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Abstract. We investigate the stochastic optimization problem of minimizing population
risk, where the loss defining the risk is assumed to be weakly convex. Compositions of
Lipschitz convex functions with smooth maps are the primary examples of such losses. We
analyze the estimation quality of such nonsmooth and nonconvex problems by their
sample average approximations. Our main results establish dimension-dependent rates on
subgradient estimation in full generality and dimension-independent rates when the loss
is a generalized linear model. As an application of the developed techniques, we analyze
the nonsmooth landscape of a robust nonlinear regression problem.
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1. Introduction
Traditional machine learning theory quantifies how well a decision rule, learned from a limited data sample,
generalizes to the entire population. The decision rule itself may enable the learner to correctly classify (as in
image recognition) or predict the value of continuous statistics (as in regression) of previously unseen data
samples. A standard mathematical formulation of this problem associates to each decision rule x and each
sample z, a loss f (x, z), which may for example penalize misclassification of the data point by the decision rule.
Then the learner seeks to minimize the regularized population risk:

min
x

ϕ x( ) � f x( ) + r x( ) where f x( ) � Ez∼P f x, z( )[ ]
. (1.1)

Here, r :Rd → R ∪ {+∞} is an auxiliary function defined on Rd that may encode geometric constraints or
promote low-complexity structure (e.g., sparsity or low-rank) on x. The main assumption is that the only
access to the population data is by drawing i.i.d. samples from P. Numerical methods then seek to obtain a
high-quality solution estimate for (1.1) using as few samples as possible. Algorithmic strategies for (1.1) break
down along two lines: streaming strategies and regularized empirical risk minimization (ERM).

Streaming algorithms in each iteration update a solution estimate of (1.1) based on drawing a relatively
small batch of samples. Streaming algorithms deviate from each other in precisely how the sample is used in
the update step. The proximal stochastic subgradient method (Davis et al. [12], Ghadimi et al. [23], Nemirovski
et al. [41]) is one popular streaming algorithm, although there are many others, such as the stochastic
proximal point and Gauss-Newton methods (Davis and Drusvyatskiy [11], Duchi and Ruan [20], Toulis and
Airoldi [60]). In contrast, ERM-based algorithms draw a large sample S � {z1, z2, . . . , zm} at the onset and
output the solution of the deterministic problem

min
x∈Rd

ϕS x( ) :� fS x( ) + r x( ) where fS x( ) :� 1
m

∑m
i�1

f x, zi( ). (1.2)

Solution methodologies for (1.2) depend on the structure of the loss function. One generic approach, often used in
practice, is to apply a streaming algorithm directly to (1.2) by interpreting fS(·) as an expectation over the discrete
distribution on the samples {zi}ni�1 and performing multiple passes through the sampled data. Our current work
focuses on the ERM strategy, though it is strongly influenced by recent progress on streaming algorithms.
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The success of the ERM approach rests on knowing that the minimizer of the surrogate problem (1.2) is
nearly optimal for the true learning task (1.1). Quantitative estimates of this type are often based on a uniform
convergence principle. For example, when the functions f (·, z) are L-Lipschitz continuous for a.e. z ∼ P, then
with probability 1 − γ, the estimate holds (Shalev-Shwartz et al. [54], theorem 5):

sup
x: ‖x‖≤R

⃒⃒
f x( ) − fS x( )⃒⃒ � O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2R2d log m( )

m
· log d

γ

( )√( )
. (1.3)

Here, and throughout the paper, the symbol ‖ · ‖ denotes the �2-norm on Rd.
An important use of the bound in (1.3) is to provide a threshold beyond which algorithms for the surrogate

problem (1.2) should terminate, since further accuracy on the ERM may fail to improve the accuracy on the
true learning task. It is natural to ask if under stronger assumptions, learning is possible with sample
complexity that is independent of the ambient dimension d. In the landmark paper (Shalev-Shwartz et al. [54]),
the authors showed that the answer is indeed yes when the functions f (·, z) are convex and one incorporates
further strongly convex regularization. Namely, under an appropriate choice of the parameter λ > 0, the
solution of the quadratically regularized problem

x̂S :� argmin
x∈Rd

ϕS x( ) + λ‖x‖2{ }
, (1.4)

satisfies

ϕ x̂S( ) − infϕ ≤
̅̅̅̅̅̅̅̅̅
8L2R2

γm

√
(1.5)

with probability 1 − γ, where R is the diameter of the domain of r. In contrast to previous work, the proof of
this estimate is not based on uniform convergence. Indeed, uniform convergence in function values may fail in
infinite dimensions even for convex learning problems. Instead, the property underlying the dimension
independent bound (1.5) is that the solution x̂S of the quadratically regularized ERM (1.4) is stable in the sense
of Bousquet and Elisseeff [8]. That is, the solution x̂S does not vary much under an arbitrary perturbation of a
single sample zi. It is worthwhile to note that stability arguments have also been used to establish gener-
alization bounds for multipass streaming methods in Hardt et al. [25]. Stability of quadratically regularized
ERM will also play a central role in our work for reasons that will become clear shortly.

The aforementioned bounds on the accuracy of regularized ERM are only meaningful if one can globally
solve the deterministic Problems (1.2) or (1.4). Convexity certainly facilitates global optimization techniques.
Many problems of contemporary interest, however, are nonconvex, thereby making ERM-based learning rules
intractable. When the functions f (·, z) are not convex but smooth, the most one can hope for is to find points
that are critical for the Problem (1.2). Consequently, it may be more informative to estimate the deviation in
the gradients, supx:‖x‖≤R ‖∇f (x) − ∇fS(x)‖, along with deviations in higher-order derivatives when they exist.
Indeed, then in the simplest setting r � 0, the standard decomposition

‖∇f x( )‖ ≤ ‖∇f x( ) − ∇fS x( )‖⏟̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅ ⏟
generalization error

+ ‖∇fS x( )‖⏟̅̅⏞⏞̅̅⏟
optimization error

,

relates near-stationarity for the empirical risk to near-stationarity for the population risk. Such uniform
bounds have recently appeared in (Foster et al. [21], Mei et al. [37]).

When the loss f (·, z) is neither smooth nor convex, the situation becomes less clear. Indeed, one should
reassess what “uniform convergence of gradients” should mean in light of obtaining termination criteria for
algorithms on the regularized ERM problem. As the starting point, one may replace the gradient by a
generalized subdifferential ∂ϕ(x) in the sense of nonsmooth and variational analysis (Mordukhovich [38],
Rockafellar and Wets [50]). Then the minimal norms, dist (0, ∂ϕ(x)) and dist (0, ∂ϕS(x)), could serve as sta-
tionarity measures akin to the norm of the gradient in smooth minimization. One may then posit that the
stationarity measures, dist (0, ∂ϕ(x)) and dist (0, ∂ϕS(x)), are uniformly close with high probability when
the sample size is large. Pointwise convergence is indeed known to hold (e.g., Shapiro et al. [59], theorem
7.54). On the other hand, to our best knowledge, all results on uniform convergence of the stationarity
measure are asymptotic and require extra assumptions, such as polyhedrality for example (Ralph and Xu [46]).
The main obstacle is that the function x �→ dist (0, ∂ϕ(x)) is highly discontinuous. We refer the reader to
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Shapiro et al. [59, p. 380] for a discussion. Indeed, the need to look beyond pointwise uniform convergence is
well-documented in optimization and variational analysis (Attouch [3], Attouch and Wets [4]). One remedy is
to instead focus on graphical convergence concepts. Namely, one could posit that the Hausdorff distance
between the subdifferential graphs, gph ∂ϕ and gph ∂ϕS, tends to zero. Here, we take a closely related ap-
proach, while aiming for finite-sample bounds.

1.1. Contributions
In this work, we aim to provide tight threshold estimates beyond which algorithms on (1.2) should terminate.
In contrast to previous literature, however, we will allow the loss function to be both nonconvex and
nonsmooth. The only serious assumption we make is that f (·, z) is a ρ-weakly convex function for a.e. z ∼ P, by
which we mean that the assignment x �→ f (x, z) + ρ

2 ‖x‖2 is convex. The class of weakly convex functions is
broad and its importance in optimization is well documented (Albano and Cannarsa [1], Nurminskii [42],
Poliquin and Rockafellar [43], Rockafellar [49], Rolewicz [51]).1 It trivially includes all convex functions and all
C1-smooth functions with Lipschitz gradient. More broadly, it includes all compositions f (x, z) � h(c(x, z), z),
where h(·, z) is convex and Lipschitz, and c(·, z) is C1-smooth with Lipschitz Jacobian. Robust principal
component analysis, phase retrieval, blind deconvolution, sparse dictionary learning, and minimization of risk
measures naturally lead to stochastic weakly convex problems. We refer the interested reader to Davis and
Drusvyatskiy [11] (section 2.1) and Drusvyatskiy [17] for detailed examples.

The approach we take is based on a smoothing technique, familiar to optimization specialists. For any
function g, define the Moreau envelope and the proximal map:

gλ x( ) :� min
y

g y
( ) + 1

2λ
‖y − x‖2

{ }
, proxλg x( ) :� argmin

y
g y
( ) + 1

2λ
‖y − x‖2

{ }
.

It is well-known that if g is ρ-weakly convex and λ < 1
ρ, then the envelope gλ is C1-smooth with gradient

∇gλ x( ) � λ−1
(
x − proxλg x( )

)
.

Note that ∇gλ(x) is in principle computable by solving a convex optimization problem in the definition of the
proximal point proxλg(x).

Our main result (Theorem 4.4) shows that with probability 1 − γ, the estimate holds:

sup
x: ‖x‖≤R

⃦⃦∇ϕ1/2ρ x( ) − ∇ ϕS

( )
1/2ρ x( )⃦⃦ � O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2d
m

log
Rρm
γ

( )√( )
, (1.6)

where L is a Lipschitz constant of the losses f (·, z) on the ball BR(0) for almost every z ∼ P. The bound (1.6) is
stated here for simplicity with a deterministic Lipschitz constant L; our full result allows L to be a random
variable. The guarantee (1.6) is appealing: even though the subgradients of ϕ and ϕS may be far apart
pointwise, the gradients of the smooth approximations ϕ1/2ρ and (ϕS)1/2ρ are uniformly close at a controlled
rate governed by the sample size. Moreover, (1.6) directly implies estimates on the Hausdorff distance be-
tween subdifferential graphs, gph ∂ϕ and gph ∂ϕS, as we alluded to above. Indeed, the subdifferential graph is
related to the graph of the proximal map by a linear isomorphism. The guarantee (1.6) is also perfectly in line
with the recent progress on streaming algorithms (Davis and Drusvyatskiy [11], Davis et al. [13], Davis and
Grimmer [16], Zhang and He [67]). These works showed that a variety of popular streaming algorithms (e.g.,
stochastic subgradient, Gauss-Newton, and proximal point) drive the gradient of the Moreau envelope to zero
at a controlled rate. Consequently, the estimate (1.6) provides a tight threshold beyond which such stream-
ing algorithms on the regularized ERM Problem (1.2) should terminate. The proof we present of (1.6) uses only
the most elementary techniques: stability of quadratically regularized ERM (Shalev-Shwartz et al. [54]),
McDiarmid’s inequality (McDiarmid [34]), and a covering argument.

It is intriguing to ask when the dimension dependence in the bound (1.6) can be avoided. For example, for
certain types of losses (e.g., modeling a linear predictor) there are well-known dimension independent bounds
on uniform convergence in function values. Can we therefore obtain dimension independent bounds in similar
circumstances, but on the deviations ‖∇ϕ1/2ρ − ∇(ϕS)1/2ρ‖? The main tool we use to address this question is
entirely deterministic. We will show that if ϕ and ϕS are uniformly δ close, then the gradients ∇ϕ1/2ρ and
∇(ϕS)1/2ρ are uniformly O( ̅̅

δ
√ ) close, as well as their subdifferential graphs in the Hausdorff distance.

211
Davis and Drusvyatskiy: Graphical Convergence of Subgradients in Nonconvex Optimization
Mathematics of Operations Research, 2022, vol. 47, no. 1, pp. 209–231, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

95
.1

04
.1

09
] 

on
 0

5 
Ju

ly
 2

02
2,

 a
t 1

6:
15

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 
Published in Mathematics of Operations Research on April 20, 2021 as DOI: 10.1287/moor.2021.1126. 

This article has not been copyedited or formatted. The final version may differ from this version.



We illustrate the use of such bounds with two examples. As the first example, consider the loss f modeling a
generalized linear model:

f x, z( ) � � 〈x,φ z( )〉, z( )
.

Here φ is some feature map and �(·, z) is a loss function. It is well-known that if �(·, z) is Lipschitz, then the
empirical function values fS(x) converge uniformly to the population values f (x) at a dimension-independent
rate that scales as m−1/2 in the sample size. We thus deduce that the gradient ∇(ϕS)1/2ρ converges uniformly to
∇ϕ1/2ρ at the rate m−1/4. We leave it as an intriguing open question whether this rate can be improved to m−1/2.
The second example analyzes the landscape of a robust nonlinear regression problem, wherein we observe a
series of nonlinear measurements σ(〈x̄, z〉) of input data x̄, possibly with adversarial corruption. Using the
aforementioned techniques, we will show that under mild distributional assumptions on z, every stationary
point of the associated nonsmooth nonconvex empirical risk is within a small ball around x̄.

1.2. Related Literature
This paper builds on the vast literature on sample average approximations found in the stochastic pro-
gramming and statistical learning literature. The results in these communities are similar in many respects, but
differ in their focus on convergence criteria. In the stochastic programming literature, much attention has been
given to the convergence of (approximate) minimizers and optimal values both in the distributional and almost
sure limiting sense (Geyer [22], Kaniovski et al. [27], King and Rockafellar [28], Rachev and Römisch [44],
Römisch and Wets [52], Robinson [47], Shapiro [55], Shapiro [56], Shapiro and Homem-de Mello [57]). In
contrast, the statistical learning community puts a greater emphasis on excess risk bounds that hold with high
probability, often with minimal or no dependence on dimension (Bousquet and Elisseeff [8], Grünwald and
Mehta [24], Kakade et al. [26], Liu et al. [32], Mehta [35], Mehta and Williamson [36], Rakhlin et al. [45],
Shalev-Shwartz et al. [54], Zemel and Culotta [66], Koller et al. [29], van Erven et al. [61], Zinkevich [68]).

Several previous works have studied (sub)gradient-based convergence, as we do here. For example, Xu [64]
proves nonasymptotic, dimension dependent high probability bounds on the distance between the empirical
and population subdifferential under the Hausdorff metric. The main assumption in this work, however,
essentially requires smoothness of the population objective. The work by Xu and Zhang [65] takes a different
approach, directly smoothing the empirical losses f (x, z). They show that the limit of the gradients of a certain
smoothing of the empirical risk converges to an element of the population subdifferential. No finite-sample
bounds are developed in Xu and Zhang [65]. The most general asymptotic convergence result that we are
aware of is presented in Shapiro and Xu [58]. There, the authors show that with probability one, the limit of a
certain enlarged subdifferential of the empirical loss converges to an enlarged subdifferential of the population
risk under the Hausdorff metric.

The two works most closely related to this paper are more recent. The paper by Mei et al. [37] proves high
probability uniform convergence of gradients for smooth objectives under the assumption that the gradient
∇f (x, z) is sub-Gaussian with respect to the population data. The bounds presented in Mei et al. [37] are all
dimension dependent and rely on covering arguments. The more recent paper by Foster et al. [21], on the other
hand, provides dimension independent high probability uniform rates of convergence of gradients for smooth
Lipschitz generalized linear models. The main technical tool developed in Foster et al. [21] is a “chain rule” for
Rademacher complexity. We note that, in contrast to the m−1/4 rates developed in this paper, Foster et al. [21]
obtain rates of the form m−1/2 for smooth generalized linear models.

1.3. Outline
In Section 2, we introduce our notation. Section 3 describes the problem setting and the smoothing technique.
In Section 4, we describe a general procedure, based on algorithmic stability, for obtaining dimension de-
pendent rates on the error between the gradients of the Moreau envelopes of the population and subsampled
objectives. In Section 5, we illustrate the techniques of the previous section by obtaining dimension inde-
pendent rates for generalized linear models and analyzing the landscape of a robust nonlinear regres-
sion problem.

Though the current paper focuses on the norm that is induced by an inner product, the techniques we
present apply much more broadly to Bregman divergences. In particular, any Bregman divergence generates
an associated regularization of the empirical and population risks, making our techniques applicable under
non-Euclidean geometries and under high order growth of the loss function. We have found that such
generalizations add significant notational overhead, and as a result we have placed the details in the arXiv
version of the paper (Davis and Drusvyatskiy [10]).
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2. Preliminaries
Throughout, we follow standard notation from convex and variational analysis, as set out for example in the clas-
sical monographs of Rockafellar [48] and Rockafellar and Wets [50], and the recent book by Mordukhovich [39].
The symbol Rd will denote a d-dimensional Euclidean space with inner product 〈·, ·〉 and the induced norm
‖x‖ � ̅̅̅̅̅̅̅〈x, x〉√

. The closed unit ball and the unit simplex in Rd will be denoted by B and Δ, respectively. The
effective domain of any function f :Rd → R ∪ {∞}, denoted by dom f , consists of all points where f is finite. The
indicator function of any set Q ⊂ Rd, denoted ιQ, is defined to be zero on Q and +∞ off it. Our focus will be
primarily on those functions that can be convexified by adding a sufficiently large multiple of the squared
norm 1

2 ‖ · ‖2. Formally, we will say that a function g :Rd → R ∪ {∞} is ρ-weakly convex, for some ρ ∈ R, if the
perturbed function x �→ g(x) + ρ

2 ‖x‖2 is convex.
First-order optimality conditions for nonsmooth and nonconvex problems are often most succinctly stated

using subdifferentials. The subdifferential of a function g at a point x ∈ dom g is denoted by ∂g(x) and consists of
all vectors v ∈ Rd satisfying2

g y
( ) ≥ g x( ) + 〈v, y − x〉 + o ‖y − x‖( )

as y → x.

When g is differentiable at x, the subdifferential reduces to the singleton ∂g(x) � {∇g(x)}, while for convex
functions it reduces to the subdifferential in the sense of convex analysis. We will call a point x critical for g if
the inclusion 0 ∈ ∂g(x) holds.

When g is ρ-weakly convex, the subdifferential automatically satisfies the seemingly stronger property
(Davis et al. [13], lemma 2.2):

g y
( ) ≥ g x( ) + 〈v, y − x〉 − ρ

2
‖ y − x ‖2. (2.1)

for any x, y ∈ dom g and v ∈ ∂g(x). It is often convenient to interpret the assignment x �→ ∂g(x) as a set-valued
map, and as such, it has a graph defined by

gph ∂g x( ) :� x, v( ) ∈ Rd × Rd : v ∈ ∂g x( )
{ }

.

3. Problem Setting
Fix a probability space (Ω,F ,P). In this paper, we focus on the optimization problem

min
x∈Rd

ϕ x( ) � f x( ) + r x( ) where f x( ) � Ez∼P f x, z( )[ ]
, (3.1)

under the following assumptions on the functional components:
Assumption A1 (Weak Convexity). The functions f (·, z) + r(·) are closed and ρ-weakly convex for a.e.

z ∈ Ω.
Assumption A2 (Lipschitzian Property). There exists a square integrable function L :Ω → R+ such that for

all x, y ∈ dom r and z ∈ Ω, we have

| f x, z( ) − f y, z
( ) | ≤ L z( )‖ x − y ‖ and

̅̅̅̅̅̅̅̅̅̅̅̅
E L z( )2[ ]√

≤ σ.

The stochastic optimization problem (3.1) is the standard task of minimizing the regularized population risk.
The function f (x, z) is called the loss, while r :Rd → R ∪ {∞} is a structure promoting regularizer. Alternatively,
r can encode feasibility constraints as an indicator function. Assumption (A1) is self-explanatory, while as-
sumption (A2) simply amounts to Lipschitz continuity of the loss f (·, z) on dom r with a square integrable
Lipschitz constant L(z).

The most important example of the problem class (3.1) corresponds to the setting when r(·) is convex and the
loss has the form:

f x, z( ) � h c x, z( ), z( ),
where h(·, z) is convex and c(·, z) is C1-smooth. Indeed, provided that h(·, z) is �-Lipschitz and the Jacobian
∇c(·, z) is β-Lipschitz, a quick argument (Drusvyatskiy and Paquette [18], lemma 4.2) shows that the loss f (·, z)
is �β-weakly convex; therefore (A1) holds with ρ � �β. Moreover, if there exists a square integrable function
M(·) satisfying ‖∇c(x, z)‖op ≤ M(z) for all x ∈ dom r and z ∈ Ω, then (A2) holds with L(z) � �M(z). The class of
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composite problems is broad and has attracted some attention lately (Davis and Drusvyatskiy [11], Davis et al. [13],
Davis et al. [14], Davis et al. [15], Davis and Grimmer [16], Drusvyatskiy and Paquette [18], Duchi and
Ruan [19], Duchi and Ruan [20], Li et al. [31], Zhang and He [67]) as an appealing setting for nonsmooth
nonconvex optimization. Table 1 summarizes a few interesting problems of this type; details can be found for
example in Davis and Drusvyatskiy [11], Davis and Grimmer [16], and Drusvyatskiy [17].

Because the problem (3.1) is nonconvex and nonsmooth, typical algorithms can only be guaranteed to find
critical points of the problem, meaning those satisfying 0 ∈ ∂ϕ(x). Therefore, one of our main goals is to
estimate the Hausdorff distance between the subdifferential graphs, gph ∂ϕ and gph ∂ϕS. We employ an
indirect strategy based on a smoothing technique.

Setting the formalism, for any function g :Rd → R ∪ {∞}, we define the Moreau envelope and the proxi-
mal map:

gλ x( ) :� inf
y

g y
( ) + 1

2λ
‖y − x‖2

{ }
, proxλg x( ) :� argmin

y
g y
( ) + 1

2λ
‖y − x‖2

{ }
,

respectively. These two constructions were introduced by Moreau [40], and are now routinely used in op-
timization literature. The following result establishes the smoothing properties of the Moreau envelope
(Moreau [40]). We will often appeal to this theorem without explicitly referencing it.

Theorem 3.1 (Smoothness of the Moreau Envelope). Consider a closed and ρ-weakly convex function g :Rd → R ∪ {∞}.
Then for any positive λ < ρ−1, the envelope gλ is differentiable with gradient given by

∇gλ x( ) :� 1
λ

x − proxλg x( )
( )

, (3.2)
and the equivalence holds:

y � proxλg x( ) ⇐⇒ y, λ−1 x − y
( )( ) ∈ gph ∂g. (3.3)

This theorem has been instrumental in recent work establishing convergence guarantees for algorithms in
nonsmooth and nonconvex optimization (Davis and Drusvyatskiy [11], Davis et al. [13], Zhang and He [67]).
These works argue that the natural measure of convergence for such problems is the gradient norm ‖∇ϕλ(x)‖
and show that streaming algorithms drive this measure in expectation to zero at a controlled rate. Simple
examples show that one cannot expect similar guarantees for the quantity dist(0, ∂ϕ(x)), which may be
bounded below by a fixed constant at all nonstationary points (e.g., ϕ(x) � |x|).

The equivalence (3.3) has two important consequences. First it shows that the gradient norm of the Moreau
envelope is closely related to minimal norm subgradients at nearby points. Namely, setting x̂ :� proxλg(x),
Equations (3.2) and (3.3) immediately yield the estimates:

‖x − x̂‖ � λ‖∇gλ x( )‖ and dist 0, ∂g x̂( )( ) ≤ ‖∇gλ x( )‖.
Hence if the norm ‖∇gλ(x)‖ is small, then x must be near some point (namely x̂) that is nearly stationary for g.
Figure 1(b) illustrates this phenomenon, whereas Figure 1(a) plots the Moreau envelope of the weakly convex
loss |x2 − 1|, which appears in the phase retrieval problem (Davis et al. [15], Duchi and Ruan [19]).

Secondly, note that (3.3) shows that the graph of the proximal map proxλg is linearly isomorphic to the
graph of the subdifferential ∂g by the linear map (x, y) �→ (y, λ−1(y − x)). It is this observation that will allow us
to pass from uniform estimates on the deviations ‖proxϕ/λ(x) − proxϕS/λ

(x)‖ to estimates on the Hausdorff
distance between subdifferential graphs, gph ∂ϕ and gph ∂ϕS.

Table 1. Common stochastic weakly convex optimization problems.

Problem Loss function Regularizer

Phase retrieval f (x, (a, b)) � |〈a, x〉2 − b| r(x) � 0, ‖x‖1
Blind deconvolution f ((x, y), (u, v, b)) � |〈u, x〉〈v, y〉 − b| —
Covariance estimation f (x, (U, b)) � |‖Ux‖2 − b| —
Censored block model f (x, (ij, b)) � |xixj − b| —
Conditional value-at-risk f ((x, γ), z) � (�(x, z) − γ)+ r(x, γ) � (1 − α)γ
Trimmed estimation f ((x,w), i) � wifi(x) r(x,w) � ι[0,1]n∩kΔ(w)
Robust PCA f ((U,V), (ij, b)) � |〈ui, vj〉 − b| —
Sparse dictionary learning f ((D, x), z) � ‖z −Dx‖ r(D, x) � ιB(D) + λ‖x‖1
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4. Dimension Dependent Rates
In this section, we prove the uniform convergence bound (1.6). The proof outline is as follows. First, in
Theorem 4.1 we will estimate the expected error between the population and empirical proximal points,

ES proxϕ/λ y
( ) − proxϕS/λ

y
( )⃦⃦⃦ ⃦⃦⃦

,

where y is fixed. A key ingredient is leave-one-out stability of the proximal map, in the sense that proxϕS/λ
(y)

does not vary much when a single sample is changed—the main result of Shalev-Shwartz et al. [54]. Using
McDiarmid’s inequality (McDiarmid [34]) in Theorem 4.4, we will then deduce that the quantity ‖proxϕ/λ(y) −
proxϕS/λ

(y)‖ concentrates around its mean for a fixed y. A covering argument over the points y will then
complete the proof.

We begin following the outlined strategy with Theorem 4.1, which extracts the relevant conclusions that we
need from Shalev-Shwartz et al. [54]. For the sake of completeness, we provide a complete proof, which
parallels that in Shalev-Shwartz et al. [54].

Theorem 4.1 (Stability of Regularized ERM). Consider a set S � (z1, . . . , zm) and define Si :� (z1, . . . , zi−1, z′i , zi+1, . . . zm),
where both the index i and the point z′i ∈ Ω are arbitrary. Fix an arbitrary point y ∈ Rd and a real ρ̄ > ρ, and set

A∗ :� argmin
y∈Rd

ϕ x( ) + ρ̄

2
‖x − y‖2

{ }
and A S( ) :� argmin

y∈Rd
ϕS x( ) + ρ̄

2
‖x − y‖2

{ }
.

Then the estimates hold:

⃦⃦
A S( ) −A Si

( )⃦⃦ ≤ L zi( ) + L z′i
( )

ρ̄ − ρ
( )

m
, (4.1)

ES
⃦⃦
A S( ) −A∗⃦⃦2[ ]

≤ 4σ2

ρ̄ − ρ
( )2m , (4.2)

0 ≤ ES ϕ1/ρ̄ y
( ) − ϕS

( )
1/ρ̄ y

( )[ ]
≤ 2σ2

ρ̄ − ρ
( )

m
. (4.3)

Proof. We first verify (4.1). A quick computation yields for any points u and v the equation:

fS v( ) − fS u( ) � fSi v( ) − fSi u( ) + f v, zi( ) − f u, zi( )
m

+ f u, z′i
( ) − f v, z′i

( )
m

. (4.4)
Define now the regularized functions

ϕ̂ x( ) :� ϕ x( ) + ρ̄

2
‖x − y‖2 and ϕ̂S x( ) :� ϕS x( ) + ρ̄

2
‖x − y‖2.

Then adding [r(v) + ρ̄
2 ‖v − y‖2] − [r(u) + ρ̄

2 ‖u − y‖2] to both sides of (4.4), we obtain

ϕ̂S v( ) − ϕ̂S u( ) � ϕ̂Si v( ) − ϕ̂Si u( ) + f v, zi( ) − f u, zi( )
m

+ f u, z′i
( ) − f v, z′i

( )
m

.

Figure 1. (Color online) An illustration of the Moreau envelope.
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Henceforth, set v :� A(Si) and u :� A(S). Thus, v is the minimizer of ϕ̂Si and u is the minimizer of ϕ̂S. Taking
into account that ϕ̂S(·) and ϕ̂Si (·) are (ρ̄ − ρ)-strongly convex, we deduce

ρ̄ − ρ

2
‖v − u‖2 ≤ ϕ̂S v( ) − ϕ̂S u( ) ≤ f v, zi( ) − f u, zi( )

m
+ f u, z′i

( ) − f v, z′i
( )

m
− ρ̄ − ρ

2
‖u − v‖2.

Rearranging, we arrive at the estimate

‖u − v‖2 ≤ 1
ρ̄ − ρ

f v, zi( ) − f u, zi( )
m

+ f u, z′i
( ) − f v, z′i

( )
m

[ ]
≤ L zi( ) + L z′i

( )
ρ̄ − ρ
( )

m
· ‖u − v‖.

Dividing through by ‖u − v‖, we obtain the claimed stability guarantee (4.1).
To establish (4.3), observe first

ϕS

( )
1/ρ̄ y

( ) � ϕS A S( )( ) + ρ̄

2
‖A S( ) − y ‖2 ≤ ϕS x( ) + ρ̄

2
‖x − y‖2 for all x.

Taking expectations, we conclude ES[(ϕS)1/ρ̄(y)] ≤ ϕ1/ρ̄(y), which is precisely the left-hand side of (4.3). Next, it
is standard to verify the expression (Shalev-Shwartz and Ben-David [53], theorem 13.2):

ES f A S( )( )[ ] � ES fS A S( )( )[ ] + ES f A S( )( ) − fS A S( )( )[ ]
� ES fS A S( )( )[ ] + E S,z′( )∼P,i∼U m( ) f A Si

( )
, zi

( ) − f A S( ), zi( )[ ]
, (4.5)

where U(m) denotes the discrete uniform distribution. Taking into account (4.1), we obtain⃒⃒⃒
ES ϕ̂ A S( )( ) − ϕ̂S A S( )( )[ ]⃒⃒⃒ ≤ E L z( ) · ‖A S( ) −A Si

( )‖[ ]
≤

̅̅̅̅̅̅̅̅̅̅̅̅
Ez L z( )2[ ]√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ES ‖A S( ) −A Si( )‖2[ ]√
≤ 2σ2

ρ̄ − ρ
( )

m
.

(4.6)

Noting ϕ̂(A(S)) ≥ ϕ1/ρ̄(y) and ϕ̂S(A(S)) � (ϕS)1/ρ̄(y) yields the right-hand side of (4.3).
Finally taking into account that ϕ̂ is (ρ̄ − ρ)-strongly convex, we deduce

ρ̄ − ρ

2
⃦⃦
A S( ) −A∗⃦⃦2 ≤ ϕ̂ A S( )( ) −min ϕ̂.

Taking expectation, and using the inequalities ES[ϕ̂S(A(S))] ≤ min ϕ̂ and (4.6), we arrive at

ρ̄ − ρ

2
ES ‖A S( ) −A∗‖2[ ] ≤ ES ϕ̂ A S( )( ) −min ϕ̂

[ ] ≤ ES ϕ̂ A S( )( ) − ϕ̂S A S( )( )[ ] ≤ 2σ2

ρ̄ − ρ
( )

m
.

Thus, we have established (4.2), and the proof is complete. □

Next, we pass to high probability bounds on the deviation ‖proxϕ/λ(y) − proxϕS/λ
(y)‖ by means of

McDiarmid’s inequality (McDiarmid [34]). The basic result reads as follows. Suppose that a function g satisfies
the bounded difference property:⃒⃒

g z1, . . . , zi−1, zi, zi+1, . . . , zm( ) − g z1, . . . , zi−1, z′i , zi+1, . . . , zm
( )⃒⃒ ≤ ci,

for all i, z1, . . . , zi−1, zi, zi+1, . . . , zm, z′i , where ci are some constants. Then for any independent random variables
Z1, . . . ,Zm, the random variable Y � g(Z1, . . . ,Zm) satisfies:

P Y − EY ≥ t( ) ≤ exp
−2t2
‖c‖2

( )
.

A direct application of this inequality to ‖proxϕ/λ(y) − proxϕS/λ
(y)‖ using (4.1) would require the Lipschitz

constant L(·) to be globally bounded. This could be a strong assumption, as it essentially requires the
population data to be bounded. We will circumvent this difficulty by extending the McDiarmid’s inequality to
the setting where the constants ci are replaced by some functions ωi(·, ·) of the data, zi and z′i . Let εi be a
Rademacher random variable, meaning a random variable taking value ±1 with equal probability. Then as
long as the symmetric random variables εiωi(zi, z′i ) have sufficiently light tails, a McDiarmid type bound will
hold. In particular, we will be able to derive high probability upper bounds on the deviations ‖proxϕ/λ(y) −
proxϕS/λ

(y)‖ only assuming that the random variable εL is sub-Gaussian or subexponential. The proof follows
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known techniques for establishing McDiarmid’s inequality, and in particular is essentially the same as that in
Kontorovich [30] (theorem 1), though there the statement of the theorem assumed that ωi is a metric and
εiω(zi, zi) is sub-Gaussian.

Henceforth, given a random variable X, we will let ψ(λ) :� log(EeλX) denote the logarithm of the moment
generating function. The symbol ψ� :R → R ∪ {∞} will stand for the Fenchel conjugate of ψ, defined
by ψ�(t) � supλ{tλ − ψ(λ)}.
Theorem 4.2 (McDiarmid Extended). Let z1, . . . , zm be independent random variables with ranges zi ∈ Zi. Suppose that there
exist functions ωi :Zi ×Zi → R+ such that the inequality⃒⃒

g z1, . . . , zi−1, zi, zi+1, . . .( ) − g z1, . . . , zi−1, z′i , zi+1, . . .
( )⃒⃒ ≤ ω zi, z′i

( )
,

holds for all zj ∈ Zj, zi, z′i ∈ Zi, and all i, j ∈ {1, . . . ,m}. Then the estimate holds:

ψg z( )−E g z( )[ ] λ( ) ≤ ∑m
i�1

ψεiωi λ( ) ∀λ, (4.7)

where ωi denotes the random variable ωi(zi, z′i ) and εi are i.i.d. Rademacher random variables. In particular if ωi � ωj for
all indices i and j, then we have

P g z( ) − E g z( )[ ] ≥ t
( ) ≤ exp −mψ�

εω

t
m

( )( )
∀t ≥ 0. (4.8)

Proof. Define the Doob martingale sequence:

Y0 :� E g z( )[ ]
and Yi :� E g z( ) | z1, . . . zi[ ]

for i � 1, . . . ,m,

and consider the martingale differences

Vi :� Yi − Yi−1 for i � 1, . . . ,m.

We aim to bound the moment generating function of Ym � g(z). To this end, observe

E eλYi

[ ]
� E eλYi−1E eλ Yi−Yi−1( ) | z1, . . . , zi−1

[ ][ ]
. (4.9)

Thus, the crux of the proof is to bound the conditional expectation E[eλVi | z1, . . . , zi−1].
Form a vector z′ from z by replacing zi by an identical distributed copy z′i . Clearly then

E g z′( ) | z1, . . . , zi[ ] � E g z( ) | z1, . . . , zi−1[ ] � Yi−1.

Therefore, we may write Vi � Yi − Yi−1 � E[g(z′) − g(z) | z1, . . . , zi]. Hence, we deduce

E eλVi | z1, . . . , zi−1[ ] � E eλE g z( )−g z′( )|z1...,zi[ ] | z1, . . . , zi−1
[ ]

≤ E eλ g z( )−g z′( )( ) | z1, . . . , zi−1
[ ]

� E
1
2
eλ g z( )−g z′( )( ) + 1

2
eλ g z′( )−g z( )( ) | z1, . . . , zi−1

[ ]
� E cosh λ g z( ) − g z′( )( )( ) | z1, . . . , zi−1[ ]
� E cosh λ|g z( ) − g z′( )|( ) | z1, . . . , zi−1[ ]
≤ E cosh λ ωi zi, z′i

( )( )( ) | z1, . . . , zi−1[ ]
� E

1
2
eλ ωi zi ,z′i( )( ) + 1

2
e−λ ωi zi ,z′i( )( )

[ ]
� E eλεiωi zi ,z′i( )[ ]

� eψεiωi λ( ),
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where the first inequality follows by Jensen’s inequality and the tower rule. Appealing to (4.9), and using
induction, we therefore conclude

E eλYm
[ ] ≤ eψεmωm λ( )E eλYm−1

[ ] ≤ . . . ≤ eλE g z( )[ ] +∑m
i�1

ψεiωi λ( ).

Thus (4.7) is proved. The estimate (4.8) then follows by the standard Cramér-Chernoff bounding method.
Namely, assume ωi � ωj for all indices i and j. Then for every t ≥ 0, Chernoff’s inequality (Boucheron [7], p. 21)
together with (4.7) implies

P g z( ) − E g z( )[ ] ≥ t
( ) ≤ e− mψεω( )� t( ). (4.10)

Noting the equality (mψεω)�(t) � mψ�
εω( tm) completes the proof. □

The final ingredient is to perform a covering argument over the points x. To this end, we will need the
following lemma on Lipschitz continuity of the proximal map of weakly convex functions.

Lemma 4.3 (Lipschitz Continuity). Consider a closed and ρ-weakly convex function g :Rd → R ∪ {∞}. Then for any ρ̄ > ρ
and x, y ∈ Rd, we have

proxg/ρ̄ x( ) − proxg/ρ̄ y
( )⃦⃦⃦ ⃦⃦⃦

≤ ρ̄

ρ̄ − ρ
‖x − y‖.

Proof. For any points x, y ∈ Rd, set x̂ :� proxg/ρ̄(x) and ŷ :� proxg/ρ̄(y). Taking into account that g + ρ̄
2 ‖ · ‖2 is (ρ̄ − ρ)

strongly convex, we deduce

ρ̄ − ρ

2
‖ŷ − x̂‖2 ≤ g ŷ

( ) + ρ̄

2
‖ŷ − x‖2

( )
− g x̂( ) + ρ̄

2
‖ x̂ − x‖2

( )
ρ̄ − ρ

2
‖x̂ − ŷ‖2 ≤ g x̂( ) + ρ̄

2
‖x̂ − y‖2

( )
− g ŷ

( ) + ρ̄

2
‖ ŷ − y‖2

( )
.

Adding these estimates together, we obtain

ρ̄ − ρ
( )‖x̂ − ŷ‖2 ≤ ρ̄

2
‖ŷ − x‖2 − ‖x̂ − x‖2 + ‖x̂ − y‖2 − ‖ŷ − y‖2

( )
� ρ̄〈x − y, x̂ − ŷ〉.

Using the Cauchy-Schwartz inequality and dividing both sides by ‖x̂ − ŷ‖, the result follows. □

We now have all the ingredients to prove the main result of this section. To this end, for any set C ⊂ Rd, we
will let N (C, δ) denote the covering number of C in the �2 norm, that is, the minimal number of balls of radius δ
needed to completely cover C.

Theorem 4.4 (Concentration of the Stationarity Measure). Let C ⊆ Rd be any set and let ρ̄ > ρ be arbitrary. Fix tolerances
δ, s > 0. Then with probability

1 −N C, δ( ) exp −m · ψ�
εL

s̅̅̅
m

√
( )( )

,

we have

sup
y∈C

⃦⃦∇ ϕS

( )
1/ρ̄ y

( ) − ∇ϕ1/ρ̄ y
( )⃦⃦ ≤ ρ̄

ρ̄ − ρ

2 σ + s( )̅̅̅
m

√ + 2ρ̄δ
( )

,

where the second moment σ > 0 is defined in Assumption (A2).
Proof. Following the notation of Theorem 4.1, set

A y, S
( )

:� proxϕS/ρ̄
y
( )

and A∗ y
( )

:� proxϕ/ρ̄ y
( )

.

Define the function

g y,S
( )

:� ⃦⃦
A y,S

( ) −A∗ y
( )⃦⃦

.
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We will first apply Theorem 4.2 to the function g(y, ·) :Ωm → R, with y fixed. To verify the bounded difference
property, we compute ⃒⃒

g y,S
( ) − g y,Si

( )⃒⃒ � ⃦⃦
A y,S

( ) −A∗ y
( )⃦⃦ − ⃦⃦

A y, Si
( ) −A∗ y

( )⃦⃦⃒⃒ ⃒⃒
,

≤ ⃦⃦
A y,S

( ) −A y, Si
( )⃦⃦

,

(4.11)

≤ L zi( ) + L z′i
( )

ρ̄ − ρ
( )

m
, (4.12)

where (4.11) uses the reverse triangle inequality, whereas (4.12) follows from the estimate (4.1). Setting

ω(zi, z′i ) � L(zi)+L(z′i )(ρ̄−ρ)m , we deduce

ψεω λ( ) � ψεL
2λ

ρ̄ − ρ
( )

m

( )
and ψ�

εω t( ) � ψ�
εL ρ̄ − ρ

( )
mt/2

( )
.

Note moreover from (4.2) the bound Eg(y,S) � E‖A(y, S) −A∗(y)‖ ≤
̅̅̅̅̅̅̅̅

4σ2
(ρ̄−ρ)2m

√
. Thus, applying Theorem 4.2,

we conclude

P g y, S
( ) ≥ ̅̅̅̅̅̅̅̅̅̅̅̅̅

4σ2

ρ̄ − ρ
( )2m

√
+ t

( )
≤ exp −mψ�

εL ρ̄ − ρ
( )

t/2
( )( )

.

Next, we show using Lemma 4.3 that g(·,S) is 2ρ̄
ρ̄−ρ-Lipschitz. Indeed, observe⃒⃒

g y,S
( ) − g y′,S

( )⃒⃒ ≤ ⃒⃒⃒⃦⃦
A y,S

( ) −A∗ y
( )⃦⃦ − ⃦⃦

A y′,S
( ) −A∗ y′

( )⃦⃦⃒⃒⃒
≤ ⃦⃦

A y, S
( ) −A y′,S

( )⃦⃦ + ⃦⃦
A∗ y

( ) −A∗ y′
( )⃦⃦ ≤ 2ρ̄

ρ̄ − ρ

⃦⃦
y − y′

⃦⃦
,

where we used the triangle inequality and Lipschitz continuity of the proximal operator (Lemma 4.3). Let {yi}
be a δ-net of C. Thus, for every y in a δ-ball of yi, we have g(y,S) ≤ g(yi,S) + 2ρ̄δ

ρ̄−ρ. Taking a union bound over the
net, we therefore deduce

P g y,S
( ) ≤ ̅̅̅̅̅̅̅̅̅̅̅̅̅

4 σ2

ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

+ t

( )
≥ 1 −N C, δ( ) exp −mψ�

εL ρ̄ − ρ
( )

t/2
( )( )

.

Setting t � 2s̅̅
m

√ (ρ̄−ρ) completes the proof. □

In particular, under the natural choice ρ̄ � 2ρ, we deduce that with probability 1 −N (C, δ) exp(−m · ψ�
εL( s̅

m̅
√ )),

the estimate holds:

sup
y∈C

⃦⃦∇ ϕS

( )
1/ρ̄ y

( ) − ∇ϕ1/ρ̄ y
( )⃦⃦ ≤ ̅̅̅̅̅̅̅̅̅̅̅̅̅

16 σ + s( )2
m

√
+ 8ρδ.

We next instantiate Theorem 4.4 (with ρ̄ � 2ρ for simplicity) under various distributional assumptions on L(z).
We will require the use of the sub-Gaussian norm of any random variable X, which is defined to be
‖X‖sg :� inf{t > 0 : E exp(X2/t2) ≤ 2}, along with the subexponential norm ‖X‖se :� inf{t > 0 : E exp(|X|/t) ≤ 2}.
Henceforth let C ⊂ Rd be a set whose diameter is bounded by B. Consequently, the estimate N (C, δ) ≤ (1 + 4B

δ )d,
holds; see, for example, Vershynin [63] (corollary 4.2.13).

Sub-Gaussian Lipschitz Constant. Suppose that L − EL is a sub-Gaussian random variable with parameter
ν � ‖L − E[L]‖sg. Using the triangle inequality, we therefore deduce

‖εL‖sg � ‖L‖sg ≤ ‖L − E L[ ]‖sg + ‖E L[ ]‖sg ≤ ν + σ̅̅̅̅̅
ln 2

√ .
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Appealing to Vershynin [63] (equation 2.16), we conclude ψεL(λ) ≤ c
2 (ν + σ)2λ2 for all λ ∈ R, where c is a

numerical constant. Taking conjugates yields the relation ψ�
εL(t) ≥ t2

c(ν+σ)2. Appealing to Theorem 4.4, while

setting s �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c(ν + σ)2 ln(N (C,δ)

γ )
√

and δ � 1
ρ

̅̅
d
m

√
, we deduce that with probability 1 − γ, the estimate holds:

sup
y∈C

‖∇ ϕS

( )
1/2ρ y

( ) − ∇ϕ1/2ρ y
( )‖<∼

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + d
m

+ ν + σ( )2d
m

ln
R
γ

( )√
,

where we set R :� 1 + 2ρB
̅̅m
d

√
.

Globally Bounded Lipschitz Constant. As the next example, suppose that there exists a constant L satisfying
L(z) ≤ L for a.e. z ∈ Ω. Then clearly we have σ ≤ L and ν :� ‖L − E[L]‖sg <∼ L. Consequently, we deduce that with
probability 1 − γ, the estimate holds:

sup
y∈C

‖∇ ϕS

( )
1/2ρ y

( ) − ∇ϕ1/2ρ y
( )‖<∼

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
L2 + d
m

+ L2d
m

ln
R
γ

( )√
,

where we set R :� 1 + 2ρB
̅̅m
d

√
.

Subexponential Lipschitz Constant. As the final example, we suppose that L − E[L] is subexponential and set
ν � ‖L − E[L]‖se. A completely analogous argument as in the sub-Gaussian case implies ‖εL‖se ≤ ν + σ

ln(2).
Appealing to Vershynin [63] (proposition 2.7.1), we deduce ψεL(λ) ≤ c2(ν + σ)2λ2 for all |λ| ≤ 1

c(ν+σ). To simplify
notation set η :� c(ν + σ). Taking conjugates, we therefore deduce

ψ�
εL t( ) ≥

t2
4η2 if |t| ≤ 2η
|t|
η − 1 otherwise

.

{

Consequently, we deduce the usual Bernstein-type bound ψ�
εL(t) ≥ min{ t2

4η2 ,
t
2η}. Setting s � 2η ·max{

̅̅̅̅̅̅̅̅̅̅̅̅
ln(N (C,δ)

γ )
√

,

1̅
m̅

√ ln(N (C,δ)
γ )} and δ � 1

ρ

̅̅
d
m

√
in Theorem 4.4, we deduce that with probability 1 − γ, we have

sup
y∈C

‖∇ ϕS

( )
1/2ρ y

( ) − ∇ϕ1/2ρ y
( )‖<∼

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2 + d
m

+ ν + σ( )2max
d
m
log

R
γ

( )
,
d2

m2 log
2 R
γ

( ){ }√
,

where we set R :� 1 + 2ρB
̅̅m
d

√
.

We end the section by showing how Theorem 4.4 directly implies analogous bounds on a localized
Hausdorff distance between the subdifferential graphs, gph ∂ϕ and gph ∂ϕS.

Theorem 4.5 (Concentration of Subdifferential Graphs). Let C ⊆ Rd be any set and let r > 0 and ρ̄ > ρ be arbitrary. Then
with probability

1 −N C + rρ̄B, δ
( )

exp −m · ψ�
εL

s̅̅̅
m

√
( )( )

,

the estimates hold

C × rB( ) ∩ gph ∂ϕS ⊂ gph ∂ϕ +
̅̅̅̅̅̅̅̅̅̅̅̅̅
4 σ + s( )2
ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

( )
B × ρ̄B
( )

, (4.13)

C × rB( ) ∩ gph ∂ϕ ⊂ gph ∂ϕS +
̅̅̅̅̅̅̅̅̅̅̅̅̅
4 σ + s( )2
ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

( )
B × ρ̄B
( )

. (4.14)

Proof. Fix a pair of points x, y ∈ Rd and observe the equivalence

y � proxϕS/ρ̄
x( ) ⇐⇒ ρ̄−1 x − y

( ) ∈ ∂ϕS y
( )

.
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Let y ∈ C and v ∈ rB ∩ ∂ϕS(y) be arbitrary. Define the point x :� y + ρ̄v. Clearly then we may write y �
proxϕS/ρ̄

(x) and the inclusion x∈C+ rρ̄B holds. Appealing to Theorem 4.4, we therefore deduce that with probability

1 −N C + rρ̄B, δ
( )

exp −m · ψ�
εL

s̅̅̅
m

√
( )( )

,

simultaneously for all y ∈ C and v ∈ rB ∩ ∂ϕS(y) and δ > 0, we have

‖y − proxϕ/ρ̄ x( )‖ ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅
4 σ + s( )2
ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

.

Set y′ :� proxϕ/ρ̄(x) and v′ :� ρ̄−1(x − y′) ∈ ∂ϕ(z), and observe

1
ρ̄
‖v − v′‖ � ‖y − y′‖ ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅
4 σ + s( )2
ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

.

Thus, we showed

y, v
( ) ∈ y′, v′

( ) + ̅̅̅̅̅̅̅̅̅̅̅̅̅
4 σ + s( )2
ρ̄ − ρ
( )2m

√
+ 2ρ̄δ
ρ̄ − ρ

( )
B × ρ̄B
( )

.

The inclusion (4.13) follows immediately, while (4.14) follows by a symmetric argument. □

5. Dimension Independent Rates
In this section, we introduce a technique for obtaining bounds on the graphical distance between sub-
differentials from estimates on the closeness of function values. The main result we use is a quantitative
version of the Attouch convergence theorem from variational analysis (Attouch [2], [3]). A variant of this
theorem was recently used by the authors to analyze the landscape of the phase retrieval problem (Davis et al.
[15], theorem 6.1). For the sake of completeness, we present a short argument, which incidentally simplifies the
original exposition in Davis et al. [15].

The approach of this section has benefits and drawbacks. The main benefit is that because we obtain
subdifferential distance bounds via closeness of values, whenever function values uniformly converge at a
dimension independent rate, so do the subdifferentials. This type of result is in stark contrast to the results in
Section 4, which scale with the dimension. The main drawback is that for losses that uniformly converge at a
rate of δ, we can only deduce subdifferential bounds on the order of O( ̅̅

δ
√ ), yielding what appear to be

suboptimal rates. Nevertheless, the very existence of dimension independent bounds is notable. We will
illustrate the use of the techniques on two examples: learning with generalized linear models (Section 5.1) and
robust nonlinear regression (Section 5.2).

Theorem 5.1 (Subdifferential Graphs). Consider two closed and ρ-weakly convex functions g, h :Rd → R ∪ {∞}, having
identical domain D. Suppose moreover that for some real l,u ∈ R, the inequalities hold:

l ≤ h x( ) − g x( ) ≤ u, ∀x ∈ D. (5.1)
Then for any ρ̄ > ρ and any point x ∈ Rd, the estimate holds:

‖∇g1/ρ̄ x( ) − ∇h1/ρ̄ x( )‖ ≤ ρ̄

̅̅̅̅̅̅̅
u − l
ρ̄ − ρ

√
. (5.2)

Consequently, we obtain the estimate:

dist1/ρ̄ gph ∂g,gph ∂h
( ) ≤ ̅̅̅̅̅̅̅

u − l
ρ̄ − ρ

√
, (5.3)

where the Hausdorff distance dist1/ρ̄(·, ·) is induced by the norm (x, v) �→ max{‖x‖, 1ρ̄ ‖v‖}.
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Proof. Fix a point x ∈ Rd and define xg :� proxg/ρ̄(x) and xh :� proxh/ρ̄(x). We successively deduce

g xg
( ) + ρ̄

2
‖xg − x‖2 ≤ g xh( ) + ρ̄

2
‖xh − x‖2

( )
− ρ̄ − ρ

2
‖xh − xg‖2 (5.4)

≤ h xh( ) + ρ̄

2
‖xh − x‖2 − ρ̄ − ρ

2
‖xh − xg‖2 − l (5.5)

≤ h xg
( ) + ρ̄

2
‖xg − x‖2 − ρ̄ − ρ

( )‖xh − xg‖2 − l (5.6)

≤ g xg
( ) + ρ̄

2
‖xg − x‖2 − ρ̄ − ρ

( )‖xh − xg‖2 + u − l( ), (5.7)

where (5.4) and (5.6) follow from strong convexity of g(·) + ρ̄
2 ‖ · −x‖2 and h(·) + ρ̄

2 ‖ · −x‖2, respectively, whereas
(5.5) and (5.7) follow from the assumption (5.1). Rearranging yields (5.2).

Fix now an arbitrary pair (x, v) ∈ gph ∂g. A quick computation shows then x � proxg/ρ̄(x + 1
ρ̄ v). Define now

x′ :� proxh/ρ̄(x + 1
ρ̄ v) and v′ � ρ̄(x − x′ + 1

ρ̄ v), and note the inclusion v′ ∈ ∂h(x′). Appealing to (5.2), we therefore
deduce ‖x′ − x‖ ≤

̅̅̅̅
u−l
ρ̄−ρ

√
and ‖v′ − v‖ � ρ̄‖x − x′‖ ≤ ρ̄

̅̅̅̅
u−l
ρ̄−ρ

√
. We have thus shown dist1/ρ̄((x, v),gph ∂h) ≤

̅̅̅̅
u−l
ρ̄−ρ

√
. A

symmetric argument reversing the roles of f and g completes the proof of (5.3). □

Note that simple examples of uniformly close functions, such as h(x) � δ sin(δ−1/2x) and g(x) � 0, show that
the guarantee of Theorem 5.1 is tight.

In a typical application of Theorem 5.1 to subgradient estimation, one might set h to be the population risk
and g to be the empirical risk or vice versa. The attractive feature of this approach is that it completely
decouples probabilistic arguments (for proving functional convergence) from variational analytic arguments
(for proving graphical convergence of subdifferentials). The following two sections illustrate the use of
Theorem 5.1 on two examples: learning with generalized linear models (Section 5.1) and robust nonlinear
regression (Section 5.2).

5.1. Illustration I: Dimension Independent Rates for Generalized Linear Models
In this section, we develop dimension-independent convergence guarantees for a wide class of generalized linear
models. We consider a loss functions f : Rd ×Ω → Ω over a bounded set X , where f (x, z) has the paramet-
ric form

f x, z( ) � � 〈x,φ1 z( )〉, . . . , 〈x,φK z( )〉, z( )
,

Here � :RK ×Ω → R is a loss function and φ1, . . . ,φK are feature maps. We make the following assumptions:
Assumption (C1) (Region of Convergence). We assume that X ⊆ Rd is a closed set containing a point x0 ∈ X ,

and that the estimate supx∈X ‖x − x0‖ ≤ B holds for some x0 ∈ X and some B > 0.
Assumption (C2) (Feature Mapping). The feature maps φk :Ω → Rd are measurable for k � 1, . . . ,K.
Assumption (C3) (Loss Function and Regularizer). � :RK ×Ω → R is a measurable function. We assume that

for each z ∈ Ω, the function �(·, z) is L(z)-Lipschitz over the set

〈x,φ1 z( )〉, . . . , 〈x,φK z( )〉( ) | x ∈ X
{ }

for a measurable map L :Ω → R+. The function r :Rd → R ∪ {∞} is lower semicontinuous.
Then we have the following theorem, whose proof is presented in the appendix. The argument we present

follows well known techniques, pioneered in Bartlett and Mendelson [6] and Kakade et al. [26].

Theorem 5.2 (Dimension Independent Function Concentration). Let z1, . . . , zn, z, z′ be an i.i.d. sample from P and define the
random variable

Y � | f x0, z( ) − f x0, z′( )| + BL z( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

‖φk z( )‖2
√

+ BL z′( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

‖φk z′( )‖2
√[ ]

.

Then under Assumptions (C1)–(C3), with probability

1 − 2 exp −mψ�
εY t( )( )

,
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we have the following bound:

sup
x∈X

1
m

∑m
i�1

f x, zi( ) − E f x, z( )[ ]⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2B2Kmaxk�1,...,K Ez L z( )2‖φk z( )‖2[ ]

m

√
+ t.

Thus far, we have not assumed any weak convexity of the function f (·, z). In order to prove concentration of
the subdifferential graphs, we now explicitly make this assumption:

Assumption (C4) (Weak Convexity With High Probability). There exists a constant ρ > 0 and a probability
pm ∈ [0, 1] such that with probability 1 − pm over the sample S � {z1, . . . , zm}, the functions

ϕ x( ) :� E f x, z( )[ ] + r x( ) + ιX x( ) and ϕS x( ) :� fS x( ) + r x( ) + ιX x( ).
are ρ-weakly convex.

Given these assumptions, we may deduce subdifferential convergence with Theorem 5.1—the main result of
this section.

Corollary 5.3 (Dimension Independent Rates for GLMs). Assume the setting of Theorem 5.2 and Assumptions
(C1)–(C4). Let z1, . . . , zm, z, z′ be an i.i.d. sample from P and define the random variable

Y � 2L z( )B
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

‖φk z( )‖2
√

.

Then with probability
1 − 2 exp −mψ�

εY t( )( ) − pm,

we have the following bounds:

sup
x∈X

‖∇ϕ1/2ρ − ∇ ϕS

( )
1/2ρ x( )‖ ≤

̅̅̅̅̅̅̅
ρ̄

ρ̄ − ρ

√
·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
32B2Kmaxk�1,...,K Ez L z( )2‖φk z( )‖2[ ]

m

√
+ 2t

√√√
,

dist1/ρ̄ gph ∂ϕ,gph ∂ϕS

( ) ≤ 1̅̅̅̅̅̅̅
ρ̄ − ρ

√ ·

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
32B2Kmaxk�1,...,K Ez L z( )2‖φk z( )‖2[ ]

m

√
+ 2t

√√√
,

where the Hausdorff distance dist1/ρ̄(·, ·) is induced by the norm (x, v) �→ max{‖x‖, 1ρ̄ ‖v‖}.
Proof. We will apply Theorem 5.2 after a shift. Namely set

l̄ s, z( ) � l s, z( ) − l 〈x0,φ1 z( )〉, . . . , 〈x0,φK z( )〉( )
,

and define the loss f̄ (x, z) � l̄(〈x,φ1(z)〉, . . . , 〈x,φK(z)〉, z). Define now the functions ϕ̄(x) � ϕ(x) − E[f (x0, z)] and
ϕ̄S � ϕS(x) − 1

m
∑

z∈S f (x0, z). Applying Theorem 5.2 to f̄ (x, z), we deduce that with probability 1 − 2 exp(−mψ�
εY(t)),

we have

sup
x∈X

ϕ̄S x( ) − ϕ̄ x( )⃒⃒ ⃒⃒ ≤ 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2B2Kmaxk�1,...,K E L z( )2‖φk z( )‖2[ ]

m

√
+ t.

Thus, due to Assumption (C4), we may apply Theorem 5.1 to the functions ϕ̄(x) and ϕ̄S, noticing that ∂ϕ̄(x) �
∂ϕ(x) and ∂ϕ̄S(x) � ∂ϕS(x), as desired. □

If the random variable 2L(z)B
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K

k�1 ‖φk(z)‖2
√

is sub-Gaussian, we immediately obtain a dimension inde-
pendent rate of convergence on the order of m−1/4.

5.2. Illustration II: Landscape of Robust Nonlinear Regression
In this section, we investigate a robust nonlinear regression problem in Rd, using the techniques we have
developed. Setting the stage, consider a function σ :Rd ×Ω → R that is differentiable in its first component and
let x̄ be the ground truth. Our observation model is

b z, δ, ξ( ) � σ 〈x̄, z〉, z( ) + δξ,
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where z, δ and ξ are random variables. One should think of z as the population data, δ as encoding presence or
absence of an outlier, and ξ as the size of the outlying measurement. Seeking to recover x̄, we consider the
formulation

min
x∈X f x, z( ) :� Ez,δ,ξ |σ 〈x, z〉, z( ) − b z, δ, ξ( )|[ ]

where the set X will soon be determined. We make the following assumptions on the data.
Assumption (D1) (Sufficient Support). There exist constants c,C > 0, such for all x ∈ Rd, we have

C2‖x‖2 ≥ E |〈x, z〉|2[ ]
, E |〈x, z〉|[ ] ≥ c‖x‖ and P 〈x, z〉 �� 0( ) � 1.

Assumption (D2) (Corruption Frequency). δ is a {0, 1}-valued random variable. We define

pfail :� P δ � 1( ),
which is independent from z and ξ.
Assumption (D3) (Finite Moment). ξ is a random variable with finite first moment.
Assumption (D4) (Lipschitz, Smooth, and Monotonic Link). There exist constants a > 1 and cσ,Cσ > 0

satisfying cσ ≤ σ′(u, z) ≤ Cσ for all u ∈ {〈x, z〉 | ‖x‖ ≤ a‖x̄‖} and z ∈ Ω. In addition, for every z ∈ Ω the function
σ′(·, z) is L-Lipschitz continuous.

Assumption (D5) (Concentration). Let pm ∈ [0, 1] and τm > 0 be sequences satisfying

PS
1
m

∑m
z∈S

zzT
⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦
op

≤ τm

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ≥ 1 − pm.

where S � {z1, . . . , zm} is an i.i.d. sample from P.
The noise model considered allows for adversarial corruption, meaning that ξ may take the form ξ �

σ(〈x0, z〉, z) − σ(〈x̄, z〉, z) for an arbitrary point x0. This allows us to “plant” a completely different signal in the
measurements. The rest of the assumptions serve to make x̄ identifiable from the measurements σ(〈x̄, z〉, z), as
we will soon show. We note that a smooth variant of the robust nonlinear regression problem was also
considered in Foster et al. [21] and Mei et al. [37]. To the best of our knowledge, we are unaware of any prior
work that addresses the stationary points of the nonsmooth problem considered here.

The goal of this section is to prove the following theorem, which shows that the empirical risk is well-
behaved. In particular, the empirical risk is weakly convex and its stationary points cluster around x̄.

Theorem 5.4 (Stationary Points of the Empirical Risk). Define X � a‖x̄‖B. For any sample S ⊆ Ω of size m, set

ϕ x( ) :� f x( ) + ιX x( ) and ϕS x( ) :� fS x( ) + ιX x( ).
Then ϕ is 2LC2-weakly convex and with probability 1 − pm the function ϕS is 2Lτm-weakly convex.

Suppose now ppfail <
cσc

2CσC
and set

ρ � max 2LC2, 2Lτm
{ }

and D � cσc − 2pfailCσC.

Then whenever t > 0 and m satisfy

t ≤ 1
256ρ

D2 and m ≥ 221ρ2C2
σa

2‖x̄‖2E ‖z‖2[ ]
D4 ,

we have, with probability

1 − 2 exp −mψ�
ε‖z‖

t
2a‖x̄‖Cσ

( )( )
− pm,

that any pair (x, v) ∈ gphϕS satisfies at least one of the following:
1. (Near Global Optimality)

‖x − x̄‖ ≤ 16
D

·
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
8a2‖x̄‖2C2

σE ‖z‖2[ ]
m

√
+ t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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2. (Large Subgradient)

‖v‖ ≥ 1
2
D.

Let us briefly examine Assumptions (D1)–(D5) and the conclusion of the theorem in the case of a Gaussian
population z ∼ N(0, Id× d). Assumption (D1) holds true with C � 1 and c � ̅̅̅̅̅̅

2/π
√

. Assumptions (D2)–(D4) are
independent of the distribution of z. Assumption (D5) holds true with

τm � 4 + d
m
+ 4

̅̅̅
d
m

√
and pm � 2 exp −m/2( ),

by Corollary (Vershynin [62], corollary 5.35). Thus, Assumptions (D1)–(D5) are satisfied. Now we examine the
various quantities included in the theorem.

The expected squared norm of a gaussian is E[‖z‖2] � d. One can also show, using standard probabilistic
techniques, that the moment generating function satisfies the bound

ψε‖z‖ t( ) ≤ dκt2

2
,

for a numerical constant κ > 0. Thus, we find that ψ�
ε‖z‖(t) ≥ t2

2dκ. Therefore, by equating

δ

2
� exp

−mt2

2dκ 2a‖x̄‖Cσ( )2
( )

and solving for t, we find that with probability 1 − δ − pm, every pair (x, v) ∈ gphϕS satisfies

‖x − x̄‖ � O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2‖x̄‖2C2

σd
m

log
1
δ

( )√⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠ or ‖v‖ ≥ 1

2
cσ

̅̅̅
2
π

√
− 2pfailCσ

( )
.

Interestingly, although Theorem 5.1 in general provides rates of convergence that scale as m−1/4 as shown in
Corollary 5.3, we obtain standard statistical rates of convergence for ‖x̄ − x‖. This would not be possible with a
direct application of Theorem 4.4, as we would obtain rates that scale as

̅̅̅̅̅̅̅
d2/m

√
. Finally, we note that for this

bound to be useful, we must have corruption frequency pfail strictly less than cσ
Cσ

̅̅̅
1
2π

√
.

We now present the proof of Theorem 5.4.

Proof of Theorem 5.4. Although ϕ is nonsmooth and nonconvex, it is fairly well-behaved.We first show that ϕ and
ϕS are both weakly convex.

Claim 5.1 (Weak Convexity). The functions f and ϕ are 2LC2-weakly convex. Moreover, with probability 1 − pm the
functions fS and ϕS are 2Lτm-weakly convex.

Proof of Claim 5.1. For any fixed x, z, ξ, δ, by the mean value theorem, there exists η in the interval [〈x, z〉, 〈y, z〉], so
that for all y ∈ Rd, we have

|σ 〈y, z〉, z( ) − σ 〈x̄, z〉, z( ) + ξ · δ|
� |σ 〈x, z〉, z( ) + σ′ η, z

( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ|
≥ |σ 〈x, z〉, z( ) + σ′ 〈x, z〉, z( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ|
− |σ′ η, z( ) − σ′ 〈x, z〉, z( )‖〈y − x, z〉|

≥ |σ 〈x, z〉, z( ) + σ′ 〈x, z〉, z( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ| − L|〈y − x, z〉|2. (5.8)
Therefore, taking expectations we deduce

f y
( ) ≥ E |σ 〈x, z〉, z( ) + σ′ 〈x, z〉, z( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ|[ ] − LE |〈y − x, z〉|2[ ]

≥ E |σ 〈x, z〉, z( ) + σ′ 〈x, z〉, z( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ|[ ] − LC2‖y − x‖2.
Notice that the right-hand side is a 2LC2-weakly convex function in y. We have thus deduced that for every x,
there is a 2LC2-weakly convex function that globally lower bounds f (·) while agreeing with it at x. Therefore f
is 2LC2-weakly convex, as claimed.
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Next, using (5.8) yields the inequality:

fS y
( ) ≥ 1

m

∑
z∈S

|σ 〈x, z〉, z( ) + σ′ 〈x, z〉, z( )〈y − x, z〉 − σ 〈x̄, z〉, z( ) + ξ · δ| − L
m

∑
z∈S

|〈y − x, z〉|2.

Finally, notice with probability τm > 0 we get the upper bound:

L
m

∑
z∈S

|〈y − x, z〉|2 ≤ L
1
m

∑
z∈S

zzT
⃦⃦⃦⃦
⃦

⃦⃦⃦⃦
⃦
op

· ‖y − x‖2 ≤ τm · L‖y − x‖2.

By the same reasoning as for the population objective, we deduce that fS is 2Lτm-weakly convex with
probability pm, as claimed. □

Having established weak convexity, we now lower bound the subgradients of f and show that for all x �� x̄, the
negative subgradients of f always point toward x̄. In particular, the point x̄ is the unique stationary point of f .

Claim 5.2 (Stationarity Conditions for f). For every x �� x̄ and v ∈ ∂f (x), we have

cσc − 2pfailCσC
( ) · ‖x − x̄‖ ≤ 〈v, x − x̄〉,

and consequently

‖v‖ ≥ cσc − 2pfailCσC.

Proof of Claim 5.2. For every x ∈ Rd, define a measurable mapping ζ0(x, ·) : Ω → Rd by

ζ0 x, z( ) :� σ′ 〈x, z〉, z( ) sign σ 〈x, z〉, z( ) − σ 〈x̄, z〉, z( )( ) · z.
Now, observe that

E 〈ζ0 x, z( ), x − x̄〉[ ] � E σ′ 〈x, z〉, z( ) sign σ 〈x, z〉, z( ) − σ 〈x̄, z〉, z( )( )〈z, x − x̄〉)[ ]
� E σ′ 〈x, z〉, z( )|〈z, x − x̄〉|[ ]
≥ cσE |〈z, x − x̄〉|[ ]
≥ cσc · ‖x − x̄‖,

where the second equality follows from monotonicity of σ(·, z).
As each term |σ(〈x, z〉, z) − σ(〈x̄, z〉, z) + δ · ξ| is subdifferentially regular (each term is Lipschitz and weakly

convex by Claim 5.1), it follows that

∂f x( ) � E ζ x, z, ξ, δ( )( )[ ] | ζ x, z, ξ, δ( )( ) ∈ ∂x |σ 〈·, z〉, z( ) − σ 〈x̄, z〉, z( ) + δ · ξ|( ) x( ) a.e.{ },
where the set definition ranges over all possible ζ(x, ·) : Ω → Rd that are also measurable (Clarke [9], theorem
2.7.2). Next, we claim that for any such measurable mapping, we have

E ζ x, z, ξ, δ( )( ) − ζ0 x, z( )) | δ � 0[ ] � 0. (5.9)
To see this, observe that the function E|σ(〈·, z〉, z) − σ(〈x̄, z〉, z)| is differentiable at any x �� x̄, since P(〈y, z〉 �
0) � 1. It follows that the subdifferential of this function at any x �� x̄ consists only of the expectation of the
measurable selection ζ0. The claimed equality (5.9) follows.

Thus, by linearity of expectation and the inclusion ζ(x, (z, ξ, δ)), ζ0(x, z) ∈ σ′(〈x, z〉, z)[−1, 1]z, we have

〈E ζ x, z, ξ, δ( )( ) − ζ0 x, z( )[ ], x − x̄〉 � 1 − pfail
( )〈E ζ x, z, ξ, δ( )( ) − ζ0 x, z( )) | δ � 0[ ], x − x̄〉
+ pfail〈E ζ x, z, ξ, δ( )( ) − ζ0 x, z( ) | δ � 1[ ], x − x̄〉

� pfail〈E ζ x, z, ξ, δ( )( ) − ζ0 x, z( ) | δ � 1[ ], x − x̄〉
≥ −pfailE 2σ′ 〈x, z〉, z( )|〈z, x − x̄〉|[ ]
≥ −2pfailCσC · ‖x − x̄‖.
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Therefore, we arrive at the bound:

〈E ζ x, z, ξ, δ( )( )[ ], x − x̄〉 � 〈E ζ0 x, z( )[ ], x − x̄〉 + 〈E ζ x, z, ξ, δ( )( ) − ζ0 x, z( )[ ], x − x̄〉
≥ cσc‖x − x̄‖ − 2pfailCσC · ‖x − x̄‖
� cσc − 2pfailCσC

( ) · ‖x − x̄‖.
As every element of ∂f (x) is of the form E[ζ(x, (z, ξ, δ))], the proof is complete. □

Although the only stationary point of f is x̄, it is as yet unclear where the (random) stationary points of fS lie,
because we can only guarantee that that the functional deviation | f − fS| is small on bounded sets. Thus, we
first show that constraining f to a ball containing x̄ does not create any extraneous stationary points at the
boundary of the ball.

Claim 5.3 (Constrained Stationary Conditions of f). Let a > 1 be a fixed constant. Let x ∈ a‖x̄‖B be such that x �� x̄. Then
for every v ∈ ∂f (x) +Na‖x̄‖B(x), we have

cσc − 2pfailCσC
( ) · ‖x − x̄‖ ≤ 〈v, x − x̄〉

and consequently

‖v‖ ≥ cσc − 2pfailCσC.

Proof of Claim 5.3. By Claim 5.2, wemust only consider the case when ‖x‖ � a‖x̄‖ because otherwiseNa‖x̄‖B(x) � {0}
and v ∈ ∂f (x). In this case, we have

v � vf + λx

where vf ∈ ∂f (x) and λ ≥ 0. Therefore, we find that

〈v, x − x̄〉 � 〈vF, x − x̄〉 + 〈λx, x − x̄〉
≥ 〈vF, x − x̄〉 + λ‖x‖2 − λ〈x, x̄〉
≥ 〈vF, x − x̄〉 + λa2‖x̄‖2 − λa‖x̄‖2 ≥ 〈vF, x − x̄〉.

Thus, applying Claim 5.2 completes the proof. □

Finally, we may now examine the stationary points of fS constrained to a ball. We show that every nearly
stationary point of fS + δX must be within a small ball around x̄. To that end, we define

η �
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
32a2‖x̄‖2C2

σE ‖z‖2[ ]
m

√
+ 2t.

Notice that for all z ∈ Ω, the function σ(·, z) is L(z) � Cσ Lipschitz. In addition, every point in X � a‖x̄‖B is
bounded in norm by a‖x̄‖. Therefore, by Corollary 5.3 with x0 � 0, we have that with probability

1 − 2 exp −mψ�
ε‖z‖

t
2a‖x̄‖Cσ

( )( )
− pm,

the bound holds:

dist1/ρ̄ gph ∂ϕ,gph ∂ϕS

( ) ≤ ̅̅̅̅̅̅̅
η

ρ̄ − ρ

√
,

where we set ρ :� max{2LC2, 2Lτm} and ρ̄ > ρ is arbitrary.
In particular, for any γ > 0, setting ρ̄ � γ2

η + ρ, we deduce that for any pair (x, v) ∈ gph ∂ϕS there exists a point
x̂ ∈ X and a subgradient v̂ ∈ ∂ϕ(x̂) satisfying

‖x − x̂‖ ≤ η/γ and ‖v − v̂‖ ≤ ρ̄ · η/γ � γ + ρη/γ.

Let us choose γ > 0 so that γ + ρη/γ ≤ 1
2D, which may be accomplished by finding a root of the polynomial

γ2 − 1
2Dγ + ρη � 0. Thus, by the quadratic formula, we have γ � 1

2D+
̅̅̅̅̅̅̅̅̅
1
4D

2−4ρη
√

2 . Notice that by our assumptions on

227
Davis and Drusvyatskiy: Graphical Convergence of Subgradients in Nonconvex Optimization
Mathematics of Operations Research, 2022, vol. 47, no. 1, pp. 209–231, © 2021 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

95
.1

04
.1

09
] 

on
 0

5 
Ju

ly
 2

02
2,

 a
t 1

6:
15

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 
Published in Mathematics of Operations Research on April 20, 2021 as DOI: 10.1287/moor.2021.1126. 

This article has not been copyedited or formatted. The final version may differ from this version.



t and m, we have 4ρη ≤ 1
8D

2, and therefore we deduce D
4 ≤ γ. Thus, by Claim 5.3, if x̂ �� x̄, there exists v̂ ∈

∂ϕ(x̂) � ∂f (x̂) +NX (x̂) such that

‖v‖ ≥ ‖v̂‖ − ‖v − v̂‖ ≥ cσc − 2pfailCσC
( ) − 1

2
cσc − 2pfailCσC
( ) � 1

2
cσc − 2pfailCσC
( )

.

Otherwise, x̂ � x̄ and ‖x − x̄‖ ≤ η/γ ≤ 4η
D , as desired. □
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Appendix. Rademacher Complexity and Functional Bounds
In this section, we use the well-known technique for bounding the suprema of empirical processes, based on Rademacher
complexities (see, e.g., Bartlett et al. [5], Bartlett and Mendelson [6]). We will use these bounds to obtain concentration
inequalities for multiclass generalized linear models. Although such arguments have become standard in the literature, we
present a proof that explicitly uses Theorem 4.2 in order to obtain a slightly more general result for unbounded classes.
None of the results or techniques here are new; rather, the purpose of this section is to keep the paper self-contained. We
begin with the following standard definition.

Definition A.1. The Rademacher complexity of a set A ⊂ Rm is the quantity

R A( ) � 1
m
Eε sup

a∈A
〈ε, a〉

[ ]
.

where the coordinates of ε ∈ Rm are i.i.d. Rademacher random variables. The Rademacher complexity of a set A ⊂ Rm is
the quantity

R A( ) � 1
m
Eε sup

a∈A
〈ε, a〉

[ ]
.

where the coordinates of ε ∈ Rm are i.i.d. Rademacher random variables.
Given a collection of functions G from Ω to R and a set S � {z1, . . . , zm} ⊂ Ω, we define

G ◦ S :� g z1( ), . . . , g zm( )( )
: g ∈ G

{ }
.

The following theorem shows that the Rademacher complexity directly controls uniform convergence of the sample
average approximation.

Theorem A 2. Consider a countable class G of measurable functions fromΩtoR and let S � {z1, . . . , zm} be an i.i.d. sample from P.Define
the random variable

Y � sup
g∈G

| g z( ) − g z′( )|,

for independent copies z, z′ ∼ P and let ε be a Rademacher random variable. Then for all t > 0, with probability

1 − 2 exp −mψ�
εY t( )( )

,

we have the following bound:

sup
g∈G

Ez g z( )[ ] − 1
m

∑m
i�1

g zi( )
⃒⃒⃒⃒
⃒

⃒⃒⃒⃒
⃒ ≤ 2ESR G ◦S( ) + t.

Proof. Define the two random variables X+ � supg∈G{Ez[g(z)] − 1
m
∑m

i�1 g(zi)} and X− � supg∈G{1m
∑m

i�1 g(zi) − Ez[g(z)]}. We
first bound the expectations of X+ and X−. Appealing to Shalev-Shwartz and Ben-David [] (lemma 26.2), we deduce
E[X+] ≤ 2ESR(G ◦S). Replacing G with −G and using Shalev-Shwartz and Ben-David [53] (lemma 26.2), we also learn
E[X−] ≤ 2ESR(−G ◦ S) � 2ESR(G ◦S). Next, a quick computation shows

|X+ z1, . . . , zm( ) − X+ z1, . . . , zi−1, z′i , zi+1, . . . , zm
( )| ≤ 1

m
sup
g∈G

g zi( ) − g z′i
( )⃒⃒ ⃒⃒ � 1

m
Y,

as well as the analogous inequality for X−. Thus, using Theorem 4.2, we conclude that with probability 1 − 2 exp(−mψ�
m−1εY(t/m)),

we have max{X+,X−} ≤ 2ESR(G ◦ S) + t. Noting the equality ψ�
m−1εY(t/m) � ψ�

εY(t) completes the proof. □
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The following theorem provides an upper bound on the Rademacher complexity of linear classes; see the original article
(Kakade et al. [26]) or the monograph (Shalev-Shwartz and Ben-David [53], lemma 26.10).

LemmaA.3 (Rademacher Complexity of Linear Classes). Consider the set A � {(〈w, z1〉, . . . , 〈w, zm〉) : ‖w‖ ≤ 1},where z1 . . . , zm are
arbitrary points. Then the estimate holds:

R A( ) ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅∑m

i�1 ‖zi‖2
m

√
.

The class of loss functions G considered will be formed from compositions of functions with linear classes. A useful
result for unraveling such compositions is the following vector-valued contraction inequality, recently proved by
Maurer [33].

Theorem A.4 (Contraction Inequality [Maurer [33], theorem 3]). Let X denote a countable set. For i � 1, . . . ,m, let Fi :S → R and
Gi :S → RK be functions satisfying

Fi s( ) − Fi u( ) ≤ ‖Gi s( ) − Gi u( )‖ for all s,u ∈ S.

Define the two sets

F ◦S � F1 s( ), . . . , Fm s( )( ) : s ∈ S{ } and G ◦S � Gk
i s( )( )

i,k: s ∈ S
{ }

,

where Gk
i (s) denotes the k’th coordinate of Gi(s). Then the estimate holds:

R F ◦S( ) ≤ ̅̅
2

√
K ·R G ◦S( ).

We are now ready to prove Theorem 5.2.
Proof of Theorem 5.2. We will apply Theorem A.2, to the function class

G � z �→ f x, z( ) | x ∈ X
{ }

.

We note that, due to the separability of Rd and the continuity of the integrands, any supremum over all x ∈ X may be
replaced by a supremum over a countable dense subset of X , without affecting its value. We ignore this technicality
throughout the proof.

As the first step in applying Theorem A.2, we compute

sup
x∈X

| f x, z( ) − f x, z′( )|

≤ | f x0, z( ) − f x0, z′( )| + L z( ) sup
x∈X

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

〈x − x0,φk z( )〉2
√

+ L z′( ) sup
x∈X

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

〈x − x0,φk z′( )〉2
√

≤ | f x0, z( ) − f x0, z′( )| + BL z( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

‖φk z( )‖2
√

+ BL z′( )
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑K
k�1

‖φk z′( )‖2
√

,

where the last inequality uses the bound ‖x − x0‖ ≤ B twice. Notice the right-hand side is precisely the random variable Y.
Next, we upper bound the expected Rademacher complexity ESR(G ◦S) by using Theorem A.4. To this end, fix a sample

set S � {z1, . . . , zm} and define

S � 〈x,φk zi( )〉( )
i,k: x ∈ X

{ }
.

For every index s ∈ S and i ∈ {1, . . . ,m}, set si :� (si1, . . . , siK) and define the functions Fi(s) � �(si, zi) and Gi(s) � L(zi)si. We
successively compute

R F ◦ S( ) � 1
m
sup
x∈X

∑m
i�1

σif x, zi( )

� 1
m
sup
x∈X

∑m
i�1

σil 〈x,φ1 zi( ), . . . , 〈x,φK zi( )〉( )
, zi

( )
� 1
m
sup
s∈S

∑m
i�1

σiFi s( ) � R F ◦S( ) ≤ ̅̅
2

√
K ·R G ◦S( ), (A.1)

where the last inequality follows from Theorem A.4.
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Next, unraveling notation, observe G ◦S � {(〈x, L(zi)φk(zi)〉)i,k : x ∈ X}. Moreover, shifting and shrinking X , it follows
directly from the definition of Rademacher complexity that R(G ◦S) � B ·R(A′) where we set A′ � {(〈x, L(zi)φk(zi)〉)i,k :
‖x‖ ≤ 1}. Thus, applying Lemma A.3, we deduce R(G ◦S) ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
i,k B

2L(zi)2‖φk(zi)‖2
√

mK . Combining this estimate with (A.1) and
taking expectations yields

ESR G ◦ S( ) ≤
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
∑

i,k B2Ezi L zi( )2‖φk zi( )‖2[ ]√
m

�
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2B2Kmaxk�1,...,K Ez L z( )2‖φk z( )‖2[ ]

m

√
.

Appealing to Theorem A.2 completes the proof. □

Endnotes
1Weakly convex functions also go by other names such as lower-C2, uniformly prox-regular, and semiconvex.
2The symbol ∂g usually refers to an “f -attentive closure” of the construction defined in (2.1). The closure, however, is superfluous for all functions
we consider here, and therefore the abuse of notation should cause no confusion.
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