AMPS-Inf: Automatic Model Partitioning for Serverless
Inference with Cost Efficiency

Jananie Jarachanthan', Li Chen?, Fei Xu?, Bo Li?
School of Computing and Informatics, University of Louisiana at Lafayette
2School of Computer Science and Technology, East China Normal University
*Department of Computer Science and Engineering, Hong Kong University of Science and Technology
Yjananie.jarachanthan, li.chen}@louisiana.edu, fxu@cs.ecnu.edu.cn, *bli@cse.ust.hk

ABSTRACT

The salient pay-per-use nature of serverless computing has driven
its continuous penetration as an alternative computing paradigm
for various workloads. Yet, challenges arise and remain open when
shifting machine learning workloads to the serverless environment.
Specifically, the restriction on the deployment size over serverless
platforms combining with the complexity of neural network mod-
els makes it difficult to deploy large models in a single serverless
function. In this paper, we aim to fully exploit the advantages of the
serverless computing paradigm for machine learning workloads tar-
geting at mitigating management and overall cost while meeting the
response-time Service Level Objective (SLO). We design and imple-
ment AMPS-Inf, an autonomous framework customized for model
inferencing in serverless computing. Driven by the cost-efficiency
and timely-response, our proposed AMPS-Inf automatically gen-
erates the optimal execution and resource provisioning plans for
inference workloads. The core of AMPS-Inf relies on the formu-
lation and solution of a Mixed-Integer Quadratic Programming
problem for model partitioning and resource provisioning with the
objective of minimizing cost without violating response time SLO.
We deploy AMPS-Inf on the AWS Lambda platform, evaluate with
the state-of-the-art pre-trained models in Keras including ResNet50,
Inception-V3 and Xception, and compare with Amazon SageMaker
and three baselines. Experimental results demonstrate that AMPS-
Infachieves up to 98% cost saving without degrading response time
performance.

CCS CONCEPTS

« Computer systems organization — Cloud computing; - Com
puting methodologies — Parallel computing methodologies.

KEYWORDS
serverless computing, machine learning inference, cost efficiency

ACM Reference Format:

Jananie Jarachanthan!, Li Chen?, Fei Xu?, Bo Li3. 2021. AMPS-Inf: Automatic
Model Partitioning for Serverless Inference with Cost Efficiency. In 50th
International Conference on Parallel Processing (ICPP °21), August 9-12, 2021,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-9068-2/21/08....$15.00
https://doi.org/10.1145/3472456.3472501

Lemont, IL, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3472456.3472501

1 INTRODUCTION

Serverless computing becomes increasingly popular due to its auto-
scaling and pay-per-use natures. This provides ease-of-management
and cost-efficiency, which various workloads can take advantage of.
With serverless architectures deployed by cloud providers such as
Amazon Lambda [14], Google Cloud Functions [19], and Microsoft
Azure Functions [18], a wide variety of applications are shifting
towards this computing paradigm, including real-time video encod-
ing [33], data analytics [37, 39, 40, 45], web applications [43, 49],
and etc.

Given the growing adoption of machine learning across different
fields in today’s era of Internet-of-Things and Artificial Intelligence,
it is natural to consider whether and how machine learning appli-
cations can exploit serverless computing. There are a number of
challenges when migrating machine learning workloads on server-
less architecture mainly due to the restrictions of serverless function
size and the increasing size of neural network models. For example,
the deployment package size limit of a function on Amazon Lambda
is 250MB [15] while the size of a model can be as large as 500MB,
such as VGG16 [5] and VGG19 [6]. Although it is likely that cloud
providers may increase the deployment size limit in the future,
there is a faster growth of the size and complexity of advanced
neural network models (such as BERT [31]), which still raises the
similar challenges to be elaborated as follows.

For machine learning services, in particular the inference, to be
deployed on the serverless platform, one of the main requirements is
the minimization of the billing cost without violating a pre-defined
Service Level Objective or SLO in term of query response time [50].
This specifies the time it takes for prediction results of the input to
be returned to users. When a neural network model is too large to
fit into a serverless function, it encounters a number of difficulties
including how to split the complex computation graph, how to
coordinate the partitions, and which function resource type to
specify for each partition? Due to the complex structures of today’s
neural network models, it is not clear how a specific partition,
among a gigantic number of possible ones, impacts the coordination
efforts, the end-to-end query response time and the total billing cost.
In addition, the space for resource configuration (e.g., the function
memory size for each partition) which also impacts the response
time and monetary cost, is enormous. Given such a large decision
space, domain expertise and nontrivial efforts are expected from
users to satisfy their requirements on meeting response time SLOs
and minimizing cost, which compromise the ease-of-management

https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1145/3472456.3472501
https://doi.org/10.1145/3472456.3472501

ICPP °21, August 9-12, 2021, Lemont, IL, USA

feature and may discourage them from migrating to serverless
platforms.

To cope with such complexities, we present our framework,
AMPS-Inf, which automatically deploys machine learning inferenc-
ing workloads on serverless platform towards both cost-efficiency
(i.e., minimizing monetary cost) and timely response (i.e., meeting
response time SLO). Different from existing works on serverless
machine learning ([28, 47, 50], etc.), we jointly consider model par-
titioning dimension and resource provisioning. The solution aims
to derive the serverless deployment for large machine learning
models, where existing solutions do not apply. Yet, AMPS-Infalso
offers better cost-efficiency by model splitting in the case when a
model fits into a single serverless function.

To achieve the objectives of timely-response and cost-efficiency,
AMPS-Infrelies on the formulation of a constrained optimization
problem to explore the complete design space with the flexibility of
model split and resource allocation. Given an inference job, AMPS-
Infcalculates the optimal execution and resource provisioning plans
for serverless deployment, constrained by the response time thresh-
old (SLO) and the limitations of the serverless platform, such as
the deployment size and temporary memory. More specifically, the
decision variables include the number of partitions in the model
computation graph, how the graph is partitioned, and the lambda
function provisioning (the number of lambdas and the function re-
source type) to coordinate the partitions. This can be formulated as
a Mixed-Integer Quadratic Programming (MIQP) problem [27] [25].
The solution can be obtained by the MIQP solver, which will be
used by AMPS-Infto enforce the deployment of serverless inference
towards the optimal cost-efficiency without sacrificing response
time performance.

We have implemented and deployed AMPS-Infon AWS Lambda
platform and evaluated with four pre-trained models, ResNet50
[35], MobileNet [36], Xception [29], and Inception-V3 [46], in Keras.
Upon the submission of an inference job with the model file and
weights, AMPS-Infautomatically partitions the model, provisions
lambda functions, deploys model partitions and launches functions
for coordinated model serving, following the calculated solution
with the optimal cost-efficiency. Experimental results have demon-
strated the efficient utilization of serverless platform for machine
learning inference achieved by AMPS-Inf. It outperformed Amazon
SageMaker, the production platform for machine learning, with re-
spect to response time, by at least 47%, 17%, and 61% for ResNet50,
Inception-V3, and Xception, respectively, with at least 92% cost
reductions. For small model MobileNet, AMPS-Infalso achieved bet-
ter response time performance than SageMaker while saving cost
by 98%. We further compare with two heuristic baselines, where
AMPS-Infachieved 4% to 49% cost reduction for ResNet50, Xception
and Inception-V3. We finally compare with the optimal deployment,
where AMPS-Infperformed almost the same for Inception-V3 and
no worse than 8% for ResNet50 and Xception.

The rest of the paper is organized as follows. Sec. 2 investigates
serverless inference and motivates the model partitioning and re-
source provisioning for large-size models in a cost-efficient manner.
Sec. 3 formulates and solves the constrained optimization prob-
lem to automatically partition model and provision functions for
cost-efficient serverless inference. Sec. 4 presents the architecture

Jananie Jarachanthan!, Li Chen', Fei Xu?, Bo Li?

overview of AMPS-Infand describes its components. Sec. 5 imple-
ments AMPS-Infand demonstrates its advantages over the industrial
platform Amazon SageMaker and three baselines for pre-trained
Keras neural network models. Sec. 6 discusses the related work and
Sec. 7 presents concluding remarks.

2 BACKGROUND AND MOTIVATION

In traditional cloud environment, users are responsible for launch-
ing VMs, specifying operating systems and dealing with the scaling
and management issues. On a serverless platform, a user’s respon-
sibility is simplified to writing functions and specifying events to
trigger executions. In other words, the user does not need to worry
about the deployment, management and environment complexities
which are handled by the cloud provider. In the serverless environ-
ment, the launch and termination of functions, are as fast as a few
milliseconds. The cost is in the “pay-per-use” mode: the execution
time of a function, as well as unit time price based on the resource
type, decides its cost (e.g., AWS Lambda [16]).

Machine learning inference is the execution of a query over a
trained model. With the recent advancement of machine learning
and deep learning techniques, models grow in size and complexity,
making it computationally expensive for both training and infer-
encing. The salient features of serverless computing have recently
drawn research attention to deploy model serving (i.e., inference)
to quickly adapt to the query load dynamics. However, there re-
main challenges to be addressed for serverless machine learning
inference. In what follows, we present the status quo of server-
less inference, identify the challenges and motivate our proposed
solution.

2.1 Machine learning inference in AWS
Lambda

Serverless inference in AWS Lambda consists of lambda function
with the serving code (e.g., Python), associated ML dependency
libraries (e.g., Keras), ML model to be inferenced, and the resource
configurations (e.g., the allocated memory block [15]). The handler
loads the model and uses imported dependencies on execution and
serves for input(s).

The deployment package for the lambda is a ZIP archive that
consists of the model, dependencies, and function code with 50MB
uploading limitation [20]. For the models beyond 50MB (will be
elaborated later in Table 1), the function layer feature of AWS
lambda can be leveraged to pull in the model and the dependencies.
It keeps the deployment package small with only the function code
and helps to avoid installation errors [21]. An unzipped package
with the size up to 250MB can be facilitated using a maximum of
five layers. Still, the dependencies (keras [2], tensorflow [4], and
the pillow [3]) are typically large. To further reduce their sizes, one
approach is to rebuild the libraries by filtering out only the neces-
sary packages. Such size-reduced dependencies can be published
and specified by Amazon Resource Name (ARN) !, which can be
imported in serverless inference through a function layer.

Table 1 lists the deployment sizes of popular Keras Neural Net-
work models, including ResNet50, and Inception-V3. The second
column represents the size of a model which is determined by

!https://github.com/antonpaquin/Tensorflow-Lambda-Layer/tree/master/arn_tables

AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency

Table 1: Model and deployment sizes of neural network models. The deploy-
ment size includes the necessary dependencies of 169MB in AWS Lambda plat-
form.

Neural Network Models | Model Size Deployment Size
ResNet50 98MB 267MB
InceptionV3 92MB 261MB

the amount of its parameters. For example, ResNet50 model has
25,636,712 parameters and its size is (25, 636,712 * 4) /

1024/1024 =~ 98MB. These models all rely on Keras dependencies
(169 MB). The total size for model deployment is represented in the
last column. As shown, they are larger than the 250 MB size limit,
which needs to be addressed in deploying serverless inference. On
the other hand, the execution of the inference job needs to store
the model parameters and neural network layer outputs within
lambda storage which is available until the lambda terminates. The
temporary storage of a lambda is limited to 512MB.

As advanced deep learning models have witnessed growing sizes,
we are motivated to address this critical challenge for serverless
machine learning inference, given the size limit on deployment and
storage. In this paper, we design and implement a novel framework
to automatically deploy model inference in the serverless platform
by partitioning across a number of lambda functions. More partic-
ularly, our model partitioning and function provisioning strategy
is in an optimal way towards cost-efficiency, without violating the
response time threshold and the aforementioned size limits.

The resource configuration impacts both the cost and the job
completion time performance. A larger memory allocation is likely
to improve the job completion time, with a higher price per-unit
time. We use MobileNet, a relatively small model which can be
implemented with a single lambda for inference, as an example to
illustrate how the memory allocation impacts cost and performance.
Fig. 1 presents the corresponding cost and completion time given
different allocations of memory for one image serving. Here the
completion time intuitively decreases with the increase of mem-
ory allocation while the cost exhibits a growing trend. Note that
the x-axis starts from 256MB rather than the minimum possible
memory block 128MB, because there is a timeout limitation for
function execution and inferencing with 128MB memory cannot
complete before the timeout. With the memory size increasing, the
performance improves while the cost decreases until a point and
then increases. This happens in more than one points. The reason
is that the cost is determined by function execution time and func-
tion price associated with memory type. Starting from the smallest
memory size, though the price per unit time is cheap, the function
execution time is large, dominating the total cost. On the other
hand, increasing memory size beyond a threshold does not bring
much decrease in completion time, while the memory cost increases
sharply and dominates the total cost. Such a relationship will be
considered in our model to guide appropriate memory allocation
towards desired objective.

2.2 Motivating experiments

In this subsection, we present our experimental investigation that
motivates our proposed approach.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

1.0
1 x- Job completion time
40 ~~e-— Total cost 0.8
' 2
@30 X PO 0.6
@ et <
P | e 043
- "‘.Q-.',"' .08 g O . L] o]
Xy 0.2
10 T

256 512 832 1152 1472 1792 2112 2432 2752 3008 0.0

Memory allocation (MB)

Figure 1: The completion times and costs for different memory allocations of
MobileNet inference for one image. The x-ticks 1-44 represent the memory
blocks from 256MB to 3008MB in 64MB increments.

We study the inference of pre-trained Keras MobileNet (<250MB)
and ResNet50 (>250MB) models in the serverless environment. Par-
ticularly, we import the model (YAML file), weights (H5 file saved in
the Hierarchical Data Format), and Tensorflow-Keras dependencies
(169MB) in function layers in AWS Lambda. MobileNet is a small
model and can be deployed in one lambda with 512MB memory
allocation. ResNet50 cannot fit into one lambda and is randomly par-
titioned across ten lambdas for the inference job, each with 512MB
memory allocation. Because of the missing feature of inter-lambda
communication, there is a need for an intermediate storage, such
as S3 [11], VM instance [9] or specially designed storage system
([41], etc), to facilitate the transfer of intermediate data between
lambdas. In our study, we leverage the simple one, S3, which could
be extended to other storage to be discussed later.

We compare serverless inference with the commercial non server-
less solution, Amazon SageMaker, which is a cloud platform for
machine learning that integrates all the required components and
automates the end-to-end workflow. The pricing of SageMaker
includes the cost of on-demand instances, storage, and data process-
ing in hosting instances [13]. SageMaker allows a cloud user to use
Jupyter Notebook for its machine learning task. We consider two
SageMaker settings, referred to as Sage 1 and Sage 2 throughout
this paper. The user input models for both SageMaker settings are
in the JSON format. Sage 1 uses a single instance of m1.t2.medium
to store the model and weights, and deploy the model for inference.
Sage 2 uses an instance of m1.t2.medium to handle the submission
of inference jobs and invoke a hosting instance, m1.m4.xlarge, for
model serving. HTTP endpoints are created and the model is stored
in S3 in a rearranged format. The instances used in both settings
are on-demand which have lower prices [13] compared to regular
instances. We next compare the results for model serving in these
three different settings.

2.2.1 Inference with one lambda. Fig. 2 shows the completion time
and monetary cost of MobileNet serving with one image as input,
in the three different settings aforementioned. The completion time
is measured as the end-to-end completion time starting from model
upload and ending with inference response. As clearly shown, the
Lambda setting (with the function memory configured as 512MB)
leads to the minimum cost when compared to SageMaker settings
without degrading the completion time performance. The Sage 2
setting results in a large completion time due to the time required to
run the hosting instance and deploy the model. Meanwhile, the host-

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Table 2: Completion time and cost of MobileNet serving (one image request)
given different memory types.

Jananie Jarachanthan!, Li Chen', Fei Xu?, Bo Li?

Table 3: Completion time and cost of ResNet50 serving (one image) in differ-
ent settings.

0 ‘Lambda Sagel Sage2 0.000 Lambda Sagel Sage2

(a) (b)

Figure 2: Completion time and cost of MobileNet serving (one image request)
in three different settings: Lambda in AWS Lambda platform with 512MB al-
location, Sage 1 in Amazon SageMaker’s Notebook instance, and Sage 2 in
Amazon SageMaker’s hosting instance. Lambda cost is $0.00018.

ing instance has a higher price and incurs a larger cost, as shown
in Fig. 2 (b). With respect to the Sage 1 setting, the completion
time performance is similar to the Lambda setting, while the cost
is higher due to the charge for the usage of Notebook instance and
the re-arrangement into the necessary form of the model package
(model.pb and assets). As evidenced, serverless inference exhibits
great promise of cost-saving without degrading the completion
time performance.

We further present the results for the Lambda setting with differ-
ent memory configurations in Table 2. 1024MB is the configuration
with the minimum cost. It also reduces the completion time by
nearly half compared to the 512MB Lambda setting used in Fig. 2.
This implies that the flexibility of resource configuration brings
ample space for improving cost-efficiency.

2.2.2 Inference across lambdas. For the inference of ResNet50 model
which exceeds 250MB in deployment size, we partition it across ten
sequential lambda functions as discussed before. Table 3 presents
the completion time and cost achieved by the ResNet50 model serv-
ing for one image, given the settings of Sage 1, Sage 2 and Lambda
with different memory configurations. The incurred cost in Lambda
setting includes the cost of function invocation and execution, and
the cost of S3 requests for the intermediate data flowed across con-
secutive functions?. The Lambda settings with 512MB and 1024MB
memory both result in smaller costs compared with Sage 1 and Sage
2, showing the cost-efficiency advantages of serverless inference.
With the memory configuration of 1024MB, the completion time is
shortened by at least half compared to the 512MB setting, which
is the smallest among the four settings. Similar to the MobileNet
serving in Fig. 2, Sage 2 takes the longest to complete, because of the
time-consuming model deployment in the hosting instance. From
this study, we have observed again the advantages of serverless
inference, and seen ample optimization space with the flexibility of
model split and resource configuration.

In summary, our background study on AWS Lambda limitations
and the motivation experiments have demonstrated the promises

2 Note that we did not use the AWS Step Function [17] to invoke lambdas, because the
state transitions take nearly 15s which would cost more and lead to a larger completion
time of nearly 108s.

Memory (MB) | 512 1024 1536 2048 3008 Settings | Sage1 | Sage 2 | Lam. 512MB Lam. 1024MB
Time (s) 22.03 10.65 7.52 6.38 6.32 Time (s) | 33.346 | 484.509| 47.078 21.799

Cost ($) 0.00018 | 0.00017 | 0.00019 | 0.00021 | 0.00031 Cost ($) | 0.014 0.056 0.0017 0.0011

E400 /) PR / / of neural network model partitioning across lambda functions for
£ W 5 // serverless inference, which also encourage us to investigate the
£200 Zo.zs v o) . ©

£ V best partition and resource configuration that can minimize cost
S without degrading performance.

3 SERVERLESS INFERENCE FOR
COST-EFFICIENCY AND TIMELY RESPONSE

Based on our observations of motivation experiments in Section
2, there are great promises to exploit the serverless platform for
cost-efficient machine learning inference. In this section, we for-
mally model the response time performance and monetary cost
with respect to model partition and resource allocation, based on
which a constrained optimization problem is formulated and solved
to achieve the maximum cost saving while maintaining timely
response.

We consider a pre-trained neural network model with Y layers
to be deployed on AWS Lambda. The complete set of all the possible
model partitioning is denoted as V. Given a particular partitioning,
called a cut for ease of explanation, denoted as g, g € N, we specify
k,k < K lambdas to be coordinated for model serving, where K is
limit on the maximum number of lambdas that can be requested.
The number of layers in the partition that the i-th lambda (i €
{1,2,---,k}) will be allocated is represented by an integer variable
yg Each lambda’s memory allocation can be any from L memory
blocks. We use the binary variable x‘q to denote whether the i-th
lambda is allocated with the j-th type of memory (j € {1,2,---,L}).
Intuitively, we have

xjg.’ie{O,l}, z] .]l=) (1)

The total number of layers handled by all the lambdas is equal to
Y, expressed as Zl 1 yl
For the partition in a cut g to be deployed on the i-th lambda,

. . . . g . .
given the unit computation time u i with type j memory and the

per-layer Workload size dg the computation time of i-th lambda
is ygdgzj 1 jl]l
of the partition and B denote the bandwidth between a lambda
function and S3, the network transfer time of i-th lambda for cut
g is r (pl 1t pg)/B, for reading intermediate data from the
preV10us partition and writing intermediate result to be used by the
next partition. Thus, the completion time of the i-th lambda given
acutgis

Let pg denote the intermediate output size

— 949 9 g 9
1] yd Z]l]ljl+r (2)

The monetary cost incurred by this lambda depends on the execu-
tion time Tlgj and the price of its allocated memory U?,l.. In addition,
during the execution of this lambda, all the intermediate outputs
from previous partitions, with a total size of q Zu 1 pJ, are
stored in S3 at the price of H per unit time and unit size. The
lambda also incurs the cost of Get and Put request from S3, denoted

AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency

by G and U, and the lambda invocation cost I. Hence the total cost
of this lambda is represented as
s;‘.{j. = 2]4:1 viix]g.’l.Tfj + q?Tif’jH +(I+G+U). 3)
Having expressed the completion time and the monetary cost in-
curred by the i-th lambda in cut g, we now consider the size limit
constraints for the corresponding partition to be deployed on this
lambda. The per neural network layer size of deployment package,
containing the model description file and weights file, is represented
as eig . When the lambda is invoked, the deployment package will
be loaded, in combination with the dependencies of size D and the
handler of size F. The total size, as the deployment size, is limited
by A depending on the serverless platform (e.g., AWS lambda lim-
itations/quotas [15]). In addition, there is a limit J on the size of
temporary memory during execution, which is used to store the
files of model and weights, the outputs of each neural network
layer, and the prediction results from the previous partition. Let
z? denote the per neural network layer size of files related to the
current partition that occupy the temporary memory (i.e., all the
files except for the last one mentioned in the previous sentence).
We now formulate the following optimization problem, which
minimizes the cost of the i-th lambda given a cut g over the variables
associated with model partition (y?) and memory allocation (x]g i)
constrained by the platform limitations: ’

min 57

X,y LJ
s.t. ylge? +D+F<A (4)
vz ol < 6)
y; < [Y/K] (6)
L[% Zh+D+F-M)/p1 <) ()

jeL

x]; {01} ®)

Constraints (4) and (5) regulate the limits for the deployment size
and temporary storage size on the serverless platform. Constraint
(6) caps the number of neural network layers per partition, for the
consideration of reducing search space by removing intuitively
unpromising solutions. Constraint (7) limits the number of memory
blocks L in order to remove infeasible memory options. For example,
assume the lambda in consideration needs a minimum of 500MB
memory to store and execute function, dependencies, partition
weights, etc. Given the minimum memory block size M as 128MB
and block increment size f as 64MB on AWS Lambda, we have
Jj = 7, which means that the feasible memory allocation is at least
576MB (7-th memory block). Hence, the memory blocks smaller
than 576MB are infeasible and can thus be omitted by Constraint
(7).

We next analyze the structure of the optimization problem. Sub-
stituting Tlgj of Eq. (2) into Eq. (3) yields:

L L
ng = Z v?’iu?’ix?’ixjg.’iy?d? + Ujg.’irl.gx]g.’i +
Jj= J=1

=~

uiiq?Hy?digx]g.’i + q?Hrig +I1+G+U. 9)
=

ICPP °21, August 9-12, 2021, Lemont, IL, USA

If we use a single vector variable for both x and y, the first term
in the equation above is cubic in nature and the second term is
quadratic, which make the problem very complex to solve. To make
the problem more tractable, we apply Lagrangian multipliers as
follows.

Since constraints (4), (5), and (6) of variable ylg do not depend on

the other variable x]g. ;» the objective function Eq. (3) and constraints

(4)-(6) can be written as a function G : F(x,y) — Z?:l Aipi(y), where
pi(y) corresponds to Eq (4), (5) and (6), respectively. For example,
p1(y) = ylg e? +D+F—A. J; is the corresponding Lagrange multiplier.
The feasible set of G is denoted as ‘W := {y|p;(y) < 0,i = 1,2,3}.
Based on the L-subdifferential [38] of F(x,y) at § (the global mini-
mum of G), we merge the new constraints of § and 4; in the objec-
tive function in a form of F(x,§) — [X3, Aipi(y) — X3, Aipi(§)].
Since one of the sufficient conditions for global minimizers is
Z?:l Aipi(§) = 0, we transform the optimization problem as:

3
mn G=F(xg)- le Aipi (@) (10)
s.t. Eq(7)and (8), §e W. (11)

The formulation falls into the category of linearly-constrained
zero-one quadratic program on x, given any y. We consider the form
of objective in Eq. (9) and substitute the real numbers Q;, P, hj and
l;. We re-arrange the formulation Eq. (10)-(11) given the known
values of q?, H, oI dl.g, ylg, rIud D, and F:

J.i i7j,i°
L L
mxin ZQijXj+Zij]' (12)
Jj=1 J=1
L
st. Eq(7) :Zhjxj <l (13)
J=1
) L
xj € {0,1} (14)

To solve this problem, we build a quadratic convex reformulation
using semidefinite relaxation [25]. As we do not have any equality
constraint, replacing the product of x;x; by a variable X; yields:

L L
min ZQij+Zij]' (15)
=1 =1
L
st Y hx <l (16)
j=1
Xj=xjxj, j=1..,L (17)
xj € {0, 1}t (18)

Using the semidefinite relaxation of the previous formulation,
we can replace the constraints Eq. (17) and (18) with the linear
matrix inequality X = xx? > 0. From Schur’s Lemma [51], the

t
X]ZO.

1
linear matrix is equivalent to
X is equiv [x X

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Pre-trainedi @] y
Model
— @|Output n-deployment packages

Orer © : Coordinator || Execute Deploy/@
® :

n-YAMLs, Dependencies @

Predictions

= Funtion +Weights(.h5)
Output = Best configuration (Partitions, Lambdas' memories)

Figure 3: Architecture overview of AMPS-Inf.

Now the obtained form of SDP relaxation is:

L L
min ZQij+Zijj (19)
Jj=1 Jj=1
L
st Y hx <l (20)
j=1
! xt]>0 x e RE X e s* (21)
x X| 7 ’

Here the S* defines L x L symmetric matrices. Now we use the
optimal solution to this SDP in order to build a quadratic reformu-
lation. We introduce the QCR method [25] of reformulating the
formulation with adding a combination of quadratic functions that
can vanish on a feasible solution set X. For any y € R, consider
the following quadratic function:

L L L m
Fu(x,§) = D" Qjxjxj + D Pixj + D pi(x = xj) = D higi(y)
j=t j=t j=t i=1

From (10) for any y,

L m
Fu(x.y) = Feey) +) (s = %)) =) digi(®) (22)
j=1 i=1

The function F,,(x, y) is a reformulation since for all x € X, F,,(x,y)
is equal to F(x,y). And we have to find the y such that F;,(x, y) is
convex. So, from the semidefinite relaxation, F(x, y) is transformed
into convex. We can solve the reformulated problem (22) using
mixed-integer convex quadratic programming. It has already been
proved in [25] that solving the above semidefinite relaxation SDP
allows us to deduce optimal values for u. The optimal value y% of
pjsj €{1,2,---,L} will be given by the optimal values of the dual
variables associated with constraints Eq. (20) and (21).
The resulting quadratic convex reformulation is:

RQcony : Min Fye(x,y) (23)
s.t. Eq. (16) and (18) (24)

Jananie Jarachanthan!, Li Chen', Fei Xu?, Bo Li?

The optimal value of SDP equals to the optimal of the continuous
relaxation of RQ¢ony and can be solved in polynomial time. The
total number of neural network layers Y is always equal to the sum
of the number of neural network layers of each partition (lambda)
i y? . Following the aforementioned deduction, minimizing cost
of a lambda in Eq. (3) is a mixed-integer quadratic programming
(MIQP). Intuitively, we can obtain the minimization of the total
cost 3; Sg ; with constraints Eq. (4)-(8) by solving MIQP problems,
using any MIQP solver such as Gurobi [1], CPLEX [26], etc.

4 DESIGN AND IMPLEMENTATION

In this section, we present our design and implementation of AMPS-
Inffor automatic serverless inference in AWS Lambda.

Fig. 3 illustrates the architecture overview, which relies on the
Optimizer to find the best execution plan and resource allocation
for the pre-trained model (in YAML/JSON format) as user input.
The problem formulation and solution presented in Sec. 3 are im-
plemented in the Optimizer component, which generates the best
configuration with minimum cost, selected from the different com-
binations of model partitions and lambda memory allocations. The
Coordinator component creates the zipped deployment packages,
which consist of function and weights files of each partition, and
deploy them on the AWS Lambda platform. Given the Optimizer’s
solution of partition points, AMPS-Inf divides the YAML file into
partitioned ones, adds input and output layers, and uploads them
(and dependencies) to lambdas. The inference starts by calling the
lambda corresponds to the first partition, followed by sequential
invocations of the other lambdas. The intermediate output of each
is stored in AWS S3. The final prediction will be sent back to the
user.

Automatic model partitioning. The state-of-the-art architec-
ture mentioned in a report [42] handles the AlexNet inference using
Pytorch Framework in AWS Lambda with AWS EC2 instance as
a driver, Redis/S3 for storage, and AWS step functions to execute
the workflow. When an image arrives, the driver partitions and
uploads them to the shared storage, and invokes the first lambda
layer. Here the lambda layer (Lambda function) represents a part
of the model which needs to be written by the user as a python
class with a handler including feature forwarding method. In con-
trast, AMPS-Inf does not require the user’s efforts to partition the
model or write the model as a handler’s class. The complexities
associated with model partitioning are hidden from the user, as
AMPS-Inf judiciously partitions the model, automatically deploys
partitions and coordinates their executions on lambdas. Following
the observations of motivation experiments in section 2, to avoid
the non-trivial time and cost incurred by state transitions, AMPS-Inf
does not use the Step functions, and for the same reason removes
the need for the driver (EC2 instance).

Optimizer. The Optimizer is the core component of AMPS-Inf.
The detailed view of the optimizer is shown in Fig. 4. The Profiler
calculates all the possible ways for the partition of the given pre-
trained model. For example, a pre-trained model with 3 layers has
the following possible partition combinations: (3), (1,2), (2,1) and
(1,1,1), where (1,2) means that the first partition has the first neural
network layer and the second partition consists of the next two
layers. The current possible memory blocks of the AWS Lambda

AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency

are also available to the Profiler. The Optimizer needs to select the
best one from the entire solution space by formulating and solving
the serverless inference problem with cost optimization, which has
been elaborated in section 3. The problem is translated to Mixed
Integer Quadratic Programming (MIQP) and any MIQP solver such
as Gurobi [1], CPLEX [26], etc. can be used to find the solution.
Our solver CVXPY [32] is implemented in Python. The optimized
solution is the best configuration incurring minimized cost and
achieving acceptable performance, which consists of the neural
network layer partitions and memory blocks for each partition.
This final output from the Optimizer will be sent to the Coordinator.

Pre-trained Model

Partition combinations,
Memory blocks

Optimizer

Cost Optimizer

Best partition's

Best partition's
Lambdaj

est partition's Lambday,

Lambday
NN layerslMemoryl |NN layerslMemoryl ------- |NN layerslMemoryl

Output

Figure 4: Optimizer component of AMPS-Inf.

Coordinator. The Coordinator of AMPS-Infis designed to create
the partitioned models’ weights as deployment packages and add
the partitioned YAML files with neural network dependencies as
layers of the deployed lambdas. The Coordinator read and split the
pre-trained model as separate NN layers. It lists the necessary pa-
rameters (weights,inputs, outputs and parameters) from the model
summary. Meanwhile, the Coordinator carefully checks the layers’
dependencies (or connection) with other layers when combining
them into a partition. Implemented in Python, the Coordinator
enforces the partition, deployment, coordination and launch of the
given pre-trained model, based on the configuration decision made
by the Optimizer.

5 PERFORMANCE EVALUATION

5.1 Experimental setup

AMPS-Infis evaluated on AWS Lambda platform with four different
Keras pre-trained models: MobileNet, ResNet50, InceptionV3, and
Xception. Two settings of Amazon SageMaker are compared with
AMPS-Inf. Since the experiments were performed during October-
November in 2020, the calculations and measurements of the used
AWS services followed the quotas and pricing schemes for that
duration. It is worth noting that AWS Lambda’s function memory
allocation quota [15] has recently been updated as a maximum of
10,240MB in 1MB increments, while the deployment package size
remains 250MB (unzipped). AMPS-Infstill works and can be easily
extended with the new quota, which will be left as our future work.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

We evaluate AMPS-Inf compared with two SageMaker settings,
three additional baselines and the state-of-the-art [23, 42]. As de-
scribed in Sec. 2.2, the first SageMaker setting, Sage 1, uses instance-
based notebook (ml.t2.medium) to deploy the model for serving.

The second setting, Sage 2, uses instance-based notebook (m1. t2.medium)

to handle the job submission which invokes an ml.m4.xlarge in-
stance for model deployment and inference. The uploaded model
(JSON) and weights (h5) are converted and stored as assets, vari-
ables, and model.pb in AWS S3. The additional three different base-
lines for comparison are based on two heuristics and the optimal
solution:

Baseline 1: Choose the way of partition randomly and select the
memory allocation randomly for all the lambdas.

Baseline 2: Starting from the last layer of a neural network model,
include the layers one by one into a partition until the platform
limit is about to hit, and continue the procedure to form the next
partition. Allocate the maximum memory for all the lambdas.

Baseline 3: The optimal configuration obtained through exhaus-
tive search.

5.2 Comparison with SageMaker

The machine learning inference job runs in steps of loading model

and weights, deploying, and making prediction, in both AWS Lambda
and Amazon SageMaker settings. Fig. 5 shows the time it takes to

load files, respectively, for serving the three models with an image

as input. AMPS-Infloads the model and weights from the same trig-
gered lambda since each model partition (YAML) and its weights

(-h5) are attached to the corresponding lambda. The first SageMaker

setting (Sage 1) loads the model from the package (model.pb, as-
sets, variables) deployed in the same serving notebook instance. In

Sage 2, the model is loaded from AWS S3 by the hosting instance.
Intuitively, due to the network transfer time, the loading in Sage

2 is longer when compared to the AMPS-Infand Sage 1 which are

self-loading. Since AMPS-Inf separates the model and weights files

into smaller partitions and due to the few milliseconds latency of
lambda platform, the sum of loading time over all lambdas is still

the minimum, when compared to loading the whole model and its

assets and variables within an instance in Sage 1.

Table 4: The overall time spent for deployment and prediction (one image
request) in Sage 2.

ResNet50
463.482

Pre-trained models
Prediction Time(s)

Inception-V3
462.303

Xception
401.787

Fig. 6 compares the prediction time per image achieved by AMPS-
Infand Sage 1. The same reasons aforementioned and the few mil-
liseconds latency of temporary storage handling the neural network
layer outputs within the partitions lead to a smaller serving time
of AMPS-Infthan Sage 1. Since the prediction time in Sage 2 is not
practically measurable, we do not include it in our comparison in
Fig. 6. However, the sum of deployment time and the prediction
time in Sage 2 can be measured, which is thus presented in Table
4, evaluated over the same three models. A great amount of time
in deployment is for creating endpoints and launching the hosting
instance, while the prediction is executed by loading model from
S3 which can be comparable to AMPS-Infand Sagel.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

w
>

/4 AMPS-Inf
I Sage 1
[T1] Sage2

N
W

I3
>

Loading time (s)
n

i\ﬁlllll

—

>

N

<

ResNet50 Inception-V3 Xception

Figure 5: The time for loading model and weights.

71 AMPS-Inf
[Sagel
4001 [T Sage2

w
>
>

Completion time (s)

100

. .
ResNet50 Inception-V3 Xception

Figure 7: Completion times for serving one image in three different neural
network models in two platforms (Lambda and SageMaker) with three dif-
ferent settings.

We measured and compared the response time and overall cost of
the whole inference job in Fig. 7 and Fig. 8. ResNet50 completed the
serving of an image with four lambdas, each with 1536MB, 1408MB,
1408MB, and 1344MB memory allocations, determined by the Op-
timizer component in AMPS-Inf. For Inception-v3, three lambdas
were provisioned for its three partitions, with memory of 640MB,
448MB, and 384MB, respective. Xception was partitioned and de-
ployed on three lambdas with 1536MB, 960MB, 1024MB memory
configurations. AMPS-Inftook a few milliseconds to accomplish the
configuration calculations. As shown in Fig. 7, all three pre-trained
models completed the one image serving in fewer completion times
compared to the SageMaker settings because of the reasons afore-
mentioned for the steps of loading, deployment, and prediction.
Since the intercommunication between lambda functions is cur-
rently not well supported, AMPS-Inf, with the need for intermediate
storage, shows less amount of performance improvement in some
cases As AMPS-Inf can be extended to use any intermediate storage
such as Redis [10] and Pocket [41] that are more sophisticatedly
designed, there is opportunity to further increase its performance.

The advantage of the pay-per-use pricing scheme of AWS Lambda
and the proportionality of performance to memory configuration
result in cost reduction of AMPS-Inf for ResNet50, Inception-v3,
and Xception by 92.85%, 98.67%, and 96.29%, respectively, when
compared to Sage 1, as shown in Fig. 8. Similarly, in comparison
with Sage 2, AMPS-Inf achieves cost reduction of 98.18%, 99.33%,
and 98.02%, respectively, for the three models. The incurred cost
in Sage 1 depends on the Notebook instance price, the duration
of its running, and the storage cost for model weights (in or out
cost). In Sage 2, the cost depends on the running time of both the

Jananie Jarachanthan!, Li Chen', Fei Xu?, Bo Li?

5| 7] AMPS-Inf
[Sage 1
24
: .
<3
£
2, 7. J
k]
ey 7
1
L z 1
v ResNet50 Inception-V3 Xception
Figure 6: The time for prediction (one image request).
— AMPS-Inf‘ ‘
0.05{ B Sage 1
[T Sage2 ‘ ‘ ‘
0.04

: | | |

2 0.03 ‘

] - -
. will W W
W
0.00° ® : n

ResNet50 Inception-V3 Xception

Figure 8: Total cost for serving one image in three different neural network
models in two platforms (Lambda and SageMaker) with three different set-
tings.

Notebook instance and the hosting instance, as well as the S3 data
transfer cost and storage cost. The VM instance running contributes
a lot to the overall cost in both SageMaker settings. In summary,
AMPS-Infhas demonstrated its superiority on cost-efficiency when
comparing to the SageMaker platform.

5.3 Comparison with baselines and the
state-of-the-art

We further compare AMPS-Inf with three baselines, of which the
first two are heuristics and the third one is the optimal solution to
cost minimization. Fig. 9 and Fig. 10 illustrate the completion time
and overall cost achieved by AMPS-Infand the three baselines for
three pre-trained models.

For ResNet50, Baseline 1 randomly selected 1024MB memory al-
location for all the 10 lambdas provisioned for a randomly selected
way of model partition. The partition heuristic in Baseline 2 resulted
in the smallest number of lambdas, and these four lambdas were
allocated the largest memory 3008MB (during October-November,
2020). As shown in Fig. 9, with fewer lambdas, each lambda in
Baseline 2 needs to handle more data transferred from/to S3 when
compared to Baseline 1, which explains its slightly larger comple-
tion time. With respect to monetary cost, the usage of maximum
memory and the larger completion time resulted in a larger cost
of Baseline 2 compared to Baseline 1, as shown in Fig. 10. Baseline
3 adopted the cost-optimal solution and intuitively resulted in the
smallest cost. More specifically, the optimal way of partitioning led
to 4 lambdas, each with the memory allocation of 384MB, 384MB,
768MB and 832MB, respectively. Though the number of lambdas

AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency

A Baselinel !
N Baseline2
20 CI Bascline3
o o @l AMPS-Inf
215 °
: TV
E o)
<10
= [HE I
g o o
©s
o o
0 o o
Inception-V3 Xception

Figure 9: Completion times for serving one image in three different neural
network models in four different lambda settings.

is the same with Baseline 2, the optimal solution in Baseline 3 has
better way of partitioning and more reasonable resource allocation
which contributed to both faster job completion and cost reduction.

AMPS-Inf also achieved shorter completion time and smaller
cost when compared to the first two baselines. In comparison with
Baseline 3 which is cost-optimal, AMPS-Infshowed ~ 9% increase in
cost while achieving = 4% better completion time performance. In
particular, AMPS-Infpartitioned the model into four parts, deployed
on lambdas allocated with 1408MB, 1408MB, 1344MB, 1536MB
memories. The larger blocks of memories, compared with Baseline
3, sped up the inference while increasing the monetary cost slightly.

For Inception-V3 and Xception, we have similar observations
and analysis on the completion time performance and cost effi-
ciency achieved by AMPS-Infand the three baselines. In particular,
AMPS-Infbehaved almost the same with Baseline 3 for Inception-V3,
regarding both completion time and cost. For Xception, AMPS-Inf
outperformed Baseline 3 by achieving ~ 9% faster completion, de-
spite incurring ~ 14% more cost.

g 2 —
g0 S —
0" —AMPS-Inf~ Serfer 0.000~—XANMPS-Inf~ Serfer
(a) (b)

Figure 11: Completion time and total cost of ResNet50 inference (one image
request) achieved by Serfer and AMPS-Inf.

Next, we present our comparison with the state-of-the-art server-
less inference framework, Serfer [42]. Since Serfer [42] does not
support automatic partition/configuration and does not give any
guidelines, we use the same partition and configuration as AMPS-Inf
for ResNet50. The differences are: Serfer splits the single image, uses
step function, and requires manual model splitting. Figure 11 shows
the execution time and cost for image serving achieved by AMPS-Inf
and Serfer, clearly demonstrating that our work outperforms Serfer
in both reducing completion time and cost.

5.4 Small NN, batch inference and discussion
The performance of AMPS-Inf for small models.

ICPP °21, August 9-12, 2021, Lemont, IL, USA

0.00150
Baselinel
—_— Baseline2
0.00125 Baseline3
AMPS-Inf
0.00100 o
2 ool /|
- P
2 0.00075 “ |
o o
0.00050 |
2 I
0.00025 ° °
0 00000 M d °
: ' ResNet50 Inception-V3 Xception

Figure 10: Total cost for serving one image in three different neural network

models in four different lambda settings.
0.050 V”
0.025
/

400| /
0.000 AMPS-Inf Sagel Sage2

AMPS-Inf Sagel Sage2
(a) (b)

Time (s)
N~
S
Cost ($)

Figure 12: Completion time and total cost of MobileNet inference (one im-
age request) in three different settings: Sage 1 in Amazon SageMaker’s Note-
book instance, Sage 2 in Amazon SageMaker’s hosting instance, and AMPS-Inf.
AMPS-Inf’s cost is $0.00019.

As explained in Section 2, MobileNet’s deployment size is less
than 250MB, which makes it feasible for single lambda model serv-
ing.

Recall that Fig. 2 presented in Section 2 shows the cost-effectiveness
and acceptable performance of Lambda (512MB) compared to Ama-
zon SageMaker. With AMPS-Inf, two lambdas with 1024MB and
960MB memories, respectively, will be provisioned for the deploy-
ment and serving of MobileNet.

Fig. 12 presents the results of completion time and cost achieved
by AMPS-Inf in comparison with two settings of Amazon Sage-
Maker. Still, AMPS-Inf shows much improvement in terms of both
completion time and monetary cost over Amazon SageMaker.

The extension of AMPS-Infto batch inferencing. As batch
inferencing is likely to further improve the efficiency of model
serving, we further conduct a preliminary investigation on the
feasibility and promise of AMPS-Infto be extended for batched
parallel inference. In particular, we consider the model serving
with ten different images in parallel. The images are loaded as .pkl
files. The completion time and total cost of the whole inference
job for ten parallel servings are presented in Table 5 As shown
in Table 5, AMPS-Infachieves cost reduction of at least 53%, 66%,
and 60%, with at least 7%, 19%, and 29% performance improvement,
compared to SageMaker for ResNet50, Inception-V3, and Xception,
respectively. This clearly demonstrates the potential of AMPS-Inf
for batch inferencing in a more general setting.

We continue to conduct experiments to compare with BATCH
[23], a serverless inference solution with batching, for processing
100 images in 10 batches on MobileNet. The configurations calcu-
lated by AMPS-Inf are two lambdas(/partitions) with 2048 MB and
2176 MB memory. BATCH does not support model splitting and

ICPP °21, August 9-12, 2021, Lemont, IL, USA

/) —
7

Batch AMPS-Inf-Seq AMPS-Inf

N

N

/ /|
/ /.

Batch AMPS-Inf-Seq Al

(@ (b)

Costx 10 ($)
N

D

Time x 10 ? (s)

)
<

@
Bl

Figure 13: Completion time and total cost of MobileNet batch inference
achieved by Batch and AMPS-Inf.

we assigned 2048 MB for its single lambda. Given the batch size
of 10, BATCH sequentially invokes a lambda per batch for the 10
batches. As shown in Figure 13, the resulted completion time and
cost are 276.84s and $0.0095. Although AMPS-Infsupports invoking
lambdas to process all batches in parallel, we let AMPS-Infprocess
sequentially, similar to BATCH for a fair comparison, denoted by
AMPS-Inf-Seq in Figure 13. The resulted time and cost are 231.36s
and $0.0043, outperforming BATCH. When further using parallel
invoking for the 10 batches, AMPS-Inf finished within 42.61s at
the cost of $0.0042. These results demonstrate the advantages of
AMPS-Inf still hold for batch processing.

Table 5: Completion time and cost for a batch serving with 10 images.

Settings ResNet50 | Inception-V3 | Xception
AMPS-Inf | 23.94 27.03 10.35
Time(s) | Sagel 25.77 33.59 14.59
Sage2 432.10 432.62 423.05
AMPS-Inf | 0.0070 0.0047 0.0052
Cost($) | Sagel 0.015 0.014 0.013
Sage2 0.053 0.052 0.051

Discussion and future work. The running time overhead of
AMPS-Infincurred by the MIQP solver is within a few seconds on a
laptop (Intel® Core™i7-8750H CPU@2.20GHzx12,2x8GiB memory).
It is expected that the overhead is negligible (in milliseconds) on a
more powerful commodity server. Though implemented in AWS
Lambda, AMPS-Infcan be adapted to Google Functions and Azure
Functions with minimal modifications in our model and problem
formulation. Extension to other platforms will be left as our future
work. Since advanced neural network models (such as BERT [31])
keep growing in size and complexity, it may be possible that even
a single layer is too large to fit into a lambda function in the future.
To overcome this issue, we will consider automatically quantizing
[34] the weights before the deployment on a serverless platform.

In our future work, we will extend the design for batch inference
serving at a very large scale. We will also evaluate AMPS-Inffor the
models in other frameworks such as Tensorflow, PyTorch, and etc.

6 RELATED WORKS

A number of existing efforts have studied the employment of server-
less platforms in machine learning. Seneca [52] leverages stateless
functions for hyperparameter tuning. Each function is used to train
and evaluate the machine learning model, given a set of hyperpa-
rameters. Cirrus [28] focuses on the iterative model training process,

Jananie Jarachanthan!, Li Chen', Fei Xu?, Bo Li?

which utilizes lambda functions to efficiently handle computation
workloads in each training iteration. It addresses the unnecessary
large memory provisioning by streaming training mini-batches
from a remote storage and revises the training algorithms to work
precisely. SIREN [47] applies deep reinforcement learning to deter-
mine the number and memory size of the stateless functions for
each training epoch, with the objective of minimizing the training
time given a budget.

Apart from the existing efforts aforementioned with the fo-
cus on training, another category of work targets at provisioning
the workloads of machine learning inference or model serving
([23, 24, 30, 50], etc.). The production serving systems provided
by cloud providers ([7, 8, 22, 44], etc.) facilitate the deployment of
trained models in containers. Amazon SageMaker [12] supports
model serving over EC2 instances. MArk [50] studies the capabil-
ities of stateful and stateless architectures to support batch infer-
encing requests, given the objective of meeting the service level re-
quirements. It primarily relies on Infrastructure-as-a-Service (IaaS)
provisioning for model serving, while leveraging Function-as-a-
Service (FaaS) for horizontal/vertical scaling to adapt to increasing
workloads. BATCH [23] is prototyped on AWS Lambda for infer-
ence serving, where requests are buffered to be later processed in
a batch. Its performance optimizer provisions lambda functions
based on the distribution of the requests in the buffer. In all the
existing serving systems in the serverless environment, the model
(each copy) will be deployed on a single lambda function by de-
fault, without considering the infeasibility issue when a model is
larger than the deployment size limit. To fill this gap, Gillis [48]
and our AMPS-Infare two concurrent works on automatic model
partitioning and resource provisioning for large model inference
in the serverless environment, with awareness of both SLO and
cost. While Gillis adopts reinforcement learning based approach
for model partitioning and further enables parallelism within a
partition, AMPS-Inffocuses on finer-grained problem modeling and
employs optimization-based solution.

7 CONCLUDING REMARKS

Serverless computing has exhibited great promise in recent years,
attracting research attention on migrating machine learning work-
loads towards serverless platforms. In this paper, we examine the
challenges of serverless provisioning for machine learning infer-
ence due to the increasing size of advanced models and the limit
on the deployment size of serverless function. To address the chal-
lenges on splitting model and coordinating partitions, and to hide
these complexities from users, we design and implement AMPS-Inf,
an automated framework for serverless machine learning inference
towards cost-efficiency and timely-response. In particular, AMPS-
Inf solves the Mixed-Integer Quadratic Programming problem for
model partitioning and resource provisioning, with the objective of
cost minimization while satisfying the response time service level
requirement (SLO). Deployed in AWS Lambda, AMPS-Infis eval-
uated with four pre-trained models, in comparison with Amazon
SageMaker and three different baselines. Results demonstrate that
AMPS-Inf, by finding the best configuration of lambda resource type
and model partitions, achieves cost saving of up to 98% without
degrading the response time performance.

AMPS-Inf: Automatic Model Partitioning for Serverless Inference with Cost Efficiency

ACKNOWLEDGMENTS

This work was supported in part by the Louisiana Board of Regents

under Contract Numbers LEQSF(2019-22)-RD-A-21 and LEQSF(2021-

22)-RD-D-07, in part by National Science Foundation under Award
Number OIA-2019511, in part by the NSFC under grant No.61972158,
in part by RGC RIF grant R6021-20, and RGC GRF grants under the
contracts 16207818 and 16209120.

REFERENCES

==
2%

[20]

[22
[23]

[24

[25

[26]

[27]

[28]

[29

[30]

[31]

[32

[33]

GUROBI Optimization. Retrieved December 20, 2020 from https://www.gurobi.
com/

Keras. Retrieved January 5, 2021 from https://keras.io/

Pillow. Retrieved January 5, 2021 from https://pillow.readthedocs.io/en/stable/
TensorFlow. Retrieved January 5, 2021 from https://www.tensorflow.org/
VGG16 Function. https://keras.io/api/applications/vgg/#vgg16-function
VGG19 Function. https://keras.io/api/applications/vgg/#vgg19-function

2018. PredictionlO. https://predictionio.apache.org/

2018. RedisML. https://github.com/RedisLabsModules/redisml

2020. Amazon EC2. https://aws.amazon.com/ec2/

2020. Amazon ElastiCache. https://aws.amazon.com/elasticache/

2020. Amazon S3. https://aws.amazon.com/s3/

2020. Amazon SageMaker. https://aws.amazon.com/sagemaker/

2020. Amazon SageMaker Pricing. https://aws.amazon.com/sagemaker/pricing/
2020. AWS Lambda. https://aws.amazon.com/lambda/

2020. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html

2020. AWS Lambda Pricing. https://aws.amazon.com/lambda/pricing/

2020. AWS Step Functions. https://aws.amazon.com/step-functions/

2020. Azure Functions. https://azure.microsoft.com/en-us/services/functions/
2020. Cloud Functions. https://cloud.google.com/functions

2020. Deploy Python Lambda functions with .zip file archives. https://docs.aws.
amazon.com/lambda/latest/dg/python-package html

2020. Lambda Layers. https://docs.aws.amazon.com/lambda/latest/dg/
configuration-layers.html

2020. Multi Model Server. https://github.com/awslabs/multi-model-server
Ahsan Alj, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. 2020. Batch: Machine
Learning Inference Serving on Serverless Platforms with Adaptive Batching. In
2020 SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC). IEEE Computer Society, 972-986.

Anirban Bhattacharjee, Zhuangwei Kang Ajay Dev Chhokra, Hongyang Sun,
Aniruddha Gokhale, and Gabor Karsai. 2019. Barista: Efficient and Scalable
Serverless Serving System for Deep Learning Prediction services. In 2019 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 23-33.

Alain Billionnet, Sourour Elloumi, and Marie-Christine Plateau. 2008. Quadratic
0-1 Programming: Tightening Linear or Quadratic Convex Reformulation by
Use of Relaxations. RAIRO-Operations Research 42, 2, 103-121.

Christian Bliek1u, Pierre Bonami, and Andrea Lodi. 2014. Solving Mixed-Integer
Quadratic Programming Problems with IBM-CPLEX: a Progress Report. In Pro-
ceedings of the twenty-sixth RAMP symposium. 16-17.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. 2018. Learning a Classification
of Mixed-Integer Quadratic Programming Problems. In International Conference
on the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research. Springer, 595-604.

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy
Katz. 2019. Cirrus: a Serverless Framework for End-to-end ML Workflows. In
Proceedings of the ACM Symposium on Cloud Computing. 13-24.

Francois Chollet. 2017. Xception: Deep Learning with Depthwise Separable
Convolutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1251-1258.

Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17). 613-627.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv preprint arXiv:1810.04805 (2018).

Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-Embedded Modeling
Language for Convex Optimization. Journal of Machine Learning Research 17, 83
(2016), 1-5.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing
Using Thousands of Tiny Threads. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

(34

[35

[36

[38

[39

[40

[41]

=
)

[43

(44

[45

=
&

o
S

ICPP °21, August 9-12, 2021, Lemont, IL, USA

Song Han, Huizi Mao, and William J Dally. 2015. Deep compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.
arXiv preprint arXiv:1510.00149 (2015).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv
preprint arXiv:1704.04861 (2017).

Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. May 17-21, 2021. As-
tra:Autonomous Serverless Analytics with Cost-Efficiency and QoS-Awareness.
In 35th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2021).

Vaithilingam Jeyakumar, Alex M Rubinov, and Zhi You Wu. 2007. Non-Convex
Quadratic Minimization Problems With Quadratic Constraints: Global Optimality
Conditions. Mathematical programming 110, 3 (2007), 521-541.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the Cloud: Distributed Computing for the 99%. In Proceedings of
the 2017 Symposium on Cloud Computing. 445-451.

Youngbin Kim and Jimmy Lin. 2018. Serverless Data Analytics with Flint. In 11th
International Conference on Cloud Computing (CLOUD). IEEE.

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Server-
less Analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 427-444.

Mohan Kodandarama, Mohammed Shaikh, and Shreeshrita Patnaik. 2020. SerFer:
Serverless Inference of Machine Learning Models. (2020). https://divatekodand.
github.io/files/serfer.pdf

Benjamin D Lee, Michael A Timony, and Pablo Ruiz. 2019. DNAvisualization. org:
a Serverless Web Tool for DNA Sequence Visualization. Nucleic acids research 47,
W1 (2019), W20-W25.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fang-
wei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. 2017. Tensorflow-
Serving: Flexible, High-Performance Ml Serving. arXiv preprint arXiv:1712.06139
(2017).

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI).

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, and Jonathon Shlens. 2016.
Rethinking the Inception Architecture for Computer Vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 2818-2826.

Hao Wang, Di Niu, and Baochun Li. 2019. Distributed Machine Learning
with a Serverless Architecture. In IEEE Conference on Computer Communica-
tions,INFOCOM 2019. IEEE, 1288-1296.

Minchen Yu, Zhifeng Jiang, Hok Chun Ng, Wei Wang, Ruichuan Chen, and
Bo Li. 2021. Gillis: Serving Large Neural Networks in ServerlessFunctions with
Automatic Model Partitioning. In 41st IEEE International Conference on Distributed
Computing Systems.

Diego Zanon. 2017. Building Serverless Web Applications. Packt Publishing Ltd.
Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. 2019. MArk: Exploiting
Cloud Services for Cost-Effective, Slo-aware Machine Learning Inference Serving.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19). 1049-1062.
Fuzhen Zhang. 2006. The Schur Complement and Its Applications. Vol. 4. Springer
Science & Business Media.

Michael Zhang, Chandra Krintz, Rich Wolski, and Markus Mock. 2019. Seneca:
Fast and Low Cost Hyperparameter Search for Machine Learning Models. In 2019
IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE, 404-408.

https://www.gurobi.com/
https://www.gurobi.com/
https://keras.io/
https://pillow.readthedocs.io/en/stable/
https://www.tensorflow.org/
https://keras.io/api/applications/vgg/#vgg16-function
https://keras.io/api/applications/vgg/#vgg19-function
https://predictionio.apache.org/
https://github.com/RedisLabsModules/redisml
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/s3/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/step-functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://github.com/awslabs/multi-model-server
https://divatekodand.github.io/files/serfer.pdf
https://divatekodand.github.io/files/serfer.pdf

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Machine learning inference in AWS Lambda
	2.2 Motivating experiments

	3 Serverless Inference for Cost-Efficiency and Timely Response
	4 Design and Implementation
	5 performance evaluation
	5.1 Experimental setup
	5.2 Comparison with SageMaker
	5.3 Comparison with baselines and the state-of-the-art
	5.4 Small NN, batch inference and discussion

	6 Related Works
	7 CONCLUDING REMARKS
	Acknowledgments
	References

