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Abstract

Given disjoint subsets T1, . . . , Tm of “not too large” primes up to x , we establish that for
a random integer n drawn from [1, x], the m-dimensional vector enumerating the number of
prime factors of n from T1, . . . , Tm converges to a vector of m independent Poisson random
variables. We give a specific rate of convergence using the Kubilius model of prime factors.
We also show a universal upper bound of Poisson type when T1, . . . , Tm are unrestricted,
and apply this to the distribution of the number of prime factors from a set T conditional on
n having k total prime factors.

2020 Mathematics Subject Classification: 11N25

1. Introduction

A central theme in probabilistic number theory concerns the distribution of additive arith-
metic functions, in particular the functions ω(n) and �(n), which count the number of
distinct prime factors of n and the number of prime power factors of n, respectively. Taking
a uniformly random integer n ∈ [1, x] with x large, the functions ω(n) and �(n) behave like
Poisson random variables with parameter log log x . This was established by Sathe [16] and
Selberg [17] in 1954, while hints of this were already present in the inequalities of Landau
[13], Hardy and Ramanujan [10], Erdős [6], and Erdős and Kac [7]. We refer the reader to
Elliott’s notes [5, pp. 23–26] for an extensive discussion of the history of these results.

In this paper we address the distribution of the number of prime factors of n lying in an
arbitrary set T . Denote by Px the probabiliy with respect to a uniformly random integer n

drawn from [1, x]. Each such n has a unique prime factorisation

n =
∏

p�x

pvp ,

where the exponents vp are now random variables. For any finite set T of primes, let

ω(n, T ) = #{p|n : p ∈ T } = #{p ∈ T : vp > 0}, �(n, T ) =
∑

p∈T

vp.
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For a prime p, the event {p|n} occurs with probability close to 1/p, and thus heuristically

Px(ω(n, T ) = k) ≈
∑

p1,...,pk∈T
p1<···<pk

1

p1 · · · pk

∏

p∈T
p �∈{p1,...,pk }

(

1 −
1

p

)

≈ e−H(T ) H(T )k

k!
, (1.1)

where

H(T ) =
∑

p∈T

1

p
.

That is, we expect that ω(n, T ) will be close to Poisson with parameter H(T ). A more
complicated combinatorial heuristic also suggests that �(n, T ) is close to Poisson with
parameter H(T ). This was made rigorous by Halász [8] in 1971, who showed∗

Px(�(n, T ) = k) =
H(T )k

k!
e−H(T )

(

1 + Oδ

(

|k − H(T )|
H(T )

)

+ Oδ

(

1
√

H(T )

))

, (1.2)

uniformly in the range δH(T )� k � (2 − δ)H(T ), where δ > 0 is fixed. Small modifica-
tions to the proof yield an identical estimate for Px(ω(n, T ) = k); see [5, p. 301] for a sketch
of the argument. Inequality (1.2) implies the order of magnitude estimate

H(T )k

k!
e−H(T ) ≪ Px(�(n, T ) = k) ≪

H(T )k

k!
e−H(T )

when (1 − ε)H(T )� k � (2 − δ)H(T ) for sufficiently small ε > 0. The range of k in this
last bound was extended to δH(T )� k � (2 − δ)H(T ) by Sárkőzy [15] in 1977.

Inequality (1.2) implies that �(n, T ) converges to the Poisson distribution with parameter
H(T ) if T is a function of x such that H(T ) → ∞ as x → ∞. This is a natural condition,
as the following examples show. If T consists only of small primes, say those less than a
bounded quantity t , then ω(n, T ) takes only finitely many values and thus the distribution
cannot converge to Poisson as x → ∞. Although �(n, T ) is unbounded, the distribution
is very far from Poisson, e.g. Px(�(n, {2}) = k) ∼ 1/2k+1 for each k. Likewise, if c > 1 is
fixed and T is the set of primes in (x1/c, x], ω(n, T ) and �(n, T ) are each bounded by
c. Moreover, the distribution of the largest prime factors of an integer is governed by the
very different Poisson–Dirichlet distribution; see [19] for details. In each of these examples,
H(T ) is bounded. The condition H(T ) → ∞ ensures that neither small primes nor large
primes dominate T with respect to the harmonic measure.

An asymptotic for the joint local limit laws P(ω(n; T1) = k1, ω(n; T2) = k2) was proved
by Delange [4, section 6·5·3] in 1971, in the special case when T1 and T2 are infinite sets
with H(T j ∩ [1, x]) = λ j log log x + O(1) and λ1, λ2 constants. Halász’ result (1.2) was
extended by Tenenbaum [21] in 2017 to the joint distribution of ω(n; T j ) uniformly over
any disjoint sets T1, . . . , Tm of the primes � x . If P = Px(ω(n, Ti) = ki , 1 � i � m), then

∗As usual, the notation f = O(g), f ≪ g and g ≫ f means that there is a constant C so that | f |� g
throughout the domain of f . The constant C is indepenedent of any variable or parameter unless that
dependence is specified by a subscript, e.g. f = OA(g) means that C depends on A.
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P =
(

1 + O

( m
∑

j=1

1
√

H(T j )

))( m
∏

j=1

H(T j )
k j

k j !
e−k j

)

1

x

∑

n�x

m
∏

j=1

(k j/H(T j ))
ω(n;T j )

=
m

∏

j=1

H(T j )
k j

k j !
e−H(T j ) exp

(

O

( m
∑

j=1

|k j − H(T j )|
H(T j )

+
1

√

H(T j )

))

,

(1.3)

uniformly in the range c1 � k j/H(T j )� c2 (1 � j � m), for any fixed c1, c2 satisfying
0 < c1 < c2; see [21], equation (2·23) and the following paragraph. The methods in [21]
establish the same bound for Px(�(n, Ti) = mi , 1 � i � k), but with the restriction c1 �

k j/H(T j )� 2 − c1, 1 � j � m, again with fixed c1 > 0. An asymptotic for the sum on n

in (1.3) is not known in general. A slight extension of Tenenbaum’s asymptotic (1.3) was
given by Mangerel [14, theorem 1·5·3], who showed a corresponding asymptotic in the case
where some of the quantities k j are smaller (specifically, H(T j )

2/3+ε < k j � H(T j )).
In the literature on the subject, ω(n, T ) and �(n, T ) have always been compared to a

Poisson variable with parameter H(T ). As we shall see, the functions �(n, T ) are better
approximated by a Poisson variable with parameter

H ′(T ) =
∑

p∈T

1

p − 1
,

at least when T does not contain any large primes. In order to state our results, we introduce
a further harmonic sum

H ′′(T ) =
∑

p∈T

1

p2
.

We note for future reference that

H(T )� H ′(T )� H(T ) + 2H ′′(T ).

We also use the notion of the total variation distance dT V (X, Y ) between two random
variables living on the same discrete space �:

dT V (X, Y ) := sup
A⊂�

∣

∣P(X ∈ A) − P(Y ∈ A)
∣

∣.

We denote by Pois(λ) a Poisson random variable with parameter λ, and write Z
d= Pois(λ)

for the statement that Z is a Poisson random variable with parameter λ.

THEOREM 1. Let 2 � y � x and suppose that T1, . . . , Tm are disjoint nonempty sets

of primes in [2, y]. For each 1 � i � m, suppose that either fi = ω(n, Ti) and Z i
d=

Pois(H(Ti)) or that fi = �(n, Ti) and Z i
d= Pois(H ′(Ti)). Assume that Z1, . . . , Zm are

independent. Then

dT V

(

( f1, . . . , fm), (Z1, . . . , Zm)
)

≪
m

∑

j=1

H ′′(T j )

1 + H(T j )
+ u−u, u =

log x

log y
.

The implied constant is absolute, independent of m, y, x and T1, . . . , Tm . In particu-
lar, if m is fixed then this shows that the joint distribution of ( f1, . . . , fm) converges to a
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joint Poisson distribution whenever we have y = xo(1) and for each i , either H(Ti) → ∞ or
min Ti → ∞.

By contrast, Tenenbaum’s bound (1.3) implies

dT V

(

(ω(n, T1), . . . , ω(n, Tm)), (Z1, . . . , Zm)
)

≪m

m
∑

j=1

1
√

H(T j )
. (1.4)

Compared to Theorem 1, we see that (1.4) gives good results even if the sets Ti contain many
large primes, while Theorem 1 requires that y � xo(1) in order to be nontrivial. However, if
y � x1/ log log log x , say, the conclusion of Theorem 1 is stronger, especially when H ′′(T ) is
small. An extreme case is given by singleton set T = {p} and f1 = �(n, T ), where Theorem
1 recovers the correct order of dT V ( f1, Z1), namely 1/p2, since Px(p‖n) ≈ 1/p − 1/p2,
Px(p2‖n) ≈ 1/p2 − 1/p3, and P(Z1 = 2) ≈ 1/(2p2) for large p.

Example. Let S be the set of all primes, tk = exp exp k and ωk(n) := ω(n, S ∩ (tk, tk+1]).
Here, by the Prime Number Theorem with strong error term,

H(S ∩ (tk, tk+1]) = 1 + O(exp{−ek/2}).

Thus, ωk has distribution close to that of a Poisson variable with parameter 1. More precisely,
if X, Y are Poisson with parameters λ, λ′, respectively, then (e.g. [2, theorem 1·C, remark
1·1·2])

dT V (X, Y )� |λ − λ′|.

Using a standard inequality for dT V ((3.5) below), we deduce the following.

COROLLARY 2. If ξ � k < ℓ� log log x − ξ , then

dT V

(

(ωk, . . . , ωℓ), (Z ′
k, . . . , Z ′

ℓ)
)

≪ exp{−eξ/2}, (1.5)

where Z ′
k, . . . , Z ′

ℓ are independent Poisson variables with parameter 1.

Thus, statistics of the random function f (t) = ω(n, S ∩ [tk, t]), tk � t � tℓ, are captured
very accurately by statistics of the partial sums Z ′

k + · · · + Z ′
m for k � m � ℓ. The latter has

been well-studied and one can easily deduce, for example, the Law of the Iterated Logarithm
for f (t) from that for the partial sums Z ′

k + · · · + Z ′
ℓ. Similarly, if T is a set of primes with

density α > 0 in the sense that

∑

p�x,p∈T

1

p
= α log log x + c + o(1) (x → ∞)

then a statement similar to (1.5) holds with tk replaced by t ′
k = exp exp(k/α), with a weaker

estimate for the total variation distance (depending on the decay of the o(1) term).
We now establish the upper-bound implied in (1.3), but valid uniformly for all k1, . . . , km .
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THEOREM 3. Let T1, . . . , Tr be arbitrary disjoint, nonempty subsets of the primes � x.

For any k1, . . . , kr � 0, letting P = Px

(

ω(n; T j ) = k j (1 � j � r)
)

, we have

P ≪
r

∏

j=1

(

H ′(T j )
k j

k j !
e−H(T j )

) (

η +
k1

H ′(T1)
+ · · · +

kr

H ′(Tr )

)

+ ξ

�

r
∏

j=1

(

(H(T j) + 2)k j

k j !
e−H(T j )

)

,

where η = 0 if T1 ∪ · · · ∪ Tr contains every prime � x and η = 1 otherwise, and ξ = 1 if

η = k1 = · · · = kr = 0 and ξ = 0 otherwise.

Remarks. Tudesq [22] claimed a bound similar to Theorem 3, but only supplied details for
r = 1. Our method is similar, and we give a short, complete proof in Section 4.

If we condition on ω(n) = k, the r = 2 case of Theorem 3 supplies tail bounds for ω(n, T ).
If X, Y are independent Poisson random variables with parameters λ1, λ2, respectively, then
for 0 � ℓ� k, we have

P(X = ℓ|X + Y = k) =
(

k

l

) (

λ1

λ1 + λ2

)ℓ (

λ2

λ1 + λ2

)k−ℓ

.

Thus, conditional on ω(n) = k we expect that ω(n, T ) will have roughly a binomial
distribution with parameter α = H(T )/H(S), where S is the set of all primes in [2, x].

THEOREM 4. Fix A > 1 and suppose that 1 � k � A log log x. Let T be a nonempty

subset of the primes in [2, x] and define let α = H(T )/H(S). For any 0 �ψ �
√

αk we

have

P

(

|ω(n, T ) − αk|�ψ
√

α(1 − α)k

∣

∣

∣
ω(n) = k

)

≪A e− 1
3 ψ2

,

the implied constant depending only on A.

Similarly, if T1, . . . , Tm are disjoint subsets of primes � x and we condition on ω(n) = k,
then the vector (ω(n, T1), . . . , ω(n, Tm)) will have approximately a multinomial distribu-
tion.

2. The Kubilius model of small prime factors of integers

Our restriction to primes below xo(1) comes from an application of a probabilistic model
of prime factors, called the Kubilius model, and introduced by Kubilius [11, 12] in 1956.
We compute

Px(vp = k) =
1

⌊x⌋

(⌊

x

pk

⌋

−
⌊

x

pk+1

⌋)

=
1

pk
−

1

pk+1
+ O

(

1

x

)

,

the error term being relatively small when pk is small. Moreover, the variables vp are quasi-
independent; that is, the correlations are small, again provided that the primes are small. By
contrast, the variables vp corresponding to large p are very much dependent, for example
the event (vp > 0, vq > 0) is impossible if pq > x .

The model of Kubilius is a sequence of idealised random variables which removes the
error term above, and is much easier to compute with. For each prime p, define the random
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variable X p that has domain N0 = {0, 1, 2, 3, 4, . . .} and such that

P(X p = k) =
1

pk
−

1

pk+1
=

1

pk

(

1 −
1

p

)

(k = 0, 1, 2, . . .).

The principal result, first proved by Kubilius and later sharpened by others, is that the
random vector

Xy = (X p : p � y)

has distribution close to that of the random vector

Vx,y = (vp : p � y),

provided that y = xo(1).
In [18], Tenenbaum gives a rather complicated asymptotic for dT V (Xy, Vx,y) in the range

exp{(log x)2/5+ε}� y � x , as well as a simpler universal upper bound which we state here.

LEMMA 2·1 (Tenenbaum [18, théorème 1·1 and (1·7)]). Let 2 � y � x. Then, for every

ε > 0,

dT V (Xy, Vx,y) ≪ε u−u + x−1+ε, u =
log x

log y
.

3. Poisson approximation of prime factors

For a finite set T of primes, denote

UT = #{p ∈ T : X p � 1}, WT =
∑

p∈T

X p,

which are probabilistic models for ω(n, T ) and �(n, T ), respectively. For any T which is a
subset of the primes � y = x1/u , Lemma 2·1 implies that for any ε > 0,

dT V (UT , ω(n, T )) ≪ε u−u + x−1+ε,

dT V (WT , �(n, T )) ≪ε u−u + x−1+ε.
(3.1)

We next prove a local limit theorem for UT and WT , and then use this to establish
Theorem 1.

THEOREM 5. Let T be a finite subset of the primes, and let Y = UT or Y = WT . Let

H = H(T ) if Y = UT and H = H ′(T ) if Y = WT . Also let Z
d= Pois(H). Then

P (Y = k) − P(Z = k) ≪















H ′′(T )
H k

k!
e−H

(

1

k + 1
+

k − H

H

2)

if 0 � k � 1.9H

H ′′(T )
e0.9H

(1.9)k
if k > 1.9H.

Proof. Write H ′′ = H ′′(T ). When k = 0, P(Z = 0) = e−H and

P(Y = 0) = P(∀p ∈ T : X p = 0) =
∏

p∈T

(

1 −
1

p

)

= e−H (1 + O(H ′′)),

and the desired inequality follows.
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For k � 1, we work with moment generating functions as in the proof of Halász’ theorem
(1.2); see also [5, chapter 21]. For any complex z,

E zZ = e(z−1)H .

Uniformly for complex z with |z|� 2 we have

E zUT =
∏

p∈T

(

1 +
z − 1

p

)

= e(z−1)H(T )
(

1 + O
(

|z − 1|2 H ′′(T )
)

)

(3.2)

and uniformly for |z|� 1.9 we have

E zWT =
∏

p∈T

(

1 +
z − 1

p − z

)

= e(z−1)H ′(T )
(

1 + O(|z − 1|2 H ′′(T ))
)

. (3.3)

Write e(θ) = e2π iθ . Then, for any 0 < r � 1.9, (3.2) and (3.3) imply

P(Y = k) − P(Z = k) =
1

2π i

∮

|z|=r

E zY −E zZ

zk+1
dw

=
1

r k

∫ 1

0
e(−kθ)

[

E (re(θ))Y −E (re(θ))Z
]

dθ

=
1

r k

∫ 1

0
e(−kθ)e(re(θ)−1)H · O

(

|re(θ) − 1|2 H ′′) dθ

≪
H ′′

r k

∫ 1/2

0
|re(θ) − 1|2e(r cos(2πθ)−1)H dθ.

Now, for 0 � θ � 1/2,

r cos(2πθ) − 1 = r − 1 − 2r sin2(πθ)� r − 1 − 8rθ2

and

|re(θ) − 1|2 = (r − 1 − 2r sin2(πθ))2 + sin2(2πθ) ≪ (r − 1)2 + θ2,

so we obtain

P(Y = k) − P(Z = k) ≪ H ′′ e
(r−1)H

r k

∫ 1/2

0
(|r − 1|2 + θ2)e−8rθ2 H dθ

≪ H ′′ e
(r−1)H

r k

(

|r − 1|2
√

1 + r H
+

1

(1 + r H)3/2

)

.

(3.4)

When 1 � k � 1.9H , we take r = k/H in (3.4) and obtain, using Stirling’s formula,

P(Y = k) − P(Z = k) ≪ H ′′ H kek−H

kk

(

|k/H − 1|2

k1/2
+

1

k3/2

)

≪ H ′′ e
−H H k

k!

(

∣

∣

∣

∣

k − H

H

∣

∣

∣

∣

2

+
1

k

)

.
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When k > 1.9H , take r = 1.9 in (3.4) and conclude that

P(Y = k) − P(Z = k) ≪
H ′′e0.9H

(1.9)k
√

1 + H
.

This completes the proof.

COROLLARY 6. Let T be a finite subset of the primes. Then

dT V (UT , Pois(H(T ))) ≪
H ′′(T )

1 + H(T )

and

dT V (WT , Pois(H ′(T ))) ≪
H ′′(T )

1 + H(T )
,

Proof. Let Y ∈ {UT , WT }. If Y = UT , let H = H(T ) and if Y = WT , let H = H ′(T ). Let

Z
d= Pois(H). Again, write H ′′ = H ′′(T ). We begin with the identity

dT V (Y, Z) =
1

2

∞
∑

k=0

∣

∣P(YT = k) − P(Z(T ) = k)
∣

∣.

Consider two cases. First, if H � 2, we have by Theorem 5,
∑

k�0

|P(Y = k) − P(Z = k)| ≪ H ′′ +
∑

k>1.9H

H ′′(1.9)−k ≪ H ′′.

If H > 2, Theorem 5 likewise implies that

∑

k>1.9H

|P(Y = k) − P(Z = k)| ≪ H ′′
∑

k>1.9H

e0.9H

(1.9)k
≪ H ′′e−0.3H

and also

∑

k�1.9H

|P(Y = k) − P(Z = k)| ≪ H ′′e−H
∑

k�1.9H

H k

k!

[

1

k + 1
+

∣

∣

∣

∣

k − H1

H

∣

∣

∣

∣

2]

≪
H ′′

H
≪

H ′′

H(T )
,

using that e−H H k/k! decays rapidly for |k − H | >
√

H .

We now combine Theorem 5 with the standard inequality

dT V ((X1, . . . , Xm), (Y1, . . . , Ym))�

m
∑

j=1

dT V (X j , Y j ), (3.5)

valid if X1, . . . , Xm are independent, and Y1, . . . , Ym are independent, with all variables
living on the same set �.

COROLLARY 7. Let T1, . . . , Tm be disjoint sets of primes. For each i , either let Yi = UTi

and Hi = H(Ti) or let Yi = WTi
and Hi = H ′(Ti). For each i , let Z i

d= Pois(Hi), and suppose
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that Z1, . . . , Zm are independent. Then

dT V

(

(Y1, . . . , Ym), (Z1, . . . , Zm)
)

≪
m

∑

j=1

H ′′(T j )

1 + H(T j )
.

Combining Corollary 7 with (3.1) and the triangle inequality, we see that

dT V

(

( f1, . . . , fm), (Z1, . . . , Zm)
)

≪
m

∑

j=1

H ′′(T j )

1 + H(T j )
+ u−u + x−0.99.

We may remove the term x−0.99, because if y � x1/3 then H ′′(Ti) ≫ x−2/3 and H(Ti) ≪
log log x , while if y > x1/3 then u−u ≫ 1. This completes the proof of Theorem 1.

4. A uniform upper bound

In this section we prove Theorem 3 and Theorem 4.

Proof of Theorem 3. Let

N = #{n � x : ω(n; T j ) = k j (1 � j � r)}.

If η = 0 (that is, T1 ∪ · · · ∪ Tr contains all the primes � x) and k1 = · · · = kr = 0, then N = 1;
this explains the need for the additive term ξ in Theorem 3.

Now assume that either η = 1 or that ki � 1 for some i . Let

L t(x) =
∑

h�x
ω(h;T j )=k j −1 j=t (1� j�r)

1

h
(0 � t � r),

where 1A is the indicator function of the condition A. We use the “Wirsing trick”, starting
with log x ≪ log n =

∑

pa‖n log pa for x1/3 � n � x and thus

(log x)N ≪
∑

n�x1/3

ω(n;T j )=k j (1� j�r)

log x +
∑

n�x
ω(n;T j )=k j (1� j�r)

∑

pa‖n

log pa.

In the first sum, log x � x1/3 log x/n ≪ x1/2/n, hence the sum is at most � x1/2 L0(x). In
the double sum, let n = pah and observe that ω(h, T j ) = k j − 1 if p ∈ T j and ω(h, T j ) = k j

otherwise. In particular, if p �∈ T1 ∪ · · · ∪ Tr then ω(h, T j ) = k j for all j , and this is only
possible if η = 1. Hence

(log x)N ≪ x1/2 L0(x) +
r

∑

t=1−η

∑

h�x
ω(h;T j )=k j −1 j=t (1� j�r)

∑

pa�x/h

log pa.

Using Chebyshev’s estimate for primes, the innermost sum over pa is O(x/h) and thus the
double sum over h, pa is O(L t(x)). Also, if k j = 0 then there is the sum corresponding to
t = j is empty. This gives

Px

(

ω(n; T j ) = k j (1 � j � r)
)

≪
1

log x

(

(η + x−1/2)L0(x) +
∑

1�t�r :kt >0

L t(x)

)

. (4.1)
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Now we fix t and bound the sum L t(x); if t � 1 we may assume that kt � 1. Write the
denominator h = h1 · · · hr h′, where, for 1 � j � r , h j is composed only of primes from T j ,

ω(h j ; T j ) = m j := k j − 1t= j ,

and h′ is composed of primes below x which lie in none of the sets T1, . . . , Tr . For 1 � j � r

we have

∑

h j

1

h j

�
1

m j !

(

∑

p∈T j

1

p
+

1

p2
+ · · ·

)m j

=
H ′(T j )

m j

m j !
,

and, using Mertens’ estimate,

∑

h′

1

h′ �
∏

p�x
p �∈T1∪···∪Tr

(

1 −
1

p

)−1

≪ (log x)
∏

p∈T1∪···∪Tr

(

1 −
1

p

)

.

Thus,

L t(x) ≪ (log x)

r
∏

j=1

H ′(T j )
m j

m j !
∏

p∈T1∪···∪Tr

(

1 −
1

p

)

.

Using the elementary inequality 1 + y � ey , we see that the final product over p is at most
e−H(T1)−···−H(Tr ), and we find that

L t(x) ≪ (log x)

r
∏

j=1

(

H ′(T j )
m j

m j !
e−H(T j )

)

(4.2)

Combining estimates (4.1) and (4.2), we conclude that

Px

(

ω(n; T j ) = k j (1 � j � r)
)

≪
(

η + x−1/2 +
r

∑

j=1

k j

H ′(T j )

) r
∏

j=1

(

H ′(T j )
k j

k j !
e−H(T j )

)

.

Either η = 1 or k j/H ′(T j ) ≫ 1/ log log x for some j , and hence the additive term x−1/2 may
be omitted. This proves the first claim.

Next,

r
∏

j=1

H ′(T j )
k j

k j !

(

1 +
r

∑

j=1

k j

H ′(T j )

)

�

r
∏

j=1

(H ′(T j ) + 1)k j

k j !

and we have H ′(T )� H(T ) +
∑

p 1/p(p − 1)� H(T ) + 1. This proves the final inequal-
ity.

To prove Theorem 4 we need standard tail bounds for the binomial distribution. For
proofs, see [1, lemma 4·7·2] or [3, theorem 6·1].

LEMMA 4·1 (Binomial tails). Let X have binomial distribution according to k trials and

parameter α ∈ [0, 1]; that is, P(X = m) =
(

k

m

)

αm(1 − α)k−m . If β � α then we have

P(X � βk)� exp

{

−k

(

β log
β

α
+ (1 − β) log

1 − β

1 − α

)}

� exp

{

−
(α − β)2k

3α(1 − α)

}

.
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Replacing α with 1 − α we also have for β � α,

P(X � βk)� exp

{

−
(α − β)2k

3α(1 − α)

}

.

Proof of Theorem 4. We may assume that αk � C , where C is a sufficiently large constant,
depending on A. Without loss of generality, we may assume that H(T )� H(S)/2 (that is ,
α � 1/2), else replace T by S \ T . Apply Theorem 3 with two sets: T1 = T and T2 = S \ T ,
so that η = ξ = 0. We need the lower bound

Px(ω(n) = k) ≫A

(log log x)k−1

(k − 1)! log x
=

k

log log x
·

(log log x)k

k! log x

see, e.g. [20, Theorem 6·4 in Chapter II·6]. Also,
(

k − h

H ′(S \ T )
+

h

H ′(T )

)

log log x

k
≪ 1 +

h

αk
.

Since H ′(S \ T )� H(S \ T ) + 1, we have

H ′(S \ T )k−h ≪ H(S \ T )k−h.

In addition,

H ′(T )h
� (H(T ) + 1)h

� H(T )heh/H(T )
� H(T )heOA(h/(αk)).

Then, for 0 � h � k, Theorem 3 implies

P

(

ω(n, T ) = h
∣

∣ω(n) = k
)

≪A αh(1 − α)k−h

(

k

h

)

eOA(h/(αk)).

Ignoring the factor (1 − α)k−h , we see that the terms with h � 100αk contribute at most

∑

h�100αk

(αkeOA(1/(αk)))h

h!
�

∑

h�100αk

(2αk)h

h!
� e−100αk

� e−100ψ2

for large enough C . When h < 100αk we have

P

(

ω(n, T ) = h
∣

∣ω(n) = k
)

≪A αh(1 − α)k−h

(

k

h

)

,

and the theorem now follows from Lemma 4·1, taking β = α ± ψ
√

α(1 − α)/k.
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