Accelerated Device Placement Optimization with Contrastive
Learning

Hao Lan
University of Toronto
hao.lan@mail.utoronto.ca

ABSTRACT

With the ever-increasing size and complexity of deep neural net-
work models, it is difficult to fit and train a complete copy of the
model on a single computational device with limited capability.
Therefore, large neural networks are usually trained on a mixture
of devices, including multiple CPUs and GPUs, of which the compu-
tational speed and efficiency are drastically affected by how these
models are partitioned and placed on the devices. In this paper,
we propose Mars, a novel design to find efficient placements for
large models. Mars leverages a self-supervised graph neural net-
work pre-training framework to generate node representations for
operations, which is able to capture the topological properties of
the computational graph. Then, a sequence-to-sequence neural net-
work is applied to split large models into small segments so that
Mars can predict the placements sequentially. Novel optimizations
have been applied in the placer design to achieve the best possible
performance in terms of the time needed to complete training the
agent for placing models with very large sizes. We deployed and
evaluated Mars on benchmarks involving Inception-V3, GNMT, and
BERT models. Extensive experimental results show that Mars can
achieve up to 27.2% and 2.7% speedup of per-step training time
than the state-of-the-art for GNMT and BERT models, respectively.
We also show that with self-supervised graph neural network pre-
training, our design achieves the fastest speed in discovering the
optimal placement for Inception-V3.

CCS CONCEPTS

« Computing methodologies — Sequential decision making;
Distributed artificial intelligence; Computer systems organiza-
tion — Neural networks.

KEYWORDS

device placement, contrastive learning, reinforcement learning,
deep neural networks

ACM Reference Format:

Hao Lan, Li Chen, and Baochun Li. 2021. Accelerated Device Placement
Optimization with Contrastive Learning. In 50th International Conference
on Parallel Processing (ICPP °21), August 9-12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472523

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9068-2/21/08....$15.00
https://doi.org/10.1145/3472456.3472523

Li Chen
University of Louisiana at Lafayette
li.chen@louisiana.edu

Baochun Li
University of Toronto
bli@ece.toronto.edu

1 INTRODUCTION

It has been widely recognized that large neural network models
lead to substantial gains in the quality of solving complex tasks.
For example, Google’s Bidirectional Encoder Representations from
Transformers (BERT), as a breakthrough in natural language pro-
cessing, contains up to 340 million parameters [6]. Training models
with such sizes is time-consuming and resource-intensive, intro-
ducing significant practical challenges due to hardware constraints,
such as memory limitations on GPU devices.

The need for neural network scaling and the limitations of com-
putation resources, encourage machine learning practitioners to
partition a large model across a heterogeneous mix of computa-
tional devices [2, 13, 28]. This is commonly referred to as “device
placement” in the literature. One of the most challenging aspects
when scaling up to large models is how their computation graphs
should be partitioned and assigned to a heterogeneous set of com-
putational devices, so that the limited resources on each device can
be maximally utilized.

The decision of placing parts of the neural network models on
devices is often made by human experts based on simple heuris-
tics and intuitions, which are typically not flexible for a dynamic
environment with many interferences. Deep reinforcement learn-
ing (DRL) has recently been proposed to provide effective device
placements with full automation [7, 8, 21]. This type of approach
follows the grouper-placer architecture. Manual grouping of model
operations [7, 21] usually results in long searching time and is not
flexible for finding the optimal placements, especially for giant neu-
ral networks with millions or even billions of parameters [26]. To
enable automatic grouping, a hierarchical model [20] is proposed,
which consists of a feed-forward neural network as a grouper and
a placer instantiated as a sequence-to-sequence neural network
with an attention layer. However, this hierarchical model experi-
ences slow convergence of the learning process, as it involves two
complex neural networks that are updated simultaneously.

In this paper, we propose our design, called Mars, a new DRL-
based device placement mechanism that is fast and can be scalable
to very large models. Rather than resorting to manual grouping,
Mars adopts a graph neural network to encode the workload infor-
mation and capture the topological properties of the computational
graph. The encoded representations are then fed into a sequence-to-
sequence neural network to generate placement. The design of Mars
is based on a comprehensive array of empirical observations with
regards to a number of design choices, including the selection of
the graph encoder, the placer architecture, the training algorithm,
and optimization. Specifically, we choose Deep Graph Infomax
(DGI) [30] for node representations learning and leverage segment-
level recurrent attention in the sequence-to-sequence placer. As

https://doi.org/10.1145/3472456.3472523
https://doi.org/10.1145/3472456.3472523

ICPP °21, August 9-12, 2021, Lemont, IL, USA

one of its salient advantages, Mars employs self-supervised pre-
training of its graph encoder in its design, which achieves a further
performance improvement.

We evaluate Mars by training it to produce device placement
solutions for three benchmark machine learning models, i.e., Incep-
tionV3, GNMT, and BERT. The per-step execution times of our final
placements are compared with the state-of-the-art, i.e., Hierarchical
Planner [20] and Generalized Device Placement [33]. Experimental
results have demonstrated that the per-step execution time of the
best placement discovered by Mars for GNMT and BERT is 2.7%
and 27.2% shorter than the placements found by Hierarchical Plan-
ner. In addition, Mars achieves better training efficiency than the
state-of-the-arts, it reduced its training time by an average of 13.2%
via self-supervised pre-training.

2 PRELIMINARIES AND RELATED WORK

With the increasing size and complexity of deep neural networks,
the computation and memory demands of deep learning have grown
significantly. For example, a recently developed model, BERT [6],
has millions of parameters and requires days of training with over
a dozen Cloud TPUs. To meet such an ever-increasing demand for
computing resources, it became mandatory to train deep neural
networks in a cluster of heterogeneous computational devices, con-
sisting of a mixture of CPUs and GPUs. As the model may not fit
into the memory of a single computational device, model parallelism
is widely used to partition a large model across multiple devices.

In this context, machine learning practitioners are given the flex-
ibility to customize the mapping between devices and operations
in their neural network models. Intuitively, different placement
of operations may result in significantly different training times,
depending on the utilization of resources and the overhead of com-
munication. Thus, it becomes crucial to identify an optimal place-
ment so that the total training time can be minimized. This problem,
referred to as the device placement problem, is challenging to solve
due to its combinatorial nature: it can be intuitively mapped to
the graph partitioning problem, which has a variety of algorithms
implemented in existing solvers (such as the Scotch optimizer [24],
an open-source software library). However, they fail to achieve
satisfactory results, as they require the construction of a cost model
for a graph. Such a cost model is expensive to estimate and may
not be accurate, especially for complex computational graphs in
heterogeneous training environments.

To address the challenge, Mirhoseini et al. [21] proposed to use
reinforcement learning to find the best placement. As shown in
Fig. 1, given an initial placement, the neural network is trained
for a few steps as a trial experiment to measure the training time,
which is used as a reward signal for generating a better placement
in the future with shorter training time. After a number of trial
placements, an optimal placement with the shortest training time
is eventually obtained.

Due to the slow convergence of reinforcement learning based on
REINFORCE, a policy gradient method, the cost of finding the best
placement is prohibitively high: in [21], it took 27 hours over 160
workers to find the best placement. With improved reinforcement
learning algorithms based on proximal policy optimization (PPO)
[27], Spotlight [8] and was able to reduce such a cost, while Post 7]

Hao Lan, Li Chen, and Baochun Li

(" N\
Agent
P @@

> Policy ! ! |action
> Network |:>i @ @ 6 E_

@0 e
~ N ———— J

- y -.reward

observation s

‘ CPU ’ ‘GPU1’ ‘GPUS’

o) B

E Machine

\) N

s
®
L1

Figure 1: An illustration of using a reinforcement learning
agent to place a neural network over multiple devices in a
machine. The agent observes the computational graph and
the states of the devices, and generates the mapping of the
operations to devices.

further combines PPO with the cross-entropy method to achieve
even faster convergence and better placement for some neural net-
work models. Besides the algorithm, EAGLE [19] proposed a more
efficient grouper-placer-based method via an extensive exploration
of different designs of the agent.

Essentially, an RL agent will need to compute a placement that
assigns each operation to a computational device. With a large
number of operations, the action space for the RL agent is huge,
imposing a prohibitively heavy training workload. In practice, be-
fore being fed into the “placer” network in the RL agent, operations
needs to be grouped first, which can be performed manually or
with a “grouper,” using heuristics or a feed-forward neural network
[20]. As shown in Fig. 2, the grouper partitions operations into
groups and merges the features of operations in the same group
as group embeddings. The placer takes the group embeddings as
input and predicts the placement for groups. This is referred to as
the grouper-placer structure.

Recently, graph neural networks have shown great potential on
inductive representation learning for graphs [9, 16, 30]. The state-
of-the-arts [1, 22, 33] proposed to use a graph neural network to
encode the operation features into trainable representations, which
significantly improved the generalizability of the model. As shown
in Fig. 2, Zhou et al. [33] replaced the grouper in the hierarchical
model [20] with a graph neural network. The features of operations
are encoded into embeddings (trainable representations) and then
the placer can directly assign the device for each operation based
on its embedding. Such an encoder-placer structure brings more
flexibility and generality than traditional grouper-placer designs.
However, it also introduces additional difficulty in training agent,
such as larger action spaces and more sophisticated neural networks.
In this paper, our primary focus is to address such difficulty by
maximizing the training efficiency using a new and more efficient
encoder-placer structure pre-trained with contrastive learning.

Accelerated Device Placement Optimization with Contrastive Learning

© ® @)

OO0

ICPP °21, August 9-12, 2021, Lemont, IL, USA

(a) Grouper-Placer model

ORSO)

© _®

& @B & O O o [@ @ @

OO0

OO0

(b) Encoder-Placer model

Figure 2: Two different architectures for device placement. a) The grouper-placer model reduces the action space by merging
operations into groups; b) The encoder-placer encodes the features of the operations to capture the topological properties of

the computational graph.

3 DESIGN

In Mars, we propose to take advantage of the salient properties of
a graph encoder to maximize the training efficiency in the encoder-
placer structure. As shown in Fig. 3, Mars employs a graph encoder
pre-trained by contrastive learning and a lightweight segment-
level sequence-to-sequence placer neural network [28]. The graph
encoder is pre-trained in a self-supervised manner to initialize
parameters to a good starting point, and the two components are
trained jointly to generate the policy for operation placement. With
our pre-trained encoder and lightweight placer, Mars achieves better
training efficiency than the state-of-the-art: it discovers a better
placement within a shorter period of training, to be elaborated in
what follows.

3.1 Encoder Design

Essentially, the device placement problem is to identify an optimal
placement across devices for a machine learning workload, which
is described as a computational graph that consists of thousands of
operation nodes with various attributes. Such a manually specified
workload information is complex and difficult to be understood
by a placer neural network directly, which requires a neural net-
work (encoder) with delicate design to encode the information into
machine-understandable and trainable representations. For extract-
ing the underlying information from graph-structured data, graph
neural networks (GNNs) have been employed in the state-of-the-art
as the encoder, showing great promise. Typically, GNNs are built up
by a few layers of graph convolutional networks (GCNs) [18]. They
learn the representation of a node by aggregating features from
its neighbor nodes. In this way, the learned node representations
account for not only individual node features but also the graph
structure.

Leveraging the favorable properties as aforementioned, Mars is
designed with a GNN as an encoder to process the graph-structured
information. In general, the encoder of Mars can be any GNNs as

they share a similar representation learning strategy. For simplicity,
we use a simple GNN, which consists of 3 GCN layers with Para-
metric ReLU (PRelu) activation function [12] as an example. A GCN
layer takes two inputs, the adjacency matrix and node features of
the workload graph, and generates the output as follows:

GCN(X,A) = o (13—1/ 2ADY 2X@)) (1)

where X denotes features or attributes of operations, A = A +1
denotes the adjacency matrix with inserted self-loops, representing
the dependencies between operations in the computational graph,
Di=Y j=0 A; j is its diagonal degree matrix, o is the PRelu activa-
tion function, and O is the set of parameters of the GCN layers that
we want to learn. Fig. 4 presents a clear illustration of feature aggre-
gation performed by the GCN layers. As shown, the attributes of
each operation node are gathered from the computational graph of
the workload, including the operation type (e.g., Conv2d, MatMul),
input shape, and output shape (dimension). Since the operation
type is not a scalar and the shape of operations’ input and output
may vary in a wide range of values, they cannot be fed into the
encoder directly. Hence, we encode the operation types by one-hot
encoding and normalize the shapes by the largest dimension size
of all operations’ input and output, and then feed them into the en-
coder as the node features. As shown in the figure, there is an edge
(data flow arrow) from operation 1 to operation 3, which means
operation 3 requires the output of operation 1 and it should be exe-
cuted after operation 1 has completed. The GCN layers aggregate
the features/attributes from neighbor operations along these edges,
as observed for node 3 in the figure.

3.2 Pre-train Encoder with Contrastive
Learning

To find better placements for machine learning workloads, Mars is
designed with two submodels, the graph encoder and sequence-to-
sequence placer, which are trained jointly in an end-to-end fashion.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Y Y
Neural 01..00 DGl
Network 10...01 Graph Encoder
o ING g
01...10
@ @ - - readout
A(ﬂacency Matiix (HyA/)’ @A)
@ @ @ op_type
input_shape el
@ @ output_shape t Nt
| | (X,A) (X,A)
Node Features R
\ J \ corruption)

0.232 ... 0.876

0.521 ... 0.391

Node Representation

Hao Lan, Li Chen, and Baochun Li

a I
Seqg-to-Seq
Placer

output sequence
0.021 ... 0.547

0.602 ... 0.102

Placement Policy

input sequence

o

Figure 3: Illustration of Mars: a graph encoder consisting of a 3-layer graph convolutional network pre-trained via contrastive
learning and a placer that is a sequence-to-sequence neural network for predicting the placement segment by segment.

@ @ op_attribute

’ -

e {
D B
O operation Jrw O input_shape,
S output_shape

data flow 1
)

_» GCN AN @ \ }
aggregation

Figure 4: An illustration of feature aggregation performed
by a graph convolutional layer in a computational graph.

However, it is challenging because neither of the two models is
trivial to be trained. Large amounts of samples are required for
model training, and evaluating these samples is expensive in the
device placement problem. Fortunately, the pre-training of GNNs
has been proposed recently to accelerate the training of downstream
tasks [15]. Particularly, in GNN pre-training, a general graph task
with a self-supervised learning objective will be designed, and the
GNN can learn node representations from graph-structured data
without labels. The learned representations are usually informative,
able to comprehensively characterize the underlying semantics of
a node within a graph. Upon the completion of pre-training, the
trained GNN parameters can be used for other downstream tasks
with minimal additional training costs.

Contrastive learning is one of widely used self-supervised pre-
training methods for computer vision tasks [3, 4, 14, 29, 31] and
graph tasks [25, 30, 32]. It learns representations by maximizing
mutual information between differently augmented views of the
same sample via a contrastive loss. The greatest advantage of con-
trastive learning is that it is self-supervised which means it does
not require any labeled data. This is crucial especially for the tasks
that require a decent amount of labels which is expensive or even
impossible to get.

Inspired by such a promising type of technique, we propose to
pre-train our graph encoder in a self-supervised learning approach
proposed by Veli¢kovic¢ et al. [30], which maximizes the mutual
information between node representations and corresponding high-
level summaries of the graph. More specifically, as illustrated by

Fig. 3, we first generate a pair of samples in different augmented
views, where the positive sample (X, A) is as the same as the original
graph and the negative sample (X, A) is the graph augmented by a
corruption function:

(X.A) ~ C(X.A) ()

We use node permutation as the corruption function which shuffles
the features between nodes. As illustrated in Fig. 5, the corrupted
graph has exactly the same structure as the original graph except
that the nodes are swapped. Next, we generate the representation

iz} for each node i by aggregating features from the node and its
neighbors via the graph encoder as Eq. (3):

H = GCNs(X, A) 3

The graph-level representation s is summarized by a readout func-
tion as Eq. (4), which simply averages representations of all the
nodes in the graph:

1 Y.

R(H) =U(NZhi) ()
i=1

Then, as shown in Eq. (5) below, we use a simple bilinear scoring

function to score the mutual information between local information

l_ii and the global summary §, and a logistic sigmoid nonlinearity to
convert scores into probabilities:

D (hi.3) = o (AT W5) 5)
Finally, we minimize the Jensen-Shannon divergence between the

probabilities of (}_{i, 5) being a positive example and (fli, 5) being a
negative example:

L= NwlLN (iE(X’A) [IOgD (i 3)]
i=1

N
+ Z E(x.a)

J=1

log D (ﬁ B 3)] ©)

By updating the parameters with gradient descent, informative
node representations will be gradually learned throughout our self-
supervised pre-training. After a few hundred steps, the pre-trained

Accelerated Device Placement Optimization with Contrastive Learning

ONS©)

(X,A) Graph
Neural
Network

corruption

ICPP °21, August 9-12, 2021, Lemont, IL, USA

(H, A—D(h;, 5——

L()
Contrastive Loss

VAN

Figure 5: An illustration of pre-training graph neural networks with contrastive learning. Node permutation is used as the data
augmentation method to generate negative samples. A global summary of the graph is generated by averaging representations
of all nodes. Contrastive loss is calculated to maximize the mutual information between local representations and the global

summary.

graph encoder can be directly used for our downstream task, device
placement optimization.

Notice that, there are many choices of the corruption function,
readout function and loss function in contrastive learning. In Mars,
we simply follow the design used in Deep Graph Infomax (DGI)
[30] for proof-of-concept. In general, other contrastive learning
methods should also work for Mars.

3.3 Placer Design

After generating the node representations with the graph encoder,
Mars uses a placer to process the representations further and learns
how to place the operations optimally. When designing the placer
model in Mars, we consider two popular neural network models
in natural language processing (NLP): the sequence-to-sequence
model [28] and Transformer-XL [5]. Both of them have been at-
tempted in the literature for designing the placer, achieving sat-
isfactory results [20, 21, 33]. Taking the node representation of
operations as input, these placers generate placements in differ-
ent ways. The sequence-to-sequence placer encodes all operations
and outputs the selected device for each operation one by one.
As the number of operations increases, it becomes less likely for
the sequence-to-sequence placer to encode all of them at once ef-
ficiently. Zhou et al. [33] use a Transformer-XL based placer to
encode and output the device of operations segment by segment,
therefore it avoids processing the long sequence in one shot. How-
ever, we found that the Transformer-XL based placer is a little bit
“heavy”. Even for the simplest workload, InceptionV3, it takes a few
thousands of training steps to converge.

Inspired by the sequence-to-sequence and Transformer-XL based
placer, we propose to deploy a new placer model, a segment-level
sequence-to-sequence model. It keeps the simplicity of the sequence-
to-sequence model, which only has a bidirectional long short-term
memory (LSTM) layer with an attention layer, and adopts the
segment-level sequence processing that divides operations into
small segments and places them at the segment level. As shown
in Fig. 6, s is the segment size, {El, }_{2 .. };n} is the node represen-
tation of operations and {p1, p2 ... pn} is the placement where p;

Table 1: Per-step training time (in seconds) of placements
found by the agent with a trained graph encoder and different
placers.

Models Seq2seq | Trf-XL | Seq2seq (segment)
Inception-V3 | 0.100 0.067 0.067
GNMT-4 2.040 1.449 1.440
BERT 12.529 11.363 9.821

is the device assigned for operation i. After encoding a segment
of operations {fll, l:z .. ES} via a bidirectional LSTM, we directly
predict (decode) the placement for this segment {p1, p2 ... ps} via
a unidirectional LSTM, such that the placer will focus on the seg-
ment currently under decoding. When the placer moves on to the
next segment, it will take the encoded hidden states of the pre-
vious segment as the initial hidden state. This enables the placer
to recall previous decisions when predicting the placement of the
next segment. By doing so, the placer will continuously encode
and predict the device of operations segment by segment until all
operations are placed. The segment size s for sequence dividing is
a hyperparameter, and we set it to 128 in Mars.

We evaluate these three placer designs experimentally with the
same set of workload benchmarks: Inception-V3, GNMT, and BERT!.
To eliminate the influence of the encoder, we train these three plac-
ers with fixed operation representations generated by the trained
graph encoder, and evaluate the per-step runtime of best place-
ments found by different placers. From the experimental results
shown in Table 1, unsurprisingly, the sequence-to-sequence placer
failed to find the best placement in all the benchmarks. The reason
is that the sequence-to-sequence neural network is not good at
processing long sequences, and it performs worse as the sequence
becomes longer. Interestingly, we observed that the segment-level
sequence-to-sequence placer outperformed the Transformer-XL
placer in BERT, the largest of the three benchmarks, while achiev-
ing almost identical performance in the other two benchmarks. As
BERT is a large and complex model, it is challenging for the placer

! The experimental setup will be described in the Section 4.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Hao Lan, Li Chen, and Baochun Li

D2s Pks+1 Pn

[& sTM |

BiLSTM BiLSTM

|

{h1,hy ...k}

{}_i.s+1a }_is+2 e EZS}

BiLSTM

|

—

{flksJA, Eks+2 NN hn}

Figure 6: An illustration of the segment-level sequence-to-sequence placer. The operation sequence is split into multiple
segments. A bidirectional L§TM is used to encode the segment of sequence, and a unidirectional LSTM is used to decode the
segment. The encoded hidden state of previous segment is used as the initial state of encoding new segment.

to discover optimal placement with acceptable training overhead.
The simplicity of the segment-level sequence-to-sequence placer
enables it to converge better than the Transformer-XL placer, gen-
erating a placement with a shorter per-step runtime for BERT, as
clearly shown in the table.

We also consider using a two-layer multilayer perceptron (MLP)
as the simplest placer. However, it easily overfits, gets stuck at a
local optimum and can never find a good placement. Based on the
empirical observations and insights, we incorporate the segment-
level sequence-to-sequence placer in our design, which is likely a
sweet spot between two-layer MLP and Transformer-XL to achieve
the best performance.

3.4 Joint Training with Reinforcement Learning

After pre-training the graph encoder with contrastive learning, we
randomly initialize the placer and jointly train the two components
of Mars in an end-to-end fashion using deep reinforcement learning.
Specifically, proximal policy optimization (PPO) [27] is employed
to update the policy of agent, which performs comparably or bet-
ter than state-of-the-art approaches while being much simpler to
implement and tune. PPO samples actions (placements) from the
output policy and measures the per-step time of placements in
a real-world environment (a multi-GPU machine). As shown in
Eq. (7), we use the negative square root of the per-step time of
placements as the reward. To estimate the advantage of placements,
we use the exponential moving average of rewards as a baseline and
calculate the advantages by subtracting the baseline from rewards:

Ry = —re
By = (1-p)Ry + pBs—q 7)
Ar = R; - B;

where r; is the per-step time of the placement sampled at training
step t, and Bj is equal to R; since there is no By. y is a hyper-
parameter of the exponential moving average. We set y to 0.99 for
all experiments.

During the training, the agent may generate some invalid and bad
placements. The invalid placements usually exceed the memory
constrain of devices (out-of-memory) and cannot be run, so we

assign an extremely long per-step time for them as a strong negative
signal, such as 100 seconds. The bad placements are able to run
but take much longer time than other placements. In some extreme
cases, evaluating a bad placement may take over 20 minutes. To
avoid wasting time on evaluating these bad placements, we apply a
simple rule to terminate the evaluation. For example, if a placement
of BERT takes longer than 20 seconds to finish a step, we will stop
the evaluation and mark it as a bad placement.

4 EXPERIMENTAL RESULTS

In this section, we evaluate Mars with three widely used deep neu-
ral network models, and compare our results to four baselines. We
analyze the training process of all RL-based methods to show why
Mars can find a better placement than the baselines. We further eval-
uate the improvement of training efficiency due to self-supervised
pre-training and discuss the generalizability of Mars.

4.1 Benchmarks and Baselines

We choose three typical deep neural network models for image clas-
sification and natural language processing tasks as our benchmarks
for evaluation:

1) Inception-V3. An image classification model designed by Google.
This model is relatively small and can easily fit into a single GPU. It
is one of the baseline benchmarks used in existing RL-based device
placement approaches in the literature. We use Inception-V3 to
evaluate the ability of an agent to find the best placement. The
batch size is set as 1.

2) Google’s Neural Machine Translation (GNMT). We use the 4
LSTM layers version with an attention layer, where each LSTM layer
has 256 hidden units. The sequence length is limited to the range
of 20 to 50. We increase the batch size from 128 to 256. This makes
it more challenging for the device placement problem, since the
model requires more than 12GB GPU memory during the training
which cannot fit into a single GPU. All the other settings are left as
the default.

3) Bidirectional Encoder Representations from Transformers (BERT),
which has a large number of operations and a complex design. It has

Accelerated Device Placement Optimization with Contrastive Learning

many variations of different sizes, BERT-Large, BERT-Base, BERT-
Small and so on. We use BERT-Base with a maximum sequence
length of 384 and a batch size of 24, which requires about 24GB
GPU memory. Under this setting, the model has to be split across
multiple GPUs and the communication between GPUs becomes the
bottleneck.

We compare the performance of Mars to four baselines, two with
pre-defined placements and two using state-of-the-art RL-based
methods:

1) Human Expert. We use the hand-crafted placements defined
in Google’s implementation for these models. For Inception-V3,
we use the implementation in the TF-Slim library. For GNMT, we
use Google’s NMT implementation, where each GNMT layer is
assigned to each device in a round-robin manner. BERT, also devel-
oped by Google, does not support multi-GPU training using model
parallelism by default.

2) GPU Only. This baseline places all GPU compatible operations
on a single GPU while running incompatible operations on CPUs.
This placement is only valid for smaller models such as Inception-
V3 in our benchmarks, and will trigger an Out-Of-Memory error
with larger models.

3) The grouper-placer structure [20]. With a hierarchical design,
the grouper-placer structure uses two neural network models, which
are jointly trained with reinforcement learning. The grouper is a
two-layer MLP and the placer is a sequence-to-sequence model
with an attention layer.

4) The encoder-placer structure [33]. The recent encoder-placer
structure uses GraphSAGE as the graph encoder to replace the
grouper in the grouper-placer structure, and an advanced sequence-
to-sequence model, Transformer-XL, is used as the placer.

4.2 Experimental Setup

Following the convention of existing work, we train Mars for device
placement using the following settings:

Hardware and software. The reinforcement learning environ-
ment in our training is a single physical machine, which has 4
NVIDIA P100 Pascal GPUs (each has 12GB RAM), 2 Intel E5-2650
v4 Broadwell @ 2.2GHz CPUs, and 125GB memory. For the soft-
ware environment, we use Python 3.6, CUDA 9.0 and TensorFlow
1.12 for running deep neural network models in our benchmarks.
Different from the environment, the agent of Mars is implemented
using PyTorch 1.4.0. After the agent sampled the placement from its
policy network, we will send the placement to the RL environment
and measure the per-step runtime on the physical machine.

Performance evaluation. We evaluate the performance of de-
vice placement using the per-step runtime in our benchmark work-
loads. During the training of our agents, we only run the benchmark
workload for 15 steps in each placement. When changing the place-
ment of a benchmark workload, it needs to be re-initialized and
warmed up for a few steps, which usually takes a longer time, so
we discard the first 5 steps and average the per-step time of the last
10 steps. After the placement is finalized, we train the benchmark
workload with the best placement for 1,000 steps and record the
average per-step runtime as the final result.

Architecture of the agent. As mentioned in Section 3, Mars
employs an encoder-placer structure. We explored a set of encoder

ICPP °21, August 9-12, 2021, Lemont, IL, USA

designs and found that three-layers of GCNs with 256 hidden units
performed the best. Our placer design in Mars is a segment-level
sequence-to-sequence model with an attention layer. It has a bi-
directional LSTM layer as the encoder and a uni-directional LSTM
layer as the decoder. Both hidden LSTM layers have a size of 512.
The attention mechanism we used is a context-based input attention
mechanism [2]. The length of the segment is set to 128 in our
experiments.

Training approach. Before training Mars with reinforcement
learning, we pre-train the graph encoder with contrastive learning
for 1000 iterations and save the parameters corresponding to the
lowest loss. Then, we use proximal policy optimization to train
the encoder and placer of Mars jointly. During the RL training,
we sampled ten placements from each policy generated by the
agent. For every 20 sampled placements, we shuffled them into
four mini-batches and performed updates on each of the individual
mini-batches. After repeating this for three epochs, the agent will
generate new policies with updated parameters. The clip ratio, €,
is set to 0.2, and the coeflicient of entropy is set to 0.001. We use
Adam optimizer with a learning rate of 0.0003 and gradient clipping
with a 1.0 norm.

4.3 Results and Analysis

The analysis of training process. We first compare the agent
training time for the three RL-based methods in Fig. 8. Then, we
analyze the training process of all approaches with the Inception-
V3 and GNMT-4 benchmark. Fig. 7 shows the per-step runtime
of placements found during the training process. We averaged
the per-step time of placements sampled from the same policy,
and discarded all the invalid placements and some extremely poor
placements with per-step runtime longer than 20 seconds.

As shown in Fig. 8, with self-supervised pretraining, Mars takes
much less time than the other two alternatives for placing Inception-
V3. As illustrated in Fig. 7a, Mars found the optimal placement for
Inception-V3 within 100 steps, while the grouper-placer structure
experienced a large number of invalid placements at the beginning
of training. After learning with 200 placements, it started to gener-
ate valid placements and tried to further optimize the placement.
Finally the grouper-placer structure found the optimal placement
after 600 steps. While Mars converged with the fastest speed, the
encoder-placer structure was much slower than either Mars or
the grouper-placer structure, which took about 2500 steps to fully
converge to the optimal placement for Inception-V3. In Fig. 8, we
observed that all RL-based methods were able to find the optimal
placement for GNMT-4 within 5 hours. Although the encoder-placer
structure converged first, as Fig. 7b shows, it fell into a local opti-
mum and failed to find a better placement until the end of training.
Both the grouper-placer structure and Mars found a good place-
ment at around the 200-th step. They kept exploring and finally
identified the best placement at the 450-th step. For placing BERT,
Mars trains the RL agent at the similar speed as the Grouper-Placer
baseline. However, it finds a much better placement than the other
two approaches.

From our results, we observed that with self-supervised pre-
training, Mars always benefited from a better starting point than
its rivals. It not only saves the training time of Mars but also helps

ICPP °21, August 9-12, 2021, Lemont, IL, USA

0.35
—— Grouper-Placer
0.30 Encoder-Placer
—_ Mars
3
5025
Q
& |
© 020 | i
£
=
2 0.15
o
2
wv
L 0.10
o]
-9
0.05
0.00
0 500 1000 1500 2000 2500
Training steps
(a) Inception-V3
10 —
i —— Grouper-Placer
W Encoder-Placer
—~ 8| i Mars
2] [
< ‘
=] Hh
) H
8 i
Z 6 it
Q i
£ i
ERI|
24l
2
¢
5
)
0

0 100 200 300 400 500
Training steps

(b) GNMT-4

Figure 7: Per-step runtime of the placements found during op-
timizing the benchmark workloads Inception-V3 and GNMT-
4 by different approaches.

Mars to find the best placement more easily. As a result, Mars
outperformed the grouper-placer structure and the encoder-placer
structure both in training efficiency and per-step runtime of the
final placement.

The training efficiency improved by self-supervised pre-
training with contrastive learning. To achieve better training
efficiency, contrastive learning is employed in Mars to pre-train the
graph encoder without interacting with a real environment which
is slow and expensive. To evaluate its benefit, we first compare
the per-step runtime of final placements found by the agent with
and without self-supervised pre-training. As presented in Table
2, the agent in both setups can identify similar final placements,
with self-supervised pre-training outperforming no pre-training.

Hao Lan, Li Chen, and Baochun Li

Al Mars
Bl Mars (no pretraining)

A Grouper-Placer
10 I Encoder-Placer

o

Training Time (hours)

InceptionV3

Model

Figure 8: The training time (in hours) of the agent with dif-
ferent reinforcement learning based approaches.

Moreover, with respect to training efficiency, self-supervised pre-
training shows a substantial amount of improvement and reduces
the training time by 13.2% on average, compare to no pre-training,
as shown in Fig. 8.

The reason is that contrastive learning can learn an informative
representation for the operations of benchmark workloads before
the agent start training with reinforcement learning. With learned
representations, the agent can explore the possible placement from
a better start point than a random initialization. For example, in
Fig. 7b, the per-step runtime of placements found by Mars are
all shorter than 4 seconds, even at the beginning of the training.
While both the other two RL-based methods generated many bad
placements longer than 10 seconds at first 50 steps. Evaluating
a bad placement would take 4 times of time compare to a good
placement. Thus, a better start point can save a substantial amount
of the training time in reinforcement learning. Furthermore, since
these representations encoded both the structure the computational
graph and the features of the operations deeply, the agent was able
to predict the placement with a better understanding. Hence, with
self-supervised pre-training, the agent can find a better placement
with less training steps.

The quality of final placements. As shown in Table 2, in the
comparison between Mars and the two RL-based alternatives, Mars
matches the performance (if it is the best) in Inception-V3, and
outperforms both alternatives in GNMT and BERT.

With Inception-V3, all three alternatives are able to find the best
placement, which is to place most of the operations on the same
GPU device. Such a placement achieves similar performance com-
pare to the GPU only baseline. The reason is that the computation
power of a single GPU device is almost sufficient to meet the com-
putation demand of this benchmark. The communication overhead
incurred by using more devices outweighs the benefits of more
computation power. The RL agents learned this insight and tried
to reduce the communication overhead as much as possible. Mean-
while, the RL agent also noticed that some operations are faster
when running on CPU. As a result, the best placement found by RL-
based methods is slightly better than the baseline GPU only. This

Accelerated Device Placement Optimization with Contrastive Learning

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Table 2: Per-step runtime (in seconds) of the best placements found by different approaches.

Models Human Experts | GPU Only | Grouper-Placer | Encoder-Placer | Mars | Mars (no pre-training)
Inception-V3 0.071 0.071 0.067 0.067 0.067 0.067
GNMT-4 1.661 OOM 1.418 1.437 1.379 1.396
BERT OOM OOM 12.661 11.737 9.214 11.363

benchmark is also used in [7, 20, 21], and Mars achieved identical
results reflecting the performance of the best possible placement.

With GNMT, Mars outperformed both its rivals in this bench-
mark workload, and all three alternatives found better placements
than the human expert, which reduced the per-step runtime by
14.6%, 13.4% and 17.0%. With respect to BERT, our most challenging
benchmark workload, the model is too large to fit into a single
GPU. We discovered that all the alternatives were able to find a
valid placement, but Mars again outperformed both state-of-the-art
alternatives by an even wider margin.

We observed that the improvements reported in our experiments
are not as significant as those reported in existing works. This is
most likely due to the differences in hardware and software used
in our experiments. The much more recent releases we used for
both our hardware and software may have dramatically reduced the
computation time in our benchmark workloads even without using
reinforcement learning agents, and the potential for improvement
in parallelizing these benchmark workloads across multiple devices
will therefore become less substantial.

Table 3: Per-step training time (in seconds) of placements
found by the agent pre-trained with similar and different
types of DNNss.

Unseen Direct | Generalized from | Generalized from
workloads | training similar type different type
Inception-V3 | 0.067 0.067 0.067
GNMT-4 1.379 1.422 1.472
BERT 9.214 10.127 12.426

The generalizability of Mars. As training the reinforcement
learning agent for device placement problem is expensive, the state-
of-the-arts generalize the agent by training it over a set of work-
loads, and using the learned policy to decide placement for unseen
workloads. To evaluate the generalizability of Mars, we setup two
scenarios in our experiments: the unseen workload has similar and
different types with the training workload, respectively. Instead
of predicting the placement for unseen workload directly, we fine-
tune the policy for 100 steps to improve the quality of generated
placement.

In Table 3, we compare the per-step runtime of the final place-
ments found by directly training and generalizing policy learned
from similar and different types of workload to unseen workload.
For generalizing to the similar type of workloads, we choose VGG16,
sequence-to-sequence and transformer as training workload respec-
tively; GNMT-4, Inception-V3 and VGG16 are selected for gener-
alizing to a different type of workload. For a fair comparison, we
use the same number of total training steps in the evaluation. We
first train Mars for optimizing the training workload until the agent

cannot find better placement for 100 steps, and fine-tune Mars for
the unseen workload for 100 steps. So the total training cost of
generalization of Mars would be the training cost for its training
workload plus 100 fine-tuning steps. Then, we use the same number
of steps to directly train Mars for optimizing the test workload from
scratch.

The result shows that Mars can generalize across different work-
loads, and the generalizability is intuitively better when the training
workload and unseen workload are of a similar type. However, in
terms of the per-step runtime of the final placement, the general-
ized agent is worse than direct training, especially for BERT. For
Inception-V3, both the agent generalized from similar and differ-
ent types can find the optimal placement for the workload. This is
because Mars converges within 100 steps for Inception-V3 when
directly trained from scratch, as shown in Fig. 7a. Therefore, 100
fine-tuning steps are sufficient for the generalized agent to con-
verge. For GNMT-4 and BERT, the agent requires more training
steps to find the best placement, and a better starting point can sig-
nificantly contribute to faster convergence. If we allow the agent to
fine-tune the policy with more training steps, it finally can achieve
similar performance as direct training. However, the overhead of
fine-tuning is close to training the agent from scratch.

Both generalization and self-supervised pre-training are trying
to initialize the agent at a good starting point, while self-supervised
pre-training can provide a decent starting point with much less
overhead. To conclude, Mars with self-supervised pre-training is
also a kind of “generalization”, where the agent is “generalized”
from maximizing mutual information of node representations to
optimizing device placement.

5 MORE RELATED WORKS

While Mars is focused on optimizing the placement of neural net-
works over multiple devices of a single physical machine, some
relate works try to speed up the training of the neural networks
in a distributed scenario. TicTac [11] accelerates a distributed deep
learning system by communication scheduling. It consists of two
heuristics for efficient scheduling and improves iteration through-
put by 20%. Priority-based Parameter Propagation (P3) [17] also
improves the training performance by better utilizing the available
network bandwidth. It splits the layers into smaller slices and syn-
chronizes them based on their priority independently. PipeDream
[10] combines traditional data parallelism with model parallelism
enhanced with pipelining. It automatically partitions a neural net-
work and pipelines them across multiple machines. HetPipe [23]
further improves this pipeline parallelism by considering the het-
erogeneity of devices when partitioning the workloads. It groups a
mixture of devices into a virtual worker such that each worker has
similar computational resources, and then partition and pipeline
the neural network across multiple virtual workers. Different from

ICPP °21, August 9-12, 2021, Lemont, IL, USA

these works, Mars is focus on single machine scenario which does
not involve the network. Further, Mars only uses model parallelism
which means there are no changes made to the original neural
networks’ architecture and also no staleness introduced.

6 CONCLUDING REMARKS

As neural network models keep growing in size and complexity,
training these large models requires multiple computation devices.
It becomes an important yet challenging research problem to find
an optimal way to partition a large model with a huge number of
operations and to place them on participating computation devices
so that the training workload completes in the shortest period of
time. In this paper, we have presented Mars, a unified reinforce-
ment learning framework using a pre-trained graph encoder to
encode features of operations in a neural network model into node
representations, as well as a segment-level sequence-to-sequence
placer to learn the best device placement using these representa-
tions. In particular, our design is based on a comprehensive analysis
and experimental evaluation of a rich set of design choices for the
model architecture and training approaches. We have implemented
and evaluated Mars with three benchmark workloads: Inception-
V3, GNMT, and BERT. Compared with existing work, Mars has
demonstrated its superiority in discovering better placements for
large GNMT and BERT models. For a relatively small workload (e.g.,
Inception-V3), Mars is able to find the optimal placement in the
smallest amount of time. We also analyzed the improvement of effi-
ciency due to self-supervised pre-training, and the generalizability
of Mars.

ACKNOWLEDGMENTS

The co-authors would like to acknowledge the gracious research
support from Huawei Technologies Canada Co., Ltd., as well as the
grant from the Louisiana Board of Regents under Contract Num-
bers LEQSF(2019-22)-RD-A-21 and LEQSF(2021-22)-RD-D-07, and
National Science Foundation under Award Number OIA-2019511.

REFERENCES

[1] Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. 2019. Learning Generalizable Device Place-
ment Algorithms for Distributed Machine Learning. In Proc. Advances in Neural
Information Processing Systems (NeurIPS).

[2] D.Bahdanau, C. Kyunghyun, and Y. Bengio. 2015. Neural Machine Translation

by Jointly Learning to Align and Translate. In Proc. International Conference on

Learning Representations (ICLR).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In

Proc. International Conference on Machine Learning (ICML).

[4] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E.
Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.
In Proc. Advances in Neural Information Processing Systems (NeurIPS).

[5] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V Le, and R. Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860 (2019).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In Proc. North American Chapter of the Association for Computational Linguistics:

Human Language Technologies.

Y. Gao, L. Chen, and B. Li. 2018. Post: Device placement with cross-entropy

minimization and proximal policy optimization. In Proc. Advances in Neural

Information Processing Systems (NeurIPS.

[8] Y. Gao, L. Chen, and B. Li. 2018. Spotlight: Optimizing Device Placement for
Training Deep Neural Networks. In Proc. International Conference on Machine
Learning (ICML).

(3

=

[7

=

[9]

[10

(1]

[12

(14

[15

[16

(17

=
&

[19

[20]

[21]

[22

[23

[24

[25

[27]

(28]

[33

Hao Lan, Li Chen, and Baochun Li

W. Hamilton, Z. Ying, and J. Leskovec. 2017. Inductive representation learning on
large graphs. In Proc. Advances in Neural Information Processing Systems (NeurIPS.
A. Harlap, D. Narayanan, A. Phanishayee, Vm Seshadri, N. Devanur, G. Ganger,
and P. Gibbons. 2018. Pipedream: Fast and efficient pipeline parallel dnn training.
arXiv preprint arXiv:1806.03377 (2018).

S. H. Hashemi, S. A. Jyothi, and R. H Campbell. 2018. TicTac: Accelerat-
ing distributed deep learning with communication scheduling. arXiv preprint
arXiv:1803.03288 (2018).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In Proc. IEEE International Conference on Computer Vision (ICCV).

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image
Recognition. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR).

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep representa-
tions by mutual information estimation and maximization. In Proc. International
Conference on Learning Representations ICLR.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay S.
Pande, and Jure Leskovec. 2020. Strategies for Pre-training Graph Neural Net-
works. In Proc. International Conference on Learning Representations (ICLR).
Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In Proc. ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining.

A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko. 2019. Priority-
based parameter propagation for distributed DNN training. arXiv preprint
arXiv:1905.03960 (2019).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. International Conference on Learning
Representations (ICLR).

Hao Lan, Li Chen, and Baochun Li. 2021. EAGLE: Expedited Device Placement
with Automatic Grouping for Large Models. In Proc. IEEE International Parallel &
Distributed Processing Symposium (IPDPS).

A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Quoc V. Le, and J. Dean. 2018. A
Hierarchical Model for Device Placement. In Proc. International Conference on
Learning Representations (ICLR).

A. Mirhoseini, H. Pham, Q. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M.
Norouzi, S. Bengio, and J. Dean. 2017. Device Placement Optimization with
Reinforcement Learning. In Proc. International Conference on Machine Learning
(ICML).

Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Kohli,
and Oriol Vinyals. 2019. REGAL: Transfer Learning For Fast Optimization of
Computation Graphs. arXiv preprint arXiv:1905.02494 (2019).

Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T. Nguyen, Seungmin Lee,
Jaesik Choi, Sam H. Noh, and Young-ri Choi. 2020. HetPipe: Enabling Large
DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration
of Pipelined Model Parallelism and Data Parallelism. In Proc. the 2020 USENIX
Annual Technical Conference (ATC).

F. Pellegrini. 2009. Distillating Knowledge about SCOTCH. In Combinatorial
Scientific Computing. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Ger-
many.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In Proc . ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD).

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously Large Neural Networks: The
Sparsely-Gated Mixture-of-Experts Layer. In Proc. International Conference on
Learning Representations (ICLR).

J. Shulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal
Policy Optimization Algorithms. https://arxiv.org/pdf/1707.06347. In Proc. Inter-
national Conference on Machine Learning (ICML).

L Sutskever, O. Vinyals, and Q. Le. 2014. Sequence to Sequence Learning with
Neural Networks. In Proc. Advances in Neural Information Processing Systems
(NeurIPS.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation
Learning with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).
arXiv:1807.03748 http://arxiv.org/abs/1807.03748

P. Velickovi¢, W. Fedus, W. L Hamilton, P. Lio, Y. Bengio, and R D. Hjelm. 2018.
Deep graph infomax. arXiv preprint arXiv:1809.10341 (2018).

Qizhe Xie, Zihang Dai, Eduard H. Hovy, Thang Luong, and Quoc Le. 2020. Un-
supervised Data Augmentation for Consistency Training. In Proc. Advances in
Neural Information Processing Systems (NeurIPS).

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang
Shen. 2020. Graph Contrastive Learning with Augmentations. In Proc. Advances
in Neural Information Processing Systems (NeurIPS).

Y. Zhou, S. Roy, A.i Abdolrashidi, D. Wong, P. C Ma, Q. Xu, M. Zhong, H. Liu,
A. Goldie, A. Mirhoseini, et al. 2019. GDP: Generalized Device Placement for
Dataflow Graphs. arXiv preprint arXiv:1910.01578 (2019).

https://arxiv.org/pdf/1707.06347
https://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	3 Design
	3.1 Encoder Design
	3.2 Pre-train Encoder with Contrastive Learning
	3.3 Placer Design
	3.4 Joint Training with Reinforcement Learning

	4 Experimental Results
	4.1 Benchmarks and Baselines
	4.2 Experimental Setup
	4.3 Results and Analysis

	5 More Related Works
	6 Concluding Remarks
	Acknowledgments
	References

