
Prophet: Speeding up Distributed DNN Training with
Predictable Communication Scheduling
Zhenwei Zhang⇤, Qiang Qi⇤, Ruitao Shang⇤, Li Chen†, Fei Xu⇤
⇤Shanghai Key Laboratory of Multidimensional Information Processing,

School of Computer Science and Technology, East China Normal University, Shanghai 200062, China.
†School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.

⇤fxu@cs.ecnu.edu.cn, †li.chen@louisiana.edu

ABSTRACT
Optimizing performance for Distributed Deep Neural Network
(DDNN) training has recently become increasingly compelling,
as the DNN model gets complex and the training dataset grows
large. While existing works on communication scheduling mostly
focus on overlapping the computation and communication to im-
prove DDNN training performance, the GPU and network resources
are still under-utilized in DDNN training clusters. To tackle this
issue, in this paper, we design and implement a predictable com-
munication scheduling strategy named Prophet to schedule the
gradient transfer in an adequate order, with the aim of maximizing
the GPU and network resource utilization. Leveraging our observed
stepwise pattern of gradient transfer start time, Prophet �rst uses
the monitored network bandwidth and the pro�led time interval
among gradients to predict the appropriate number of gradients
that can be grouped into blocks. Then, these gradient blocks can be
transferred one by one to guarantee high utilization of GPU and
network resources while ensuring the priority of gradient transfer
(i.e., low-priority gradients cannot preempt high-priority gradients
in the network transfer). Prophet can make the forward propaga-
tion start as early as possible so as to greedily reduce the waiting
(idle) time of GPU resources during the DDNN training process.
Prototype experiments with representative DNN models trained
on Amazon EC2 demonstrate that Prophet can improve the DDNN
training performance by up to 40% compared with the state-of-the-
art priority-based communication scheduling strategies, yet with
negligible runtime performance overhead.

CCS CONCEPTS
•Computer systems organization!Distributed architectures;
Neural networks; • Theory of computation! Scheduling al-
gorithms.

KEYWORDS
distributed DNN training, communication scheduling, gradient
transfer, resource utilization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’21, August 9–12, 2021, Lemont, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472467

ACM Reference Format:
Zhenwei Zhang⇤, Qiang Qi⇤, Ruitao Shang⇤, Li Chen†, Fei Xu⇤. 2021. Prophet:
Speeding up Distributed DNN Training with Predictable Communication
Scheduling. In 50th International Conference on Parallel Processing (ICPP ’21),
August 9–12, 2021, Lemont, IL, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3472456.3472467

1 INTRODUCTION
Deep Neural Network (DNN) has widely been used in a variety of
applications such as natural language processing, image processing,
etc. As DNN model training requires a large amount of data and the
model structure gets increasingly complex, the available memory
space and computational power of a single machine become more
stringent [20]. Accordingly, it becomes compelling to train DNN
models in a distributed manner [7], as big IT companies have re-
leased various Distributed DNN (DDNN) training frameworks such
as TensorFlow [1], MXNet [6], PaddlePaddle [19], Horovod [23].
As a result, optimizing DDNN training performance has received
much research attention recently.

To execute DDNN training jobs in parallel, there are two parallel
schemes including data parallelism [13] and model parallelism [16].
The former one refers to the scheme that all nodes in the training
cluster run the whole DNN model, and the training data is split
into several chunks for distributed computation. The latter one
indicates that cluster nodes run di�erent parts of the DNN model
separately, and thus requires careful partitioning of the DNNmodel.
In general, the most common scheme of DDNN training is data
parallelism with the Parameter Server (PS) architecture [17]. The
PS is responsible for maintaining the up-to-date model parameters,
while workers are responsible for computing forward and backward
propagation gradients using the latest parameters pulled from the
PS, and periodically exchanging and updating the model parameters
via the network of training clusters [5].

Unfortunately, the network communication of updating model
parameters on the PS nodes always becomes a bottleneck, and thus
the communication can block the computation of workers, which
inevitably under-utilizes the GPU resources of worker nodes [18].
Though recent high-speed and low-latency network techniques
such as Remote Direct Memory Access (RDMA) can alleviate such
performance bottleneck, it is reported that RDMA cannot work
well with small-sized DNN models [11]. Several research e�orts
(e.g., Poseidon [29]) are dedicated to overlapping the backward
propagation with the gradient push process, and integrate such
a communication approach into MXNet [6]. Even with enabling
such a naive communication scheduling method above, the GPU
and network resources can still be under-utilized. As evidenced

https://doi.org/10.1145/3472456.3472467
https://doi.org/10.1145/3472456.3472467

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zhenwei Zhang⇤ , Qiang Qi⇤ , Ruitao Shang⇤ , Li Chen† , Fei Xu⇤

by our motivation experiment of training ResNet152 with 4 EC2
instances using MXNet (i.e., Sec. 2.2), the GPU utilization of worker
nodes can be totally idle over 50% of the iteration time, and the
network resources can almost be idle during the computation of
workers. Such resource under-utilization mainly originates from
delaying the high-priority gradient transfer tasks, and thus the
workers cannot start forward propagation until the updated model
parameters have been pulled from the PS.

To accelerate the DDNN training process, there have been recent
works (e.g., P3 [10], TicTac [8]) devoted to explicitly scheduling the
transfer of high-priority gradients (e.g., gradient 0), so as to start
the pull operations as early as possible. However, such a communi-
cation scheduling approach can inevitably bring much performance
overhead due to small-sized gradient partitions (as evidenced by
Sec. 2.2). Several recent works (e.g., ByteScheduler [21]) focus on im-
proving the network resource utilization by transferring a credit
size of gradients at a time. Nevertheless, such a credit-based com-
munication scheduling method is likely to sacri�ce the transfer
priority of gradients, and the auto-tuning process of credit size
can signi�cantly degrade the training performance (as evidenced
by Sec. 2.2). Accordingly, the existing communication scheduling
strategies for DDNN training above are mainly based on gradient
prioritization or partitioning, and such static con�gurations of par-
tition size and credit size can hardly adapt to the dynamic network
environments during the DDNN training [26]. As a result, there
has been scant research attention paid to jointly improving the
GPU and network resource utilization and ensuring the priority of
gradient transfer (i.e., starting the forward propagation as early as
possible) to speed up the DDNN training process.

To �ll this gap, this paper presents a predictable communica-
tion scheduling strategy named Prophet to improve the GPU and
network resource utilization in DDNN training clusters, while guar-
anteeing the priority of gradient transfer. Speci�cally, we make
three contributions in Prophet as follows.

B First, we empirically identify and analyze the stepwise pattern
of gradient transfer start time for DDNN training jobs. We build a
DDNN training performance model in terms of gradient transfer
order to illustrate that, the root cause of low resource utilization is
actually the long wait time of GPU resources, which is essentially
caused by the inadequate communication scheduling.

B Second, we design a simple yet e�ective communication sched-
uling strategy to schedule the gradient transfer in an adequate
order. Speci�cally, Prophet uses the pro�led gradient time interval
and the periodically monitored network bandwidth to assemble an
appropriate number of gradients into gradient blocks. It preempts
the transfer of high-priority gradients (i.e., ensuring the priority
of gradient transfer) while guaranteeing high GPU and network
resource utilization.

B Finally, we implement a prototype of Prophet based on an
open-source project named BytePS [12] and conduct extensive pro-
totype experiments with representative DNN models on Amazon
EC2. Experiment results demonstrate that Prophet can improve the
DDNN training performance by up to 40% compared with the state-
of-the-art priority-based communication scheduling strategies (e.g.,
ByteScheduler [21], P3 [10]).

The rest of the paper is organized as follows. Sec. 2 analyzes the
root cause of the low GPU utilization of worker nodes in DDNN

A1 B1 C1

B
C

A

A1 B1 C1

Parameter Server

Worker 1

Calculation

PUSH to PS

PULL from PS

Receive gradient
data from each
worker, and update
parameters

A1 B1 C1 Forward Propagation

A2 B2 C2

A2 B2 C2 Worker 2

Calculation

PUSH to PS

PULL from PS

A2 B2 C2 Forward Propagation

overlapping

Figure 1: Illustration of scheduling communication data (i.e., gradients or param-
eters) for one training iteration with the PS architecture. For example, A, B, C are
communication data.

training clusters. Sec. 3 leverages the gradient transfer order and
gradient transfer start time to build a performance model of DDNN
training workloads. Sec. 4 designs Prophet to schedule the gradient
transfer in an optimal order, so as to improve the resource utilization
of worker nodes and accelerate the DDNN training process. Sec. 5
evaluates the e�ectiveness and runtime overhead of Prophet. Sec. 6
discusses our contribution in the context of related work, and Sec. 7
concludes our paper.

2 BACKGROUND AND MOTIVATION
In this section, we �rst analyze the low GPU utilization of worker
nodes and the drawbacks of the state-of-the-art communication
scheduling approaches. Then, we present an illustrative example
to show how to adequately schedule the communication data to
speed up the DDNN training performance.

2.1 Network Communication Scheduling for
DDNN Training

Network communication of DDNN training mainly refers to the
process of updating model parameters between the PS and worker
nodes through the pull and push operations. As illustrated in Fig. 1,
the workers �rst push the computed gradient data to the PS, and
after data aggregation on the PS, the workers then pull the updated
model parameters from the PS. In general, we refer to model param-
eters and gradient data as communication data, which is transferred
in the form of tensors via the network. As the conventional DDNN
training frameworks adopt the First-in First-Out (FIFO) strategy for
data transmission by default, a large communication data is likely
to block the transfer of high-priority tensors and thus causes low
utilization of GPU resources. To solve such an issue, several com-
munication scheduling strategies (e.g., Poseidon [29]) have been
proposed to overlap the gradient synchronization (e.g., pulling A1

and pushing B1) with backward propagation (e.g., calculating C1)
as depicted in Fig. 1. Accordingly, the updated model parameters
can be pulled during the process of backward propagation, which
signi�cantly reduces the communication blocking time during the
data aggregation process. To improve the GPU resource utilization
and training performance, such a scheduling strategy of overlap-
ping computation and communication has now been integrated
into the implementation of MXNet [6] by default.

Prophet: Speeding up Distributed DNN Training with Predictable Communication Scheduling ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Figure 2: GPU utilization and network
throughput over time of a worker node
during the training process of ResNet152
model.

(a) P3 (b) ByteScheduler

Figure 3: Non-negligible performance overhead of state-of-the-art priority-based com-
munication scheduling strategies (i.e., P3, ByteScheduler).

Figure 4: Communication characteristic of
gradient transfer, which follows a stepwise
pa�ern over time, by taking ResNet50 as an
example.

2.2 Characterizing Resource Utilization of
Worker Nodes

Though provided with the communication scheduling strategies in
existing DDNN training frameworks, the GPU resources of worker
nodes still su�er from low utilization. We illustrate such a problem
by conducting a motivation experiment on Amazon EC2 using
four g3.8xlarge instances (i.e., 1 PS and 3 worker nodes). Each
instance is equippedwith 32 vCPUs and 2GPUs and trains ResNet50
and ResNet152 with the ImageNet dataset [14] using MXNet. As
shown in Fig. 2, we observe that: Though the push operation of
gradients overlaps with the computation, the GPU utilization can
dramatically decrease to zero (i.e., totally idle) during the pull

operation of model parameters. The experiment result is mainly
caused by the slow network transmission, which makes the GPUs
fail to timely acquire the model parameters and thus delays the
computation (i.e., forward propagation).

To solve such performance issues above, several priority-based
communication scheduling approaches have recently been pro-
posed. For example, P3 [10] slices the gradients into smaller par-
titions and transmits them individually from high priority to low
priority so as to reduce the communication overhead. However, the
smaller size of partitions dramatically decreases the DDNN training
rate, as shown in Fig. 3(a). Such severe performance overhead (i.e.,
TCP connection overhead, TCP slow start, and the synchronization
between nodes) is mainly caused by a huge number of partitions
and under-utilized sending bu�ers. Accordingly, ByteScheduler [21]
adopts a credit-based communication scheduling strategy to bal-
ance the preemption frequency and performance overhead caused
by the gradient partitioning. Bayesian optimization is used to ex-
plore an appropriate credit size for better training performance
in ByteScheduler. However, the training rate of the ResNet50 model
�uctuates rapidly from 44 – 56 samples/sec by ByteScheduler as
shown in Fig. 3(b). Such an experimental result implies that the
credit size auto-tuning process can bring signi�cant �uctuations
to the DDNN training rate, as the credit size is dynamically ad-
justed from around 3 MB to over 13 MB at runtime.

To tackle the drawbacks of P3 [10] and ByteScheduler [21] dis-
cussed above, we further analyze the communication scheduling of
gradients to unveil the root cause of low GPU utilization of worker
nodes. As depicted in Fig. 4, the start time of gradient transfer clearly
follows a stepwise pattern: Taking MXNet and the ResNet50 model
as an example, {gradient 144 - gradient 156} are generated
within a short time, and after a while, {gradient 134 - gradient

143} are generated almost simultaneously. Such a stepwise pattern
is valid until gradient 0 is generated. Similarly, we also observe
the stepwise pattern when training the VGG19 model using Tensor-
Flow, where the gradients can be grouped as four blocks: {gradient
28 - gradient 37}, {gradient 14 - gradient 27}, {gradient 2 -
gradient 13}, and {gradient 0 - gradient 1}. Our experimental
results above indicate that the stepwise pattern of gradient transfer
is independent of the DDNN training frameworks, DNN models,
datasets, and hardware architectures.

Root causes of our observed stepwise pattern: Through an-
alyzing the communication mechanisms of DDNN training, we �nd
the gradient data requires aggregation before transmission, which
can be considered as the main cause of stepwise pattern. Speci�-
cally, the PS architecture of DDNN training provides a Key-Value
interface (e.g., KVStore in MXNet, RendezvousServer in Horovod,
and Communication Buffer in TensorFlow) to workers, and stores
the gradient data computed by each node in the communication
domain. Before the Key-Value storage communicates with the PS
to invoke the push operation, it has to aggregate the values (i.e.,
gradient data) with the same key into a data structure through sev-
eral speci�c operations (e.g., GroupKVPairsPush in MXNet), so as
to facilitate the invocation of the relevant communication data. Ac-
cordingly, the process above requires aggregating a set of gradient
data before each push operation, thereby forming such a stepwise
pattern. Moreover, we �nd several other factors (i.e., the DNNmodel
optimization, the CPU bu�er when performing copyD2H operations
and the network sending bu�er) further contribute to the step-
wise pattern, as these factors can optimize the gradient aggregation
process by allowing the gradient data of one or more layers to
conduct update operations together. As a result, we can further
leverage such a stepwise pattern to optimize the transmission order
of gradient data, so as to improve the DDNN training performance.

2.3 An Illustrative Example
To speed up DDNN training performance, we propose a simple
yet e�ective communication scheduling strategy named Prophet to
schedule the gradient transfer in an optimal order, with the aim
of improving the GPU and network resource utilization of worker
nodes. The core idea of Prophet is that: It predicts the transferred
gradient data size by pro�ling the time interval between blocks and
the available network bandwidth during model training. Prophet
ensures that each gradient can be transferred by greedily utilizing

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zhenwei Zhang⇤ , Qiang Qi⇤ , Ruitao Shang⇤ , Li Chen† , Fei Xu⇤

comp

comp

comp

comp

push

push

push

push

pull

pull

pull

pull

01

01

01

01

01

01

1

00

1 1 001

1 1 1 1
001 1 1 1

11 1 001

1 01 0 1 1
1 01 0 1 1

* The notation denotes the assembled gradients that are transferred at a time

MXNet

P3

ByteScheduler

Prophet

* The notation indicates the start time of forward propagation

Figure 5: An illustrative example of DDNN training with di�erent communication
scheduling strategies (i.e., default MXNet, P3, ByteScheduler, and Prophet).

the network bandwidth resources without blocking the higher-
priority gradients, so that the critical gradients (i.e., gradient 0)
can be transferred as fast as possible. Accordingly, the computation
of the forward propagation can start early, and thus the GPU and
network resource utilization can be improved.

As illustrated in Fig. 5, Prophet can achieve the accelerated DDNN
training performance, compared with the other scheduling strate-
gies. Speci�cally, the default MXNet transmits gradients one by
one with the default FIFO order. As gradient 1 takes a long time
to be pushed to the PS, the worker nodes have to wait even after
gradient 0 is generated. P3 [10] slices the gradients into small
partitions to ensure a timely preemption, so that the higher-priority
gradients are transmitted earlier. The extra slicing overhead, how-
ever, under-utilizes the network bandwidth resources for the small
partition size as discussed in Sec. 2.2, thereby prolonging the
transfer time of a single partition. To avoid such partition overhead,
ByteScheduler [21] con�gures the credit size as an empirical
value (i.e., 3 times partition size in Fig. 5), while keeping a
relatively high preemption rate. To reduce the wait time of GPU
resources during the gradient transfer, our proposed Prophet only
assembles the gradients that can greedily utilize the network re-
sources before any higher-priority gradient (e.g., gradient 0) is
generated. In more detail, when gradient 1 is generated in Fig. 5,
our proposed Prophet infers that only two partitions of gradient
1 can be transmitted before gradient 0 is generated. It then as-
sembles the two partitions of gradient 1 and start transmission,
so that the high-priority gradient 0 can be transferred timely
and the resource utilization can also be improved. As a result, the
stepwise pattern provides us an opportunity to optimize the DDNN
training performance.

3 MODELING AND PROBLEM FORMULATION
In this section, we �rst analyze the DDNN training performance in
terms of the gradient transfer order in the network transmission

Table 1: Key notations in our DDNN training performance model.

Notation De�nition

X Set of gradient data
i Gradient index (i.e., priority)

x (i) The i-th gradient
s(i) Size of x (i)

c(i) Time when x (i) is generated by backward propagation
t (i) Start time of gradient transfer x (i)

E(i) Estimated time cost to push/pull x (i)

u(i) Completion time of parameter update for x (i)

p(i) Completion time of forward propagation for x (i)

B(i) Actual network bandwidth for transferring x (i)

B Available network bandwidth of workers
T (i)
bp Time cost of the backward propagation for x (i)

T (i)
f p Time cost of the forward propagation for x (i)

queue, the available network bandwidth of workers, and the size
of transferred gradients, which has seldom been studied in the
literature. We next formulate an optimization problem to minimize
the DDNN training time. The key notations in our DDNN training
performance model are summarized in Table 1.

3.1 Modeling DDNN Training Time with
Gradient Transfer Order

As depicted in Fig. 6, DDNN training frameworks compute the
gradient data one by one in the backward propagation by default.
Though the communication process (i.e., the push and pull oper-
ations) overlaps with the backward propagation, as discussed in
Sec. 2.1, GPUs have to wait for the high-priority gradients (e.g.,
gradient C) to start forward propagation. Accordingly, we calcu-
late the training time Tall of one iteration as below,

Tall =
’
i 2X

T (i)
bp +

’
i 2X

T (i)
f p +Tcommunication �To�er lap

=
’
i 2X

T (i)
bp +

’
i 2X

T (i)
f p +Twait ,

(1)

where
Õ
i 2X T (i)

bp and
Õ
i 2X T (i)

f p denote the time cost for backward
propagation and forward propagation, respectively, and Twait =
Tcommunication �To�er lap denotes the total idle time of GPU re-
sources during the entire training process. Accordingly, GPU re-
source utilization can be maximized as Twait ideally approaches to
zero.

In general, GPUs are in the working state during the backward
propagation until gradient 0 is generated at c(0). After the push
and pull operations, GPUs are back to the working state when
gradient 0 updates its parameters at u(0). Accordingly, we obtain
an amount of time (i.e., u(0) � c(0)) that GPUs are waiting for the
transfer of gradient 0. In the forward propagation, GPUs will be
in the waiting state when the expected gradient data x (i) has not

Prophet: Speeding up Distributed DNN Training with Predictable Communication Scheduling ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Push & Pull

Forward PropagationBackward Propagation

A1 B1 C1 A2B2C2

CA

!
!∈#

"$%! !
!∈#

"&%!

!!"##$%&!'(&"%

Overlapping !")*+,'-

Time

Computation

Communication

Tall

Twait

!")*+,'-

B

Twait

Figure 6: Illustration of DDNN training time Tall in one iteration.

been updated while the previous one x (i�1) has �nished its forward
propagation at p(i�1). Accordingly, we obtain another part of GPU
idle time

�
u(i) �p(i�1)

�+. In particular, the network communication
of timely transferred gradients actually overlaps with the forward
propagation (i.e., u(i) < p(i�1)), and thus we only use the positive
part of u(i) � p(i�1). As a result, we calculate the total GPU wait
time Twait by accumulating all the positive time intervals as below,

Twait =
’

i 2X,i,0

�
u(i) � p(i�1)

�+
+
�
u(0) � c(0)

�
. (2)

To identify the relationship between Twait and the start time
t (i) of gradient transfer (i.e., start time to push x (i)), we proceed to
formulate u(i) and p(i�1) in terms of t (i). As discussed in Sec. 2.1,
the gradient x (i) can start its forward propagation only when the
previous gradient x (i�1) �nishes the forward propagation and x (i)
completes its parameter update process. Accordingly, we calculate
the completion time p(i) of forward propagation for gradient x (i)
as below,

p(i) =
8>><
>>:
max{p(i�1),u(i)} +T (i)

f p when i , 0,

u(0) +T (0)
f p when i = 0.

(3)

According to the parameter update process, we simply estimate the
completion time u(i) of parameter update for gradient x (i) as below,

u(i) = t (i) + 2 · E(i), (4)

where E(i) is the estimated time for executing the push or pull
operation. As it is di�cult to obtain the exact transmission time for
the gradient x (i), we can estimate the gradient transmission time
E(i) using the gradient size s(i) and the actual network bandwidth
B(i) as below,

E(i) =
s(i)

B(i)
. (5)

3.2 Problem Formulation
The key to design a network communication scheduling strategy
for DDNN training workloads is: How to schedule the gradient
transfer t (i) to minimize Tall in Eq. (1), so as to maximize the
GPU resource utilization. Note that the time cost of backward prop-
agation T (i)

bp and forward propagation T (i)
f p are not related to the

gradient transfer order, and thus they can be considered as constant
values. As a result, our optimization problem then can be reduced

to minimizing Twait , which is formulated as follows,

min
t (i)

Twait =
’

i 2X,i,0

�
u(i) � p(i�1)

�+
+
�
u(0) � c(0)

�
(6)

s.t. t (i) > c(i), (7)
t (i) < [t (j), t (j) + E(j)), 8j 2 X, j , i, (8)
t (i) > t (k), 8k 2 X < i, when t (i) > c(0). (9)

Constraint (7) indicates that the gradient x (i) can only be pushed
after it is generated. To ensure that each gradient is transferred
with the full available network bandwidth, Constraint (8) avoids
the concurrent gradient transfer. In the forward propagation, Con-
straint (9) guarantees that the gradients which are not transmitted
during the backward propagation should be transmitted according
to the order of gradient priority.

To schedule the gradient transfer, we have to leverage the gradi-
ent generation time c(i) which follows a stepwise pattern and the
gradient transmission time E(i) which depends on the actual net-
work bandwidth B(i). Based on the analysis in Sec. 2.2, a smaller
partition size s(i) can bring higher network overhead and thus cause
lower network throughput B(i), which can be formulated as

B(i) = f (s(i),B). (10)

where B denotes the available network bandwidth and the function
f (·) in Eq. (10) is nontrivial to model. However, we can infer that
f (s(i),B) approaches to 0when s(i) is small, and f (s(i),B) gradually
increases to B as s(i) gets large.

By substituting Eq. (3) – Eq. (5) and Eq. (10) into Eq. (6), we
�nd that our optimization problem is hard to solve because the
model parameters (e.g., T (i)

f p , B
(i)) can only be obtained at runtime.

Accordingly, we turn to designing a heuristic algorithm to identify
the appropriate start time t (i) of gradient transfer, with the aim of
minimizing Twait and maximizing the GPU resource utilization.

Problem analysis: To determine when and how gradients are
transferred, P3 [10] and ByteScheduler [21] both focus on two prin-
ciples: (i) Scheduling the gradient transfer according to the priority
order, and (ii) during the backward propagation, it is necessary to
ensure the individual gradient transfer de�ned in Constraint (8)
while allowing the preemption of gradient transfer. Accordingly, P3
proposes to use an extremely small partition size to satisfy the two
principles above. However, P3 fails to achieve good performance
under poor network conditions due to the extra overhead of small
partitions. To solve such a problem, ByteScheduler uses the credit
size to achieve a higher network throughput than P3, while guar-
anteeing the priority of gradient transfer. Nevertheless, the �xed
and auto-tuned hyperparameters (i.e., credit size) of ByteSched-
uler are not designed to minimize

Õ
i 2X,i,0

�
u(i) � p(i�1)

�+ (i.e., a
critical part in Eq. (6)), thereby introducing the extra performance
overhead during the auto-tuning process of credit size.

To minimize
Õ
i 2X,i,0

�
u(i) � p(i�1)

�+, we add an essential Con-
straint (11) to our optimization problem in Eq. (6) as below, which
indicates that the gradients should be transferred before any high-
priority gradient is generated in the backward propagation.

t (i) + E(i) 6 c(k), 8k 2 X < i, when t (i) 6 c(0). (11)

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zhenwei Zhang⇤ , Qiang Qi⇤ , Ruitao Shang⇤ , Li Chen† , Fei Xu⇤

Constraint (11) implies that we can take advantage of the stepwise
pattern (i.e., block time interval) to �nd the optimal gradient transfer,
and thus optimizing our formulated problem in Eq. (6) can improve
the DDNN training performance. Speci�cally, letting t (0) = c(0) can
minimize u(0) � c(0), and then we are able to determine t (1) by mini-
mizing (u(1) �p(0))+ according to Eq. (3) and Eq. (4). Such a process
above can be continuously applied to the remaining gradient i 2 X,
and �nally we can obtain a minimumTwait for all gradient transfer
in one training iteration.

In particular, we focus on the PS architecture as it has been
widely deployed in production DDNN training clusters [15]. As
explained in Sec. 2.2, the gradient transmission time E(i) depends
on the available network bandwidth and the clear stepwise pattern
is valid in the PS architecture. We take advantage of the stepwise
pattern to schedule the gradient transfer in the PS architecture so
as to improve the resource utilization.

4 DESIGN AND IMPLEMENTATION OF
PROPHET

In this section, we present the design and implementation of Prophet
in Alg. 1, a simple yet e�ective network communication scheduling
strategy to judiciously schedule the gradient transfer during DDNN
training. Prophet aims to activate the forward propagation of next
iteration as early as possible, so as to improve the GPU and net-
work resource utilization of workers as well as the DDNN training
performance.

4.1 Algorithm Design
We design Prophet based on the heuristics below: By leveraging
the block time interval and the monitored network bandwidth, we
determine the start time of gradient transfer during both the back-
ward propagation and forward propagation, in order to minimize
the idle time of GPU and network resources. In particular, we deter-
mine the gradient transfer start time using the DNN model and the
computation capacity as well as the available network bandwidth
of workers, which can be obtained by a lightweight job pro�ling in
Prophet.

Speci�cally, we obtain the input parameters of Alg. 1 by job
pro�ling, including the generation time of the i-th gradient c(i), the
size of each gradient s(i) and the available network bandwidth of
workers B. The output of Alg. 1 is the start time of each gradient
transfer. During the DDNN training iteration, we �rst initialize the
estimated transmission time of gradient i , denoted by E(i) s (i)

B .
Using the generation time c(i) of each gradient, the expected time
interval to transfer the i-th gradient can be denoted by A(i)
min |c(i) � c(j) |, j < i (line 1). It implies that the i-th gradient is
expected to complete its transmission before the higher-priority
gradients are generated. To schedule the gradient transfer in each
training iteration, Prophet continuously assign the start time for
each gradient transfer until all the gradients are scheduled (line
2-20). In particular, we schedule the gradient transfer in the order
of gradient priority (line 3).

In more detail, we determine the transfer start time t (i) for each
gradient i as follows: (i) In the backward propagation (line 5-11),
we greedily assemble each gradient as long as it can be transmitted

Algorithm1: Prophet: Communication scheduling strategy
for improving resource utilization of workers and minimiz-
ing the DDNN training time.
Input: Current available network bandwidth B of workers, the gradient

generation time c (i) and the gradient size s (i) for each gradient i 2 X.
Output: Start time t (i) of gradient transfer (i.e., the start time to push

each gradient i 2 X).
1: Initialize: Estimated gradient transmission time E (i) s (i)

B (by
Eq. (5) and Eq. (10)), and the expected transfer time interval
A(i) min |c (i) � c (j) |, j < i , for each gradient i 2 X.

2: while exists gradients to be scheduled do
3: p the highest priority of gradients ready to be scheduled;
4: if p , gradient 0 then
5: if the current time is in the backward propagation then
6: Initialize Tused 0, q p ;
7: while the gradient q can be greedily transferred within the

expected time interval A(q) �Tused do
8: Assemble the gradient q into a gradient block and update

t (q) Tused + c (p);
9: Update the used time Tused Tused + E (q);
10: Set q as the currently highest-priority gradient that is ready

to be transferred;
11: end while; // backward propagation.

12: else
13: Set t (p) as the earliest available scheduling time tnext ;
14: Update the next available time tnext tnext + E (p);
15: end if; // forward propagation.

16: else
17: Set t (0) as the generation time c (0) of gradient 0;
18: Update the next available time tnext t (0) + E (0);
19: end if
20: end while
21: return the start time t (i) of gradient transfer;

before any higher-priority gradients are generated (line 7-10). In
particular, Tused denotes the used transmission time (line 6) and
we accumulate it once a new gradient is assembled (line 9). Ac-
cording to Constraint (11) in our optimization problem, we assemble
the gradient q into a gradient block (line 8) and get the currently
highest-priority gradient ready to be transferred (line 10), only
when the residual time A(q) �Tused is positive (line 7). (ii) In the
forward propagation (line 13-14), we transfer the remaining gra-
dients in the order of priority (line 13), while ensuring gradients
are transferred one by one, which is based on Constraint (9) in our
optimization problem. We then update the tnext accordingly (line
14). As the generation of gradient 0 indicates the completion of
backward propagation and the start of forward propagation for the
next iteration, we greedily transfer gradient 0 once it is gener-
ated, in order to start the forward propagation as early as possible.
Accordingly, we set the transfer start time of gradient 0 as its
generation time (line 17) and update the next available time with
the estimated transmission time (line 18). In particular, Alg. 1
can be executed periodically to schedule the network transfer of
gradients in each iteration.

Remark: Alg. 1 runs on each worker, so workers are likely to
have di�erent gradient transfer orders especially in a heteroge-
neous environment. However, the scheduling di�erence of gradient

Prophet: Speeding up Distributed DNN Training with Predictable Communication Scheduling ICPP ’21, August 9–12, 2021, Lemont, IL, USA

BytePS Core

Network
Bandwidth Monitor

Gradient
Block

Assembler
(Alg. 1)

Training Job
Profiler

Available bandwidth

Gradient information
(gradient size, priority,
computation time, etc.)

Gradient blocks (with the
optimal scheduling time
of gradient transfer)

Scheduled
Queue

Prophet

getTask
Input
training
data

Training
cluster

Cluster
network

Figure 7: Overview of Prophet prototype based on BytePS.

transfer among workers can be limited and slightly a�ects the
performance of Prophet, which will be validated by our prototype
experiments in Sec. 5.3. In particular, we explicitly take advantage
of the block time interval A(i) (i.e., the stepwise pattern of gradi-
ent transfer) to decide an appropriate scheduling plan of gradient
transfer (lines 3-11 in Alg. 1).

4.2 Implementation of Prophet Prototype
We implement a prototype of Prophet with over 500 C++ and Linux
Shell codes, which are publicly available on GitHub1. To be compat-
ible with the mainstream DDNN training frameworks, our Prophet
is implemented based on the abstraction layer of BytePS [12], which
is originally designed to support multiple frameworks (e.g., Ten-
sorFlow, MXNet, Pytorch). We incorporate our network communi-
cation scheduling strategy in Alg. 1 to the BytePS Core as shown
in Fig. 7, while retaining the abstraction layer plugins provided by
BytePS to interact with the APIs of di�erent frameworks.

Speci�cally, our prototype implementation of Prophet �rst re-
quires a model pre-training process. The training input data is sent
to Training Job Profiler which pre-trains the DNN model for
a certain number of iterations (e.g., 50), to obtain the gradient in-
formation (e.g., the set of gradient data, the computation time and
size of each gradient) required by Alg. 1. To adapt to the dynamic
network environments, Network Bandwidth Monitor periodically
(e.g., every 5 seconds) acquires the available network bandwidthB of
workers in the training cluster. Then, Gradient Block Assembler

leverages the gradient and network bandwidth information ob-
tained above to �nd the optimal start time of gradient transfer by
Alg. 1. It greedily assembles an appropriate number of gradients
into blocks, as long as they can be transferred within the block
time interval. In particular, these gradient blocks are pushed to the
Scheduled Queue while maintaining the priority order of gradi-
ents. Finally, the getTask interface in the BytePS Core wraps up
gradients in the form of the network data, which is scheduled to
be transferred over the cluster network. In more detail, the DDNN
training framework continuously polls the Scheduled Queue and
obtains the gradients to transfer the data accordingly to the gradi-
ent transfer start time. When the transmission of a gradient block is
completed, Scheduled Queuemaintains the necessary information
(e.g., gradient transfer logs, the block size) using the reportFinish
interface in the BytePS Core for scheduling gradient transfer in the
next iteration.

1https://github.com/icloud-ecnu/prophet

5 PERFORMANCE EVALUATION
In this section, we carry out a set of prototype experiments on
Amazon EC2 to evaluate the e�ectiveness (i.e., model training rate,
GPU and network resource utilization) and runtime overhead of
Prophet, in comparison to the default MXNet and the state-of-the-
art communication scheduling strategies (i.e., ByteScheduler [21]
and P3 [10]) using representative DDNN training workloads.

5.1 Experimental Setup
Con�gurations ofDDNN training cluster:Webuild a distributed
GPU cluster with up to 8 g3.8xlarge instances (i.e., 1 PS and 7
worker nodes) in Amazon EC2. Each instance is equipped with 32
vCPUs (2.7 GHz Intel Xeon E5-2686 v4 Broadwell), 2GPUs (NVIDIA
TeslaM60 GPU, each is equippedwith 2048 parallel processing cores
and 8 GB GPU memory), 244 GB memory, and varying network
bandwidth from 1 Gbps to 10 Gbps.

DDNN trainingworkloads and datasets:We choose four rep-
resentative DNN models including ResNet18, ResNet50, ResNet152,
and Inception-v3 trained with the ImageNet dataset [14]. The batch
size is set as 16, 32, or 64. In particular, Prophet requires a light-
weight job pro�ling process to collect the DDNN training perfor-
mance data (i.e., the size, generation time, and priority information
of gradients as discussed in Sec. 4.1) in the �rst 50 iterations.

Baselines andmetrics:We compare the performance of Prophet
with that of the default MXNet and ByteScheduler [21] as well as
P3 [10]. The metrics include: (1) the model training rate (i.e., the
number of training samples per second), (2) the GPU utilization
and network uplink/downlink throughput, and (3) the wait time
of each gradient data and start time of forward propagation. As
the auto-tuning process of ByteScheduler can degrade the DDNN
training performance for a number (e.g., 1, 000) of iterations (as
discussed in Sec. 2.2), we simply implement ByteScheduler using
BytePS [12] with a default credit size. In addition, we set the
partition size of P3 as 4 MB.

5.2 E�ectiveness of Prophet
Can Prophet improve DDNN training performance? We �rst
examine the e�ectiveness of Prophet by comparing the DDNN
training performance achieved by Prophet and the state-of-the-
art strategy (i.e., ByteScheduler [21]). As shown in Fig. 8, Prophet
can signi�cantly improve the training rate by 10% – 40% compared
with ByteScheduler, for di�erent DNN models and batch sizes. This
is because Prophet explicitly leverages the stepwise pattern to re-
schedule gradient transfer by accurately predicting the block time
interval and obtain the network bandwidth of workers. Accordingly,
Prophet can e�ectively transfer an appropriate number of gradients
within the desired time interval, and thus guarantee a high GPU
and network resource utilization while retaining a timely gradient
preemption.

WhyProphet can improve theDDNN training performance?
We further look into the start time and end time of each gradient
transfer with di�erent network communication scheduling strate-
gies. As depicted in Fig. 11, Prophet can signi�cantly reduce both
the wait time of gradient transfer and the transfer time of gradients,
as compared with the default MXNet and ByteScheduler. Our exper-
iment logs reveal that each gradient data takes long time (i.e., 446

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zhenwei Zhang⇤ , Qiang Qi⇤ , Ruitao Shang⇤ , Li Chen† , Fei Xu⇤

Figure 8: Comparison of training rate of representative
DNN models with Prophet and ByteScheduler.

Figure 9: GPU utilization of a worker node over time dur-
ing the training process of ResNet50.

Figure 10: Network throughput of a worker node over time
during the training process of ResNet50.

Figure 11: Start time and end time of gradient transfer during the training process of
ResNet50 model with MXNet, ByteScheduler, and Prophet.

ms in average) to complete network transmission in MXNet, while
ByteScheduler and Prophet can shorten the gradient transmission
time to 135 ms and 125 ms, respectively, by re-scheduling the trans-
fer order of gradients. Taking the network transfer of gradient
30 as an example, MXNet waits 0.787 ms before transmission and
spends 440.065ms for transmission. ByteScheduler waits 10.359ms
and spends 56.357 ms for transmission. Prophet only waits 3.207
ms and spends 22.710 ms for transmission. The average wait time
of gradient transfer with Prophet is only 26 ms, compared with 67
ms achieved with ByteScheduler, especially for the high-priority
gradients (i.e., gradient 0 - gradient 80 as shown in Fig. 11).

In the following, we proceed to analyze our experiment results
above using three metrics: GPU utilization, network throughput of
workers, and start time of forward propagation for each gradient.

GPU utilization: As Prophet allows the forward propagation to
begin as early as possible, the GPU idle time during the DDNN
training can be signi�cantly reduced. As shown in Fig. 9, we observe
that Prophet can improve the average GPU utilization from 67.85%
achieved by ByteScheduler to 91.15%. Meanwhile, we observe that
there is a periodical and sharp decrease in GPU utilization over
time for both strategies. This indicates the GPU computational wait
time cannot be reduced to zero even with Prophet, but our Prophet
still signi�cantly improves the GPU resource utilization compared
with ByteScheduler over iterations.

Network uplink/downlink throughput: Prophet utilizes the step-
wise pattern to assemble them into gradient blocks, so that gradients

Table 2: Comparison of training performance of ResNet50 model with Prophet and
ByteScheduler under di�erent network bandwidth conditions.

Worker Rate of Rate of Rate of
bandwidth Prophet ByteScheduler P3
limit (Mbps) (samples/sec) (samples/sec) (samples/sec)

1, 000 27.7 25.9 25.16
2, 000 47.9 39.09 37.69
3, 000 60 44 51.22
4, 000 67.06 50.5 64.34
4, 500 69.29 54.14 67.83
6, 000 69.5 70 68.93
10, 000 70.6 71.1 72.83

can be transferred to utilize more network bandwidth resources. As
both Prophet and ByteScheduler can timely transfer high-priority
gradients and thus achieve good overlapping, the network utiliza-
tion with Prophet and ByteScheduler is higher than that with de-
fault MXNet. As shown in Fig. 10, Prophet achieves higher aver-
age network throughput (i.e., 10.3MB/s) by 37.3% compared with
ByteScheduler (i.e., 7.5 MB/s). This is because Prophet use stepwise
pattern to utilize the time interval, and guarantee the priority of
gradient transfer. The network throughput of workers �uctuates
over time because the block time interval and the size of scheduled
gradients are too small to maintain a high network transfer rate.

Start time of forward propagation: Prophet ensures that the higher-
priority gradients complete their transmission as early as possible
and accordingly the forward propagation can be activated earlier.
Accordingly to our experiment logs, we set the timing (i.e., 0 ms)
as the start time of the 60-th iteration when training ResNet50. We
observe that Prophet can take a shorter time to �nish one iteration
compared with ByteScheduler: Prophet starts its 61-th iteration at
856.796 ms, while ByteScheduler starts its 61-th iteration at 1, 416
ms. In the �rst 15 seconds in our experiment, Prophet can complete
iterations 60 � 74, while ByteScheduler only completes iterations
60� 71. Such a performance improvement can be aggregated as the
number of iterations increases.

5.3 Robustness of Prophet
CanProphet e�ectivelyworkunder di�erent bandwidth con-
ditions? We train ResNet18 (batch size 64) with ImageNet under a
varying network bandwidth environment. Under 10 Gbps network
bandwidth, the default MXNet, P3 [10] and Prophet all achieve ap-
proximately 220 samples/sec, because the optimization space of

Prophet: Speeding up Distributed DNN Training with Predictable Communication Scheduling ICPP ’21, August 9–12, 2021, Lemont, IL, USA

Table 3: Comparison of training performance of ResNet18 and ResNet50 model with
Prophet and ByteScheduler using di�erent batch sizes.

Model Rate of Rate of Performance
improvement

and Prophet ByteScheduler
batch size (samples/sec) (samples/sec)

ResNet18 (16) 32.46 29.06 11.6%
ResNet18 (64) 153 115 33%
ResNet50 (16) 14.44 14.22 1.5%
ResNet50 (32) 34.8 28.5 22%
ResNet50 (64) 60 44 36%

scheduling gradient transfer is marginal as high network band-
width ensures all tasks can be completed in a short time. When
the network bandwidth is limited to 3 Gbps, the default MXNet
(i.e., the FIFO strategy) only gets 110 samples/sec, and P3 (i.e., the
priority-based strategy) achieves 137 samples/sec, while Prophet
achieves relatively higher DDNN training performance (i.e., 153
samples/sec) by 11.7% – 39.1% compared with default MXNet and
P3. Similarly, we compare the DDNN training rate achieved by
Prophet, ByteScheduler and P3 using ResNet50 (batch size 64), as
listed in Table 2. We observe that the training performance of P3
gets sharply worse while that of ByteScheduler and Prophet is grad-
ually lowered down as the network bandwidth gets stringent. This
is because the partition size of P3 fails to arbitrate the trade-o�
between gradient preemption and extra partition overhead, espe-
cially under the poor network bandwidth condition (1 – 3 Gbps). As
compared to ByteScheduler, Prophet can improve the training per-
formance by 6.9% – 36.4% in poor network conditions and achieve
comparable performance in good network conditions. The rationale
is that, Prophet leverages the stepwise pattern to adjust the schedul-
ing of gradient transfer and thus activates the forward propagation
earlier, thereby achieving a higher degree of overlapping between
computation and communication than P3 and ByteScheduler in
dynamic network conditions (i.e., varying from 1 to 6 Gbps).

How batch size a�ects the e�ectiveness of Prophet? As
listed in Table 3, we observe that Prophet outperforms ByteSched-
uler by 1.5-36% with various DNN models and batch sizes ranging
from 16 to 64. This is because Prophet can leverage our observed
characteristics of stepwise pattern to optimize the communication
scheduling for di�erent frameworks and models, as discussed in
Sec. 2.2. Our experiment result also indicates that a larger batch size
leads to a more signi�cant performance improvement achieved by
Prophet. This is because a larger mini-batch takes a longer time to
compute the gradients, which inevitably makes the stepwise pattern
more obvious and thus prolongs the time interval among blocks. As
a result, Prophet can leverage such a prolonged block time interval
to optimize the communication scheduling, and fully utilize the
GPU and network resources during DDNN training.

Can Prophet work in heterogeneous environments? We
limit the network bandwidth of one worker node to 500 Mbps,
and compare the training rate of the default MXNet, ByteScheduler,
and Prophet. We observe that Prophet and ByteScheduler achieve
the DDNN training rate of 26.4 samples/sec and 25.8 samples/sec,
respectively, compared with the default MXNet (15.09 samples/sec).
The results above indicate: (i) Both Prophet and ByteScheduler
outperform the default MXNet in heterogeneous environments be-
cause assembling gradients into blocks and starting the forward

Figure 12: Training performance of
ResNet50 with Prophet by varying the
number of workers from 2 to 8.

Figure 13: Negligible performance over-
head of Prophet on GPU utilization.

propagation earlier can still work well in heterogeneous environ-
ments. (ii) Prophet slightly improves the training performance by
2.3% compared with ByteScheduler in heterogeneous environments.
The rationale is that, the network transfer rate in a heterogeneous
environment is inevitably limited by the node with the lowest band-
width (i.e., 500 Mbps), which signi�cantly reduces the optimization
space of communication scheduling. In particular, Prophet can work
with the existing approach [30] which designs a rational model com-
putation functions to assign more computation and transmission
tasks to workers with good performance, so as to improve the
training performance in heterogeneous environments.

5.4 Runtime Overhead of Prophet
The runtime overhead of Prophet mainly lies in the job pro�ling (e.g.,
obtaining the gradient generation time in �rst 50 iterations) and
monitoring the network bandwidth of workers during the DDNN
training process, as Prophet does not require tuning hyperparam-
eters (i.e., credit size). Speci�cally, the job pro�ling overhead
for Inception-v3 with batch size 32, ResNet50 with batch size

64, and ResNet152 with batch size 32 are 7 seconds, 9.5 seconds,
and 24.7 seconds, respectively. Such job pro�ling overhead (i.e.,
within one minute) is negligible compared with over thousands
of iterations required by a typical DNN training job. As shown
in Fig. 13, the GPU utilization of Prophet in the early stage (i.e.,
from 2 � 6 seconds) of DNN training is slightly lower than that of
ByteScheduler. As the DDNN training continues, however, Prophet
takes shorter time to complete each iteration without auto-tuning
overhead of credit size, which in turn improves the DDNN train-
ing performance. Moreover, Fig. 12 shows that the DDNN training
performance of ResNet50 with Prophet is roughly linear to the num-
ber of workers, as the average training rate per worker slightly
decreases from 69.94 samples/sec to 68.83 samples/sec when the
number of workers increases from 2 to 8. Such an experimental
result further identi�es the negligible computation overhead of
Alg. 1 in Prophet. Therefore, the runtime performance overhead
of Prophet is practically acceptable for real-world DDNN training
jobs.

6 RELATEDWORK
6.1 Priority-based Communication Scheduling
To optimize the performance of DDNN training workloads, sev-
eral recent works design priority-based communication scheduling
strategies, such as P3 [10] and TicTac [8]. Speci�cally, P3 attempts
to overlap the communication and forward propagation by slicing

ICPP ’21, August 9–12, 2021, Lemont, IL, USA Zhenwei Zhang⇤ , Qiang Qi⇤ , Ruitao Shang⇤ , Li Chen† , Fei Xu⇤

the gradient data to seek for more potentials of overlapping. Simi-
larly, TicTac [8] proposes a communication strategy to schedule the
neural network operations according to the observation of high net-
work variance during the process of parameter update. These two
prior works rely on the blocking call of TCP protocol, and thus they
can cause performance degradation due to the under-utilization of
network bandwidth resources. In contrast, Prophet introduces the
concept of gradient blocks by identifying the stepwise pattern for
DDNN training, and we greedily transfer the gradient data in the
form of small blocks through a lightweight job pro�ling, so as to
mitigate the under-utilization of GPU and network resources.

Moreover, there lacks a theoretical study on communication
scheduling in the literature, and we mathematically analyze how
the scheduling of gradient transfer a�ects the DDNN training per-
formance. A more recent work [27] categorizes the network data
into two priority levels, and it brings remarkable training perfor-
mance gains by implementing the network-level scheduling strat-
egy on the network switches. To speed up the DDNN training on
the All-Reduce architecture, PACE [2] preemptively schedules the
all-reduce tensors based on the DAG information of a DNN model.
The priority-based communication scheduling mechanism is still
e�ective in a multi-tenant environment [25]. Prophet can works
together with these strategies above to improve DDNN training
performance.

6.2 Improving Resource Utilization of Network
Bandwidth

The network resource utilization can be degraded by two factors:
long wait time for computation and high communication overhead.
First, many recent works propose to overlap computation and com-
munication to reduce the computation wait time. For example,
Poseidon [29] designs a wait-free backward propagation (WFBP)
to maximize the overlapping between computation and communi-
cation in one iteration, by clearly de�ning the dependency among
layers. Second, several recent works identify that the high commu-
nication overhead is commonly determined by the gradient transfer
granularity. Accordingly, MG-WFBP [24] merges an appropriate
number of gradient transfer tasks into single one and creates more
chances to overlap computation and communication. ByteSched-
uler [21] introduces a credit size to maintain network resource
utilization, which is considered as a typical trade-o� between the
preemption of gradient transfer and network resource utilization.
Di�erent from the static and auto-tuned credit size for DDNN
training in ByteScheduler, Prophet leverages a dynamic gradient
block size for each iteration to speed up DDNN training. A more
recent work [28] batches the model parameters to reduce the start
time of forward propagation during the pull process. Di�erent
from the prior works above, Prophet seeks to identify an optimal
number of gradient transfer by utilizing the time interval between
gradient blocks, so as to greedily reduce the waiting time of GPU
resources and start the forward propagation as early as possible.

There have also been a number of works focus on optimizing
the parameter synchronization process to improve the network
resource utilization. Speci�cally, relaxing the strict synchroniza-
tion [9] and moving gradient aggregation inside the network can al-
leviate the communication overhead and thus increase the network

throughput. For example, R2SP [3] mitigates the uneven available
network bandwidth of workers over time. DSSP [30] solves the
dynamic tuning of the staleness threshold of SSP. LBBSP [4] deals
with the worker stragglers in heterogeneous (i.e., non-dedicated)
environments. Prophet mainly works in the PS architecture using
BSP (i.e., Bulk Synchronous Parallel). While these works above
mainly optimize the application-level computation, in-network ag-
gregation [22] can be deployed to alleviate the communication
bottleneck using programming switches. For instance, ATP [15]
implements the co-design of switch logic (for gradient aggregation)
and the end-host networking stack to improve DDNN training per-
formance. Prophet can work with these prior techniques above on
optimizing either computation or communication, so as to improve
the resource utilization of DDNN training clusters.

7 CONCLUSION AND FUTUREWORK
To improve the GPU and network resource utilization of DDNN
training clusters, this paper presents the design and implementa-
tion of Prophet, a simple yet e�ective predictable communication
scheduling strategy that decides the transfer order and transfer
start time of gradients for DDNN training jobs. Speci�cally, Prophet
�rst obtains the stepwise pattern of gradient transfer start time ac-
cording to a lightweight job pro�ling. Based on such a pattern,
Prophet leverages the monitored network bandwidth and the pro-
�led time interval among gradients to assemble the gradient blocks
(i.e., to decide which gradients should be transferred within the
block time interval). Through the construction of gradient blocks,
Prophet greedily ensures that gradient 0 can start its network
transfer once the computation of backward propagation is com-
pleted, so that the GPU and network resource utilization can be
improved during the process of pull operations. We implement a
prototype system of Prophet based on BytePS and conduct exten-
sive prototype experiments by training representative DNN models
on Amazon EC2. Our experiment results show that Prophet can
improve the DDNN training performance by up to 40% compared
with the state-of-the-art priority-based communication scheduling
strategies, yet with negligible runtime performance overhead.

As our future work, we plan to extend Prophet in the following
directions: (1) validating the stepwise pattern of gradient transfer
with the ASP (i.e., Asynchronous Parallel) model, and (2) examining
the e�ectiveness of Prophet on more types of cloud instances and
GPU hardwares (e.g., p3 and p4 EC2 instances).

ACKNOWLEDGMENTS
The corresponding author is Fei Xu (fxu@cs.ecnu.edu.cn). This
work was supported in part by the NSFC under grant No.61972158,
in part by the Science and Technology Commission of Shanghai
Municipality under grant No.20511102802 and No.18DZ2270800, in
part by the Natural Science Foundation of Shanghai under grant
NO.21ZR1419900, and in part by the Tencent Corporation. Li Chen’s
workwas supported in part by the Louisiana Board of Regents under
Contract Numbers LEQSF(2019-22)-RD-A-21 and LEQSF(2021-22)-
RD-D-07, and in part by National Science Foundation under Award
Number OIA-2019511.

Prophet: Speeding up Distributed DNN Training with Predictable Communication Scheduling ICPP ’21, August 9–12, 2021, Lemont, IL, USA

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In Proc. of USENIX OSDI. 265–283.

[2] Yixin Bao, Yanghua Peng, Yangrui Chne, and Chuan Wu. 2020. Preemptive
All-reduce Scheduling for Expediting Distributed DNN Training. In Proc. of IEEE
INFOCOM. 626–635.

[3] Chen Chen,WeiWang, and Bo Li. 2019. Round-Robin Synchronization:Mitigating
Communication Bottlenecks in Parameter Servers. In Proc. of IEEE INFOCOM.
532–540.

[4] Chen Chen, QizhenWeng,WeiWang, Baochun Li, and Bo Li. 2020. Semi-Dynamic
Load Balancing: E�cient Distributed Learning in Non-Dedicated Environments.
In Proc. of ACM SoCC. 431–446.

[5] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2016. Revisiting Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and E�cient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274 (2015).

[7] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. 2012. Large
Scale Distributed Deep Networks. In Proc. of NIPS. 1223–1231.

[8] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell. 2019. TicTac:
Accelerating Distributed Deep Learning with Communication Scheduling. In
Proc. of MLSys.

[9] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More E�ective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In Proc. of
NIPS. 1223–1231.

[10] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gennady
Pekhimenko. 2019. Priority-based Parameter Propagation for Distributed DNN
Training. In Proc. of MLSys.

[11] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. In Proc. of USENIX ATC. 947–960.

[12] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo.
2020. A Uni�ed Architecture for Accelerating Distributed DNN Training in
Heterogeneous GPU/CPU Clusters. In Proc. of IEEE OSDI. 463–479.

[13] Janis Keuper and Franz-Josef Preundt. 2016. Distributed Training of Deep Neural
Networks: Theoretical and Practical Limits of Parallel Scalability. In Proc. of IEEE
MLHPC. 19–26.

[14] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Classi�-
cation with Deep Convolutional Neural Networks. In Proc. of NIPS. 1097–1105.

[15] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu, Aditya
Akella, and Michael Swift. 2021. ATP: In-network Aggregation for Multi-Tenant
Learning. In Proc. of USENIX NSDI. 741–761.

[16] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P
Xing. 2014. On Model Parallelization and Scheduling Strategies for Distributed
Machine Learning. In Proc. of NIPS. 2834–2842.

[17] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In Proc. of USENIX
OSDI. 583–598.

[18] Liang Luo, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind Krishna-
murthy. 2018. Parameter Hub: a Rack-Scale Parameter Server for Distributed
Deep Neural Network Training. In Proc. of ACM SoCC. 41–54.

[19] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An
Open-Source Deep Learning Platform from Industrial Practice. Frontiers of Data
and Computing 1, 1 (2019), 105–115.

[20] Peter Mattson, Paulius Micikevicius, Vijay Janapa Reddi, David Patterson, Chris-
tine Cheng, Guenther Schmuelling, Cody Coleman, Hanlin Tang, Greg Diamos,
Gu-Yeon Wei, David Kanter, and Carole-Jean Wu. 2020. MLPerf Training Bench-
mark. IEEE Micro 40, 2 (2020), 8–16.

[21] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan
Wu, and Chuanxiong Guo. 2019. A Generic Communication Scheduler for Dis-
tributed DNN Training Acceleration. In Proc. of ACM SOSP. 16–29.

[22] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK Ports, and
Peter Richtárik. 2021. Scaling Distributed Machine Learning with In-Network
Aggregation. In Proc. of USENIX NSDI. 785–808.

[23] Alexander Sergeev and Mike Del Balso. 2018. Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[24] Shaohuai Shi, Xiaowen Chu, and Bo Li. 2019. MG-WFBP: E�cient Data Commu-
nication for Distributed Synchronous SGD Algorithms. In Proc. of IEEE INFOCOM.
172–180.

[25] Raajay Viswanathan, Arjun Balasubramanian, and Aditya Akella. 2020. Network-
Accelerated Distributed Machine Learning for Multi-Tenant Settings. In Proc. of
ACM SoCC. 447–461.

[26] Qiang Wang, Shaohuai Shi, Canhui Wang, and Xiaowen Chu. 2020. Communi-
cation Contention Aware Scheduling of Multiple Deep Learning Training Jobs.
arXiv preprint arXiv:2002.10105 (2020).

[27] S. Wang, D. Li, and J. Geng. 2020. Geryon: Accelerating Distributed CNN Training
by Network-Level Flow Scheduling. In Proc. of IEEE INFOCOM. 1678–1687.

[28] Shaoqi Wang, Aidi Pi, and Xiaobo Zhou. 2019. Scalable Distributed DL Training:
Batching Communication and Computation. In Proc. of AAAI, Vol. 33. 5289–5296.

[29] Hao Zhang, Zeyu Zheng, Shizhen Xu,Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting
Hu, Jinliang Wei, Pengtao Xie, and Eric P. Xing. 2017. Poseidon: An E�cient
Communication Architecture for Distributed Deep Learning on GPU Clusters. In
Proc. of USENIX ATC. 181–193.

[30] Xing Zhao, Aijun An, Junfeng Liu, and Bao Xin Chen. 2019. Dynamic Stale
Synchronous Parallel Distributed Training for Deep Learning. In Proc. of IEEE
ICDCS. 1507–1517.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Network Communication Scheduling for DDNN Training
	2.2 Characterizing Resource Utilization of Worker Nodes
	2.3 An Illustrative Example

	3 Modeling and Problem Formulation
	3.1 Modeling DDNN Training Time with Gradient Transfer Order
	3.2 Problem Formulation

	4 Design and Implementation of Prophet
	4.1 Algorithm Design
	4.2 Implementation of Prophet Prototype

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Effectiveness of Prophet
	5.3 Robustness of Prophet
	5.4 Runtime Overhead of Prophet

	6 Related Work
	6.1 Priority-based Communication Scheduling
	6.2 Improving Resource Utilization of Network Bandwidth

	7 Conclusion and Future Work
	Acknowledgments
	References

