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ABSTRACT
The salient pay-per-use nature of serverless computing has driven
its continuous penetration as an alternative computing paradigm
for various workloads. Yet, challenges arise and remain open when
shifting machine learning workloads to the serverless environment.
Speci�cally, the restriction on the deployment size over serverless
platforms combining with the complexity of neural network mod-
els makes it di�cult to deploy large models in a single serverless
function. In this paper, we aim to fully exploit the advantages of the
serverless computing paradigm for machine learning workloads tar-
geting at mitigatingmanagement and overall cost while meeting the
response-time Service Level Objective (SLO). We design and imple-
ment AMPS-Inf, an autonomous framework customized for model
inferencing in serverless computing. Driven by the cost-e�ciency
and timely-response, our proposed AMPS-Inf automatically gen-
erates the optimal execution and resource provisioning plans for
inference workloads. The core of AMPS-Inf relies on the formu-
lation and solution of a Mixed-Integer Quadratic Programming
problem for model partitioning and resource provisioning with the
objective of minimizing cost without violating response time SLO.
We deploy AMPS-Inf on the AWS Lambda platform, evaluate with
the state-of-the-art pre-trained models in Keras including ResNet50,
Inception-V3 and Xception, and compare with Amazon SageMaker
and three baselines. Experimental results demonstrate that AMPS-
Inf achieves up to 98% cost saving without degrading response time
performance.
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1 INTRODUCTION
Serverless computing becomes increasingly popular due to its auto-
scaling and pay-per-use natures. This provides ease-of-management
and cost-e�ciency, which various workloads can take advantage of.
With serverless architectures deployed by cloud providers such as
Amazon Lambda [14], Google Cloud Functions [19], and Microsoft
Azure Functions [18], a wide variety of applications are shifting
towards this computing paradigm, including real-time video encod-
ing [33], data analytics [37, 39, 40, 45], web applications [43, 49],
and etc.

Given the growing adoption of machine learning across di�erent
�elds in today’s era of Internet-of-Things and Arti�cial Intelligence,
it is natural to consider whether and how machine learning appli-
cations can exploit serverless computing. There are a number of
challenges when migrating machine learning workloads on server-
less architecturemainly due to the restrictions of serverless function
size and the increasing size of neural network models. For example,
the deployment package size limit of a function on Amazon Lambda
is 250MB [15] while the size of a model can be as large as 500MB,
such as VGG16 [5] and VGG19 [6]. Although it is likely that cloud
providers may increase the deployment size limit in the future,
there is a faster growth of the size and complexity of advanced
neural network models (such as BERT [31]), which still raises the
similar challenges to be elaborated as follows.

For machine learning services, in particular the inference, to be
deployed on the serverless platform, one of themain requirements is
the minimization of the billing cost without violating a pre-de�ned
Service Level Objective or SLO in term of query response time [50].
This speci�es the time it takes for prediction results of the input to
be returned to users. When a neural network model is too large to
�t into a serverless function, it encounters a number of di�culties
including how to split the complex computation graph, how to
coordinate the partitions, and which function resource type to
specify for each partition? Due to the complex structures of today’s
neural network models, it is not clear how a speci�c partition,
among a gigantic number of possible ones, impacts the coordination
e�orts, the end-to-end query response time and the total billing cost.
In addition, the space for resource con�guration (e.g., the function
memory size for each partition) which also impacts the response
time and monetary cost, is enormous. Given such a large decision
space, domain expertise and nontrivial e�orts are expected from
users to satisfy their requirements on meeting response time SLOs
and minimizing cost, which compromise the ease-of-management
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feature and may discourage them from migrating to serverless
platforms.

To cope with such complexities, we present our framework,
AMPS-Inf, which automatically deploys machine learning inferenc-
ing workloads on serverless platform towards both cost-e�ciency
(i.e., minimizing monetary cost) and timely response (i.e., meeting
response time SLO). Di�erent from existing works on serverless
machine learning ([28, 47, 50], etc.), we jointly consider model par-
titioning dimension and resource provisioning. The solution aims
to derive the serverless deployment for large machine learning
models, where existing solutions do not apply. Yet, AMPS-Inf also
o�ers better cost-e�ciency by model splitting in the case when a
model �ts into a single serverless function.

To achieve the objectives of timely-response and cost-e�ciency,
AMPS-Inf relies on the formulation of a constrained optimization
problem to explore the complete design space with the �exibility of
model split and resource allocation. Given an inference job, AMPS-
Inf calculates the optimal execution and resource provisioning plans
for serverless deployment, constrained by the response time thresh-
old (SLO) and the limitations of the serverless platform, such as
the deployment size and temporary memory. More speci�cally, the
decision variables include the number of partitions in the model
computation graph, how the graph is partitioned, and the lambda
function provisioning (the number of lambdas and the function re-
source type) to coordinate the partitions. This can be formulated as
a Mixed-Integer Quadratic Programming (MIQP) problem [27] [25].
The solution can be obtained by the MIQP solver, which will be
used by AMPS-Inf to enforce the deployment of serverless inference
towards the optimal cost-e�ciency without sacri�cing response
time performance.

We have implemented and deployed AMPS-Inf on AWS Lambda
platform and evaluated with four pre-trained models, ResNet50
[35], MobileNet [36], Xception [29], and Inception-V3 [46], in Keras.
Upon the submission of an inference job with the model �le and
weights, AMPS-Inf automatically partitions the model, provisions
lambda functions, deploys model partitions and launches functions
for coordinated model serving, following the calculated solution
with the optimal cost-e�ciency. Experimental results have demon-
strated the e�cient utilization of serverless platform for machine
learning inference achieved by AMPS-Inf. It outperformed Amazon
SageMaker, the production platform for machine learning, with re-
spect to response time, by at least 47%, 17%, and 61% for ResNet50,
Inception-V3, and Xception, respectively, with at least 92% cost
reductions. For small model MobileNet, AMPS-Inf also achieved bet-
ter response time performance than SageMaker while saving cost
by 98%. We further compare with two heuristic baselines, where
AMPS-Inf achieved 4% to 49% cost reduction for ResNet50, Xception
and Inception-V3. We �nally compare with the optimal deployment,
where AMPS-Inf performed almost the same for Inception-V3 and
no worse than 8% for ResNet50 and Xception.

The rest of the paper is organized as follows. Sec. 2 investigates
serverless inference and motivates the model partitioning and re-
source provisioning for large-size models in a cost-e�cient manner.
Sec. 3 formulates and solves the constrained optimization prob-
lem to automatically partition model and provision functions for
cost-e�cient serverless inference. Sec. 4 presents the architecture

overview of AMPS-Inf and describes its components. Sec. 5 imple-
mentsAMPS-Inf and demonstrates its advantages over the industrial
platform Amazon SageMaker and three baselines for pre-trained
Keras neural network models. Sec. 6 discusses the related work and
Sec. 7 presents concluding remarks.

2 BACKGROUND AND MOTIVATION
In traditional cloud environment, users are responsible for launch-
ing VMs, specifying operating systems and dealing with the scaling
and management issues. On a serverless platform, a user’s respon-
sibility is simpli�ed to writing functions and specifying events to
trigger executions. In other words, the user does not need to worry
about the deployment, management and environment complexities
which are handled by the cloud provider. In the serverless environ-
ment, the launch and termination of functions, are as fast as a few
milliseconds. The cost is in the “pay-per-use” mode: the execution
time of a function, as well as unit time price based on the resource
type, decides its cost (e.g., AWS Lambda [16]).

Machine learning inference is the execution of a query over a
trained model. With the recent advancement of machine learning
and deep learning techniques, models grow in size and complexity,
making it computationally expensive for both training and infer-
encing. The salient features of serverless computing have recently
drawn research attention to deploy model serving (i.e., inference)
to quickly adapt to the query load dynamics. However, there re-
main challenges to be addressed for serverless machine learning
inference. In what follows, we present the status quo of server-
less inference, identify the challenges and motivate our proposed
solution.

2.1 Machine learning inference in AWS
Lambda

Serverless inference in AWS Lambda consists of lambda function
with the serving code (e.g., Python), associated ML dependency
libraries (e.g., Keras), ML model to be inferenced, and the resource
con�gurations (e.g., the allocated memory block [15]). The handler
loads the model and uses imported dependencies on execution and
serves for input(s).

The deployment package for the lambda is a ZIP archive that
consists of the model, dependencies, and function code with 50MB
uploading limitation [20]. For the models beyond 50MB (will be
elaborated later in Table 1), the function layer feature of AWS
lambda can be leveraged to pull in the model and the dependencies.
It keeps the deployment package small with only the function code
and helps to avoid installation errors [21]. An unzipped package
with the size up to 250MB can be facilitated using a maximum of
�ve layers. Still, the dependencies (keras [2], tensor�ow [4], and
the pillow [3]) are typically large. To further reduce their sizes, one
approach is to rebuild the libraries by �ltering out only the neces-
sary packages. Such size-reduced dependencies can be published
and speci�ed by Amazon Resource Name (ARN) 1, which can be
imported in serverless inference through a function layer.

Table 1 lists the deployment sizes of popular Keras Neural Net-
work models, including ResNet50, and Inception-V3. The second
column represents the size of a model which is determined by
1https://github.com/antonpaquin/Tensor�ow-Lambda-Layer/tree/master/arn_tables
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Table 1: Model and deployment sizes of neural network models. The deploy-
ment size includes the necessary dependencies of 169MB inAWSLambda plat-
form.

Neural Network Models Model Size Deployment Size
ResNet50 98MB 267MB
InceptionV3 92MB 261MB

the amount of its parameters. For example, ResNet50 model has
25,636,712 parameters and its size is (25, 636, 712 ⇤ 4)/
1024/1024 ⇡ 98MB. These models all rely on Keras dependencies
(169 MB). The total size for model deployment is represented in the
last column. As shown, they are larger than the 250 MB size limit,
which needs to be addressed in deploying serverless inference. On
the other hand, the execution of the inference job needs to store
the model parameters and neural network layer outputs within
lambda storage which is available until the lambda terminates. The
temporary storage of a lambda is limited to 512MB.

As advanced deep learning models have witnessed growing sizes,
we are motivated to address this critical challenge for serverless
machine learning inference, given the size limit on deployment and
storage. In this paper, we design and implement a novel framework
to automatically deploy model inference in the serverless platform
by partitioning across a number of lambda functions. More partic-
ularly, our model partitioning and function provisioning strategy
is in an optimal way towards cost-e�ciency, without violating the
response time threshold and the aforementioned size limits.

The resource con�guration impacts both the cost and the job
completion time performance. A larger memory allocation is likely
to improve the job completion time, with a higher price per-unit
time. We use MobileNet, a relatively small model which can be
implemented with a single lambda for inference, as an example to
illustrate how the memory allocation impacts cost and performance.
Fig. 1 presents the corresponding cost and completion time given
di�erent allocations of memory for one image serving. Here the
completion time intuitively decreases with the increase of mem-
ory allocation while the cost exhibits a growing trend. Note that
the x-axis starts from 256MB rather than the minimum possible
memory block 128MB, because there is a timeout limitation for
function execution and inferencing with 128MB memory cannot
complete before the timeout. With the memory size increasing, the
performance improves while the cost decreases until a point and
then increases. This happens in more than one points. The reason
is that the cost is determined by function execution time and func-
tion price associated with memory type. Starting from the smallest
memory size, though the price per unit time is cheap, the function
execution time is large, dominating the total cost. On the other
hand, increasing memory size beyond a threshold does not bring
much decrease in completion time, while the memory cost increases
sharply and dominates the total cost. Such a relationship will be
considered in our model to guide appropriate memory allocation
towards desired objective.
2.2 Motivating experiments
In this subsection, we present our experimental investigation that
motivates our proposed approach.

Figure 1: The completion times and costs for di�erent memory allocations of
MobileNet inference for one image. The x-ticks 1-44 represent the memory
blocks from 256MB to 3008MB in 64MB increments.

We study the inference of pre-trained Keras MobileNet (<250MB)
and ResNet50 (>250MB) models in the serverless environment. Par-
ticularly, we import the model (YAML �le), weights (H5 �le saved in
the Hierarchical Data Format), and Tensor�ow-Keras dependencies
(169MB) in function layers in AWS Lambda. MobileNet is a small
model and can be deployed in one lambda with 512MB memory
allocation. ResNet50 cannot �t into one lambda and is randomly par-
titioned across ten lambdas for the inference job, each with 512MB
memory allocation. Because of the missing feature of inter-lambda
communication, there is a need for an intermediate storage, such
as S3 [11], VM instance [9] or specially designed storage system
([41], etc.), to facilitate the transfer of intermediate data between
lambdas. In our study, we leverage the simple one, S3, which could
be extended to other storage to be discussed later.

We compare serverless inferencewith the commercial non server-
less solution, Amazon SageMaker, which is a cloud platform for
machine learning that integrates all the required components and
automates the end-to-end work�ow. The pricing of SageMaker
includes the cost of on-demand instances, storage, and data process-
ing in hosting instances [13]. SageMaker allows a cloud user to use
Jupyter Notebook for its machine learning task. We consider two
SageMaker settings, referred to as Sage 1 and Sage 2 throughout
this paper. The user input models for both SageMaker settings are
in the JSON format. Sage 1 uses a single instance of ml.t2.medium
to store the model and weights, and deploy the model for inference.
Sage 2 uses an instance of ml.t2.medium to handle the submission
of inference jobs and invoke a hosting instance, ml.m4.xlarge, for
model serving. HTTP endpoints are created and the model is stored
in S3 in a rearranged format. The instances used in both settings
are on-demand which have lower prices [13] compared to regular
instances. We next compare the results for model serving in these
three di�erent settings.

2.2.1 Inference with one lambda. Fig. 2 shows the completion time
and monetary cost of MobileNet serving with one image as input,
in the three di�erent settings aforementioned. The completion time
is measured as the end-to-end completion time starting from model
upload and ending with inference response. As clearly shown, the
Lambda setting (with the function memory con�gured as 512MB)
leads to the minimum cost when compared to SageMaker settings
without degrading the completion time performance. The Sage 2
setting results in a large completion time due to the time required to
run the hosting instance and deploy themodel. Meanwhile, the host-
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Table 2: Completion time and cost of MobileNet serving (one image request)
given di�erent memory types.

Memory (MB) 512 1024 1536 2048 3008
Time (s) 22.03 10.65 7.52 6.38 6.32
Cost ($) 0.00018 0.00017 0.00019 0.00021 0.00031

(a) (b)

Figure 2: Completion time and cost of MobileNet serving (one image request)
in three di�erent settings: Lambda in AWS Lambda platform with 512MB al-
location, Sage 1 in Amazon SageMaker’s Notebook instance, and Sage 2 in
Amazon SageMaker’s hosting instance. Lambda cost is $0.00018.

ing instance has a higher price and incurs a larger cost, as shown
in Fig. 2 (b). With respect to the Sage 1 setting, the completion
time performance is similar to the Lambda setting, while the cost
is higher due to the charge for the usage of Notebook instance and
the re-arrangement into the necessary form of the model package
(model.pb and assets). As evidenced, serverless inference exhibits
great promise of cost-saving without degrading the completion
time performance.

We further present the results for the Lambda setting with di�er-
ent memory con�gurations in Table 2. 1024MB is the con�guration
with the minimum cost. It also reduces the completion time by
nearly half compared to the 512MB Lambda setting used in Fig. 2.
This implies that the �exibility of resource con�guration brings
ample space for improving cost-e�ciency.

2.2.2 Inference across lambdas. For the inference of ResNet50model
which exceeds 250MB in deployment size, we partition it across ten
sequential lambda functions as discussed before. Table 3 presents
the completion time and cost achieved by the ResNet50 model serv-
ing for one image, given the settings of Sage 1, Sage 2 and Lambda
with di�erent memory con�gurations. The incurred cost in Lambda
setting includes the cost of function invocation and execution, and
the cost of S3 requests for the intermediate data �owed across con-
secutive functions2. The Lambda settings with 512MB and 1024MB
memory both result in smaller costs compared with Sage 1 and Sage
2, showing the cost-e�ciency advantages of serverless inference.
With the memory con�guration of 1024MB, the completion time is
shortened by at least half compared to the 512MB setting, which
is the smallest among the four settings. Similar to the MobileNet
serving in Fig. 2, Sage 2 takes the longest to complete, because of the
time-consuming model deployment in the hosting instance. From
this study, we have observed again the advantages of serverless
inference, and seen ample optimization space with the �exibility of
model split and resource con�guration.

In summary, our background study on AWS Lambda limitations
and the motivation experiments have demonstrated the promises
2 Note that we did not use the AWS Step Function [17] to invoke lambdas, because the
state transitions take nearly 15B which would cost more and lead to a larger completion
time of nearly 108B .

Table 3: Completion time and cost of ResNet50 serving (one image) in di�er-
ent settings.

Settings Sage 1 Sage 2 Lam. 512MB Lam. 1024MB
Time (s) 33.346 484.509 47.078 21.799
Cost ($) 0.014 0.056 0.0017 0.0011

of neural network model partitioning across lambda functions for
serverless inference, which also encourage us to investigate the
best partition and resource con�guration that can minimize cost
without degrading performance.

3 SERVERLESS INFERENCE FOR
COST-EFFICIENCY AND TIMELY RESPONSE

Based on our observations of motivation experiments in Section
2, there are great promises to exploit the serverless platform for
cost-e�cient machine learning inference. In this section, we for-
mally model the response time performance and monetary cost
with respect to model partition and resource allocation, based on
which a constrained optimization problem is formulated and solved
to achieve the maximum cost saving while maintaining timely
response.

We consider a pre-trained neural network model with . layers
to be deployed on AWS Lambda. The complete set of all the possible
model partitioning is denoted asN . Given a particular partitioning,
called a cut for ease of explanation, denoted as 6,6 2 N , we specify
:,:   lambdas to be coordinated for model serving, where  is
limit on the maximum number of lambdas that can be requested.
The number of layers in the partition that the 8-th lambda (8 2
{1, 2, · · · ,:}) will be allocated is represented by an integer variable
~68 . Each lambda’s memory allocation can be any from ! memory
blocks. We use the binary variable G69,8 to denote whether the 8-th
lambda is allocated with the 9-th type of memory ( 9 2 {1, 2, · · · , !}).
Intuitively, we have

G69,8 2 {0, 1}, Õ!
9=1 G

6
9,8 = 1. (1)

The total number of layers handled by all the lambdas is equal to
. , expressed as

Õ:
8=1 ~

6
8 = . .

For the partition in a cut 6 to be deployed on the 8-th lambda,
given the unit computation time D69,8 with type 9 memory and the
per-layer workload size 368 , the computation time of 8-th lambda
is ~68 3

6
8
Õ!

9=1 G
6
9,8D

6
9,8 . Let ?

6
8 denote the intermediate output size

of the partition and ⌫ denote the bandwidth between a lambda
function and S3, the network transfer time of 8-th lambda for cut
6 is A68 = (?68�1 + ?

6
8 )/⌫, for reading intermediate data from the

previous partition and writing intermediate result to be used by the
next partition. Thus, the completion time of the 8-th lambda given
a cut 6 is

)68, 9 = ~
6
8 3

6
8
Õ!

9=1 G
6
9,8D

6
9,8 + A

6
8 . (2)

The monetary cost incurred by this lambda depends on the execu-
tion time)68, 9 and the price of its allocated memory E69,8 . In addition,
during the execution of this lambda, all the intermediate outputs
from previous partitions, with a total size of @68 =

Õ8�1
D=1 ?

6
D , are

stored in S3 at the price of � per unit time and unit size. The
lambda also incurs the cost of Get and Put request from S3, denoted
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by ⌧ and* , and the lambda invocation cost � . Hence the total cost
of this lambda is represented as

(68, 9 =
Õ!

9=1 E
6
9,8G

6
9,8)

6
8, 9 + @

6
8)

6
8, 9� + (� +⌧ +* ). (3)

Having expressed the completion time and the monetary cost in-
curred by the 8-th lambda in cut 6, we now consider the size limit
constraints for the corresponding partition to be deployed on this
lambda. The per neural network layer size of deployment package,
containing themodel description �le andweights �le, is represented
as 468 . When the lambda is invoked, the deployment package will
be loaded, in combination with the dependencies of size ⇡ and the
handler of size � . The total size, as the deployment size, is limited
by � depending on the serverless platform (e.g., AWS lambda lim-
itations/quotas [15]). In addition, there is a limit � on the size of
temporary memory during execution, which is used to store the
�les of model and weights, the outputs of each neural network
layer, and the prediction results from the previous partition. Let
I68 denote the per neural network layer size of �les related to the
current partition that occupy the temporary memory (i.e., all the
�les except for the last one mentioned in the previous sentence).

We now formulate the following optimization problem, which
minimizes the cost of the 8-th lambda given a cut6 over the variables
associated with model partition (~68 ) and memory allocation (G69,8 ),
constrained by the platform limitations:

min
G,~G,~G,~

(68, 9

s.t. ~68 4
6
8 + ⇡ + �  � (4)

~68 I
6
8 + ?

6
8�1  � (5)

~68  d./:e (6)

1 + d((
’
9 2!

G69,8I
6
8 ) + ⇡ + � �")/V)e  9 (7)

G69,8 2 {0, 1} (8)

Constraints (4) and (5) regulate the limits for the deployment size
and temporary storage size on the serverless platform. Constraint
(6) caps the number of neural network layers per partition, for the
consideration of reducing search space by removing intuitively
unpromising solutions. Constraint (7) limits the number of memory
blocks ! in order to remove infeasible memory options. For example,
assume the lambda in consideration needs a minimum of 500MB
memory to store and execute function, dependencies, partition
weights, etc. Given the minimum memory block size" as 128MB
and block increment size V as 64MB on AWS Lambda, we have
9 � 7, which means that the feasible memory allocation is at least
576MB (7-th memory block). Hence, the memory blocks smaller
than 576MB are infeasible and can thus be omitted by Constraint
(7).

We next analyze the structure of the optimization problem. Sub-
stituting )68, 9 of Eq. (2) into Eq. (3) yields:

(68, 9 =
!’
9=1

E69,8D
6
9,8G

6
9,8G

6
9,8~

6
8 3

6
8 +

!’
9=1

E69,8A
6
8 G

6
9,8 +

!’
9=1

D69,8@
6
8 �~

6
8 3

6
8 G

6
9,8 + @

6
8 �A

6
8 + � +⌧ +* . (9)

If we use a single vector variable for both GGG and ~~~, the �rst term
in the equation above is cubic in nature and the second term is
quadratic, which make the problem very complex to solve. To make
the problem more tractable, we apply Lagrangian multipliers as
follows.

Since constraints (4), (5), and (6) of variable ~68 do not depend on
the other variable G69,8 , the objective function Eq. (3) and constraints
(4)-(6) can be written as a function⌧ : � (G,~G,~G,~)�Õ3

8=1 _8d8 (~~~), where
d8 (~~~) corresponds to Eq (4), (5) and (6), respectively. For example,
d1 (~~~) = ~68 4

6
8 +⇡+���. _8 is the corresponding Lagrangemultiplier.

The feasible set of ⌧ is denoted as W := {~~~ |d8 (~~~)  0, 8 = 1, 2, 3}.
Based on the L-subdi�erential [38] of � (G,~G,~G,~) at ~̄̄~̄~ (the global mini-
mum of⌧), we merge the new constraints of ~̄̄~̄~ and _8 in the objec-
tive function in a form of � (GGG, ~̄̄~̄~) � [Õ3

8=1 _8d8 (~~~) �
Õ3
8=1 _8d8 (~̄̄~̄~)].

Since one of the su�cient conditions for global minimizers isÕ3
8=1 _8d8 (~̄̄~̄~) = 0, we transform the optimization problem as:

min
G,~̄G,~̄G,~̄

⌧ = � (G, ~̄G, ~̄G, ~̄) �
3’

8=1
_8d8 (~̄̄~̄~) (10)

s.t. Eq (7) and (8), ~̄̄~̄~ 2 W . (11)

The formulation falls into the category of linearly-constrained
zero-one quadratic program onGGG , given any~~~. We consider the form
of objective in Eq. (9) and substitute the real numbers& 9 , % 9 ,⌘ 9 and
; 9 . We re-arrange the formulation Eq. (10)-(11) given the known
values of @68 ,� , E

6
9,8 ,3

6
8 ,~

6
8 , A

6
8 D

6
9,8 ,⇡, and � :

min
GGG

!’
9=1

& 9G 9G 9 +
!’
9=1

% 9G 9 (12)

s.t. ⇢@(7) :
!’
9=1

⌘ 9G 9  ; 9 (13)

G 9 2 {0, 1}! (14)

To solve this problem, we build a quadratic convex reformulation
using semide�nite relaxation [25]. As we do not have any equality
constraint, replacing the product of G 9G 9 by a variable - 9 yields:

min
!’
9=1

& 9- 9 +
!’
9=1

% 9G 9 (15)

s.t.
!’
9=1

⌘ 9G 9  ; 9 (16)

- 9 = G 9G 9 , 9 = 1, ...., ! (17)

G 9 2 {0, 1}! (18)

Using the semide�nite relaxation of the previous formulation,
we can replace the constraints Eq. (17) and (18) with the linear
matrix inequality - = GGC � 0. From Schur’s Lemma [51], the

linear matrix is equivalent to

1 GC

G -

�
� 0.
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Figure 3: Architecture overview of AMPS-Inf.

Now the obtained form of SDP relaxation is:

min
!’
9=1

& 9- 9 +
!’
9=1

% 9G 9 (19)

s.t.
!’
9=1

⌘ 9G 9  ; 9 (20)


1 GC

G -

�
� 0, G 2 R!,- 2 (! (21)

Here the (! de�nes ! ⇥ ! symmetric matrices. Now we use the
optimal solution to this SDP in order to build a quadratic reformu-
lation. We introduce the QCR method [25] of reformulating the
formulation with adding a combination of quadratic functions that
can vanish on a feasible solution set - . For any ` 2 R! , consider
the following quadratic function:

�` (G, ~̄) =
!’
9=1

& 9G 9G 9 +
!’
9=1

% 9G 9 +
!’
9=1

` 9 (G29 � G 9 ) �
<’
8=1

_868 (~)

From (10) for any ~ ,

�` (G,~) = � (G,~) +
!’
9=1

` 9 (G29 � G 9 ) �
<’
8=1

_868 (~) (22)

The function �` (G,~) is a reformulation since for all G 2 - , �` (G,~)
is equal to � (G,~). And we have to �nd the ` such that �` (G,~) is
convex. So, from the semide�nite relaxation, � (G,~) is transformed
into convex. We can solve the reformulated problem (22) using
mixed-integer convex quadratic programming. It has already been
proved in [25] that solving the above semide�nite relaxation SDP
allows us to deduce optimal values for `. The optimal value `⇤9 of
` 9 ; 9 2 {1, 2, · · · , !} will be given by the optimal values of the dual
variables associated with constraints Eq. (20) and (21).

The resulting quadratic convex reformulation is:

'&2>=E : Min �`⇤ (G,~) (23)
s.t. Eq. (16) and (18) (24)

The optimal value of SDP equals to the optimal of the continuous
relaxation of '&2>=E and can be solved in polynomial time. The
total number of neural network layers . is always equal to the sum
of the number of neural network layers of each partition (lambda)Õ
8 ~

6
8 . Following the aforementioned deduction, minimizing cost

of a lambda in Eq. (3) is a mixed-integer quadratic programming
(MIQP). Intuitively, we can obtain the minimization of the total
cost

Õ
8 (

6
8, 9 with constraints Eq. (4)-(8) by solving MIQP problems,

using any MIQP solver such as Gurobi [1], CPLEX [26], etc.

4 DESIGN AND IMPLEMENTATION
In this section, we present our design and implementation of AMPS-
Inf for automatic serverless inference in AWS Lambda.

Fig. 3 illustrates the architecture overview, which relies on the
Optimizer to �nd the best execution plan and resource allocation
for the pre-trained model (in YAML/JSON format) as user input.
The problem formulation and solution presented in Sec. 3 are im-
plemented in the Optimizer component, which generates the best
con�guration with minimum cost, selected from the di�erent com-
binations of model partitions and lambda memory allocations. The
Coordinator component creates the zipped deployment packages,
which consist of function and weights �les of each partition, and
deploy them on the AWS Lambda platform. Given the Optimizer’s
solution of partition points, AMPS-Inf divides the YAML �le into
partitioned ones, adds input and output layers, and uploads them
(and dependencies) to lambdas. The inference starts by calling the
lambda corresponds to the �rst partition, followed by sequential
invocations of the other lambdas. The intermediate output of each
is stored in AWS S3. The �nal prediction will be sent back to the
user.

Automatic model partitioning. The state-of-the-art architec-
ture mentioned in a report [42] handles the AlexNet inference using
Pytorch Framework in AWS Lambda with AWS EC2 instance as
a driver, Redis/S3 for storage, and AWS step functions to execute
the work�ow. When an image arrives, the driver partitions and
uploads them to the shared storage, and invokes the �rst lambda
layer. Here the lambda layer (Lambda function) represents a part
of the model which needs to be written by the user as a python
class with a handler including feature forwarding method. In con-
trast, AMPS-Inf does not require the user’s e�orts to partition the
model or write the model as a handler’s class. The complexities
associated with model partitioning are hidden from the user, as
AMPS-Inf judiciously partitions the model, automatically deploys
partitions and coordinates their executions on lambdas. Following
the observations of motivation experiments in section 2, to avoid
the non-trivial time and cost incurred by state transitions, AMPS-Inf
does not use the Step functions, and for the same reason removes
the need for the driver (EC2 instance).

Optimizer. The Optimizer is the core component of AMPS-Inf.
The detailed view of the optimizer is shown in Fig. 4. The Pro�ler
calculates all the possible ways for the partition of the given pre-
trained model. For example, a pre-trained model with 3 layers has
the following possible partition combinations: (3), (1,2), (2,1) and
(1,1,1), where (1,2) means that the �rst partition has the �rst neural
network layer and the second partition consists of the next two
layers. The current possible memory blocks of the AWS Lambda
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are also available to the Pro�ler. The Optimizer needs to select the
best one from the entire solution space by formulating and solving
the serverless inference problem with cost optimization, which has
been elaborated in section 3. The problem is translated to Mixed
Integer Quadratic Programming (MIQP) and any MIQP solver such
as Gurobi [1], CPLEX [26], etc. can be used to �nd the solution.
Our solver CVXPY [32] is implemented in Python. The optimized
solution is the best con�guration incurring minimized cost and
achieving acceptable performance, which consists of the neural
network layer partitions and memory blocks for each partition.
This �nal output from the Optimizer will be sent to the Coordinator.

Profiler

Cost Optimizer

Partition combinations, 

Memory blocks

NN layers Memory

Best partition's 

Lambda1 Best partition's 

Lambda2

Best partition's 

Lambdan

Optimizer

Output

Pre-trained Model

NN layers Memory NN layers Memory

Figure 4: Optimizer component of AMPS-Inf.

Coordinator. The Coordinator ofAMPS-Inf is designed to create
the partitioned models’ weights as deployment packages and add
the partitioned YAML �les with neural network dependencies as
layers of the deployed lambdas. The Coordinator read and split the
pre-trained model as separate NN layers. It lists the necessary pa-
rameters (weights,inputs, outputs and parameters) from the model
summary. Meanwhile, the Coordinator carefully checks the layers’
dependencies (or connection) with other layers when combining
them into a partition. Implemented in Python, the Coordinator
enforces the partition, deployment, coordination and launch of the
given pre-trained model, based on the con�guration decision made
by the Optimizer.

5 PERFORMANCE EVALUATION
5.1 Experimental setup
AMPS-Inf is evaluated on AWS Lambda platform with four di�erent
Keras pre-trained models: MobileNet, ResNet50, InceptionV3, and
Xception. Two settings of Amazon SageMaker are compared with
AMPS-Inf. Since the experiments were performed during October-
November in 2020, the calculations and measurements of the used
AWS services followed the quotas and pricing schemes for that
duration. It is worth noting that AWS Lambda’s function memory
allocation quota [15] has recently been updated as a maximum of
10,240MB in 1MB increments, while the deployment package size
remains 250MB (unzipped). AMPS-Inf still works and can be easily
extended with the new quota, which will be left as our future work.

We evaluate AMPS-Inf compared with two SageMaker settings,
three additional baselines and the state-of-the-art [23, 42]. As de-
scribed in Sec. 2.2, the �rst SageMaker setting, Sage 1, uses instance-
based notebook (ml.t2.medium) to deploy the model for serving.
The second setting, Sage 2, uses instance-based notebook (ml.t2.medium)
to handle the job submission which invokes an ml.m4.xlarge in-
stance for model deployment and inference. The uploaded model
(JSON) and weights (.h5) are converted and stored as assets, vari-
ables, and model.pb in AWS S3. The additional three di�erent base-
lines for comparison are based on two heuristics and the optimal
solution:

Baseline 1: Choose the way of partition randomly and select the
memory allocation randomly for all the lambdas.

Baseline 2: Starting from the last layer of a neural network model,
include the layers one by one into a partition until the platform
limit is about to hit, and continue the procedure to form the next
partition. Allocate the maximum memory for all the lambdas.

Baseline 3: The optimal con�guration obtained through exhaus-
tive search.

5.2 Comparison with SageMaker
The machine learning inference job runs in steps of loading model
andweights, deploying, andmaking prediction, in bothAWSLambda
and Amazon SageMaker settings. Fig. 5 shows the time it takes to
load �les, respectively, for serving the three models with an image
as input. AMPS-Inf loads the model and weights from the same trig-
gered lambda since each model partition (YAML) and its weights
(.h5) are attached to the corresponding lambda. The �rst SageMaker
setting (Sage 1) loads the model from the package (model.pb, as-
sets, variables) deployed in the same serving notebook instance. In
Sage 2, the model is loaded from AWS S3 by the hosting instance.
Intuitively, due to the network transfer time, the loading in Sage
2 is longer when compared to the AMPS-Inf and Sage 1 which are
self-loading. Since AMPS-Inf separates the model and weights �les
into smaller partitions and due to the few milliseconds latency of
lambda platform, the sum of loading time over all lambdas is still
the minimum, when compared to loading the whole model and its
assets and variables within an instance in Sage 1.

Table 4: The overall time spent for deployment and prediction (one image
request) in Sage 2.

Pre-trained models ResNet50 Inception-V3 Xception
Prediction Time(s) 463.482 462.303 401.787

Fig. 6 compares the prediction time per image achieved by AMPS-
Inf and Sage 1. The same reasons aforementioned and the few mil-
liseconds latency of temporary storage handling the neural network
layer outputs within the partitions lead to a smaller serving time
of AMPS-Inf than Sage 1. Since the prediction time in Sage 2 is not
practically measurable, we do not include it in our comparison in
Fig. 6. However, the sum of deployment time and the prediction
time in Sage 2 can be measured, which is thus presented in Table
4, evaluated over the same three models. A great amount of time
in deployment is for creating endpoints and launching the hosting
instance, while the prediction is executed by loading model from
S3 which can be comparable to AMPS-Inf and Sage1.
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Figure 5: The time for loading model and weights. Figure 6: The time for prediction (one image request).

Figure 7: Completion times for serving one image in three di�erent neural
network models in two platforms (Lambda and SageMaker) with three dif-
ferent settings.

Figure 8: Total cost for serving one image in three di�erent neural network
models in two platforms (Lambda and SageMaker) with three di�erent set-
tings.

Wemeasured and compared the response time and overall cost of
the whole inference job in Fig. 7 and Fig. 8. ResNet50 completed the
serving of an image with four lambdas, each with 1536MB, 1408MB,
1408MB, and 1344MB memory allocations, determined by the Op-
timizer component in AMPS-Inf. For Inception-v3, three lambdas
were provisioned for its three partitions, with memory of 640MB,
448MB, and 384MB, respective. Xception was partitioned and de-
ployed on three lambdas with 1536MB, 960MB, 1024MB memory
con�gurations. AMPS-Inf took a few milliseconds to accomplish the
con�guration calculations. As shown in Fig. 7, all three pre-trained
models completed the one image serving in fewer completion times
compared to the SageMaker settings because of the reasons afore-
mentioned for the steps of loading, deployment, and prediction.
Since the intercommunication between lambda functions is cur-
rently not well supported, AMPS-Inf, with the need for intermediate
storage, shows less amount of performance improvement in some
cases As AMPS-Inf can be extended to use any intermediate storage
such as Redis [10] and Pocket [41] that are more sophisticatedly
designed, there is opportunity to further increase its performance.

The advantage of the pay-per-use pricing scheme of AWSLambda
and the proportionality of performance to memory con�guration
result in cost reduction of AMPS-Inf for ResNet50, Inception-v3,
and Xception by 92.85%, 98.67%, and 96.29%, respectively, when
compared to Sage 1, as shown in Fig. 8. Similarly, in comparison
with Sage 2, AMPS-Inf achieves cost reduction of 98.18%, 99.33%,
and 98.02%, respectively, for the three models. The incurred cost
in Sage 1 depends on the Notebook instance price, the duration
of its running, and the storage cost for model weights (in or out
cost). In Sage 2, the cost depends on the running time of both the

Notebook instance and the hosting instance, as well as the S3 data
transfer cost and storage cost. The VM instance running contributes
a lot to the overall cost in both SageMaker settings. In summary,
AMPS-Inf has demonstrated its superiority on cost-e�ciency when
comparing to the SageMaker platform.

5.3 Comparison with baselines and the
state-of-the-art

We further compare AMPS-Inf with three baselines, of which the
�rst two are heuristics and the third one is the optimal solution to
cost minimization. Fig. 9 and Fig. 10 illustrate the completion time
and overall cost achieved by AMPS-Inf and the three baselines for
three pre-trained models.

For ResNet50, Baseline 1 randomly selected 1024MB memory al-
location for all the 10 lambdas provisioned for a randomly selected
way of model partition. The partition heuristic in Baseline 2 resulted
in the smallest number of lambdas, and these four lambdas were
allocated the largest memory 3008MB (during October-November,
2020). As shown in Fig. 9, with fewer lambdas, each lambda in
Baseline 2 needs to handle more data transferred from/to S3 when
compared to Baseline 1, which explains its slightly larger comple-
tion time. With respect to monetary cost, the usage of maximum
memory and the larger completion time resulted in a larger cost
of Baseline 2 compared to Baseline 1, as shown in Fig. 10. Baseline
3 adopted the cost-optimal solution and intuitively resulted in the
smallest cost. More speci�cally, the optimal way of partitioning led
to 4 lambdas, each with the memory allocation of 384MB, 384MB,
768MB and 832MB, respectively. Though the number of lambdas
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Figure 9: Completion times for serving one image in three di�erent neural
network models in four di�erent lambda settings.

Figure 10: Total cost for serving one image in three di�erent neural network
models in four di�erent lambda settings.

is the same with Baseline 2, the optimal solution in Baseline 3 has
better way of partitioning and more reasonable resource allocation
which contributed to both faster job completion and cost reduction.

AMPS-Inf also achieved shorter completion time and smaller
cost when compared to the �rst two baselines. In comparison with
Baseline 3 which is cost-optimal,AMPS-Inf showed ⇡ 9% increase in
cost while achieving ⇡ 4% better completion time performance. In
particular, AMPS-Inf partitioned the model into four parts, deployed
on lambdas allocated with 1408MB, 1408MB, 1344MB, 1536MB
memories. The larger blocks of memories, compared with Baseline
3, sped up the inference while increasing the monetary cost slightly.

For Inception-V3 and Xception, we have similar observations
and analysis on the completion time performance and cost e�-
ciency achieved by AMPS-Inf and the three baselines. In particular,
AMPS-Inf behaved almost the samewith Baseline 3 for Inception-V3,
regarding both completion time and cost. For Xception, AMPS-Inf
outperformed Baseline 3 by achieving ⇡ 9% faster completion, de-
spite incurring ⇡ 14% more cost.

(a) (b)

Figure 11: Completion time and total cost of ResNet50 inference (one image
request) achieved by Serfer and AMPS-Inf.

Next, we present our comparison with the state-of-the-art server-
less inference framework, Serfer [42]. Since Serfer [42] does not
support automatic partition/con�guration and does not give any
guidelines, we use the same partition and con�guration asAMPS-Inf
for ResNet50. The di�erences are: Serfer splits the single image, uses
step function, and requires manual model splitting. Figure 11 shows
the execution time and cost for image serving achieved byAMPS-Inf
and Serfer, clearly demonstrating that our work outperforms Serfer
in both reducing completion time and cost.

5.4 Small NN, batch inference and discussion
The performance of AMPS-Inf for small models.

(a) (b)

Figure 12: Completion time and total cost of MobileNet inference (one im-
age request) in three di�erent settings: Sage 1 in Amazon SageMaker’s Note-
book instance, Sage 2 inAmazon SageMaker’s hosting instance, andAMPS-Inf.
AMPS-Inf’s cost is $0.00019.

As explained in Section 2, MobileNet’s deployment size is less
than 250MB, which makes it feasible for single lambda model serv-
ing.

Recall that Fig. 2 presented in Section 2 shows the cost-e�ectiveness
and acceptable performance of Lambda (512MB) compared to Ama-
zon SageMaker. With AMPS-Inf, two lambdas with 1024MB and
960MB memories, respectively, will be provisioned for the deploy-
ment and serving of MobileNet.

Fig. 12 presents the results of completion time and cost achieved
by AMPS-Inf in comparison with two settings of Amazon Sage-
Maker. Still, AMPS-Inf shows much improvement in terms of both
completion time and monetary cost over Amazon SageMaker.

The extension of AMPS-Inf to batch inferencing. As batch
inferencing is likely to further improve the e�ciency of model
serving, we further conduct a preliminary investigation on the
feasibility and promise of AMPS-Inf to be extended for batched
parallel inference. In particular, we consider the model serving
with ten di�erent images in parallel. The images are loaded as .pkl
�les. The completion time and total cost of the whole inference
job for ten parallel servings are presented in Table 5 As shown
in Table 5, AMPS-Inf achieves cost reduction of at least 53%, 66%,
and 60%, with at least 7%, 19%, and 29% performance improvement,
compared to SageMaker for ResNet50, Inception-V3, and Xception,
respectively. This clearly demonstrates the potential of AMPS-Inf
for batch inferencing in a more general setting.

We continue to conduct experiments to compare with BATCH
[23], a serverless inference solution with batching, for processing
100 images in 10 batches on MobileNet. The con�gurations calcu-
lated by AMPS-Inf are two lambdas(/partitions) with 2048 MB and
2176 MB memory. BATCH does not support model splitting and
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(a) (b)

Figure 13: Completion time and total cost of MobileNet batch inference
achieved by Batch and AMPS-Inf.

we assigned 2048 MB for its single lambda. Given the batch size
of 10, BATCH sequentially invokes a lambda per batch for the 10
batches. As shown in Figure 13, the resulted completion time and
cost are 276.84s and $0.0095. Although AMPS-Inf supports invoking
lambdas to process all batches in parallel, we let AMPS-Inf process
sequentially, similar to BATCH for a fair comparison, denoted by
AMPS-Inf-Seq in Figure 13. The resulted time and cost are 231.36s
and $0.0043, outperforming BATCH. When further using parallel
invoking for the 10 batches, AMPS-Inf �nished within 42.61s at
the cost of $0.0042. These results demonstrate the advantages of
AMPS-Inf still hold for batch processing.

Table 5: Completion time and cost for a batch serving with 10 images.

Settings ResNet50 Inception-V3 Xception

Time(s)
AMPS-Inf 23.94 27.03 10.35
Sage1 25.77 33.59 14.59
Sage2 432.10 432.62 423.05

Cost($)
AMPS-Inf 0.0070 0.0047 0.0052
Sage1 0.015 0.014 0.013
Sage2 0.053 0.052 0.051

Discussion and future work. The running time overhead of
AMPS-Inf incurred by the MIQP solver is within a few seconds on a
laptop (Intel®Core™i7-8750H CPU@2.20GHz×12,2×8GiB memory).
It is expected that the overhead is negligible (in milliseconds) on a
more powerful commodity server. Though implemented in AWS
Lambda, AMPS-Inf can be adapted to Google Functions and Azure
Functions with minimal modi�cations in our model and problem
formulation. Extension to other platforms will be left as our future
work. Since advanced neural network models (such as BERT [31])
keep growing in size and complexity, it may be possible that even
a single layer is too large to �t into a lambda function in the future.
To overcome this issue, we will consider automatically quantizing
[34] the weights before the deployment on a serverless platform.

In our future work, we will extend the design for batch inference
serving at a very large scale. We will also evaluate AMPS-Inf for the
models in other frameworks such as Tensor�ow, PyTorch, and etc.

6 RELATEDWORKS
A number of existing e�orts have studied the employment of server-
less platforms in machine learning. Seneca [52] leverages stateless
functions for hyperparameter tuning. Each function is used to train
and evaluate the machine learning model, given a set of hyperpa-
rameters. Cirrus [28] focuses on the iterativemodel training process,

which utilizes lambda functions to e�ciently handle computation
workloads in each training iteration. It addresses the unnecessary
large memory provisioning by streaming training mini-batches
from a remote storage and revises the training algorithms to work
precisely. SIREN [47] applies deep reinforcement learning to deter-
mine the number and memory size of the stateless functions for
each training epoch, with the objective of minimizing the training
time given a budget.

Apart from the existing e�orts aforementioned with the fo-
cus on training, another category of work targets at provisioning
the workloads of machine learning inference or model serving
([23, 24, 30, 50], etc.). The production serving systems provided
by cloud providers ([7, 8, 22, 44], etc.) facilitate the deployment of
trained models in containers. Amazon SageMaker [12] supports
model serving over EC2 instances. MArk [50] studies the capabil-
ities of stateful and stateless architectures to support batch infer-
encing requests, given the objective of meeting the service level re-
quirements. It primarily relies on Infrastructure-as-a-Service (IaaS)
provisioning for model serving, while leveraging Function-as-a-
Service (FaaS) for horizontal/vertical scaling to adapt to increasing
workloads. BATCH [23] is prototyped on AWS Lambda for infer-
ence serving, where requests are bu�ered to be later processed in
a batch. Its performance optimizer provisions lambda functions
based on the distribution of the requests in the bu�er. In all the
existing serving systems in the serverless environment, the model
(each copy) will be deployed on a single lambda function by de-
fault, without considering the infeasibility issue when a model is
larger than the deployment size limit. To �ll this gap, Gillis [48]
and our AMPS-Inf are two concurrent works on automatic model
partitioning and resource provisioning for large model inference
in the serverless environment, with awareness of both SLO and
cost. While Gillis adopts reinforcement learning based approach
for model partitioning and further enables parallelism within a
partition, AMPS-Inf focuses on �ner-grained problem modeling and
employs optimization-based solution.

7 CONCLUDING REMARKS
Serverless computing has exhibited great promise in recent years,
attracting research attention on migrating machine learning work-
loads towards serverless platforms. In this paper, we examine the
challenges of serverless provisioning for machine learning infer-
ence due to the increasing size of advanced models and the limit
on the deployment size of serverless function. To address the chal-
lenges on splitting model and coordinating partitions, and to hide
these complexities from users, we design and implement AMPS-Inf,
an automated framework for serverless machine learning inference
towards cost-e�ciency and timely-response. In particular, AMPS-
Inf solves the Mixed-Integer Quadratic Programming problem for
model partitioning and resource provisioning, with the objective of
cost minimization while satisfying the response time service level
requirement (SLO). Deployed in AWS Lambda, AMPS-Inf is eval-
uated with four pre-trained models, in comparison with Amazon
SageMaker and three di�erent baselines. Results demonstrate that
AMPS-Inf, by �nding the best con�guration of lambda resource type
and model partitions, achieves cost saving of up to 98% without
degrading the response time performance.
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