DIFFERECES BETWEEN TOTIENTS
KEVIN FORD AND SERGEI KONYAGIN

ABSTRACT. We study the set D of positive integers d for which the equation ¢(a)—¢(b) = d
has infinitely many solution pairs (a,b). We show that minD < 154, exhibit a specific A
so that every multiple of A is in D, and show that any progression ¢ mod d with 4|a and
4|d, contains infinitely many elements of D. We also show that the Generalized Elliott-
Halberstam Conjecture, as defined in [6], implies that D contains all positive, even integers.

1. INTRODUCTION

Let V = {vy,v9,...} be the set of totients, that is, V is the image of Euler’s totient
function ¢(n). In this paper we study the set D of positive integers which are infinitely often
a difference of two elements of V. A classical conjecture asserts that every even positive
integer is infinitely often the difference of two primes, and this implies immediately that
D is the set of all positive, even integers. We are interested in what can be accomplished
unconditionally, by leveraging the recent breakthroughs on gaps between consecutive primes
by Zhang [8], Maynard [4], Tao (unpublished) and the PolyMath8b project [6]. We let &
be the set of positive even numbers that are infinitely often the difference of two primes.
Clearly £ C D. In this note we prove some results about D which are not known for £.

The behavior of the smallest elements of D arose in recent work of Fouvry and Waldschmidt
[2] concerning representation of integers by cyclotomic forms, and the problem of studying
the differences of totients was also posted in a list of open problems by Shparlinski [7,
Problem 56]. Our paper is a companion of the recent work of the first author [1] concerning
the equation ¢(n + k) = ¢(n) for fixed k.

It is known [6] that min & < 246 and thus min D < 246. We can do somewhat better.

Theorem 1. We have minD < 154.

Although there is no specific even integer which is known to be infinitely often the differ-
ence of two primes, we give an infinite family of specific numbers that are in D.

Theorem 2. Let ag = [],47p and by =1lem(1,2,...,49]. Then every multiple of ¢(agbo)ao
lies in D.

Granville, Kane, Koukoulopoulos and Lemke-Oliver [3] showed that £ has lower asymp-

totic density at least ﬁ and thus so does D. We do not know how to prove a better lower

bound for the density and leave this as an open problem.
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Central to the works [4, 5, 6, 8] is the concept of an admissible set of linear forms. For
positive integers a; and integers b;, the set of affine-linear forms a,x + by, ..., axx + by is
admissible if, for every prime p, there is an = € Z such that p{ (ayz + by) - - - (agx + by).

Definition. Hypothesis DHL[k, m| is the statement that for any admissible k-tuple of
linear forms a;n +b;, 1 <@ < k, for infinitely many n, at least m of them are simultaneously
prime.

In this paper we are concerned with the statements DHL[k, 2]. The Polymath8b project
[6], plus subsequent work of Maynard [5], established DHL[50, 2] unconditionally.

The Elliott-Halberstam Conjecture implies DHL(5, 2], see [4]. The Generalized Elliott-
Halberstam Conjecture implies DHL[3, 2] (see [6] for details).

Theorem 3. We have

(i) DHLI[3,2] implies that D = {2,4,6,8,10, ...}, the set of all positive even integers.
(ii) DHLI4,2] implies that D contains every positive multiple of 4.
(i) DHLI[5,2] implies that minD < 6.
[6,2]

Y
(iv) DHL[6,2] implies 8 € D.

By contrast, for any k£ > 2, DHLIk, 2] implies that liminf p,1 — p, < ax, where ay, is the
minimum of hy — hq over all admissible k—tuples n+ hq,...,n+ h,. We have a3 = 6, ay = 8,
as = 12 and ag = 16.

We show parts of Theorem 3 (ii) and (iii) using a more general result.

Theorem 4. Assume DHL[k, 2], with k > 3. Also assume that there are integers 1 < m; <
. <my and b for 1 <1< j <k and such that

Cigmi eV, ligm;

mj—mz- mj—mi

Then L < 2max/¥; ;. Moreover, if l; ; = { for all i,j then 20 € D.

eV (1<i<yj<k).

In Section 3, we give a heuristic argument that there exist numbers my, ..., msy satis-
fying the hypothesis of Theorem 4 with ¢, ; = 2 for all ¢« < j. In this case we achieve an
unconditional proof that 4 € D. Actually finding such m; seems computationally difficult,
however.

Does every arithmetic progression a mod d containing even numbers have infinitely many
elements of D? We answer in the affirmative if 4|d and 4|a. The case a = 2 (mod 4) is more
difficult; see our Remarks following the proof in Section 4.

Theorem 5. Let a,d be positive integers with 4|a, 4|d. Then the progressions a mod d
contains infinitely many elements of D.

Observe that, even assuming DHL[3, 2], there is no specific progression ¢ mod d, not
containing 0, which is known to contain a number that is infinitely often the difference of
two primes.

When 4|d and @ = 2 (mod 4) we can sometimes show that D contains infinitely many
elements that are = a (mod d); see the Remarks following the proof of Theorem 5 in Section
4.
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2. PROOF OF THEOREMS 1-4
Proof of Theorem 1. Define
Sy ={41,43,47,53,67, 71},
Sy ={59,61,67,71,73,83,89,101, 103,107,109, 113,127,131, 137,139},
Sy = {p prime : 127 < p < 271}.
and consider the collection of 50 linear forms
n+a (a€S), 2n+a (a€S52), 4dn+a (nes,).

This collection is admissible; indeed if p < 41 and n = 0 then all of them are coprime to
p. For p > 50 it is clear that there is an n for which all of them are coprime to p. When
p € {41,43,47} we take n = 1,3, 8 ,respectively, and then all of the forms are coprime to p.
By DHLI50, 2], there are two of these forms that are simultaneously prime for infinitely many
n. If both forms are of the type n+a for a € Sy, then this shows that minD < 71 —41 = 30.
Likewise, if both forms are of the type 2n + a for a € S5 then minD < 139 — 59 = 80 and
if both forms are of the type 4n 4+ a where a € Sy, then minD < 271 — 127 = 144. Now
suppose for infinitely many n, n + a and 2n + b are both prime, where a € S7, b € S;. Then

o(4n+a))=2n+2a—-2, ¢2n+b)=2n+b—1,

which shows that |b—2a+ 1] € D. We have b —2a + 1 # 0 for all choices, and the maximum
of |b —2a + 1| is 82, and hence min D < 82. Similarly, if for infinitely many n, 2n + a and
4n + b are both prime, where a € Sy, b € Sy, then |b — 2a + 1| € D. Hence minD < 154.
Finally, if for infinitely many n, n 4+ a and 4n + b are both prime, where a € S;, b € Sy, then
|b —4a + 3| € D since

oB8(n+a)) =4n+a—1), ¢(4n+b) =4n+b— 1.
In all cases 0 < |b — 4a + 3| < 154. O

Proof of Theorem 2. Let

Hp, bop =leml1,2,...,49].

p<A4aT

Let £ € N and consider the admissible set of linear forms n + kag, n + 2kay, ..., n + 50kay.
Since DHLI[50, 2] holds, for any k € N there exists j, € {1,...,49} such that the equation

¢(u) = ¢(v) = u —v = kjrao

has infinitely many solutions in primes u,v. Since every prime factor of jp is a divisor of
aobo/ jr, we have ¢(agbol/jr) = d(aobol)/jx for any [ € N. Therefore,

P(aobou/jr) — ¢(aobov/jr) = ¢(aobo)(d(u) — ¢(v))/jr = ¢(aobo)ack,

as required. [l
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Proof of Theorem 4. The set of forms min—1, ..., myn—11is clearly admissible. By DHL[k, 2],
for some pair 7 < j and for infinitely many n , m;n — 1 and m;n — 1 are prime. Let { = ¢, ;
and suppose that x,y satisfy

sz- Emj
¢(x) = ——— Py) = pp—
Then for sufficiently large n
—20m; + 20m;
Olalmn = 1) = oly(mn — 1)) = T2 oy 0

Proof of Theorem 3. (i) Let h € N and consider the triple {n+1,n+2h+1,2n+2h+1}. This

is admissible, since when n = 0, all of the forms are odd, and similarly none are divisible by 3

for some n € {0,1}. By DHL[3, 2], either (i) n+1 and n+2h+1 are infinitely often both prime,

(ii) n+1 and 2n+2h + 1 are infinitely often both prime or (iii) n+2h+1 and 2n+2h+1 are

infinitely often both prime. In case (i) we have ¢p(n+2h+1)—¢(n+1) = 2h, in case (ii) we have

d(2n+2h+1)—p(4(n+1)) = 2h, and in case (iii) we have ¢(4(n+2h+1))—p(2n+2h+1) = 2h.
(ii) The deduction 4 € D follows from Theorem 4 using ¢; ; = 2 for all 4, j and

{ml, Ce ,m4} = {6,8,9, 12}

Now suppose that d is congruent to 0 or 4 modulo 12, and define a by d = 2(a + 1). In
particular, (a,6) = 1. Thus, the set of forms m;n —a, 1 < i < 4, are admissible. By
DHL[4, 2], for some pair ¢ < j and for infinitely many n , m;n — a and m;n — a are prime.
Suppose that x,y satisfy

Zmi . 2mj
¢(x) = —— P(y) = T
Then for sufficiently large n
d(x(min —a)) — d(y(min —a)) =2(a+1) =d. O

Hence, d € D.

Finally, if d = 8 (mod 12), write d = 2(b — 1), so that (b,6) = 1. Similarly, the set of
forms m;n + b, 1 < i < 4, are admissible and we conclude that d € D.

(iii) Consider the admissible set of forms {fi(n),..., fs(n)} = {n,n+2,2n+1,4n—1,4n+
3}. Indeed, if n = 11 (mod 30) then all of the forms are coprime to 30. By DHL[5, 2], for
some i < j and infinitely many n, f;(n) and f;(n) are both prime. Say f;j(n) = an + b and
fi(n) =cn+d with ¢/a € {1,2,4}. Then

#((2¢/a)(an +b)) = (¢/a)(an+b—1) = cn+ (c¢/a)(b—1)
and
dlen+d)=cn+d—1.
Thus, |(¢/a)(b—1) — (d —1)| € D. In all cases, |(c/a)(b—1) — (d —1)| < 6.
(iv) Use Theorem 4 with the set
{h—"T2,h —66,h —64,h — 63,h — 60,h}, h= 120193920,

and ¢; ; = 4 for all 4, j. We used PARI/GP to verify that 4m;/(m; —m;) € V and 4m;/(m; —
m;) €V for all i < j.
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3. A HEURISTIC ARGUMENT

In this section, we give an argument that there should exist mq, ..., msy satisfying the
hypothesis of Theorem 4 with ¢, ; = 2 for all ¢, 7. We first give a general construction of
numbers with —=— all integers.

J

Lemma 3.1. For any positive integer b and and k > 2 there is a set {my, ..., my} of positive
integers with my < mg < --- < my and with
(3.1) ol —  (1<i<j<k).

mj —m;
Proof. Induction on k. When k = 2 take {mq,ms} = {2b — 1,2b}. Now assume (3.1) holds
for some k > 2. Let M be the least common multiple of the (g) numbers

m;—m; (1<i<yj<k),
and let K be the least common multiple of the numbers

M, bM —myq,...,bM — my.
We claim that the set

{mf, ... omy .} = {Kb—bM +my,...,Kb—bM + my, Kb}

satisfies (3.1). Indeed, when 1 < i < j < k we have
m;  Kb—0bM +m,

!/ !/
m; —m; m; — m;

which by hypothesis is divisible by b. Finally, for any ¢ < k,
my _ Kb
my_ ., —m;  bM —m;’
which is also divisible by b. 0

Now let b = [] <9450 P, and apply Lemma 3.1 with k& = 50. There is a set {mi,...,ms0}

such that for all ¢ < 7,
(3.2) by—ﬁLﬁ
m; —m;

50

Let M be the least common multiple of the (2

) numbers

Then for any h € N, the set {my + hbM, ... msy + hbM} has the same property (3.2). The
collection of 2450 linear forms (in h)

4 M » M
AmiA hOM) ) 2my HROM) < s)
m; —my ms —my
and
2(m; + ROA)

+1 (1<i<j<50)
mj—mi
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is admissible by (3.2), and the Prime k-tuples conjecture implies that all of these are prime
for some h. We need only the existence of one h, and then the hypotheses of Theorem 4 hold
with ¢; ; = 2 for all 7, j, and consequently 4 € D. Discovering such an h, however, appears
to be computationally infeasible.

4. TOTIENT GAPS IN PROGRESSIONS: PROOF OF THEOREM 5

Lemma 4.1. Suppose that D € N and 4|a. Then there exist vi and vy such that (D,v;) =
(D,v3) =1 and (vy — 1)(va — 1) = a (mod D) or (v1 + 1)(vy — 1) = a (mod D).

Proof. We use the Chinese Remainder Theorem. We will prove that if D = p® is a prime
power, then for p # 3 we can find a pair v; and vy such that (D,v;) = (D,v,) = 1 and
(v — 1)(vy — 1) = a (mod D) and another pair v] and v4 such that (D,v}) = (D,v}) =1
and (v] + 1)(v5 — 1) = a (mod D). If p = 3 then we will find appropriate v; and ve such
that one of desired congruences hold. This will suffice for the proof of the lemma.

Ifp # 3 and for any a, 4|a, a pair v; and vy exists such that (D,v;) = (D,vs) = 1 and
(v1 —1)(ve — 1) = a (mod D), then there also exists a pair v} and v as well. Indeed, take
any possible D and a. Then, by our supposition, there are v; and vy such that (D,v;) =
(D,v9) =1 and (v; —1)(vg — 1) = —a (mod D). Then for vj = —v; and v} = vy the desired
congruence (v + 1)(vh — 1) = a (mod D) holds.

Consider p = 2. Take v; =3 (mod p®) and v, = §+1 mod p®. Then (v; —1)(v2—1) =a
(mod p*) and both vy, vy are odd.

Consider p = 3. If a =0 (mod 3) or a = 1 (mod 3), let v; = 2 (mod 3%) and vo = a + 1
(mod 3%). Then we have (v; — 1)(vy — 1) = amod 3*. If a = —1 (mod 3) let v; = —2
(mod 3%) and vy = —a + 1 (mod 3%*). Then we have (v; + 1)(vy — 1) = a (mod 3%).

Consider p > 3. Take vy so that vy € {0,1,1 — a} mod p. Then there is some v; # 0
(mod p) such that (ve — 1)(vy — 1) = a (mod p*). O

Proof of Theorem 5. Let D be any positive integer satisfying
(a) d|D;
(b) D,D? ..., D% are all in V.
For example, let P be the largest prime factor of d, v sufficiently large and

D:deW.

p<P
Indeed, if
D:r[pa(p)7 H(p_l):Hpﬁ(p)’
p<P p<P p<P

then, assuming v > max (p), for all j > 1 we have
¢( H pja(p)—ﬁ(p)ﬂ) — .
p<P

Now take any D satisfying (a) and (b) above, and let v be coprime to D. Then the set
fi(x) =D’z —v, j=1,...,50,
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of linear forms is admissible. Indeed, if p v, then fi(0)--- f50(0) = v°° £ 0 (mod p), and
if plv then p 1 D and fi(1)--- fr(1) = D' #£ 0 (mod p). Since DHL[50, 2] holds, there
are j; < jo such that for infinitely many positive integers z both numbers p; = Dtz — v,
pa = D2y — v are primes. Denote j = j, — j;. There exists [ such that ¢(I) = D’. If x is
large enough, then (p,l) = (p2,l) = 1. We have

(4.1) d(p2) — d(pal) = (p2 — 1) = (p1 — 1)D? = (v +1)(D? = 1).

Let vy, v9 be as in Lemma 4.1, and let v satisfy

v=—v; (mod D),v >0 if (v;—1)(va—1)=a (mod D),
v=v; (mod D),v < —1 otherwise.

Fix a prime g = v mod D with (¢,1) = 1, and assume that p;, ps > ¢. Then

(4.2) d(p2q) — d(plg) = (¢ — 1) (v + 1)(D7 — 1).

Thus, |(¢g—1)(v+1)(D?—1)| € D. The right side of (4.2) is = (¢—1)(—v—1) = (va—1)(—v—1)
(mod D) and has sign equal to the sign of v. If (v; — 1)(ve — 1) = a (mod D), then v > 0
and thus the right side of (4.2) is positive and congruent to (vy — 1)(v; — 1) = a (mod D).
Otherwise, v < 0 and the right side of (4.2) is negative and congruent to (vy —1)(—v; — 1) =
—a (mod D). By varying ¢, we find that there are infinitely many elements of D in the
residue class a mod d. U

Remarks. Equation (4.1) holds for any v coprime to D. Thus, if a = 2 (mod 4) and
either (a +1,D) = 1 or (a — 1, D) = 1 then the residue class ¢« mod d contains infinitely
many elements of D; take v = —a — 1 (mod d),v > 0if (a+1,D) =1l and v =a —1
(mod d),v < —1if (a—1,D) = 1. Thus, if d has at most two distinct prime factors, and (b)
holds for some D composed only of the primes dividing d, then every residue class a mod d,
with 2|a contains infinitely many elements of D. Note that in this case, for all a with 2|a,
either (a+1,d) =1 or (a —1,d) = 1. In particular this holds with d of the form 2*, 2¥3¢ or
2k5¢ with k > 2, since in each case (a) and (b) hold with D = d. Item (b) also holds with
d = D = 28 (verified with PARI/GP). We do not know how to derive the same conclusion
if d has 3 or more prime factors, e.g. d = 60.
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