorithm. Our simulations confirm that log-linear
learning can provide substantial improvements relative to
worst-case guarantees, with the greatest improvements coming
for the game instances with the worst nominal performance
guarantees.

PoA(G)

[I. MODEL

A. Distributed Submodular Maximization: Valid Utility
Games

A multiagent resource allocation game has agent set N =
{1,...,n} and a finite set of resources R. Each agent i € N
has a set of admissible actions given by a subset of resources:
A; C 2R For convenience, we assume that § € A for every
i. We denote the joint action space by A := Ay X --- X A,.
We write a € A to denote a joint action and a; to denote the
resource selected by agent ¢ in a. All set operations on action
profiles proceed componentwise, e.g. @ C a’ means a; C a; for
all + € N. For a subset of agents J C N, we write a; to denote
the action profile a restricted only to agents in J, and similarly
we write a_; to mean a N\{i}- With this notation, we will
sometimes write an action profile a as (a;, a_;) or (as,an\ s)
when we wish to highlight the actions of a particular agent or
set of agents.

Agents are tasked with maximizing the value of an objective
function W : A — [0, 00). To accomplish this goal, we assume
that a system designer has endowed each agent with a utility
function U; : A — R. Note that the agent utility functions
are subjective representations of the agent’s objective; any
information available to the agent about the choices of other
agents must be represented by this utility function. Since
each agent is an individual optimizer attempting to maximize

its own utility function, this formulation induces a non-
cooperative game among the agents. In this work we consider
utility functions which satisfy the valid utility game criteria
of [12]:

Definition 1: A Valid Utility Game is a multiagent opti-
mization problem satisfying the following three conditions:

1) W is submodular, nondecreasing, and normalized,
2) Ui(ai, a,i) Z W(ai, a,i) -Ww (@,a,i)
3) Zz Ui(ai, a,i) S W(ai, a,i)
The objective function W is submodular if for all © € N, a;,
and a_;,a’; € A_;, whenever a_; C o’ it holds that
W(ai,a_;) = W(a_;) > W(ai,a_;) = W(a_;), (1)

—1

In other words, W exhibits a generalized form of decreasing
marginal returns. We say that W' is nondecreasing if W (a) <
W (a') for all a C a', and normalized it W(()) = 0. Many
utility functions are known which yield valid utility games. In
particular, we often refer to the marginal contribution utility
function defined formally as

Ul-(al-, a,i) = W(ai, (Z,i) — W(@, a,i). (2)

Under marginal contribution, agent 7 computes the payoff
of an action as the difference between the system objective
function with agent ¢ present and what it would be if agent 7
were not present. It is known that marginal-contribution utility
functions render all system-optimal action profiles as Nash
equilibria [20].

B. Compromised Agents

Recent work [18] has extended this model to focus on the
performance of a multiagent system in which some subset
of agents suffer a fault which compromises their ability to
observe the actions of other agents in the system. We write
K C N to denote the set of compromised agents. A compro-
mised agent ¢ € K receives no information about the choices
made by other agents; this models jamming by an adversary,
a persistent communication failure, or a failed sensor. We call
an agent which is not compromised normal.

We model this formally via a modified utility function for
each compromised agent ¢ € K; we write this modified utility
function as

Ui(ai,a,i) = Uz(a“@) (3)
That is, a compromised agent simply assumes that the other
(unobserved) agents are not present. For simplicity, we often
write Ui(ai) to mean f]i(ai,a_i). The compromised agent’s
lack of information means that the strategies of other agents
cannot influence the payoff value of the compromised agent’s
private utility function. Nevertheless, the behavior of the
compromised agent remains a factor in the computation of the
system objective function. That is, that compromised agents’
actions still contribute to the system-level objective W; their
activities remain valuable despite their inability to obtain
information about other agents. We specify a game in this
context by a tuple G = (N, R, A, W, K,{U,}ien).
With these definitions in hand, the core solution concept we
consider is a pure Nash equilibrium, or an action profile from



which no agent has a unilateral incentive to deviate. Formally,
a®® is a Nash equilibrium if for every normal agent : € N\ K
and every a; € A; we have

Ui(ai®, a™3) > Ui(ai, a™) 4)

—i
and for every compromised agent j € K and every a; € A;
we have ~ R

Uj(aj®) = Uj(ay)- (5)
For game G, we write the set of pure Nash equilibria of G as

NE(G).

C. Quality of Equilibria

In a distributed multiagent decision system modeled as a
noncooperative game, a system operator is typically tasked
with programming each agent with an algorithm that opti-
mizes the agent’s utility function; in many formulations, these
algorithms are selected to guide the agents collectively to a
Nash equilibrium. Accordingly, the quality of the game’s Nash
equilibria is a central concern. In this paper, we measure the
worst-case quality of a game’s equilibria using the measure
known as the price of anarchy, defined as the worst-case ratio
between the objective value of a Nash equilibrium and an
optimal action profile, or

min,enge) Wia)

POA(G) = S W(a/)

(6)

It is known that for any game G as defined in this paper, it
holds that if K C N, PoA(G) > 1/(2+|K]|) [18], where | K|
is the number of elements in the set K.

D. Payoff Stability

The fundamental goal of this paper is to show that if
a game has a very poor price of anarchy, that game’s
equilibria are “close” to an optimal allocation. To measure
this closeness, we introduce the notion of payoff stability,
defined as the total payoff loss of compromised agents at
optimal action profiles relative to equilibrium. Let a"® &
arg min, e () W(a) be a worst-case Nash equilibrium' of
G. Let A* = argmax,cy W(a) be the set of optimal
allocations. The payoff stability of game G is defined as

max > e |Ui(ai®) = Ui(af)
W(anc)

When stability S(G) = 0, (7) shows that compromised
agents are indifferent between their optimal and worst-case
equilibrium choices. On the other hand, when compromised
agents strongly prefer their worst-case equilibrium actions
over their optimal actions, S(G) is necessarily high. That
is, S(G) measures the level of satisfaction that compromised
agents have with their worst-case equilibrium actions. Note
that U;(a?) < W(a™) by applying the second and third
conditions of Definition 1. Therefore, since U;(a?®) > U(a?)
(since a™® is a Nash equilibrium), it holds that 0 < S(G) <

S(G) = <|K|. (D

I'This paper will not consider the trivial case in which W (a™®) = 0, since
in valid utility games this implies that W (a) = 0 for all a € A.

| K |. For concreteness, we now provide Example 1 to illustrate
payoff stability in the context of a specific game.

Example 1: An example instance of a single-selection
weighted set cover game is illustrated in Figure 1. It consists
of a set of four agents, ¥ = 3 of which are compromised.
Each resource has a nonnegative value, and the system ob-
jective is to maximize the total value of resources included
in the union of agent actions. The agents are endowed with
a marginal contribution utility function. The normal agent
has as an admissible action a central resource with value 1.
Each compromised agent has as admissible actions the central
resource and another of value 1 — % = 0.95, where s = 0.15.
In the unique Nash equilibrium, all agents choose to cover the
resource with value 1, yielding a system objective value of
only 1. However, in the optimal allocation, each compromised
agent covers the resource of value 0.95, which yields a system
objective function value of 3.85. Thus, this game has a price
of anarchy of z¢=.

Note that each compromised agent would suffer a payoff
loss of only 0.05 in switching from equilibrium to system-
optimal actions; this intuitively indicates that this equilibrium
has low stability. Indeed, this example instance has payoff
stability S(G) = 3(1 —0.95) = 0.15, which is quite small
relative to its maximum possible value of 3. It can clearly be
seen that the price of anarchy of this specific instance is 1/(1+
|K|—S(G)) = 1/3.85, aligning with the analytical results of
Theorem 2. Thus, we see that on this example the very poor
price of anarchy is accompanied by a very low payoff stability:
compromised agents can switch to their optimal actions and
incur only a small payoff loss.

[1l. MAIN THEORETICAL RESULTS

Previous results [I18] show that a game G =
(N, R, A, W, K,{U, };cn) with |K| compromised agents has
PoA(G) > ﬁ In this paper we show that this bound
is only achievable if all agents are indifferent between their
equilibrium and optimal actions, and furthermore we show
a fundamental relationship between the stability and quality
of worst-case equilibria. Specifically, games with highly
stable equilibria intrinsically have a more favorable price
of anarchy. This effectively demonstrates that worst-case
instances of communication-denied valid utility games are
fragile in a strong sense: arbitrarily-small perturbations to
their specifications can render their equilibria optimal.

Theorem 1: Let G = (N, R, A,W, K,{U;}icn) be a valid
utility game with compromised agents and payoff stability
S(G). Then it holds that

1
POA(G)22+|K|75(G)' (8)
Furthermore, this bound is essentially tight: that is, for any
k>0, s €]0,k], and € > 0, there exists a valid utility game
G’ with |[K| =k and S(G’) = s such that
1
!
PoA(G)§2+k_s_€. )

Note that (8) implies that the only way for performance

PoA(G) to be very poor (low) is for stability S(G) to be very
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Fig. 1. Weighted set cover games used in simulations and to prove
Theorem 2. It consists of a set of n = k+1 agents and k41 resources.
Every agent can access the central resource with value 1. Each of the
k compromised agents can access its own “personal” resource of value
1 — s/k, where s € [0, k]. Thus, the payoff stability of the game is s.

low as well; that is, our result guarantees that a system with
very bad performance also has agents which can be easily
“persuaded” to switch to their optimal actions.

Proof: Let a"® € argmin,eng(e) W(a) be a worst-
case Nash equilibrium of G. Let a°?* € argmax, 4 W(a)
be an optimal action profile that achieves the maximum
in (7). In the following, we frequently write (a,a’) to mean
(ap Uadal,...,a, Ual), and without loss we assume that W
is defined on the extended action space (2%)".

The proof proceeds via a sequence of inequalities; this
sequence is adapted to our purposes from one introduced
in [18]. We repeat it here for completeness, and highlight our
modifications to make our novel contribution clear.

W( opt) < W( opt ne) (10)
< W@+ (Wa™, af, ™) = W(a, ™))
iEN
) (an
a") + Y (W(af™,a;) = W(a2y) (12)
1EN
< W(a™)+ Y Us(a™,a™) + > W(a™) (13)
¢ K €K
<W ne +ZU ne ale +ZU opt (14)
¢ K €K
< W(a™) +W(a™) + Y Ui(ag™) (15)
€K
=2W (a™) + Y Ui(a}) — S(G)W (a™) (16)
ieK
<2W(a™) + > W(a}) — S(G)W (a™) (17)
ieK
< (24 |K| = S(G))W(a™), (18)

where (10) is true since W is nondecreasing; (11) is true
via telescoping; (12) is true by submodularity of W; (13)
holds since the original U; satisfies 2) in Definition 1, and by
submodularity of W; (14) is true by definition of NE (2nd
term) and by the utilities of the compromised agents (3rd
term); (15) holds due to 3) in Definition 1. Our contribution
begins with (16) which is substituted from the definition of
payoff stability in (7); (17) is true by the definition of l]i for
agents in K; and (18) is true since W is nondecreasing.

To see that (8) is essentially tight, let £ > 0 and s € [0, k]

O Agentnotin K

1 1 1
n n n
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Fig. 2. This family of examples is used to show tightness of the proof of
Theorem 1. An instance of a weighted set cover game, it consists of n
agents, k of which are compromised. In a™¢, all agents select the central
resource. In a®Pt, one normal agent selects the central resource, while
all other agents select their alternative resource. As n — oo, the PoA
of this family of instances approaches

1
kf2—s"
be given. We shall construct a valid utility game G with
|K| =k and S(G5 ) = s with price of anarchy equal to (9).
For reference, this example game is depicted in Figure 2.
The family of examples is that of weighted set cover games:
each resource r € R has value v, > 0, and the system
objective is to maximize the total value of resources included
in the union of agents’ actions. Each agent has an equal share
utility function: that is, if M is the set of agents selecting
resource r, each agent ¢ € M receives a payoff of v,./|M]|.
It is well known that equal share utility functions satisfy
Definition 1 [21].
Let there be n + 1 resources and n agents; let N =

{1,2,...,n} and let K = {1,2,...,k}. Let resources
r1,72,...,7 have value 1 — s/k each, and let the resources
Th41,Tk+2,---,Tn have value 1/n. Let resource 71,41 have

value 1. For each agent ¢ € N, let A; {risTnt1}-
Thus, every agent ¢ can select either its “personal” low-value
resource r; or the high-value “central” resource 7,1.

Note that the action profile a"® in which every agent ¢ € NV
has a}® = 7,41 (all select the center resource) is a Nash
equilibrium under equal share utility functions. Since only
resource 7,41 is covered, we have W(a"®) = 1.

Now, let a* denote the action profile in which agent 1 selects
central resource 7,41 and every other agent i € {2,...,n}
selects its personal resource r;. Here, every resource except
one is covered, so W(a*) = 1+ 2=E=b 4 k(1 — s/k) =
2+4+k— ’“ L. Thus, we have that

W(a™) 1
)< Wiy " hr2os

The upper bound in (9) can be obtained for any € by making
n sufficiently large. [ ]

Theorem 1 applies to all valid utility games, regardless
of the specific utility functions chosen. However, we show
in Theorem 2 that worst-case performance can be slightly
improved by adopting the marginal-cost utility design:

Theorem 2: Given a valid utility game G with payoff
stability S(G) whose agents are endowed with the marginal
contribution utility function, it holds that

PoA (Gsﬁk r_1"

n

PoA(G) > min {1 (19)

1
2’ K|+1—S(G)}'
Furthermore, this bound is tight: that is, for any k£ > 0 and
s € [0, k], there exists a valid utility game G’ with marginal



contribution utility functions with |K| = k and S(G') = s
such that ) )
/ .
POA(G)mm{Q’kz—i—l—s}' (20)
Proof: Let G = (N, R, A, W, K,{U;};cn) be a valid
utility game with compromised agents with payoff stability
S(G) and marginal contribution utility functions as in (2);
let a™® denote a worst-case Nash equilibrium of G, and a°P*
denote an optimal action profile for G that achieves the
maximum in (7). First, note that if S(G) > |K| — 1, the
minimum in (19) selects 1/2; this result is known (even when
|K| = 0) and we do not duplicate its proof here [12].
Accordingly we focus on the case that S(G) < |K|—1.In
the following, we write (a, a’) to mean (a; Uaj,...,a,Ual,),
and without loss we assume that 1 is defined on the extended
action space (2%)". First, following a technique applied
in [18], it can be shown that

w (aoPt) <W (aOPt, arf}e)

<2W (™) — W (a}) + > W (a5™").
€K

2L

This approach involves explicitly modeling the agents in N\ K
as playing a “sub-game” among themselves, and leverages the
known result that the price of anarchy of a game with no
compromised agents is no worse than 1/2 [12].

The proof then proceeds by a sequence of inequalities; an
explanation for each follows.

w (a‘)pt) <W (a(’pt, ar}(e)

<2W (@) = W (a5) + YW (a5™) (22)
€K

=2W (a™) = W (aj) + > U (af) = S(G)W (a™)
€K (23)

<2W (a") = W () + > W (a¥) — S(G)W (a™)
€K (24)

<2W (a™) + (K| - )W (a) — S(G)W(a)  (25)

< 2W (a®) + W (a™) (K| — 1 - S(G)). (26)

Inequality (22) is due to (21); (23) is due to conditions 2)
and 3) of Definition 1 and by the definition of payoff stability
given in (7); (24) is due to conditions 2) and 3) of Defini-
tion 1; (25) is true since W is nondecreasing, and (26) is true
since W is nondecreasing and S(G) < |K| — 1. Thus, when
S(G) < |K| — 1 W(a*) < ([K|+1-S(G)W(a™),
completing the proof of (19).

The tightness of (19) can be shown via a straightforward
generalization of the phenomenon discussed in Example 1
using games of the form depicted in Figure 1. For reasons
of space, we do not present it in full here. [ ]

IV. SIMULATIONS

In this section we present the results of multiple runs of
a simulation® of weighted set cover games; these simulations

2The Python source code for the simulations is available at

https://github.com/descon-uccs/lcss—-2022.

give direct empirical evidence that our core theoretical results
from Theorems 1 and 2 can be exploited algorithmically
to improve behavior in valid utility games with compro-
mised agents. The simulation implements log-linear learning,
a discrete-time asynchronous distributed learning algorithm.
Log-linear learning operates in discrete steps at times ¢g, ¢1, ...
resulting in a sequence of joint actions a(0), a(1), ... beginning
with an arbitrary joint action a(0). At each each step, an
agent is chosen uniformly at random to update its action. The
updating agent 7 then selects an action a; from its action set
A; with probability
eUilai,a—i(1))/T

ZdiEAi eUi(&i’aii(t))/T '

where T, called the temperature, is a parameter controlling
agents’ randomness. Note that 7' — oo results in agents
playing uniformly at random. When 7" — 0, agent actions
are strictly best responses.

The structure of the simulated game is depicted and de-
scribed in Figure 1. These weighted set cover games consist
of a set of n = k+ 1 agents and k + 1 resources. Every agent
can select the “central” resource Ry with value 1. Each of
the k compromised agents can also select its own “personal”
resource of value 1 — s/k, where s € [0,k — 1]. Thus, the
payoff stability of the overall game is s, since it is always a
Nash equilibrium for all agents to select Ry, but the optimal
action profile has every compromised agent selecting its own
personal resource with value 1 — s/k. To ensure that uniform
randomization does not lead to spurious desirable outcomes,
we also attach several “dummy actions” with O value to each
of the compromised agents.

The simulation proceeds by fixing a temperature 7', initial-
izing the agents to a random joint action and letting log-linear
learning run for 200,000 iterations. After a burn-in of 50,000
iterations, the system objective function W is measured at
each time step t; the mean of these final 150,000 values are
then recorded as the system’s empirical average performance.
Figure 3 depicts these empirical averages across a range of
temperatures with £ = 10 and payoff stability s = 1.

At low temperatures, the agents’ selections approximate an
asynchronous best response to other agents, so the average
objective function value approximately achieves the theoretical
price of anarchy of 1/11. As the temperature increases, the
compromised agents rapidly begin to select their “personal”
actions, which dramatically improves the average objective
value, rising to a maximum of approximately 0.456. At higher
temperatures, agents act more randomly and begin to select the
dummy actions, again harming the system objective.

Figure 4 then depicts the effect of payoff stability. The
experiment depicted in Figure 3 is repeated for values of
s € [0,k — 1], and the maximum and minimum values of the
trace in Figure 3 are then plotted in Figure 4. The minimum
value is represented by the red plus-signs, and the maximum
value is represented by the dashed, orange line.

Clearly, the system objective value can be greatly increased
when agents play with some randomness; this is due directly
to the fact that at very poor equilibria, agents are nearly indif-
ferent between their equilibrium actions and system-optimal
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Fig. 3. Simulation across a range of temperatures with | K| = 10 and
S(G) = 1,50 PoA(G) = %. This is confirmed with the average
empirical value of W being % at very low temperatures. Note that a
slight increase in temperature yields a large improvement in average
performance, since agents begin to randomize and thus frequently
select their system-optimal actions. The maximum and minimum values
from multiple such simulations are plotted in Figure 4.

actions. Furthermore, note that the benefits of randomness are
greatest when the payoff stability is lowest (i.e., when the
nominal price of anarchy is the worst). This is due to the fact
that at high-quality (and thus stable) equilibria, a small amount
of randomness is unlikely to cause agents to deviate from their
(relatively good) equilibrium actions.

V. CONCLUSION

This paper demonstrates that worst-case equilibrium behav-
ior is fragile and that the previously-known theoretical lower
bound is only achieved on finely-tuned games. Furthermore,
our analysis and simulations indicate that payoff-sensitive
probabilistic techniques such as log-linear learning can likely
be used to compensate for communication failures and other
types of information deprivation.
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