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1 Introduction and results

The variance of a linear statistic defined on the symmetric group endowed with the Ewens probability is
examined in the paper. The main obstacle to overcome in this seemingly simple problem is the dependence of
the summands. We propose an approach built upon exponential matrices and special functions.

Let Sn denote the symmetric group of permutations σ acting on n ∈ N letters. Each σ ∈ Sn has a unique
representation (up to the order) by the product of independentcycles κi:

σ = κ1 · · ·κw (1.1)

where w = w(σ) denotes the number of cycles. Denote by kj(σ) ≥ 0 the number of cycles in (1.1) of length

j for 1 ≤ j ≤ n and introduce the cycle vector k̄(σ) = (k1(σ), . . . , kn(σ)).
As usual, set (x)m = x(x + 1) · · · (x +m − 1), where m ∈ N0 := N ∪ {0}, for the increasing factorial.

Denote also

Θ(m) =

(

θ +m− 1

m

)

=
(θ)m
m!

= [xm](1− x)−θ, (1.2)

where [xm]f(x) stands for the mth coefficient of a power series f(x) and θ > 0 is a parameter. The Ewens
Probability Measure νn,θ on Sn is defined by

νn,θ
(

{σ}
)

= θw(σ)/(θ)n, σ ∈ Sn.

This gives the probability space (Sn, 2
Sn , νn,θ) and every mapping f : Sn → R becomes a random variable

(r.v.) defined on it. Throughout the paper, we write it as f(σ) leaving the elementary event σ, in contrast to
r.vs defined on some unspecified probability space {Ω,F ,P}.
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Set ℓ(s̄) = 1s1 + · · ·+ nsn for a vector s̄ = (s1, . . . , sn) ∈ N0
n. The equality ℓ(k̄(σ)) = n, valid for each

σ ∈ Sn, shows the dependence of the r.vs kj(σ) with respect to νn,θ. It is well known (see, for example, [1,

Sect. 2.3]) that the distribution of k̄(σ) can be written as the conditional distribution of ξ̄ = (ξ1, . . . , ξn),
where ξj , 1 ≤ j ≤ n, are mutually independent Poisson r.vs with parameter Eξj = θ/j. Indeed, direct
calculation shows that

νn,θ
(

k̄(σ) = s̄
)

= 1
{

ℓ(s̄) = n
}

Θ(n)−1
n
∏

j=1

(θ

j

)sj 1

sj !
= P

(

ξ̄ = s̄| ℓ(ξ̄) = n
)

. (1.3)

Here 1
{

·} stands for the indicator function. The probability in (1.3), ascribed to the vector s̄ ∈ Nn
0 , is called

the Ewens Sampling Formula. It has been introduced by W. J. Ewens [5] to model the mutation of genes.
For a comprehensive account of the recent applications of this ubiquitous distribution in combinatorics and
statistics, see [1], [7], [6], or survey [4] and the subsequent comments on it.

We prefer to stay within the theory of random permutations. Apart from w(σ), other linear statistics (or
completely additive functions)

h(σ) : = a1k1(σ) + · · ·+ ankn(σ), (1.4)

where ā := (a1, . . . , an) ∈ Rn is a non-zero vector, continue to raise an interest. For example, h(σ) with
aj = log j, j ≤ n, is a good approximation for the logarithm of the group-theoretical order of σ ∈ Sn (see [1]
or [22]). The case with aj = {xj}, where {u} stands for the fractional part of u ∈ R, is met in the theory of
random permutation matrices (see [21]).

For an arbitrary h(σ), the problem of finding necessary and sufficient conditions, assuring the weak con-
vergence of distributions

νn,θ
(

h(σ)− α(n) ≤ xβ(n)
)

, (1.5)

where α(n) ∈ R and β(n) → ∞ as n → ∞, is still open (see [1, Sect. 8.5] or [13] and the references therein).
Obstacles in the necessity part arise because of the dependence of the summands as shown by (1.3). This also
happens in the analysis of power moments carried out by the second author [11] and [12] even in the case
θ = 1. Let us now focus on the variance.

By En,θf(σ) and Varn,θf(σ) we denote the mean value and the variance of a r.v. f(σ) defined on
Sn with respect to νn,θ. For the particular function h(σ) in (1.4), we also set An,θ(ā) = En,θh(σ) and
Dn,θ(ā) = Varn,θh(σ). Applying Watterson’s [20] formulas (see [1, (5.6), p. 96]) for the factorial moments
of kj(σ), one easily finds (see [15] for the details) the expressions

An,θ(ā) = θ
∑

j≤n

aj
j

Θ(n− j)

Θ(n)

and

Dn(ā) = θ
∑

j≤n

a2j
j

Θ(n− j)

Θ(n)
+ θ2

∑

i+j≤n

aiaj
ij

Θ(n− i− j)

Θ(n)

− θ2
(

∑

j≤n

aj
j

Θ(n− j)

Θ(n)

)2

=: θBn(ā) + θ2∆n(ā), (1.6)

if n ≥ 2 and

Bn(ā) =
∑

j≤n

a2j
j

Θ(n− j)

Θ(n)
.
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The latter quantity is close to the sum of variances of the summands in the definition of h(σ). In fact,
formula (4) from [15] shows that

∑

j≤n

a2jVarn,θkj(σ)− θBn(ā) = O
(

n−(1∧θ)Bn(ā)
)

,

where a ∧ b = min{a, b} if a, b ∈ R, with an absolute constant in the symbol O(·). We also have (see [15])

Dn(ā) ≤ CθBn(ā) (1.7)

uniformly in n ≥ 2 with an absolute constant C which can be specified. If θ ≥ 1, one can take C = 2. The
purpose of the present paper is to find the exact value of C in (1.7).

Theorem 1. Let θ > 0 be arbitrary and n ≥ 2. Then

τn(θ) := sup

{

Dn(ā)

θBn(ā)
: ā ∈ R

n \ {0}
}

=
θ + 2

θ + 1
.

The supremum is achieved taking aj = (θ + 2)j2 − (2n+ θ)j where 1 ≤ j ≤ n.

The pioneering results obtained in [11] and [16] showed that τn(1) = 3/2 + O(n−1) and τn(2) = 4/3 +
O(n−1). The approach originated in Kubilius’ paper [10] was based upon the extremal properties of the
Jacobi polynomials. It unavoidably added a vanishing error term to the result. Recently J. Klimavičius and
the second author [8] established that τn(1) = 3/2 for all n ≥ 2. Theorem 1 resumes the research for an
arbitrary θ > 0. It is directly related to the above mentioned problem concerning distributions (1.5). Applying

Theorem 1, we obtain that the weak convergence of (1.5) with β(n) =
√

θBn(a), which is natural to use, can
take place only to the limit laws having variance not exceeding (θ + 2)/(θ + 1).

By virtue of (1.3), the result can be reformulated for the conditional variance of the linear statistics

Yn := a1ξ1 + · · ·+ anξn.

We obtain the following optimal inequality.

Corollary. Let n ≥ 2 and aj ∈ R, 1 ≤ j ≤ n, be arbitrary. Then

Var
(

Yn
∣

∣ℓ(ξ̄) = n
)

≤ θ(θ + 2)

θ + 1

n
∑

j=1

a2j
j

Θ(n− j)

Θ(n)
.

The problem concerns the quadratic forms ∆n(ā) and Bn(ā). The substitution

aj =
( jΘ(n)

Θ(n− j)

)1/2
xj , 1 ≤ j ≤ n,

reduces Bn(ā) to the square of Euclidean norm ||x̄||2 of the vector x̄ = (x1, . . . , xn) ∈ Rn. Then ∆n(ā)
becomes a quadratic form, denoted afterwards by Mn(x̄) := x̄Mnx̄

′, where x̄′ is the transpose of x̄ and
Mn = ((mij)), 1 ≤ i, j ≤ n, is the matrix with entries

mij =
Θ(n− i− j)

(

ijΘ(n− i)Θ(n− j)
)1/2

−
(Θ(n− i)

iΘ(n)

)1/2(Θ(n− j)

jΘ(n)

)1/2
. (1.8)
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Here we assume that Θ(−k) = 0 if k ∈ N. Now, by virtue of (1.6),

τn,θ = 1 + θ sup
x̄ 6=0̄

(

||x̄||−2Mn(x̄)
)

= 1 + θ sup
x̄ 6=0̄

(

||x̄||−2
n
∑

r=1

µrx
2
r

)

= 1 + θ max
1≤r≤n

µr, (1.9)

where {µ1, . . . , µn} is the spectrum of matrix Mn. So, Theorem 1 follows from the following proposition.

Theorem 2. The spectrum of the matrix Mn comprises

µr =
(−1)r(r − 1)!

(θ)r
, 1 ≤ r ≤ n.

For the eigenvector corresponding to the maximal µ2, one may take the vector with coordinates

(

(θ + 2)j − (2n+ θ)
)(

jΘ(n− j)
)1/2

, 1 ≤ j ≤ n.

The proof of Theorem 2 presented in the next section is built upon exponential matrices.
The problem of finding the remaining eigenvectors of matrix Mn also raises an interest. Actually, they were

already used in the continuation of present paper [14] dealing with the lower estimates of Dn(ā). Solving
is based upon particular cases of the generalized hypergeometric series which are exposed, for example,
in [3] or [9, Chapter 9]. The hint to exploit them stems from [8]. We may confine ourselves to the case of
polynomials which, in the traditional notation, can be written as

p+2Fq

(

−m,−x, (ap); (bq); z
)

=

m
∑

k=0

(−m)k(−x)k(a1)k · · · (ap)k
(b1)k · · · (bq)kk!

zk,

where p, q,m ∈ N0, a1, . . . , ap; b1, . . . , bq ∈ R are parameters. Moreover, it suffices to reckon the discrete
Hahn’s polynomials

Qr(x;α, β, n) = 3F2

(

− r,−x, r + α+ β + 1;α+ 1,−n+ 1; 1
)

by specifying the parameters to α = 1 and β = θ − 1. This agrees with the notation in [9, Section 9.5] with
N = n− 1. The values of polynomials

qr(x) = Qr(x− 1; 1, θ − 1, n), 0 ≤ r ≤ n− 1,

at x = j ∈ {1, . . . , n} can be calculated using the recurrence formula [9, (9.5.3)]. Namely, q0(j) = 1,

q1(j) = −(θ + 2)j − (θ + 2n)

2(n− 1)

and

Arqr+1(j) = (Ar + Cr − j + 1)qr(j)− Crqr−1(j),

where

Ar =
(r + θ + 1)(r + 2)(n− r − 1)

(2r + θ + 1)(2r + θ + 2)
, Cr =

r(r + θ + n)(r + θ − 1)

(2r + θ)(2r + θ + 1)
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and r = 1, . . . , n− 1. Moreover, we have the following orthogonality property [9, (9.5.2)]:

< ql, qr >:=

n
∑

j=1

jql(j)qr(j)Θ(n− j) = δlrπ
2
r , (1.10)

where δlr is the Kronecker symbol and

π2
r =

(r + θ + 1)n(θ)r
(2r + θ + 1)(r + 1)(n− r)r(n− 1)!

> 0.

Note that, qr(x), 1 ≤ r ≤ n − 1, can be also obtained uniquely by the Gram–Schmidt orthogonalization
procedure starting with q0(x) = 1 and applying the inner product (1.10). They form an orthogonal basis in the
vector space of polynomials whose degrees do not exceed n− 1. Exploiting this, in the isomorphic Euclidean
space Rn, we easily find the needed canonical basis for the matrix Mn.

Theorem 3. The system of the vectors

ēr = (er1, . . . , ern), 1 ≤ r ≤ n,

where

erj = π−1
r−1qr−1(j)

√

jΘ(n− j), 1 ≤ j ≤ n,

is an orthonormal basis in Rn. Moreover, the vector ēr is the eigenvector of matrix Mn corresponding to µr

for each 1 ≤ r ≤ n.

The proof will be presented in the last section of the paper.
Finally, the distributions of mappings defined on random permutations taken according to the Ewens prob-

ability are close to that defined on logarithmic decomposable combinatorial structures (see [1]); therefore, we
hope that our method is applicable when estimating the variances of similar statistics defined in such classes.

2 Proof of Theorem 2

The idea is to find a matrix Ln such that the product

eLnMne
−Ln =:

((

wij

))

is the triangle matrix with wij = 0 if 1 ≤ j < i ≤ n and wjj = µj if 1 ≤ j ≤ n. This implies that the
eigenvalues of Mn are listed on the main diagonal of the product, as desired.

At first, we recall two identities from [17].

Lemma 1. Let M,m ∈ N0 and a, b ∈ R. Then

M
∑

k=0

(

a+ k

k

)(

b− k

M − k

)

=

M
∑

k=0

(

a+ b− k

M − k

)

(2.1)

and

M
∑

k=0

(−1)k
(

M

k

)(

a− k

m

)

=

(

a−M

m−M

)

. (2.2)
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Proof See formulas (43) on page 618 and (56) on page 619 of [17].

Proof of Theorem 2. Let us introduce the matrix Ln(θ) =
((

lij
))

with the entries lij = 0 for all 1 ≤ i, j ≤
n but for i = j + 1, where

lj+1,j = −
(

(j + 1)jΘ(n− j − 1)

Θ(n− j)

)1/2

, 1 ≤ j ≤ n− 1.

Consider the powers Lk
n(θ) =:

((

l
(k)
ij

))

, 0 ≤ k ≤ n − 1. The nonzero entries of Lk
n(θ) fill up the kth,

1 ≤ k ≤ n− 1, diagonal under the main one. By induction, we observe that

l
(k)
j+k,j = l

(k−1)
j+k,j+1lj+1,j

= lj+k,j+k−1lj+k−1,j+k−2 · · · lj+1,j

= (−1)k
k−1
∏

r=0

(

(j + r + 1)(j + r)
)1/2

( k−1
∏

r=0

Θ(n− j − r − 1)

Θ(n− j − r)

)1/2

= (−1)k(j)k

(j + k

j

)1/2
(

Θ(n− j − k)

Θ(n− j)

)1/2

if 1 ≤ k ≤ n− j. Hence the matrix V := eLn(θ) =:
((

vij
))

has vij = 0 if 1 ≤ i < j ≤ n and

vij =
l
(i−j)
ij

(i− j)!
= (−1)i−j

(

i− 1

j − 1

)

( i

j

)1/2
(

Θ(n− i)

Θ(n− j)

)1/2

= (−1)i−j

(

i

j

)

(j

i

)1/2
(

Θ(n− i)

Θ(n− j)

)1/2

if i ≥ j. Moreover, V −1 = e−Ln(θ) =
((

|vij |
))

if 1 ≤ i, j ≤ n.

More technical obstacles arise calculating

wij =
∑

1≤r≤i

j≤s≤n

virmrs|vsj |

=
∑

1≤r≤i

j≤s≤n

(−1)i−r

(

i

r

)

(r

i

)1/2
(

Θ(n− i)

Θ(n− r)

)1/2

· Θ(n− r − s)
(

rsΘ(n− r)Θ(n− s)
)1/2

×
(

s− 1

j − 1

)

(s

j

)1/2
(

Θ(n− s)

Θ(n− j)

)1/2

−
∑

1≤r≤i

j≤s≤n

(−1)i−r

(

i

r

)

(r

i

)1/2
(

Θ(n− i)

Θ(n− r)

)1/2

·
(Θ(n− r)

rΘ(n)

)1/2(Θ(n− s)

sΘ(n)

)1/2

×
(

s− 1

j − 1

)

(s

j

)1/2
(

Θ(n− s)

Θ(n− j)

)1/2

=: Σ1 −Σ2.
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Here

Σ1 = (−1)i
( Θ(n− i)

ijΘ(n− j)

)1/2 ∑

1≤r≤i∧n−j

(−1)r

Θ(n− r)

(

i

r

)

∑

j≤s≤n−r

Θ(n− r − s)

(

s− 1

j − 1

)

.

After the change s = n− r− k and application of (1.2), the inner sum reduces to that given in (2.1). It equals

n−r−j
∑

k=0

(

θ − 1 + k

k

)(

n− r − 1− k

n− r − j − k

)

=

n−r−j
∑

k=0

(

θ + n− r − 2− k

n− r − j − k

)

=

n−r−j
∑

l=0

(

θ − 2 + j + l

l

)

= [xn−r−j ]
1

(1− x)θ+j
=

(

θ + n− r − 1

n− r − j

)

.

Hence

Σ1 = (−1)i
( Θ(n− i)

ijΘ(n− j)

)1/2 ∑

1≤r≤i∧n−j

(−1)r

Θ(n− r)

(

i

r

)(

θ + n− r − 1

n− r − j

)

.

Similarly,

Σ2 =
(−1)i

Θ(n)

( Θ(n− i)

ijΘ(n− j)

)1/2 ∑

1≤r≤i

(−1)r
(

i

r

)

∑

j≤s≤n

Θ(n− s)

(

s− 1

j − 1

)

.

Since

∑

j≤s≤n

(

s− 1

j − 1

)

Θ(n− s) = [xn]

(

xj

(1− x)j
· 1

(1− x)θ

)

=

(

θ + n− 1

n− j

)

,

we obtain

Σ2 =
(−1)i+1

Θ(n)

( Θ(n− i)

ijΘ(n− j)

)1/2
(

θ + n− 1

n− j

)

.

Consequently,

wij = Σ1 −Σ2

= (−1)i
( Θ(n− i)

ijΘ(n− j)

)1/2 ∑

0≤r≤i∧n−j

(−1)r

Θ(n− r)

(

i

r

)(

θ + n− r − 1

n− r − j

)

=: (−1)i
( Θ(n− i)

ijΘ(n− j)

)1/2
·Σ. (2.3)

Using the definition of Θ(m) given in (1.2) and applying identity (2.2), we find that

Σ =
j!

(θ)j

∑

0≤r≤i∧n−j

(−1)r
(

i

r

)(

n− r

j

)

=
j!

(θ)j

(

n− i

j − i

)

.

Here Σ = 0 if j < i and Σ = j!/(θ)j if i = j. Plugging this into (2.3), we obtain

wij = (−1)i
( Θ(n− i)

ijΘ(n− j)

)1/2 j!

(θ)j

(

n− i

j − i

)

=

{

0 if i > j,

(−1)j(j − 1)!/(θ)j if i = j.

Lith. Math. J., X(x), 20xx, March 9, 2021,Author’s Version.
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This proves the main assertion of Theorem 2.

It remains to show that the eigenvector corresponding to µ2 has the described form. However, this follows

immediately from Theorem 3, which we prove in the next section. Theorem 2 is proved.

3 Proof of Theorem 3

We now find all eigenvectors of the matrix Mn. Again, we have to recall a useful identity.

Lemma 2. Let p, q,M ∈ N0, α, β ∈ R, and a1, . . . , ap; b1 . . . , bq be the parameters such that the hypergeo-

metric series below is correctly defined. Then

M
∑

k=0

(

M

k

)

(α)M−k(β)k · p+1Fq

(

− k, (ap); (bq); 1
)

= (α+ β)M · p+2Fq+1

(

−M,β, (ap);α+ β, (bq); 1
)

.

Proof See formula (7) presented on page 388 in [18].

As a corollary, we find the next sum involving the above introduced polynomial

Qr(x;α, β, n) = 3F2

(

− r,−x, r + α+ β + 1;α+ 1,−n+ 1; 1
)

.

Lemma 3. Let n ≥ 2, 0 ≤ M ≤ n− 1 and 0 ≤ r ≤ n− 1. Then

Σr(M) :=

M
∑

k=0

Qr(k; 1, θ − 1, n)Θ(M − k)

=
(θ + 1)M

M !
4F3

(

−M, 1,−r, r + θ + 1; θ + 1, 2, 1− n; 1
)

.

Proof Apply Lemma 2 for α = θ, β = 1, and p = q = 2.

The obtained expressions of Σr−1(M), 1 ≤ r ≤ n will be used afterwards. For short, let

4F3(−M) = 4F3(−M, 1, 1− r, r + θ; θ + 1, 2, 1− n; 1).

Lemma 4. Let ȳr = (yr1, . . . , yrn) = πr−1ērMn, 1 ≤ r ≤ n, then

yri = −
(

Θ(n− i)

i

)1/2 n

r(r + θ − 1)
· 3F2

(

− r,−n+ i, r + θ − 1; θ,−n; 1
)

(3.1)

if 1 ≤ i ≤ n.
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Proof In the notation above, applying Lemma 3, we obtain

yri =

n
∑

j=1

qr−1(j)
(

jΘ(n− j)
)1/2

mji

=
1

(iΘ(n− i))1/2

n−i
∑

j=1

Qr−1(j − 1; 1, θ − 1, n)Θ(n− j − i)

−
(

Θ(n− i)

i

)1/2 1

Θ(n)

n
∑

j=1

Qr−1(j − 1; 1, θ − 1, n)Θ(n− j)

=
1

(iΘ(n− i))1/2
Σr−1(n− i− 1)−

(

Θ(n− i)

i

)1/2 1

Θ(n)
Σr−1(n− 1)

=
1

θ

(

Θ(n− i)

i

)1/2
[

(n− i) · 4F3(−n+ i+ 1)− n · 4F3(−n+ 1)
]

if 1 ≤ i < n.

Since (a)l−1 = (a− 1)l/(a− 1) if a 6= 1, we have

(n− i) · 4F3(−n+ i+ 1) = (n− i)

r
∑

l=1

(−n+ i+ 1)l−1(1− r)l−1(r + θ)l−1

(θ + 1)l−1(−n+ 1)l−1l!

= − θn

r(r + θ − 1)

[

− 1 +

r
∑

l=0

(−n+ i)l(−r)l(r + θ − 1)l
(θ)l(−n)ll!

]

=
θn

r(r + θ − 1)

[

1− 3F2

(

− r,−n+ i, r + θ − 1; θ,−n; 1
)]

.

Similarly,

n · 4F3(−n+ 1) =
θn

r(r + θ − 1)

[

1− 3F2

(

− r,−n, r + θ − 1; θ,−n; 1
)]

=
θn

r(r + θ − 1)

[

1− 2F1

(

− r, r + θ − 1; θ; 1
)]

=
θn

r(r + θ − 1)
, (3.2)

by virtue of the Chu-Vandermonde formula (see e.g. [2, (7.16)]). Hence

(n− i) · 4F3(−n+ i+ 1)− n · 4F3(−n+ 1)

= − θn

r(r + θ − 1)
· 3F2

(

− r,−n+ i, r + θ − 1; θ,−n; 1
)

.

Plugging this into the previous expression of yri, we complete the proof in the case i < n.
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If i = n, then, using Lemma 3 and (3.2), we obtain

yrn = − 1√
nΘ(n)

Σr−1(n− 1) = − 1√
nΘ(n)

· (θ + 1)n−1

(n− 1)!
· θ

r(r + θ − 1)

= −
√
n

r(r + θ − 1)
.

This is consistent with expression (3.1) given in the lemma.
Lemma 4 is proved.
Proof of Theorem 3. Let 1 ≤ r ≤ n be fixed. Recall that qk(x), 0 ≤ k ≤ r, span the subspace of

polynomials whose degrees do not exceed r. Analyse the polynomial appearing in Lemma 4, namely,

Φr(x) = 3F2

(

− r,−n+ x, r + θ − 1; θ,−n; 1
)

.

As we have seen proving (3.2), we have Φr(0) = 0. Hence x−1Φr(x) is a polynomial of degree r − 1, thus
there exist constants ck ∈ R such that

Φr(x) = x

r−1
∑

k=0

ckqr(x).

The leading coefficients of the polynomials Φr(x) and qr(x) are, respectively,

(−1)r(r + θ − 1)r
(θ)r(−n)r

,
(r + θ)r−1

r!(−n+ 1)r−1
.

Consequently,

cr−1 =
(−1)r(r + θ − 1)r

(θ)r(−n)r
· r!(−n+ 1)r−1

(r + θ)r−1
=

(−1)r−1r!(r + θ − 1)

(θ)rn
.

Now, the result of Lemma 4 can be rewritten as follows:

yri = −
(

Θ(n− i)

i

)1/2 ni

r(r + θ − 1)

[

cr−1qr−1(i) +

r−2
∑

k=0

ckqk(i)

]

=
(

iΘ(n− i)
)1/2

[

(−1)r(r − 1)!

(θ)r
qr−1(i) +

r−2
∑

k=0

dkqk(i)

]

with some coefficients dk = dk(n, r, θ) for each 1 ≤ i, r ≤ n. Note that the fraction in the brackets is just µr

found in Theorem 2.
For 1 ≤ r ≤ l ≤ n, applying the last formula and the definition of the inner product (1.10), we obtain

ēlMnē
′
r = π−1

r−1ēly
′
r =

1

πl−1πr−1

[

µr < ql−1, qr−1 > +

r−2
∑

k=0

dk < ql−1, qk >

]

= µrδrl

by virtue of orthogonality. This shows that each ēr in the basis is the eigenvector for Mn corresponding to µr.
Theorem 3 is proved.
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Concluding remark. Comparing the expression ērMn = µrēr with π−1
r−1ȳr given by Lemma 4, we arrive

to a seemingly new relation of the generalized hypergeometric functions. For 1 ≤ i, r ≤ n and θ > 0, it holds
that

(−1)r−1r!i · 3F2

(

− r + 1,− i+ 1, r + θ; 2,−n+ 1; 1
)

= (θ)r−1n · 3F2

(

− r,−n+ i, r + θ − 1; θ,−n; 1
)

.

Derivation of it using an appropriate sequence of the so-called contiguous relations (see [19]) would not be
short.
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12. E. Manstavičius, Moments of additive functions defined on the symmetric group, Acta Appl. Math., 97:119–127,
2007.
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15. E. Manstavičius and V. Stepanauskas, On variance of an additive function with respect to a generalized Ewens
probability, in M. Bousquet-Mélou and M. Soria (Eds.), Proceedings of the 25th International Conference on
Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, Discrete Math. Theor. Comput.
Sci. Proc., BA, Association DMTCS, Nancy, 2014, pp. 301–311.

Lith. Math. J., X(x), 20xx, March 9, 2021,Author’s Version.
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