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A B S T R A C T

A Wiener path integral (WPI) technique is developed for determining the stochastic response of multi-degree-
of-freedom (MDOF) nonlinear systems. Specifically, the nonlinear system response joint transition probability
density function (PDF) is expressed as a WPI over the space of paths satisfying the initial and final conditions in
time. Next, a functional series expansion is considered for the WPI and a quadratic approximation is employed.
Further, relying on a variational principle yields a functional optimization problem to be solved for the most
probable path, which is used for determining approximately the joint response transition PDF. It is shown that
compared to the standard (semiclassical) WPI solution approach, which accounts only for the most probable
path, the quadratic approximation developed herein exhibits enhanced accuracy. This is due to the fact that
fluctuations around the most probable path are also accounted for by considering a localized state-dependent
factor in the calculation of the WPI. Furthermore, the PDF normalization step of the most probable path
approach is bypassed, and thus, probabilities of rare events (e.g., failures) can be determined in a direct
manner without the need for obtaining the complete joint response PDF first. The herein developed technique
can be construed as an extension of earlier efforts in the literature to account for MDOF systems. Several
numerical examples are considered for demonstrating the accuracy of the technique. These pertain to various
dynamical systems exhibiting diverse nonlinear behaviors. Comparisons with pertinent Monte Carlo simulation
data are included as well.

1. Introduction

Irrespective of the scale of the problem, persistent challenges in the
field of stochastic engineering dynamics exist. Indicatively, these per-
tain to high dimensionality, complex nonlinear/hysteretic behaviors, as
well as to non-white and non-Gaussian stochastic excitation modeling.
In this regard, the state-of-the-art solution techniques for determining
system response and reliability statistics can be broadly divided into
two categories; see also [1–3] for a broad perspective.

First, there are techniques that exhibit a high degree of accuracy,
but the associated computational cost becomes prohibitive with in-
creasing number of stochastic dimensions. For example, numerical
schemes have been developed over the past three decades that rely on
a discrete form of the Chapman–Kolmogorov equation for propagating
the system response probability density function (PDF) in short time
steps (e.g., [4–7]). However, although they exhibit excellent accuracy
in predicting even the tails of the system response PDF, their perfor-
mance is hindered eventually by excessive computational cost with
increasing dimensionality (e.g., [8]). This is due to the fact that a multi-
convolution integral needs to be computed for each and every time step,

∗ Corresponding author.
E-mail address: ikougioum@columbia.edu (I.A. Kougioumtzoglou).

while the requisite time increment must remain short; see also [9] for
a recent review paper.

Second, there are techniques that can readily treat high-dimensional
systems, but provide reliable estimates for low-order response statistics
only. Indicatively, statistical linearization has been one of the most
versatile and popular approximate approaches for determining the
stochastic response of nonlinear systems in a computationally efficient
manner (e.g., [1,10]). Nevertheless, primarily due to the Gaussian
response assumption, the standard approach is generally restricted to
the determination of first- and second-order response statistics only;
see also [11,12] for some recent extensions referring to joint time–
frequency analysis and to systems with singular parameter matrices,
respectively.

Clearly, the development of versatile solution techniques that ex-
hibit both high accuracy and low computational cost is critical for ad-
dressing the aforementioned challenges, and for advancing the field of
stochastic engineering dynamics further. One of the promising solution
techniques, recently pioneered in the field of engineering mechanics
by Kougioumtzoglou and co-workers (e.g., [13–15]), relates to the
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concept of a path integral that was originally developed by Norbert
Wiener [16]; see also [17] for an indicative standard book referring to
theoretical physics applications.

According to the Wiener path integral (WPI) technique (e.g., [18]),
the system response joint transition PDF is expressed as a functional
integral over the space of all possible paths satisfying the initial and
final conditions in time. Next, since this functional integral is rarely
amenable to analytical evaluation, an approximate calculation is re-
quired. This has been pursued by employing a functional integral series
expansion and by considering the contribution only of the first term
pertaining to the path with the maximum probability of occurrence.
This is referred to in the literature as the most probable path and
corresponds to an extremum of the functional integrand. In this regard,
the most probable path is determined by solving a functional minimiza-
tion problem that takes the form of a deterministic boundary value
problem (BVP) [19], and is used for determining approximately the
system response joint transition PDF. Note that the WPI technique is
capable of handling complex stochastic excitation modeling and sys-
tems with diverse nonlinear/hysteretic behaviors [18,20–22]. Further,
high-dimensional systems can be readily treated by relying on a varia-
tional formulation with mixed fixed/free boundary conditions, which
renders the computational cost independent of the total number of
stochastic dimensions [23]. Furthermore, it was shown in [24] that the
associated computational cost can be reduced drastically by employing
sparse representations for the system response PDF in conjunction with
compressive sampling schemes and group sparsity concepts [25].

In this paper, the accuracy degree exhibited by the WPI technique
is enhanced by considering higher order terms in the functional se-
ries expansion. Specifically, fluctuations around the most probable
path are also accounted for by employing a quadratic WPI approx-
imation. Compared to the standard most probable path approach,
this novel solution treatment introduces a localized state-dependent
factor in the approximate evaluation of the system response joint
transition PDF. Thus, the nonlinear system stochastic response is de-
termined more accurately. Further, the aforementioned localization
capability renders the technique particularly suitable for structural
reliability assessment applications, where estimating probabilities of
failure events is associated with determining only specific portions of
the response PDF, such as the tails. The herein developed technique
can be construed as an extension of the results in [26] to account for
multi-degree-of-freedom (MDOF) systems. Several numerical examples
are considered for demonstrating the accuracy of the technique. These
pertain to various dynamical systems exhibiting diverse nonlinear be-
haviors. Comparisons with pertinent Monte Carlo simulation data are
included as well.

2. Preliminaries

2.1. Wiener path integral formulation

In this section, the main aspects of the WPI formalism in conjunction
with a stochastically excited MDOF nonlinear system are presented for
completeness. The interested reader is also directed to [23,27] for more
details. Next, consider an 𝑚-DOF nonlinear oscillator whose dynamics
is governed by

𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�) = 𝒘(𝑡) (1)

where 𝒙 is the displacement vector process (𝒙 = [𝑥1,… , 𝑥𝑚]
𝑇 ); 𝑴 ,

𝑪 , 𝑲 correspond to the 𝑚 × 𝑚 mass, damping and stiffness matrices,
respectively; 𝒈(𝒙, �̇�) denotes an arbitrary nonlinear vector function; and
𝒘(𝑡) is a white noise stochastic vector process with E[𝒘(𝑡𝑙)] = 𝟎 and
E[𝒘(𝑡𝑙)𝒘

𝑇 (𝑡𝑙 − 𝑡𝑙+1)] = 𝑺𝒘𝛿(𝑡𝑙 − 𝑡𝑙+1), where 𝑺𝒘 ∈ R𝑚×𝑚 is an arbitrary,
non-singular, symmetric coefficient matrix, and 𝑡𝑙, 𝑡𝑙+1 are two arbitrary
time instants.

Further, Eq. (1) can be expressed in the state-variable form

�̇� = 𝑨(𝜶, 𝑡) + 𝑩(𝜶, 𝑡)𝜼(𝑡) (2)

by setting

𝜶 =

[
𝒙

�̇�

]
=

[
𝒙

𝒗

]
=

[
𝜶1

𝜶2

]
(3)

𝑨(𝜶, 𝑡) =

[
𝒗

𝑴−1 (−𝑪𝒗 −𝑲𝒙 − 𝒈(𝒙, 𝒗))

]
=

[
𝑨1

𝑨2

]
(4)

and

𝑩(𝜶, 𝑡) =

[
𝟎𝑚×𝑚 𝟎𝑚×𝑚

𝟎𝑚×𝑚 𝑴−1
√
𝑺𝒘

]
(5)

In Eq. (2), 𝜼 denotes a zero-mean and delta-correlated process of inten-
sity one (e.g., [28]), and in Eq. (5) the square root of matrix 𝑺𝒘 is given

by
√
𝑺𝒘

√
𝑺𝒘

𝑇
= 𝑺𝒘. Clearly, the 𝑚-dimensional second-order stochas-

tic differential equation (SDE) of Eq. (1) becomes a 2𝑚-dimensional
first-order SDE in Eq. (2) for the process 𝜶 = [𝒙, �̇�]𝑇 = [𝜶1,𝜶2]

𝑇 .
Furthermore, the singularity of matrices 𝑩 and �̃� = 𝑩𝑩𝑇 can be
bypassed by introducing an auxiliary variable 𝛽 → 0, and expressing
𝑩 as

𝑩 =

[√
𝛽𝑰𝑚×𝑚 𝟎𝑚×𝑚

𝟎𝑚×𝑚 𝑴−1
√
𝑺𝒘

]
(6)

This yields

�̃� =

[
𝛽𝑰𝑚×𝑚 𝟎𝑚×𝑚

𝟎𝑚×𝑚 �̂�

]
(7)

where 𝑰𝑚×𝑚 denotes the 𝑚 × 𝑚 identity matrix and the sub-matrix �̂� is
equal to

�̂� = 𝑴−1𝑺𝒘

[
𝑴𝑇

]−1
(8)

Note that the determinant and inverse of �̃� are given, respectively, by

det �̃� = 𝛽𝑚 det �̂�, �̃�
−1

=

[
1

𝛽
𝑰𝑚×𝑚 𝟎𝑚×𝑚

𝟎𝑚×𝑚 �̂�
−1

]
(9)

Next, as 𝜖 = 𝑡𝑙+1 − 𝑡𝑙 → 0, the transition PDF related to the SDE of
Eq. (2) has been shown to admit a Gaussian distribution of the form

𝑝(𝜶𝑙+1, 𝑡𝑙+1|𝜶𝑙 , 𝑡𝑙) =

[√
(2𝜋𝜖)2𝑚 det

[
�̃�(𝜶𝑙 , 𝑡𝑙)

]]−1

× exp

⎛⎜⎜⎜⎝
−
1

2

[𝜶𝑙+1 − 𝜶𝑙 − 𝜖𝑨(𝜶𝑙 , 𝑡𝑙)]
𝑇
[
�̃�(𝜶𝑙 , 𝑡𝑙)

]−1
[𝜶𝑙+1 − 𝜶𝑙 − 𝜖𝑨(𝜶𝑙 , 𝑡𝑙)]

𝜖

⎞⎟⎟⎟⎠
(10)

In passing, it is remarked that the choice of Eq. (10) as a candidate for
the short-time transition PDF is not restrictive, and other alternative
non-Gaussian forms can be used (e.g., [29,30]). Substituting Eq. (9) into
Eq. (10), and denoting 𝑨2(𝜶𝑙 , 𝑡𝑙) as 𝑨2𝑙 for simplicity, the short-time
transition PDF becomes

𝑝
(
𝜶𝑙+1, 𝑡𝑙+1|𝜶𝑙 , 𝑡𝑙

)
= lim

𝜖→0
𝛽→0

{
1√

(2𝜋𝜖𝛽)𝑚
exp

(
−

1

2𝛽

[
𝒗𝑙 − �̇�𝑙

]𝑇 [
𝒗𝑙 − �̇�𝑙

]
𝜖

)

×
1√

(2𝜋𝜖)𝑚 det �̂�

exp
(
−
1

2

[
�̇�𝑙 −𝑨2𝑙

]𝑇
�̂�

−1 [
�̇�𝑙 −𝑨2𝑙

]
𝜖
)⎫⎪⎬⎪⎭

(11)

where 𝒗𝑙 = (𝒙𝑙+1 − 𝒙𝑙)∕𝜖, �̇�𝑙 = (�̇�𝑙+1 − �̇�𝑙)∕𝜖, and
[
𝒗𝑙 − �̇�𝑙

]𝑇 [
𝒗𝑙 − �̇�𝑙

]
=∑𝑚

𝑗=1(𝑣𝑗𝑙 − �̇�𝑗𝑙)
2.

Further, consider the probability of the process 𝜶 propagating
through some infinitesimally thin tube surrounding a path 𝜶(𝑡), ∀ 𝑡 ∈

[𝑡𝑖, 𝑡𝑓 ], with fixed initial and final states {𝑡𝑖,𝜶𝑖} and {𝑡𝑓 ,𝜶𝑓 }, respec-
tively. This can be construed as the probability of the compound event
that the path 𝜶(𝑡) successively passes through ‘‘gates’’ corresponding
to specific time instants; see also [17]. Next, relying on the Markov
properties of 𝜶(𝑡), the probability of the compound event is expressed,
equivalently, as the product of the probabilities corresponding to the

2
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independent events. Note that the independent events are described by
Eq. (11), and thus, the product of the probabilities takes the form

P [𝜶(𝑡)] = lim
𝜖→0
𝛽→0

{[
𝐿∏
𝑙=0

𝑚∏
𝑗=1

1√
2𝜋𝛽𝜖

exp

(
1

2𝛽
(𝑣𝑗𝑙 − �̇�𝑗𝑙)

2𝜖

)]

×

[
𝐿∏
𝑙=1

2𝑚∏
𝑗=1

d𝛼𝑗𝑙

]

×

⎡
⎢⎢⎢⎣

𝐿∏
𝑙=0

1√
(2𝜋𝜖)𝑚 det �̂�

exp
(
−
1

2

[
�̇�𝑙 −𝑨2𝑙

]𝑇
�̂�

−1 [
�̇�𝑙 −𝑨2𝑙

]
𝜖
)⎤⎥⎥⎥⎦

⎫
⎪⎬⎪⎭
(12)

In Eq. (12), the time domain is discretized into 𝐿 + 2 points, 𝜖 apart
(with 𝐿 → ∞ as 𝜖 → 0), i.e.,

𝑡𝑖 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐿+1 = 𝑡𝑓 (13)

and the path 𝜶(𝑡) is represented by its values 𝜶𝑙 at the discrete time
points 𝑡𝑙, for 𝑙 ∈ {0,… , 𝐿+1}. Also, d𝛼𝑗𝑙 denote the (infinite in number)
infinitesimal gates through which the path propagates. Note that the
number of probabilities multiplied in Eq. (12) is equal to 𝐿+1, whereas
the number of gates is 𝐿, since the final point 𝜶𝑓 is fixed.

Next, it is rather intuitive to argue that the respective probabilities
of each and every path need to be accounted for, and loosely speaking,
‘‘summed up’’ to evaluate the total probability of the process 𝜶 starting
from 𝜶𝑖 at time 𝑡𝑖 and ending up at 𝜶𝑓 at time 𝑡𝑓 (e.g., [17]). In this
regard, by utilizing Eq. (12), the joint transition PDF is expressed in the
form

𝑝
(
𝜶𝑓 , 𝑡𝑓 |𝜶𝑖, 𝑡𝑖

)
= lim

𝜖→0
𝛽→0

∫
∞

−∞

⋯∫
∞

−∞

{[
𝐿∏
𝑙=0

𝑚∏
𝑗=1

1√
2𝜋𝛽𝜖

exp

(
1

2𝛽
(𝑣𝑗𝑙 − �̇�𝑗𝑙)

2𝜖

)]
×

[
𝐿∏
𝑙=1

𝑚∏
𝑗=1

d𝑥𝑗𝑙d�̇�𝑗𝑙

]

×

⎡
⎢⎢⎢⎣

𝐿∏
𝑙=0

1√
(2𝜋𝜖)𝑚 det �̂�

⎤
⎥⎥⎥⎦
exp

(
−

𝐿∑
𝑙=0

1

2

[
�̇�𝑙 −𝑨2𝑙

]𝑇
�̂�

−1 [
�̇�𝑙 −𝑨2𝑙

]
𝜖

)⎫⎪⎬⎪⎭
(14)

Further, defining �̃�𝑗1 = 𝑥𝑗0 + �̇�𝑗0𝜖 and (𝑥𝑗1 − �̃�𝑗1)∕𝜖 = 𝑣𝑗0 − �̇�𝑗0, and
employing the Dirac delta function relationships

lim
𝛽𝜖→0

1√
2𝜋𝛽𝜖

exp

(
−

1

2𝛽𝜖
(𝑥𝑗1 − �̃�𝑗1)

2

)
= 𝛿(𝑥𝑗1 − �̃�𝑗1) (15)

and

lim
𝛽∕𝜖→0

1√
2𝜋(𝛽∕𝜖)

exp

(
−

1

2(𝛽∕𝜖)
(𝑣𝑗𝑙 − �̇�𝑗𝑙)

2

)
= 𝛿(𝑣𝑗𝑙 − �̇�𝑗𝑙) (16)

for every 𝑗 ∈ {1,… , 𝑚} and for every 𝑙 ∈ {0,… , 𝐿}, Eq. (14) becomes

𝑝
(
𝜶𝑓 , 𝑡𝑓 |𝜶𝑖, 𝑡𝑖

)
= lim

𝜖→0
𝛽→0

∫
∞

−∞

⋯∫
∞

−∞

⎧⎪⎨⎪⎩

⎡⎢⎢⎢⎣

𝐿∏
𝑙=0

1√
(2𝜋𝜖)𝑚 det �̂�

⎤⎥⎥⎥⎦

×

[
𝐿∏
𝑙=2

𝑚∏
𝑗=1

d𝑥𝑗𝑙

]

×

[
𝑚∏
𝑗=1

𝛿(𝑥𝑗1 − �̃�𝑗1)d𝑥𝑗1

]
×

[
𝐿∏
𝑙=1

𝑚∏
𝑗=1

1

𝜖
𝛿(𝑣𝑗𝑙 − �̇�𝑗𝑙)d�̇�𝑗𝑙

]

× exp

(
−

𝐿∑
𝑙=0

1

2

[
�̇�𝑙 −𝑨2𝑙

]𝑇
�̂�

−1 [
�̇�𝑙 −𝑨2𝑙

]
𝜖

)}

(17)

Furthermore, performing 𝑚 integrations over the variables 𝑥11,… , 𝑥𝑚1
and 𝑚𝐿 integrations over the variables �̇�11,… , �̇�𝑚1, �̇�12,… , �̇�𝑚2,… ,

�̇�1𝐿,… , �̇�𝑚𝐿 yields

𝑝
(
𝜶𝑓 , 𝑡𝑓 |𝜶𝑖, 𝑡𝑖

)
= lim

𝜖→0
𝛽→0

∫
∞

−∞

⋯∫
∞

−∞

⎧⎪⎨⎪⎩

⎡⎢⎢⎢⎣

𝐿∏
𝑙=0

1√
(2𝜋𝜖)𝑚 det �̂�

⎤⎥⎥⎥⎦

×

[
𝐿∏
𝑙=2

𝑚∏
𝑗=1

d𝑥𝑗𝑙

]

×
1

𝜖𝑚𝐿
exp

(
−

𝐿∑
𝑙=0

1

2

[
�̇�𝑙 −𝑨2𝑙

]𝑇
�̂�

−1 [
�̇�𝑙 −𝑨2𝑙

]
𝜖

)}

(18)

with the constraint 𝑥𝑗1 = 𝑥𝑗0 + 𝑣𝑗0𝜖 for every 𝑗 ∈ {1,… , 𝑚}. Next,
Eq. (18) converges in the continuous limit to a functional integral
(e.g., [17]) over the space of paths C{𝜶𝑖, 𝑡𝑖;𝜶𝑓 , 𝑡𝑓 } with initial state 𝜶𝑖

at time 𝑡𝑖 and final state 𝜶𝑓 at time 𝑡𝑓 . This takes the form

𝑝(𝜶𝑓 , 𝑡𝑓 |𝜶𝑖, 𝑡𝑖) = ∫
C{𝜶𝑖 ,𝑡𝑖 ;𝜶𝑓 ,𝑡𝑓 }

exp

(
−∫

𝑡𝑓

𝑡𝑖

L [𝜶, �̇�] d𝑡

)
D[𝜶(𝑡)] (19)

or, alternatively,

𝑝(𝜶𝑓 , 𝑡𝑓 |𝜶𝑖, 𝑡𝑖) = ∫
C{𝜶𝑖 ,𝑡𝑖 ;𝜶𝑓 ,𝑡𝑓 }

exp (−S [𝜶, �̇�])D[𝜶(𝑡)] (20)

where L(𝜶, �̇�) denotes the Lagrangian functional of the system ex-
pressed as

L(𝜶, �̇�) =
1

2

[
�̈� −𝑨2(𝜶, 𝑡)

]𝑇
�̂�

−1 [
�̈� −𝑨2(𝜶, 𝑡)

]
(21)

and D[𝜶(𝑡)] is a functional measure given by

D[𝜶(𝑡)] = lim
𝜖→0

1

𝜖𝑚𝐿

𝐿∏
𝑙=0

1√
(2𝜋𝜖)𝑚 det �̂�

𝐿∏
𝑙=2

𝑚∏
𝑗=1

d𝑥𝑗𝑙 (22)

Comparing Eqs. (19) and (20), the stochastic action S [𝜶, �̇�] is given by

S [𝜶, �̇�] = ∫
𝑡𝑓

𝑡𝑖

L [𝜶, �̇�] d𝑡 (23)

Further, the joint transition PDF in Eq. (20) can be equivalently
written as

𝑝
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
= ∫

C{𝒙𝑖 ,�̇�𝑖 ,𝑡𝑖 ;𝒙𝑓 ,�̇�𝑓 ,𝑡𝑓 }

exp (−S [𝒙, �̇�, �̈�])D[𝒙(𝑡)] (24)

where

S [𝒙, �̇�, �̈�] = ∫
𝑡𝑓

𝑡𝑖

L [𝒙, �̇�, �̈�] d𝑡 (25)

The Lagrangian in Eq. (22) is expressed with respect to the process 𝒙
as

L [𝒙, �̇�, �̈�] =
1

2
[𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]𝑇 𝑺−1

𝒘

× [𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)] (26)

and the functional measure D[𝒙(𝑡)] is given by

D[𝒙(𝑡)] = lim
𝜖→0

𝜖𝑚

(
det𝑴√

(2𝜋𝜖3)𝑚 det 𝑺𝒘

)𝐿+1 𝐿∏
𝑙=2

𝑚∏
𝑗=1

d𝑥𝑗𝑙 (27)

2.2. Functional series expansion and most probable path

The analytical evaluation of the WPI of Eq. (24) for determining the
joint transition PDF 𝑝

(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
is not feasible in general, and

thus, an approximate solution treatment is typically adopted (e.g., [17,
23]). In this regard, expressing 𝒙(𝑡) as

𝒙(𝑡) = 𝒙𝑐 (𝑡) +𝑿(𝑡) (28)

and employing a Taylor-kind series expansion for the stochastic action
S[𝒙, �̇�, �̈�] (denoted in the following as S[𝒙] for simplicity) yields

S [𝒙] = S
[
𝒙𝑐 +𝑿

]
= S[𝒙𝑐 ] + 𝛿S

[
𝒙𝑐 ,𝑿

]
+

1

2!
𝛿2S

[
𝒙𝑐 ,𝑿

]
+… (29)

3
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In Eq. (28), 𝒙𝑐 (𝑡) is the most probable path associated with the max-
imum probability of occurrence P

[
𝒙𝑐 (𝑡)

]
and 𝑿(𝑡) denotes the fluc-

tuations around 𝒙𝑐 (𝑡) with 𝑿(𝑡𝑖) = 𝑿(𝑡𝑓 ) = �̇�(𝑡𝑖) = �̇�(𝑡𝑓 ) = 𝟎. In
Eq. (29), 𝛿S

[
𝒙𝑐 ,𝑿

]
represents the functional differential (or variation)

of S evaluated on 𝒙𝑐 (𝑡). Considering Eq. (25), it takes the form

𝛿S
[
𝒙𝑐 ,𝑿

]
= ∫

𝑡𝑓

𝑡𝑖

𝑚∑
𝑗=1

(
𝜕L

𝜕𝑥𝑗

||||𝒙=𝒙𝑐
𝑋𝑗 +

𝜕L

𝜕�̇�𝑗

||||𝒙=𝒙𝑐
�̇�𝑗 +

𝜕L

𝜕�̈�𝑗

||||𝒙=𝒙𝑐
�̈�𝑗

)
d𝑡

(30)

Further, since maximum probability P [𝒙(𝑡)] corresponds to minimum
S [𝒙] based on Eq. (24), 𝒙𝑐 (𝑡) is associated with an extremum of the
functional S [𝒙]. In this context, calculus of variations dictates that the
first variation of S [𝒙] vanishes for 𝒙(𝑡) = 𝒙𝑐 (𝑡), i.e.,

𝛿S
[
𝒙𝑐 ,𝑿

]
= 0 (31)

Therefore, Eq. (29) becomes

S [𝒙] = S[𝒙𝑐 ] +
1

2!
𝛿2S

[
𝒙𝑐 ,𝑿

]
+… (32)

Furthermore, combining Eq. (30) and the extremality condition of
Eq. (31) leads to

∫
𝑡𝑓

𝑡𝑖

(
𝜕L

𝜕𝑥𝑗

||||𝒙=𝒙𝑐
𝑋𝑗 +

𝜕L

𝜕�̇�𝑗

||||𝒙=𝒙𝑐
d

d𝑡
𝑋𝑗 +

𝜕L

𝜕�̈�𝑗

||||𝒙=𝒙𝑐
d2

d𝑡2
𝑋𝑗

)
d𝑡 = 0,

for 𝑗 = 1,… , 𝑚

(33)

Next, integrating Eq. (33) by parts yields the system of Euler–Lagrange
(EL) equations (e.g., [31])

𝜕L

𝜕𝑥𝑐,𝑗
−

d

d𝑡

𝜕L

𝜕�̇�𝑐,𝑗
+

d2

d𝑡2
𝜕L

𝜕�̈�𝑐,𝑗
= 0, for 𝑗 = 1,… , 𝑚 (34)

in conjunction with the 4 × 𝑚 boundary conditions

⎧⎪⎪⎨⎪⎪⎩

𝑥𝑐,𝑗 (𝑡𝑖) = 𝑥𝑖,𝑗

𝑥𝑐,𝑗 (𝑡𝑓 ) = 𝑥𝑓,𝑗

�̇�𝑐,𝑗 (𝑡𝑖) = �̇�𝑖,𝑗

�̇�𝑐,𝑗 (𝑡𝑓 ) = �̇�𝑓,𝑗

, for 𝑗 = 1,… , 𝑚 (35)

where the most probable path is expressed as 𝒙𝑐 (𝑡) =
[
𝑥𝑐,𝑗 (𝑡)

]
𝑚×1

, and
the boundary conditions as 𝒙𝑖 =

[
𝑥𝑖,𝑗

]
𝑚×1

, 𝒙𝑓 =
[
𝑥𝑓,𝑗

]
𝑚×1

, �̇�𝑖 =
[
�̇�𝑖,𝑗

]
𝑚×1

,
and �̇�𝑓 =

[
�̇�𝑓,𝑗

]
𝑚×1

. The system of Eqs. (34)–(35) represents a determin-
istic nonlinear boundary value problem (BVP), which can be solved by
standard numerical solution approaches such as Rayleigh–Ritz schemes
(e.g., [15,20]).

Further, following solution of Eqs. (34)–(35) and determination of
𝒙𝑐 (𝑡), the expansion of Eq. (32) is evaluated approximately as

S[𝒙] = S[𝒙𝑐 ] + log(𝐶(𝑡𝑓 )
−1) (36)

where the terms involving higher than second variations are treated
collectively as a single constant 𝐶(𝑡𝑓 ). Substituting Eq. (36) into
Eq. (24) yields an approximation for the response transition PDF in
the form

𝑝(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖) ≈ 𝐶(𝑡𝑓 ) exp
(
−S

[
𝒙𝑐 , �̇�𝑐 , �̈�𝑐

])
(37)

where 𝐶(𝑡𝑓 ) is evaluated by the normalization condition

∫
∞

−∞ ∫
∞

−∞

𝑝(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖)d𝒙𝑓 d�̇�𝑓 = 1 (38)

It is remarked that Kougioumtzoglou and co-workers have devel-
oped various solution techniques based on the most probable path
approximation of Eq. (37) for treating diverse problems in stochastic
engineering dynamics. In fact, the most probable path approximation
has demonstrated a satisfactory degree of accuracy in determining the
stochastic response of various structural and mechanical nonlinear sys-
tems (e.g., [18,20,21,23]). In this regard, note that for linear systems,
i.e., 𝒈(𝒙, �̇�) = 𝟎 in Eq. (1), the most probable path approximation yields
the exact joint response PDF as proved in [27].

Nevertheless, it was shown in [26] that accounting also for the
second variation term in the functional series expansion of Eq. (32)
yields an enhanced accuracy degree compared to the most probable
path approximation. In this paper, and specifically in the following
section, the quadratic WPI approximation technique developed in [26]
for SDOF oscillators is generalized to account for MDOF systems.

3. A quadratic Wiener path integral approximation

In this section, a technique based on a quadratic WPI approximation
is developed for determining the joint response transition PDF of non-
linear oscillators subject to stochastic excitation. The technique can be
construed as a generalization of the results in [26] to account for MDOF
systems.

Specifically, it is shown that compared to the standard most prob-
able path WPI approximation presented in Section 2.2, the quadratic
approximation yields enhanced accuracy in evaluating the system re-
sponse joint PDF. This is primarily due to the fact that fluctuations
around the most probable path are also accounted for by introducing a
localized state-dependent factor in the approximate evaluation of the
WPI. Further, a significant advantage of the enhancement relates to
structural reliability assessment, and to the fact that the required in
the most probable path approach PDF normalization step of Eq. (38)
is circumvented. Thus, probabilities of rare events (e.g., failures) can
be determined in a direct manner without the need for obtaining the
complete joint response PDF first.

3.1. Accounting for the second variation term in the functional series
expansion

Compared to the most probable path approximation described in
Section 2.2, where only the first term is considered in the expansion of
Eq. (32), both the first and the second variation terms are accounted
for in the ensuing analysis. In this regard, Eq. (32) becomes

S [𝒙] = S[𝒙𝑐 ] +
1

2!
𝛿2S

[
𝒙𝑐 ,𝑿

]
(39)

Next, substituting Eq. (39) into Eq. (24), the joint response transition
PDF is approximated as

𝑝(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖) = 𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
exp

(
−S

[
𝒙𝑐 , �̇�𝑐 , �̈�𝑐

])
(40)

In Eq. (40), 𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
represents a fluctuation factor ex-

pressed as

𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
= ∫

C{𝒙𝑓 ,�̇�𝑓 ,𝑡𝑓 ;𝒙𝑖 ,�̇�𝑖 ,𝑡𝑖}

exp
(
−
1

2
𝛿2S

[
𝒙𝑐 ,𝑿

])
D[𝑿(𝑡)]

(41)

where D[𝑿(𝑡)] is given by Eq. (27) and, considering the relationship
of Eq. (25), the second variation 𝛿2S

[
𝒙𝑐 ,𝑿

]
in Eq. (41) takes the form

(e.g., [31])

𝛿2S
[
𝒙𝑐 ,𝑿

]
= ∫

𝑡𝑓

𝑡𝑖

𝑚∑
𝑗1=1

𝑚∑
𝑗2=1

(
𝜕2L

𝜕�̈�𝑗1 �̈�𝑗2

||||𝒙=𝒙𝑐
�̈�𝑗1

�̈�𝑗2
+

𝜕2L

𝜕�̇�𝑗1 �̇�𝑗2

||||𝒙=𝒙𝑐
�̇�𝑗1

�̇�𝑗2

+
𝜕2L

𝜕𝑥𝑗1𝜕𝑥𝑗2

||||𝒙=𝒙𝑐
𝑋𝑗1

𝑋𝑗2
+ 2

𝜕2L

𝜕�̈�𝑗1𝜕�̇�𝑗2

||||𝒙=𝒙𝑐
�̈�𝑗1

�̇�𝑗2

+2
𝜕2L

𝜕�̈�𝑗1𝜕𝑥𝑗2

||||𝒙=𝒙𝑐
�̈�𝑗1

𝑋𝑗2
+ 2

𝜕2L

𝜕�̇�𝑗1𝜕𝑥𝑗2

||||𝒙=𝒙𝑐
�̇�𝑗1

𝑋𝑗2

)
d𝑡 (42)

Eq. (42) can be written, equivalently, in a compact form as

𝛿2S
[
𝒙𝑐 ,𝑿

]
=

6∑
𝑘=1

𝛥𝑘 (43)

4
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where 𝑿 = [𝑋1,… , 𝑋𝑚]
𝑇 and the scalar quantities 𝛥1,… , 𝛥6 are defined

as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛥1 = ∫
𝑡𝑓

𝑡𝑖

�̈�
𝑇
𝑫1�̈�d𝑡

𝛥2 = ∫
𝑡𝑓

𝑡𝑖

�̇�
𝑇
𝑫2�̇�d𝑡

𝛥3 = ∫
𝑡𝑓

𝑡𝑖

𝑿𝑇𝑫3𝑿d𝑡

𝛥4 = ∫
𝑡𝑓

𝑡𝑖

(
�̈�

𝑇
𝑫4�̇� + �̇�

𝑇
𝑫𝑇

4
�̈�
)
d𝑡

𝛥5 = ∫
𝑡𝑓

𝑡𝑖

(
�̈�

𝑇
𝑫5𝑿 +𝑿𝑇𝑫𝑇

5
�̈�
)
d𝑡

𝛥6 = ∫
𝑡𝑓

𝑡𝑖

(
�̇�

𝑇
𝑫6𝑿 +𝑿𝑇𝑫𝑇

6
�̇�
)
d𝑡

(44)

with the matrices 𝑫1,… ,𝑫6 given by

⎧⎪⎪⎨⎪⎪⎩

𝑫1 =
𝜕2L

𝜕�̈�2

||||𝒙=𝒙𝑐
; 𝑫2 =

𝜕2L

𝜕�̇�2

||||𝒙=𝒙𝑐
; 𝑫3 =

𝜕2L

𝜕𝒙2

||||𝒙=𝒙𝑐
𝑫4 =

𝜕2L

𝜕�̈�𝜕𝒙

||||𝒙=𝒙𝑐
; 𝑫5 =

𝜕2L

𝜕�̈�𝜕�̇�

||||𝒙=𝒙𝑐
; 𝑫6 =

𝜕2L

𝜕�̇�𝜕𝒙

||||𝒙=𝒙𝑐

(45)

Further, note that 𝑫1, 𝑫2, and 𝑫3 are symmetric. In this regard, con-
sidering the Lagrangian functional of Eq. (26) the first-order derivatives
of L [𝒙, �̇�, �̈�] with respect to 𝒙, �̇�, and �̈� become

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕L

𝜕�̈�
= 𝑴𝑇𝑺−1

𝒘
[𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]

𝜕L

𝜕�̇�
=

(
𝑪𝑇 +

𝜕𝒈

𝜕�̇�

)
𝑺−1
𝒘

[𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]

𝜕L

𝜕𝒙
=

(
𝑲𝑇 +

𝜕𝒈

𝜕𝒙

)
𝑺−1
𝒘

[𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]

(46)

respectively. Furthermore, the second-order derivatives of L [𝒙, �̇�, �̈�] in
Eq. (45) become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑫1 = 𝑴𝑇𝑺−1
𝒘
𝑴

𝑫2 =

(
𝑪𝑇 +

𝜕𝒈

𝜕�̇�

)
𝑺−1
𝒘

(
𝑪𝑇 +

𝜕𝒈

𝜕�̇�

)𝑇 ||||𝒙=𝒙𝑐
+

𝑚∑
𝑗=1

𝒔𝑗 [𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]
𝜕2𝑔𝑗

𝜕�̇�2

||||𝒙=𝒙𝑐

𝑫3 =

(
𝑲𝑇 +

𝜕𝒈

𝜕𝒙

)
𝑺−1
𝒘

(
𝑲𝑇 +

𝜕𝒈

𝜕𝒙

)𝑇 ||||𝒙=𝒙𝑐
+

𝑚∑
𝑗=1

𝒔𝑗 [𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]
𝜕2𝑔𝑗

𝜕𝒙2

||||𝒙=𝒙𝑐
𝑫4 = 𝑪𝑇𝑺−1

𝒘
𝑴 +

𝜕𝒈

𝜕�̇�
𝑺−1
𝒘
𝑴

||||𝒙=𝒙𝑐
𝑫5 = 𝑲𝑇𝑺−1

𝒘
𝑴 +

𝜕𝒈

𝜕𝒙
𝑺−1
𝒘
𝑴

||||𝒙=𝒙𝑐
𝑫6 =

(
𝑲𝑇 +

𝜕𝒈

𝜕𝒙

)
𝑺−1
𝒘

(
𝑪𝑇 +

𝜕𝒈

𝜕�̇�

)𝑇 ||||𝒙=𝒙𝑐
+

𝑚∑
𝑗=1

𝒔𝑗 [𝑴�̈� + 𝑪�̇� +𝑲𝒙 + 𝒈(𝒙, �̇�)]
𝜕2𝑔𝑗

𝜕�̇�𝜕𝒙

||||𝒙=𝒙𝑐

(47)

where 𝒔𝑗 and 𝑔𝑗 represent the 𝑗th rows of 𝑺−1
𝒘
and 𝒈, respectively.

It is noted that the fluctuation factor 𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
is ex-

pressed in Eq. (41) as a path integral with respect to paths 𝑿(𝑡) with
boundary conditions 𝑿(𝑡𝑖) = �̇�(𝑡𝑖) = 𝑿(𝑡𝑓 ) = �̇�(𝑡𝑓 ) = 𝟎. Although
the analytical calculation of an arbitrary path integral is, in general, a
highly challenging task, a closed form expression is derived in the next
section that facilitates the efficient calculation of 𝜙

(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
.

Further, it is remarked that the fluctuation factor 𝜙
(
𝒙𝑓 , �̇�𝑓 ,

𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖
)
is treated under the most probable path approximation as

a single constant 𝐶(𝑡𝑓 ), dependent only on the final time instant 𝑡𝑓 ;
see Eq. (37). In other words, it is considered independent of the final
states {𝒙𝑓 , �̇�𝑓 }. In contrast, based on the herein proposed quadratic
approximation, 𝜙

(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
is expressed as a path integral

in Eq. (41), dependent on the final state {𝒙𝑓 , �̇�𝑓 } through the most
probable path 𝒙𝑐 (𝑡). This localization property of the state-dependent
factor is expected to enhance the accuracy degree of the WPI technique
compared to the standard most probable path approximation.

Furthermore, a significant advantage of the quadratic approxima-
tion relates to considerable reduction of the computational cost asso-
ciated with reliability assessment applications. Specifically, calculating
probabilities of rare events (e.g., structural failures) is associated with
numerical integration of the joint response PDF over a relatively small
domain, typically corresponding to the PDF tails. To this aim, applying
the WPI technique based on the most probable path requires, first,
the calculation of the joint PDF over its entire domain, followed next
by the normalization step of Eq. (38). In contrast, the normalization
step is circumvented in the WPI technique based on the quadratic
approximation. In fact, the relatively few PDF points corresponding
to the specific domain of interest related to the low probability event
are determined directly based on Eq. (40); see also [26] for more
details.

3.2. A closed form expression for efficient calculation of the fluctuation
factor

Consider a discrete approximation of 𝛥1,… , 𝛥6 converging to
Eq. (44) for 𝐿 → ∞. This is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛥1 =

𝐿∑
𝑙=0

�̈�
𝑇

𝑙 𝑫1�̈�𝑙𝜖

𝛥2 =

𝐿∑
𝑙=0

�̇�
𝑇

𝑙 𝑫2𝑙�̇�𝑙𝜖

𝛥3 =

𝐿∑
𝑙=0

𝑿𝑇
𝑙
𝑫3𝑙𝑿𝑙𝜖

𝛥4 =

𝐿∑
𝑙=0

�̈�
𝑇

𝑙 𝑫4𝑙�̇�𝑙𝜖 + �̇�
𝑇

𝑙 𝑫
𝑇
4𝑙
�̈�𝑙𝜖

𝛥5 =

𝐿∑
𝑙=0

�̈�
𝑇

𝑙 𝑫5𝑙𝑿𝑙𝜖 +𝑿𝑇
𝑙
𝑫𝑇

5𝑙
�̈�𝑙𝜖

𝛥6 =

𝐿∑
𝑙=0

�̇�
𝑇

𝑙 𝑫6𝑙𝑿𝑙𝜖 +𝑿𝑇
𝑙
𝑫𝑇

6𝑙
�̇�𝑙𝜖

(48)

where 𝑿𝑙 = 𝑿(𝑡𝑙) and 𝑫𝑘𝑙 = 𝑫𝑘(𝑡𝑙), for 𝑙 ∈ {0,… , 𝐿 + 1} and 𝑘 ∈

{1,… , 6}, and

�̇�𝑙 =
𝑿𝑙+1 −𝑿𝑙

𝜖
; �̈�𝑙 =

𝑿𝑙+2 − 2𝑿𝑙+1 +𝑿𝑙

𝜖2
(49)

Combining Eq. (49) and 𝑿(𝑡𝑖) = 𝑿(𝑡𝑓 ) = �̇�(𝑡𝑖) = �̇�(𝑡𝑓 ) = 𝟎 yields

𝑿0 = 𝑿1 = 𝑿𝐿+1 = 𝑿𝐿+2 = 𝟎 (50)

Next, substituting Eqs. (49)–(50) into Eq. (48) and manipulating, each
and every term in the summations exhibits a quadratic form; that is, it
constitutes a polynomial with all its terms of degree two (e.g., [32]).
Further, Eq. (48) can be expressed in a more compact form as

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝛥1 = 𝒀 𝑇
[
B0B1

]
𝒀

𝛥2 = 𝒀 𝑇
[
B0B2

]
𝒀

𝛥3 = 𝒀 𝑇
[
B0B3

]
𝒀

𝛥4 = 𝒀 𝑇
[
B0B4

]
𝒀

𝛥5 = 𝒀 𝑇
[
B0B5

]
𝒀

𝛥6 = 𝒀 𝑇
[
B0B6

]
𝒀

(51)
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Fig. 1. Indicative fluctuation factor values determined by Eq. (61) for various time instants 𝑡𝑓 ; results corresponding to a stochastically excited 2-DOF nonlinear oscillator, whose

dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸, 𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 0.35; 𝑘0 = 0.5; 𝜖1 = 0.1; 𝑆0 = 0.0637).

where 𝒀 = [𝑿2,… ,𝑿𝐿]
𝑇 and the symmetric matrices B0, B1, . . . , B6

are provided in the Appendix.
Next, A is defined as

A =

6∑
𝑘=1

B𝑘 (52)

and Ã as

Ã = B0A (53)

Note that both A and Ã are symmetric, and taking into account Eq. (51),
the second variation 𝛿2S

[
𝒙𝑐 ,𝑿

]
of Eq. (43) is expressed as

𝛿2S
[
𝒙𝑐 ,𝑿

]
=

𝑚(𝐿−1)∑
𝑞1=1

𝑚(𝐿−1)∑
𝑞2=1

𝑌𝑞1 Ã𝑞1𝑞2
𝑌𝑞2 = 𝒀 𝑇

Ã𝒀 (54)

Finally, substituting Eq. (54) into Eq. (41), and considering a
discrete-form path integral similar to Eq. (18), yields

𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
= lim

𝜖→0

⎧⎪⎨⎪⎩
𝜖𝑚

⎡⎢⎢⎢⎣
det𝑴√(

2𝜋𝜖3
)𝑚

det 𝑺𝒘

⎤
⎥⎥⎥⎦

𝐿+1

× ∫
∞

−∞

⋯∫
∞

−∞

exp

(
−
1

2

𝑚(𝐿−1)∑
𝑞1=1

𝑚(𝐿−1)∑
𝑞2=1

𝑌𝑞1 Ã𝑞1𝑞2
𝑌𝑞2

)
d𝑌1 …d𝑌𝑚(𝐿−1)

}
(55)

Note that Eq. (55) represents a multi-dimensional Gaussian integral
which can be calculated analytically as (e.g., [17])

∫
∞

−∞

⋯∫
∞

−∞

exp

(
−
1

2

𝑚(𝐿−1)∑
𝑞1=1

𝑚(𝐿−1)∑
𝑞2=1

𝑌𝑞1 Ã𝑞1𝑞2
𝑌𝑞2

)
d𝑌1 …d𝑌𝑚(𝐿−1)

=

√
(2𝜋)𝑚(𝐿−1)

det Ã

(56)

where det Ã is given by

det Ã = (det B0)(det A) =

[
(det𝑴)2

𝜖3𝑚 det 𝑺𝒘

]𝐿−1
(det A) (57)

Substituting Eqs. (56)–(57) into Eq. (55), yields

𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
= lim

𝜖→0

(det𝑴)2(
2𝜋𝜖2

)𝑚
det 𝑺𝒘

√
det A

(58)

3.3. Mechanization of the technique

The numerical implementation of the developed technique com-
prises the following steps:

(i) For a given time instant 𝑡𝑓 , consider an effective domain of final
states {𝒙𝑓 , �̇�𝑓 } and discretize it into 𝑁2𝑚

𝑠 points, where 2𝑚 is
the number of stochastic dimensions (𝑚 displacements and 𝑚

velocities).
(ii) For each final state {𝒙𝑓 , �̇�𝑓 } determine the most probable path

𝒙𝑐 (𝑡) by solving the BVP problem of Eqs. (34)–(35).
(iii) Evaluate the parameter matrices B1,… ,B6 based on the Ap-

pendix, where 𝐿 = 1000 is an indicative value.
(iv) Compute the determinant of A and evaluate the fluctuation

factor 𝜙
(
𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖

)
by Eq. (58).

(v) Obtain a specific point of the joint transition PDF
𝑝(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖) by employing Eq. (40).

(vi) Repeat steps (ii)–(v) for all𝑁2𝑚
𝑠 points to determine the complete

joint response PDF 𝑝(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖).
Clearly, compared with the most probable path approximation, the

enhanced accuracy of the quadratic approximation technique comes at
the expense of some added modest computational cost due to the calcu-
lation of det A in the definition of the fluctuation factor. Further, the ex-
hibited computational efficiency can be readily enhanced by replacing
step (i) with recently developed solution schemes based on compressive
sampling concepts (e.g., [24,33]) that require the consideration of only
few final states {𝒙𝑓 , �̇�𝑓 }; see also [25] for a broad perspective.

4. Numerical examples

To demonstrate the reliability of the quadratic WPI approxima-
tion, three distinct numerical examples are considered in this section
pertaining to 2-DOF systems exhibiting diverse nonlinear behaviors.
Their dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑺𝒘 =

2𝜋𝑆0𝑰2×2, 𝑪 = 𝑐0𝑸, and 𝑲 = 𝑘0𝑸, where

𝑸 =

[
1 −1

−1 2

]
(59)

6
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Fig. 2. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator, whose dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸,

𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 0.35; 𝑘0 = 0.5; 𝜖1 = 0.1; 𝑆0 = 0.0637); comparisons between results obtained by the most probable

path (MPP) approximation (shown with blue circles), by the quadratic approximation (shown with red asterisks), and by pertinent MCS data (50,000 realizations; shown with black
dashed line).

Fig. 3. Indicative fluctuation factor values determined by Eq. (61) for various time instants 𝑡𝑓 ; results corresponding to a stochastically excited 2-DOF nonlinear oscillator, whose

dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸, 𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 1; 𝑘0 = −0.5; 𝜖1 = −0.5; 𝑆0 = 0.0637).

7
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Fig. 4. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator, whose dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸,

𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 1; 𝑘0 = −0.5; 𝜖1 = −0.5; 𝑆0 = 0.0637); comparisons between results obtained by the most probable

path (MPP) approximation (shown with blue circles), by the quadratic approximation (shown with red asterisks), and by pertinent MCS data (50,000 realizations; shown with black
dashed line).

In this regard, 𝑫1,… ,𝑫6 of Eq. (47) become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑫1 =
𝑚2

0

2𝜋𝑆0

𝑰2×2

𝑫2 =
1

2𝜋𝑆0

(
𝑐0𝑸 +

𝜕𝒈

𝜕�̇�

)(
𝑐0𝑸 +

𝜕𝒈

𝜕�̇�

)𝑇 ||||𝒙=𝒙𝑐

+

𝑚∑
𝑗=1

𝒔𝑗
[
𝑚0�̈� + 𝑐0𝑸�̇� + 𝑘0𝑸𝒙 + 𝒈

] 𝜕2𝑔𝑗
𝜕�̇�2

||||𝒙=𝒙𝑐

𝑫3 =
1

2𝜋𝑆0

(
𝑘0𝑸 +

𝜕𝒈

𝜕𝒙

)(
𝑘0𝑸 +

𝜕𝒈

𝜕𝒙

)𝑇 ||||𝒙=𝒙𝑐

+

𝑚∑
𝑗=1

𝒔𝑗
[
𝑚0�̈� + 𝑐0𝑸�̇� + 𝑘0𝑸𝒙 + 𝒈

] 𝜕2𝑔𝑗
𝜕𝒙2

||||𝒙=𝒙𝑐

𝑫4 =
𝑚0

2𝜋𝑆0

(
𝑐0𝑸 +

𝜕𝒈

𝜕�̇�

) ||||𝒙=𝒙𝑐

𝑫5 =
𝑚0

2𝜋𝑆0

(
𝑘0𝑸 +

𝜕𝒈

𝜕𝒙

) ||||𝒙=𝒙𝑐

𝑫6 =
1

2𝜋𝑆0

(
𝑘0𝑸 +

𝜕𝒈

𝜕𝒙

)(
𝑐0𝑸 +

𝜕𝒈

𝜕�̇�

)𝑇 ||||𝒙=𝒙𝑐

+

𝑚∑
𝑗=1

𝒔𝑗
[
𝑚0�̈� + 𝑐0𝑸�̇� + 𝑘0𝑸𝒙 + 𝒈

] 𝜕2𝑔𝑗

𝜕�̇�𝜕𝒙

||||𝒙=𝒙𝑐

(60)

Further, the expression for the fluctuation factor 𝜙(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖)
in Eq. (58) degenerates to

𝜙(𝒙𝑓 , �̇�𝑓 , 𝑡𝑓 |𝒙𝑖, �̇�𝑖, 𝑡𝑖) = lim
𝜖→0

𝑚4
0

16𝜋4𝑆2
0
𝜖4
√
det A

(61)

In the following examples, the value 𝑁𝑠 = 51 is used for the
discretization of the joint PDF effective domain. The results obtained

by the WPI-based technique are compared with pertinent MCS-based
data (50,000 realizations).

4.1. Cubic stiffness nonlinearities

Consider a 2-DOF nonlinear system with 𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇
and

parameter values 𝑚0 = 1, 𝑐0 = 0.35, 𝑘0 = 0.5, 𝜖1 = 0.1, and 𝑆0 = 0.0637.
The initial conditions are 𝑡𝑖 = 0 and 𝒙𝑖 = �̇�𝑖 = 𝟎.

Fig. 1 shows indicative fluctuation factor values corresponding to
various final time instants 𝑡𝑓 . Next, the joint transition PDF is obtained
by Eq. (40) and indicative results are shown in Fig. 2 corresponding to
the marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2). Clearly, as anticipated due to the
localized nature of the state-dependent fluctuation factor in Eq. (40),
it is shown in Fig. 2 that the quadratic approximation exhibits an
enhanced accuracy degree compared to the most probable path scheme.

4.2. Nonlinear system with bimodal response PDF

Consider next a 2-DOF nonlinear system with 𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

3
1
, 0
]𝑇

and parameter values 𝑚0 = 1, 𝑐0 = 1, 𝑘0 = −0.5, 𝜖1 = −0.5, and
𝑆0 = 0.0637. The initial conditions are 𝑡𝑖 = 0 and 𝒙𝑖 = �̇�𝑖 = 𝟎.

Further, Fig. 3 shows indicative fluctuation factor values obtained
by Eq. (61). Furthermore, the marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) are plotted

8
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Fig. 5. Indicative fluctuation factor values determined by Eq. (61) for various time instants 𝑡𝑓 ; results corresponding to a stochastically excited 2-DOF nonlinear oscillator, whose

dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸, 𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

2
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 0.2; 𝑘0 = 1; 𝜖1 = 0.1; 𝑆0 = 0.0637).

Fig. 6. Marginal response PDFs of a stochastically excited 2-DOF nonlinear oscillator, whose dynamics is governed by Eq. (1) with 𝑴 = 𝑚0𝑰2×2, 𝑪 = 𝑐0𝑸, 𝑲 = 𝑘0𝑸,

𝒈(𝒙, �̇�) =
[
𝜖1𝑘0𝑥

2
1
, 0
]𝑇
, 𝑺𝒘 = 2𝜋𝑆0𝑰2×2, and parameter values (𝑚0 = 1; 𝑐0 = 0.2; 𝑘0 = 1; 𝜖1 = 0.1; 𝑆0 = 0.0637); comparisons between results obtained by the most probable

path (MPP) approximation (shown with blue circles), by the quadratic approximation (shown with red asterisks), and by pertinent MCS data (50,000 realizations; shown with black
dashed line).
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in Fig. 4 for various final time instants. It is readily seen that the
herein developed technique based on the quadratic WPI approximation
outperforms the standard most probable path approach in terms of
exhibited accuracy.

Note that this superior performance becomes more prevalent for
larger time instants, where the marginal response displacement PDF
𝑝(𝑥1) tends to become bimodal; see, for instance, Fig. 4(e). In fact, the
most probable path approximation fails to capture the PDF bimodal
characteristic, and yields a PDF estimate that exhibits a plateau of
approximately constant value connecting the two modes. This is due
to the fact that the joint PDF representation of Eq. (37) based on the
most probable path attains a global maximum at (𝒙𝑓 , �̇�𝑓 ) = (𝟎, 𝟎). This
limitation is addressed in this paper by considering the state-dependent
fluctuation factor whose impact on determining the joint response PDF
via Eq. (40) leads to an enhanced accuracy degree and to capturing
satisfactorily the bimodal shape as shown in Fig. 4(e).

4.3. Nonlinear system with asymmetric response PDF

Consider next a 2-DOF system with asymmetric nonlinearities gov-
erned by Eq. (1) with 𝒈(𝒙, �̇�) =

[
𝜖1𝑘0𝑥

2
1
, 0
]𝑇

and parameter values
𝑚0 = 1, 𝑐0 = 0.2, 𝑘0 = 1, 𝜖1 = 0.1, and 𝑆0 = 0.0637. The initial conditions
are 𝑡𝑖 = 0 and 𝒙𝑖 = �̇�𝑖 = 𝟎.

In the following, indicative values of the fluctuation factor are
computed and plotted in Fig. 5. Next, the joint response PDF is deter-
mined and the marginal PDFs 𝑝(𝑥1) and 𝑝(𝑥2) are plotted in Fig. 6 for
arbitrarily chosen time instants. Comparisons with pertinent MCS-based
estimates demonstrate increased accuracy of the quadratic approxima-
tion over the most probable path approach. This is further corroborated
by focusing on the magnified subplots of Fig. 6(c) and (e) corresponding
to the tails of the response PDF. It is readily seen that the accuracy de-
gree of the WPI technique is significantly enhanced when the quadratic
approximation is employed.

5. Concluding remarks

In this paper, a novel WPI technique has been developed for stochas-
tic response determination of nonlinear dynamical systems. The tech-
nique can be construed as an extension of the results in [26] to account
for MDOF systems. Specifically, the system response joint transition
PDF has been expressed as a functional integral over the space of
possible paths satisfying initial and final conditions in time. Next, a
Taylor-kind series expansion has been employed for the functional
integral and a quadratic approximation has been considered. Further,
resorting to a variational principle has led to a functional optimization
problem to be solved numerically for the most probable path. Further-
more, the most probable path has been used for evaluating the terms
in the functional series expansion and for determining approximately
the joint response PDF. Compared to the standard most probable path
approach, where only the first term is retained in the WPI expansion,
employing a quadratic approximation and accounting also for the
second variation term yields an enhanced accuracy degree. This is due
to the fact that a localized state-dependent factor is introduced in the
approximate evaluation of the joint response PDF. Three illustrative
numerical examples have been considered pertaining to oscillators
with diverse nonlinear behaviors. Comparisons with MCS data have
demonstrated the enhanced accuracy degree exhibited by the herein
developed technique.
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Appendix

The 𝑚(𝐿 − 1) × 𝑚(𝐿 − 1) symmetric matrix B0 is given by

B0 =
1

𝜖3

⎡⎢⎢⎣

𝑫1

⋱

𝑫1

⎤⎥⎥⎦
(A.1)

and the 𝑚(𝐿−1) ×𝑚(𝐿−1) symmetric matrices B1,… ,B6 are given by

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6𝑰

−4𝑰 6𝑰 𝑠𝑦𝑚𝑚

𝑰 −4𝑰 6𝑰

𝟎 ⋱ ⋱ ⋱

⋮ 6𝑰

−4𝑰 6𝑰

𝟎 ⋯ 𝟎 𝑰 −4𝑰 6𝑰

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2)

B2 = 𝜖2

⎡
⎢⎢⎢⎢⎢⎣

𝑷 1
2
+ 𝑷 2

2

−𝑷 2
2

𝑷 2
2
+ 𝑷 3

2
𝑠𝑦𝑚𝑚

𝟎 ⋱ ⋱

⋮

𝟎 ⋯ 𝟎 −𝑷 𝐿−1
2

𝑷 𝐿−1
2

+ 𝑷 𝐿
2

⎤
⎥⎥⎥⎥⎥⎦

(A.3)

B3 = 𝜖4

⎡⎢⎢⎢⎢⎣

𝑷 2
3

𝑠𝑦𝑚𝑚

𝟎 ⋱

⋮

𝟎 ⋯ 𝟎 𝑷 𝐿
3

⎤⎥⎥⎥⎥⎦
(A.4)

B4 = 𝜖

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−4𝑷 1
4
− 2𝑷 2

4

𝑷 1
4
+ 3𝑷 2

4
⋱ 𝑠𝑦𝑚𝑚

−𝑷 2
4

⋱

𝟎 ⋱

⋮

𝟎 ⋯ 𝟎 −𝑷 𝐿−2
4

𝑷 𝐿−2
4

+ 3𝑷 𝐿−1
4

−4𝑷 𝐿−1
4

− 2𝑷 𝐿
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(A.5)

B5 = 𝜖2

⎡
⎢⎢⎢⎢⎢⎢⎣

2𝑷 2
5

−2𝑷 2
5

⋱ 𝑠𝑦𝑚𝑚

𝑷 2
5

⋱

𝟎 ⋱

⋮

𝟎 ⋯ 𝟎 𝑷 𝐿−2
5

−2𝑷 𝐿−1
5

2𝑷 𝐿
2

⎤
⎥⎥⎥⎥⎥⎥⎦

(A.6)

and

B6 = 𝜖3

⎡⎢⎢⎢⎢⎢⎣

−2𝑷 2
6

𝑷 2
6

⋱ 𝑠𝑦𝑚𝑚

𝟎 ⋱

⋮

𝟎 ⋯ 𝟎 𝑷 𝐿−1
6

−2𝑷 𝐿
6

⎤⎥⎥⎥⎥⎥⎦

(A.7)

respectively, where 𝑷 𝑙
𝑘

= 𝑷 𝑘(𝑡𝑙) for 𝑘 ∈ {2,… , 6}, and 𝑷 𝑘(𝑡) are
determined by
{

𝑷 2 = 𝑫−1
1
𝑫2; 𝑷 3 = 𝑫−1

1
𝑫3 𝑷 4 = 𝑫−1

1
𝑫4

𝑷 5 = 𝑫−1
1
𝑫5; 𝑷 6 = 𝑫−1

1
𝑫6

(A.8)
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