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This paper reports a high-resolution experimental study of the 3°[1, and 432; electronic states of the 3Rb,
dimer. In the experiment, rovibrational levels of the two electronic states were probed using the perturbation
facilitated optical-optical double resonance technique by exciting 3> Rb, molecules from thermally populated
levels of the ground X 12; state through intermediate levels of the mixed A'S ~ b%[1, electronic states. The
resonances of the probe laser were observed by detecting the laser induced fluorescence from the target states
to the a*x; triplet ground state. In addition, to confirm the triplet character as well as the vibrational quantum
number assignment of the states, for selected resonances the fluorescence to the @*s;" state was resolved and
bound-free spectra were recorded. From the observed term values for each state potential-energy curves were

constructed using the Rydberg-Klein-Rees method.
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I. INTRODUCTION

Interatomic potentials of alkali-metal dimers are of fun-
damental importance for the understanding and description,
among other things, of the formation of ultracold ground-
state molecules, Bose-Einstein and Fermi condensates, and
ultracold atom-molecule collisions Refs. [1-8]. From the
homonuclear alkali-metal dimers the lighter Li, [9-23] and
Na; [20,24-33] molecules have been studied in most detail.
A number of studies have been also devoted to the heavier
K, dimer [34—44]. The electronic structures of the heavi-
est homonuclear alkali-metal dimers Rb, [45-57] and Cs,
[58-65] are less well known due to experimental difficulties
associated with the relatively large densities of states as well
as the presence of strong perturbations and character mixing
arising from effects such as the spin-orbit interaction. There
are a number of ab initio studies of the Rb, dimer [66-76]
and even though the accuracy of such calculations has im-
proved significantly, they are not yet suitable for direct use
in experiments relying on precise knowledge of the energy
of levels and transitions. Thus, experimental results on the
electronic structure of the Rb, molecule are still highly de-
sirable. The singlet and triplet, X IE; [48,49] and &*xf [51],
ground states of the Rb, dimer as well as the electronic states
arising from the first excited atomic limit (5s + 5p) such as
the AIE,:r ~ b1, [48,50,53] and the B'[I, [47] states are
well described experimentally with high accuracy. In contrast,
there are only limited experimental data for the electronic
states of the rubidium dimer arising from higher atomic limits.
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Recently we have reported experimental observations of the
singlet 3'TT, and 612);r electronic states of the Rb, molecule
[77,78]. Building on these results in this paper we extend
our spectroscopic studies to the triplet 331'[g and 432); states

present in the same energy range 24 000—26 000 cm™!.

II. EXPERIMENT

The experimental setup is shown in Fig. 1. It is similar to
the setup used previously to study the 3'[T, and 6'%; elec-
tronic states of the Rb, molecule [77,78]. Briefly, rubidium
metal (Alfa Aesar 10315, 99.75%) with a natural abundance
ratio of the 3Rb (72.17%) and 8’Rb (27.83%) isotopes [79]
was loaded into a heat-pipe oven. Only transitions of the
85Rb, isotopologue of the rubidium dimer were probed in this
experiment. To contain the rubidium vapor in the center of the
heat-pipe oven [80] argon (Airgas UHP300, 99.999%) was
used as a buffer gas at 2-Torr pressure (room temperature).
The center of the heat-pipe oven was heated with electric
heaters to a temperature of 180 °C producing the Rb, dimer
at a pressure of approximately 1.8 x 107 Torr [81]. From
the temperature of the oven we estimate a Doppler linewidth
(full width at half maximum) for the pump transition of about
400 MHz [82].

Counterpropagating laser beams in a cascade
pump-probe configuration were employed to study the
24 000-26 000 cm ™' energy region as illustrated in Fig. 2. The
pump laser excited the molecules from thermally populated
rovibrational levels of the ground XlE; electronic state to

an intermediate level from the Alzj;r ~ b, states manifold.
The A'sF and b’[1, states strongly perturb each other due

©2022 American Physical Society


https://orcid.org/0000-0002-4401-2949
https://orcid.org/0000-0002-8855-4387
https://orcid.org/0000-0002-5476-8555
https://orcid.org/0000-0002-1018-9287
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032823&domain=pdf&date_stamp=2022-03-31
https://doi.org/10.1103/PhysRevA.105.032823

P. T. ARNDT et al.

PHYSICAL REVIEW A 105, 032823 (2022)

PMT with filters for 480-520 nm range Lock-in amplifier

Pierced
mirror
7
it N
Heat pipe oven
' V/ Todine cell
|
Mechanical
= modulator
Q

|

SPEX Probe Laser

Optical 1404
Fiber

Grating Spectrometer

Lock-in
amplifier

Mechanical
modulator

Pump Laser

BOMEM
DAS8

Fourier-Transform Spectrometer

FIG. 1. Schematic diagram of the experimental setup. Tunable
cw single-mode narrow-band (*~1 MHz) Coherent 899-29 titanium
sapphire (Lpump) and Coherent 699-29 with LDS 722 dye (Lprobe)
lasers are used as the pump and probe, respectively. Lyymp and Lyope
are in the counterpropagating configuration. Probe laser resonances
to the 3°[1, and 432; states are observed by monitoring LIF to the
a’s} state with a photomultiplier tube (R928P Hamamatsu Photon-
ics) detector attached to one of the side arms of the heat-pipe oven.
The bound-free fluorescence from the 3°[1, and 4°%; states was
recorded using a SPEX 1404 grating spectrometer with a photomul-
tiplier tube (R928P Hamamatsu Photonics) detector.

to their substantial spin-orbit coupling, inherited from the
5p atomic state with fine-structure splitting of its 2P, 2 and
2ps> doublet of 237.595cm ™! [83]. Thus, the rovibrational
levels of the AIEZr ~ B[, manifold have a mixture of singlet
and triplet multiplicity. This allowed us to access the triplet
exited states of the rubidium molecule using the perturbation
facilitated optical-optical double resonance (PFOODR)
technique [13,25,84] starting from levels of the X 12; ground
electronic state with pure singlet character. All intermediate
levels from the 'S} ~ b1, manifold used in the experiment
nominally belong to the A'S state; the singlet multiplicity
character is the dominant component, with substantial
admixture exclusively from the 5°[1o, component only.
Resolved laser induced fluorescence (LIF) spectra from
the intermediate levels to the ground X 12; state were
recorded with a Fourier-transform infrared spectrometer
(FTIR, Bomem DAS8) at a resolution of 0.01cm™'. The
FTIR spectrometer was calibrated with a uranium hollow
cathode lamp [85,86]. Excitation of a specific intermediate
level was confirmed by observing matching PR progres-
sions in the resolved fluorescence spectra of the P and
R branch A'S} —X 12;’ pump laser transitions. An exam-
ple for such spectra is given in Fig. 3 for the A'st ~
b1,(n’ = 148, J = 30) intermediate level. In addition, the
observed LIF resonances were matched with transition fre-
quency predictions from the term values of the X 12; [49]
and A'sF ~ b1, [50] states. The label n' (not a quantum
number), adopted from Ref. [50], denotes the coupled-channel
vibrational eigenstates by increasing energy of the A'S " and
bT1, mixed electronic states. For the angular momenta and
their projections on the molecular axis we follow standard
notations [87]; S total electron spin with projection X, L elec-
tron orbital angular momentum with projection A, R nuclear
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FIG. 2. Excitation scheme of the experiment and potential-
energy curves of the rubidium dimer. The pump laser excites
molecules from a single thermally populated rovibrational level of
the X 12; ground electronic state to an intermediate level with a
mixed multiplicity character from the A'S} ~ b1, manifold. The
probe laser further excites these molecules to the target 3°[1, and
432;r electronic states. The probe laser resonances are detected by
monitoring the fluorescence from the 3%, and 432); states to the
a*s} state. The potential curves used in the figure are ab initio calcu-
lations from Ref. [76]. The dotted curve is the Rb* + Rb~ Coulomb
potential energy e /(4w &yR).

rotational angular momentum, J=R+S+L total orbital
angular momentum excluding nuclear spin with projection
Q=X+ A,and N = R+ L with projection A.

The resonances to the 331'[g and 432; states were ob-
served by detecting LIF emission to the a’%," state in the
480-520-nm range using a photomultiplier tube (PMT, R928P
Hamamatsu Photonics) attached to one of the side arms of
the heat pipe. Color filters (Kopp Glass 4303 and 4305) were
used to suppress the amount of laser scatter and fluorescence
outside of the wavelength range of interest reaching the PMT.
The current output of the PMT was amplified with a lock-in
amplifier (SR850 Stanford Research) while the pump laser
beam was repetitively switched on and off at a frequency
of approximately 1 kHz using a rotating chopper (SR540
Stanford Research). The probe laser was scanned contin-
uously in the energy range 13300-14000cm™!, calibrated
using the iodine atlas [88,89] in a similar fashion as de-
scribed in Ref. [77], while the amplified output of the PMT
detector was recorded as a function of the laser frequency.
The iodine signal was amplified using a lock-in amplifier
(SR850) in the same fashion as the LIF signal. A large
number of resonances, with many of them accidental, were
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FIG. 3. Resolved LIF  spectra from the A'S’ ~
b1, (0 = 148,J' = 30) intermediate level used to confirm
the pump laser P and R branch resonances. The spectra
are recorded with a BOMEM DAS8 FTIR spectrometer. In
the main panel and the inset the fluorescences from the
A'sT ~ P11, =148,J' =30) < XIE;(v”: 1,J7=31) and
AlsF ~ b1, (n = 148,J" = 30) « Xlij;(v” =1,J" = 29) pump
excitations are indicated with solid blue and dashed red lines,
respectively.

observed in each probe laser scan due to the high density of
rovibrational levels of the rubidium molecule. To distinguish
the probe laser resonances originating from the specific tar-
get A'sF ~ b[1,(n',J') intermediate level from all other
resonances, each probe laser scan was acquired twice with
the pump laser at A’} ~ b’I1,(0', J') < X'S; (0", J 4+ 1)
and A's; ~ PIL,(,J") < X' (", J = 1) transitions,
respectively. Only the probe laser resonances observed at
the same frequency with similar intensity and line shape for
both pump branches were considered as originating from the
A'st ~ bP11,(n', J') intermediate level.

In the probe laser scans vibrational progressions of two
electronic states were observed with each vibrational transi-
tion containing P and R rotational branches. From the mixed
A’y ~ b’[1, intermediate levels excitations to singlet as well
as triplet states are possible. To determine the electron-spin
multiplicity of the excited states, bound-free fluorescence [90]
from selected rovibrational levels to the repulsive part of the
a’sF state potential was recorded at a resolution of ~ 0.75
nm using a SPEX 1404 grating spectrometer with fully open
(3-mm-width) slits. The LIF from the side arm of the heat pipe
was directed, with the aid of a set of mirrors and lenses, to the
entrance slit of the spectrometer. The spectra were recorded
by scanning the spectrometer while the pump and probe laser
were held on resonance. An example spectrum illustrating the
structure and origin of the observed bound-free fluorescence
is given in Fig. 4. Well-developed oscillatory fluorescence
features [90,91] were observed in the recorded spectra of
the 331'[g and 432]; states (see Fig. 5), a clear indication of
a triplet spin multiplicity. In contrast, this is not the case
for singlet states since the transitions to the a’s; state are
not directly allowed and instead the bound-free fluorescence
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FIG. 4. Example bound-free spectrum from v = 12 of the 4322’
electronic state to the repulsive region of the a’s state potential. (a)
The intensity of bound-free emission from a bound level to a repul-
sive potential on which the molecule dissociates into two free atoms
is proportional to the probability distribution of the excited-state
wave function [90]. The energy range of the spectrum is determined
by the term energy of the emitting level and the potential-energy
curve of the lower electronic state. (b) Experimentally recorded
bound-free spectrum from the 432;'(1) =12,J =11) level.

arises due to coupling and collisional transfer with nearby
excited triplet states. An additional important application of
the observed bound-free spectra was their use in assignment
of the vibrational quantum number for the observed lev-
els by counting the nodes [90] present in each spectrum.
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FIG. 5. The resolved bound-free emission for the first 11 vi-
brational levels of the 3°[T, (left) and the 4’ (right) electronic
states. The bound-free spectra for the remaining observed vibrational
levels are included in the Supplemental Material [98]. The number of
countable nodes is indicated on the left side of each spectrum. The
bound-free spectrum (v = 4) of the 3°T1 ¢ State showing the onset of
the vanishing node is highlighted with a dotted oval.
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FIG. 6. A probe laser excitation spectrum of the 432;(v =11)
vibrational level from the A'S} ~ b’I1,(n’ =106, J' =70) in-
termediate level. In addition to the main (parent) Py, and Ry
lines, satellite lines due to collision-induced AJ even rotational
energy transfer (RET) in the intermediate level are observed.
The solid (blue) and dashed (red) traces correspond to a pump
laser resonant with the P;; and Rgo excitations to the A‘E;r ~
b1, (n' = 106, J' = 70) intermediate level from the X'S 5 (v” = 0)
ground-state vibrational level, respectively.

Using ab initio predictions [76] in conjunction with the
electronic and rotational transition selection rules for di-
atomic molecules [92] applied to the triplet 5°[T,, component
of the mixed intermediate levels, the two observed states
were identified as the 331'[g and 432:(3,+ electronic states. A

good representation for the °[T states of Rb, is Hund’s case
(a) [93]. Thus, on account of the AX =0 selection rule
the probe transitions observed for the 3°I1, state must be
to its 2 =0 (AQ = AX + AA = 0) component (3*ITo; <
AIEI ~ bTy,). This is further corroborated by the absence
of weak Q branch transitions in our spectra. In Hund’s case
(a) °My <My transitions have only P and R branches, while
3y <31, and 31, <11, transitions in addition exhibit a
weak Q branch [92].

In addition to the direct probe laser resonances, a number
of collisional satellites (see Fig. 6) as described in previous
experiments in heat-pipe ovens [94-96] were observed. In our
case the satellite lines occur because of inelastic J changing
collisions between Rb, molecules excited to the intermediate
level and argon or rubidium atoms present in the heat pipe.
A spectrum observed due to collisionally induced transfer
between levels, in general, is a result of an ensemble average
of binary collisions with statistical distribution of parameters
such as the relative collision velocity and initial orientation
of the colliding partners. Thus, the rules for transitions be-
tween levels of a molecule arising from collisions with other
atoms or molecules lack the rigor of radiative transitions.
Nevertheless, by considering the symmetry of the initial and
final states, propensity rules often can be obtained. In the
discussion below we derive the propensity rule for the J-
changing collisions observed in our experiment by following
the general analysis given in Refs. [87,92]. The 35Rb nuclei
are fermions with a nuclear spin of 5/2. Therefore, the total
molecular wave function g, of the 85Rb, molecule must be

antisymmetric (Pauli exclusion principle) under the action of
the nuclei exchange operator Pj,, i.e., P12 Viotal = —Vtotal- 1N
most cases it is possible to write Vo1 = ¥ s, Where Yy is
the nuclear-spin component of the total wave function and ¥
contains all other, such as electron-spin, orbital, vibrational,
and rotational, components. The possible values of the total
nuclear spin, I, for the 85Rb2 molecule are 5, 4, 3,2, 1, and O.
The ortho nuclear-spin configurations (/ = 5, 3, 1 and statis-
tical weight g = 21) have symmetric 1,5 functions, while the
para nuclear-spin configurations (I =4, 2, 0 and statistical
weight g = 15) have antisymmetric ¥, functions. When we
consider Pj, acting only on ¥ we have P,y = £y, where
the symmetric positive states are labeled as s and the antisym-
metric negative states are labeled as a. The symmetry of the
rotational levels of the A'Y M* state, the dominant character of
the intermediate levels used in the experiment, alternate with
J (even J levels have a symmetry and odd J levels have s
symmetry) [87]. Therefore, for Y to be antisymmetric the
rotational levels of the A'SF state with a symmetry (even J)
must be associated with ortho nuclear-spin states and con-
versely s symmetry rotational levels (odd J levels) must be
associated with para nuclear-spin configurations. Selection
rules stipulate that the total symmetry (parity) of the molecule
must be rigorously preserved during transitions, including
transitions arising from collisions. Collisions that change the
nuclear-spin symmetry are rare [92,97], indicating that the
symmetry of ¥ is preserved during most collisions. Therefore,
during collisions a propensity for symmetric-symmetric (s <>
s) and antisymmetric-antisymmetric (a <> a) transfer exists
while transfer between symmetric and antisymmetric states
(s «» a) is strongly suppressed (see p. 131 of Ref. [92]). From
this follows that only even J changing collisional satellite
lines, AJ = £2, 4, ..., will be observed in the experiment.
The collisional lines enhance the rotational data acquired for
each observed vibrational level of the two electronic states.
The steps in the procedure of assigning their rotational quan-
tum numbers are discussed in detail in Ref. [78].

II1. RESULTS AND ANALYSIS

The 3°11 ¢ and 432;r states of the Rb, molecule lie in an en-
ergy region with a high density of electronic states (see Fig. 2)
as predicted by ab initio calculations [75,76] and previous
experimental observations [77,78]. The interactions between
the electronic states of gerade symmetry 3'M,, 5'=}, 6's,

3’M,, and 4°S} in this range cause perturbations of their
rovibrational levels. In addition, ab initio predictions indi-
cate especially strong interactions between these states around
26000 cm~! which become evident by the unusual features
such as avoided crossings and secondary wells present in
their adiabatic potential curves. Nevertheless, in our experi-
mental observations we were able to discern two vibrational
progressions which we have assigned to the 3°[T, and 432g+
electronic states. The rovibrational energy data observed in
the experiments for the 331, and 432];r states are illustrated in
Fig. 7. The rotational quantum numbers in the plots, J for the
331'18 state (Hund’s case (a)) and N for the 4328+ state (Hund’s
case (b)), were derived from the rotational quantum number
of the intermediate level A'SF ~ br1,(x', J) for the P and
R probe laser excitation branches as J (or N) =J' — 1 and
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FIG. 7. The observed rovibrational levels of the (a) 331'Ig and
the (b) 4’z electronic states. For the 3’1, state, 400 rovibrational
levels, spanning the range of the vibrational quantum number v = 0
through 27 and the rotational quantum number J = 0 through 79. A
total of 506 rovibrational levels in a similar range of vibrational and
rotational quantum numbers were observed for the 432; state.

J' + 1, respectively. The term energy of each of the observed
levels along with details of the excitation pathways used to
access them are given in the Supplemental Material [98].

The vibrational quantum number is typically very difficult
to obtain in this type of spectroscopic study due to the lack
of selection rules for vibrational transitions. Nevertheless, in
this case we were able to create assignment for the vibrational
quantum numbers of the observed levels from the experimen-
tally measured bound-free spectra presented in Fig. 5. An
unusual behavior in the bound-free spectra is observed going
from v = 3 to 4 for the 331'[g state (see Fig. 5) where one
of the nodes vanishes and the node count for the vibrational
levels with v > 4 is v—1. Similarly, a node vanishes in the
bound-free spectra of the 432; state going from v = 16 to 17.
There are several possible causes for such puzzling behavior,
but none appear to give satisfactory explanation. For example,
if a shelf or second minimum develops in the potential curve,
it will strongly affect the bound-free spectrum due to an onset
of sampling at longer R range of the upper state rovibrational
wave function. We believe this is not likely in our case since
the observed vibrational spacing is not consistent with the
shelf or second minimum region. Moreover, these features
are not present in the corresponding energy range of either
the ab initio curves of Ref. [76] or the experimental potential
curves derived in this paper. Another possible cause is a rapid
decrease in the electronic transition dipole moment function
of the upper states with the a*s | state in a relatively narrow
R range near R., where the large momentum of the molecules
results in closely spaced nodes. Then, the combination of low
amplitude and close spacing can lead to unresolved nodes in
the experimental bound-free spectra. Unfortunately, we can-
not further explore this possibility since the transition dipole
moment functions of the 3’1, and 4’5} states with the a’%,F

state are not known. In addition, no obvious low intensity
range in the bound-free spectra is observed. A third alternative
is an interference effect due to borrowed oscillator strength
from another triplet state that has an allowed transition to
the a’s" state. The drawback of this hypothesis is that no
additional triplet states were observed in our experiments.

The calculations described below were carried out us-
ing the computational package OPTIMIZER [99]. The main
package, along with the library of application programs for
quantum-mechanical simulations and analysis of molecular
spectra, is freely available for download [100]. The project
OPTIMIZER is continually being developed and expanded. In
this context, we would like to mention that many of our pre-
vious analyses of alkali-metal dimers also used OPTIMIZER
[39,40,43,51,59,61,64,77,78,101-103].

Following the assignments of the vibrational and rotational
quantum numbers of the observed term values the data for the
331'[g and 432];r states were fitted by a least-squares method
with

Toy=Y Y@+ /DM J(J+1)— Q2+ S5+ H—3x%
k,l

(1a)

and

Toy=) Y+ 12 [NN+1)— AT,  (1b)
k,l

the Dunham expansion [104] equations for Hund’s cases (a)
and (b) [92], respectively. A series of fits in which a balance
between improvements in the fits and statistical significance
of newly added constants were carried out to determine the
optimum set of coefficients for each state. Considering that all
the experimental results were acquired under the same condi-
tions, equal weights were used for all data points in the fitting
process. The final results of the fitting process for both states
are presented in Table I. Once the Dunham coefficients were
determined, the potential-energy curves of the states were
generated by utilizing the first-order semiclassical Rydberg-
Klein-Rees (RKR) method [105-108]. The results for the
turning points Ry, and Ry, of the potentials together with
the G, + Yoo = Y, Yeo(v + 1/2)* values (i.e., the values of
the potential-energy functions relative to their minima) are
tabulated in Tables II and III for the 3% gand 432;r states. The
tables include the effective vibrational quantum numbers at
the bottoms of the potential wells, v = —0.5001 and —0.4959
for the 331'[g and 432;r states, respectively. Their difference
from —1/2 indicates that the Kaiser correction [109,110] was
embedded into the RKR algorithm. The RKR and ab initio
potentials [76] for both states are plotted in Fig. 8.

Our experimental values for the molecular constants, 7,
w,, and B,, are generally in line with the ab initio predictions
as illustrated in Table IV. Nevertheless, it should be noted
that the experimental B, values are consistently smaller than
the ab initio predictions. This is reflected in Fig. 8§ where
the experimental potentials are shifted to larger internuclear
distance relative to the theoretical curves from Ref. [76].
We note that at the equilibrium internuclear distance of a
molecular potential R, and B, are related according to the
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TABLE I. Dunham expansion coefficients (in cm™") of the 31,
and the 43§]g+ electronic states of Rb, obtained by direct fit of the
experimental data. The last two rows represent the estimates based

TABLE III. RKR potential of the 432:g+ state generated from the
Dunham coefficients listed in Table I.

on the approximate correlations [104,109,111-113]: Yy, = Tt v Ruin(A) Riax (A) G, + Yy(em™)
2y2 3
B2 + e and Y5, = —4. —0.4959 R, = 4.786005 (821) A 0
0 4.663113 4922381 23.397
k [ Y, for 331'[g Y., for 432g+ 1 4.578073 5.034438 69.364
2 4.521998 5.117130 114.177
T, + Yoo 24268.409 (138) 24294.789 (349) 3 4.478086 5.187118 158.242
Y1 44.2151 (561) 47.6712 (2628) 4 4441418 5.249235 201.829
Y5 —1.6451 (742) x 107! —1.04188 (6954) 5 4.409624 5305817 245.094
Y3 1.0336 (380) x 102 1.30715(8489) x 107! 6 4381277 5358289 288.111
Yo —3.0025 (655) x 10~ —9.42103 (52195) x 1073 7 4.355416 5.407634 330.893
Yso 3.16996 (1569) x 10™* 8 4331351 5.454572 373.413
Yoo —3.93547(18310) x 10° ¢ 4.308582 5.499631 415.625
Yo 1.6767 (62) x 1072 17335 (59) x 107 10 4.286750 5.543191 457.475
i —8.79(138) x 107 —1.101 (90) x 107 11 4.265611 5.585505 498.919
Y5, 8.17 (144) x 10 2.50(37) x 10°¢ 12 4.245012 5.626713 539.925
Y3 —2.730 (445) x 1077 13 4.224884 5.666854 580.490
Yo 1.79 (88) x 1078 —9.6(71) x 107 14 4.205220 5.705882 620.635
15 4.186067 5.743680 660.410
Yo 0.0046 (90) —0.1942 (191) 16 4.167503 5.780082 699.893
Yy, —9.64(10) x 107 —9.17(15) x 10~ 17 4.149624 5.814900 739.185
18 4.132515 5.847962 778.401
19 4.116229 5.879141 817.662
20 4.100763 5.908401 857.082
21 4.086036 5.935830 896.751
22 4.071867 5.961673 936.714
TABLE II. RKR potential of the 33ng state generated from the 23 4.057960 5.986365 976.958
Dunham coefficients listed in Table 1. 24 4.043879 6.010559 1017.378
o o o 25 4.029025 6.035182 1057.754
v Ruin(A) Rmax(A) G, + Yoo(cm™) 26 4.012580 6.061510 1097.722
—0.5001 R, = 4.866349 (898) A 0 27 3.993417 6.091331 1136.741
0 4.738071 5.006532 22.072
1 4.650265 5.116445 65.990
2 4.591769 5.194927 109.664 fol]owing equation [87]:
3 4.544887 5.259856 153.140 _2
4 4.504562 5.316479 196.460 _hxlo— 1 @)
5 4.468538 5.367252 239.656 ~ 8xluc  RY
6 4.435601 5.413597 282.755
7 4.405025 5.456452 325775 where B, is in cm™~! units while all physical constants are
8 4.376345 5.496502 368.727 in SI units. The reduced mass of the $Rb, molecule is n=
9 4.349252 3.534280 411.617 m(gSRb)/Z =7.0499797224 x 1072 kg (42.4558 962 amu)
10 4323532 5.570225 454.442 [79]. The systematic discrepancy in R illustrated in Fig. 8
11 4.299039 5.604717 497.190 is possibly an indication of incompletely or incorrectly ac-
12 4.275666 5.638097 539.846 counted couplings in the ab initio calculations. This is further
13 4.253341 5.670675 582.385 corroborated by the discrepancy between the ab initio and
14 4.232012 5.702747 624.774
15 4211645 5.734596 666.975 TABLE 1V. Comparisons of the experimental molecular con-
16 4.192216 5.766498 708.943 stants of the 3°TT, and the 4’5" states with theoretical predictions.
17 4.173712 5.798730 750.623 Note that the B, values listed for Ref. [75] were calculated from the
18 4.156126 5.831570 791.955 R, values given in the reference using Eq. (2).
19 4.139455 5.865302 832.872
20 4.123703 5.900224 873.299 State T, B,
21 4.108872 5.936648 913.153 -
23 4.081996 6.015372 990.780 3, 24276.5 0.01750 [76]
24 4.069959 6.058439 1028.350 24232 0.01720 [75]
25 4.058861 6.104561 1064.952 24294.983 47.6712 0.017335 This paper
26 4.048697 6.154252 1100.460 432;r 24 3237 0.01800 [76]
27 4.039458 6.208112 1134.752 24313 0.01770 [75]
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FIG. 8. Potential-energy curves of the Rb, 3°[T, and 432; elec-
tronic states. The solid lines are ab initio calculations from Ref. [76]
and the RKR results are represented as circles.

RKR curves for the 3°T1 ¢ state above 25 300 cm™'. The theo-
retical calculations for 3°TT, predict a barrier and a secondary
well. In contrast, our RKR curve in this range appears to
suggest a simple broadening of the potential or the existence
of a shelf.

The presence of perturbations in the observed term values
is evident in the Dunham fit residuals plotted in Figs. 9 and
10 for the 31, and 4°%;" states, respectively. Indicative of
this are the clearly observed rotational dependences of the
residuals of some of the vibrational levels. This is expected for
highly excited electronic states of Rb, due to the high density
of states and the presence of various allowed nonadiabatic
couplings. For both states the perturbations are enlarged above
25300 cm™~". Similar perturbation enhancement has been pre-
viously observed in the same energy region for the 311'[g and
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FIG. 9. Dunham expansion fit residuals of the observed 3°IT,
state rovibrational term values.
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FIG. 10. Dunham expansion fit residuals of the observed 432:g+
state rovibrational term values.

612);r states [77,78]. Thus, it can be concluded that in this
energy range the 3'TI,, 6'SF, 3’1, and 4’ states strongly
perturb each other. The current absence of details about the
interactions that cause these perturbations prevents the use
of coupled-channel methods [50,63,65,114,115] for global
simultaneous analysis of the perturbing states.

IV. CONCLUSIONS

We have observed a large set of rovibrational levels of the
3’[, and 4’5" states of the Rb, dimer using the PFOODR
technique. Well-defined Condon structures were observed in
the resolved bound-free fluorescence from the laser-populated
upper levels to the repulsive region of the a*s | state potential.
This allowed us to determine the vibrational quantum number
assignment of the observed states as well as to confirm their
triplet character. The experimental observations reveal the
presence of many perturbations in the observed energy range
of the 3°[T, and 432; states. In addition, the strong enhance-
ment of the perturbations around 25300 cm~! is compelling
evidence for the existence of avoided crossings of potential-
energy curves in this range. In spite of the irregularities in
the observed data due to the presence of perturbations, we
were able to construct potential curves for both states using
the Dunham expansion and the RKR method.
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