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Abstract The computational efficiency of the Wiener

path integral (WPI) technique for determining the

stochastic response of diverse nonlinear dynamical

systems is enhanced herein by relying on advanced

compressive sampling concepts and tools. Specifically,

exploiting the sparsity of appropriately selected expan-

sions for the joint response probability density function

(PDF), and leveraging the localization capabilities of

the WPI technique for direct evaluation of specific PDF

points, yield an underdetermined linear system of equa-

tions to be solved for the PDF expansion coefficients.

This is done by resorting to L p-norm (0 < p < 1) min-

imization formulations and algorithms, which exhibit

an enhanced sparsity-promoting behavior compared

to standard L1-norm minimization approaches. This

translates into a significant reduction of the associated

computational cost. In fact, for approximately the same
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accuracy degree, it is shown that the herein developed

technique based on L p-norm (0 < p < 1) minimiza-

tion requires, in some cases, even up to 40% fewer

boundary value problems to be solved as part of the

solution scheme than a standard L1-norm minimization

approach. The reliability of the technique is demon-

strated by comparing WPI-based response PDF esti-

mates with pertinent Monte Carlo simulation (MCS)

data (10,000 realizations). In this regard, realizations

compatible with the excitation stochastic process are

generated, and response time-histories are obtained by

integrating numerically the nonlinear system equations

of motion. Next, MCS-based PDF estimates are com-

puted based on statistical analysis of the response time-

histories. Several numerical examples are considered

pertaining to various stochastically excited oscillators

exhibiting diverse nonlinear behaviors. These include a

Duffing oscillator, an oscillator with asymmetric non-

linearities, and a nonlinear vibro-impact oscillator.

Keywords Sparse representations · Compressive

sampling · Nonlinear systems · Stochastic dynamics ·
Path integral

1 Introduction

Ever-increasing computational power, novel signal

processing techniques, advanced experimental setups,

and progress in emerging and transformative technolo-

gies have contributed to a highly complex mathemat-
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ical modeling of the governing equations of diverse

dynamical systems; see, for instance, indicative exam-

ples from nano-mechanics [1] and energy harvesting

[2]. In fact, developing versatile techniques for deter-

mining system response and reliability statistics, accu-

rately and in a computationally efficient manner, has

been a persistent challenge in the field of stochastic

engineering dynamics; see, indicatively, [3–5] for a

broad perspective on the capabilities and limitations

of various solution techniques developed over the past

six decades.

One of the promising techniques developed recently

by Kougioumtzoglou and co-workers relies on the con-

cept of Wiener path integral (WPI), which relates to the

generalization of integral calculus to functionals (e.g.,

[6–8]). The WPI technique is capable of determining

the joint response transition probability density func-

tion (PDF) of multi-degree-of-freedom (MDOF) sys-

tems exhibiting a wide range of nonlinear/hysteretic

behaviors [9,10]. Further, it can account for diverse

non-white and non-Gaussian stochastic process mod-

eling [11], while its accuracy has been enhanced

recently based on a quadratic approximation of the

WPI functional series expansion [12]. Furthermore,

high-dimensional systems can be readily addressed

by relying on a variational formulation with mixed

fixed/free boundary conditions, which renders the com-

putational cost independent of the total number of

stochastic dimensions [13]. Moreover, it was shown

in [14] that the computational cost can be reduced

drastically by employing sparse representations for the

system response PDF in conjunction with compressive

sampling schemes and group sparsity concepts. Also,

the efficacy of employing global multi-dimensional

bases for determining the non-stationary joint response

PDF in a direct manner was demonstrated in [15].

In this paper, the computational efficiency of the

WPI technique is enhanced by relying on advanced

compressive sampling concepts and tools; see also [16]

for a recent review paper. This is done by employing

sparse expansions for the system response PDF and

by relying on the localization capabilities of the WPI

technique for direct evaluation of specific PDF points.

This yields an underdetermined linear system of alge-

braic equations to be solved via L p-norm (0 < p < 1)

minimization algorithms for obtaining the PDF expan-

sion coefficient vector. In comparison with the L1-norm

minimization approach proposed in [14], the L p-norm

(0 < p < 1) minimization formulation developed

herein exhibits an enhanced sparsity-promoting behav-

ior. This translates into fewer PDF points to be obtained

by the WPI for formulating the underdetermined sys-

tem of equations. In other words, the same degree of

accuracy is attained in estimating the system response

PDF at a reduced computational cost. The reliability

of the technique is demonstrated by comparing WPI-

based results with pertinent Monte Carlo simulation

(MCS) data. This is done in conjunction with vari-

ous stochastically excited oscillators exhibiting diverse

nonlinear behaviors. These include a Duffing oscilla-

tor, an oscillator with asymmetric nonlinearities, and a

nonlinear vibro-impact oscillator.

2 Mathematical formulation

2.1 Wiener path integral technique: selected aspects

In this section, fundamental concepts and basic aspects

of the WPI technique are reviewed for completeness,

in conjunction with a stochastically excited single-

degree-of-freedom (SDOF) nonlinear oscillator for

notation simplicity and tutorial effectiveness. The inter-

ested reader is also directed to [13] for a recent exten-

sion of the technique to address high-dimensional non-

linear systems, as well as to [11] for a generalization

to account for non-white and non-Gaussian stochastic

excitation.

Specifically, consider the governing equation of

motion

ẍ + cẋ + kx + g(x, ẋ) = w(t) (1)

where x is the nonlinear system response, and a dot over

a variable denotes differentiation with respect to time t ;

c, k are the damping and stiffness coefficients, respec-

tively; and g(x, ẋ) is an arbitrary nonlinear function.

The excitation w(t) represents a Gaussian zero-mean

white noise process with a constant power spectrum

value equal to S0.

Next, following [11] (see also [8] for a broader per-

spective), the joint transition PDF p(x f , ẋ f , t f |xi , ẋi ,

ti ) of the oscillator response from the initial state

(xi , ẋi , ti ) to the final state (x f , ẋ f , t f ) can be expressed

as a functional integral over the space of all possible

paths C{x f , ẋ f , t f ; xi , ẋi , ti } in the form
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p(x f ,ẋ f , t f |xi , ẋi , ti )

=
∫ {x f ,ẋ f ,t f }

{xi ,ẋi ,ti }
exp

(

−
∫ t f

ti

L(x, ẋ, ẍ)dt

)

[dx(t)]

(2)

where dx(t)denotes a functional measure, and L(x, ẋ, ẍ)

represents the Lagrangian functional given by

L(x, ẋ, ẍ) =
[ẍ + cẋ + kx + g(x, ẋ)]2

4π S0
(3)

Further, according to calculus of variations [17] (see

also Appendix for more details), the functional integral

of Eq. (2) can be approximately evaluated by consid-

ering only the ”most probable path” xc, which satisfies

the condition

δ

∫ t f

ti

L(xc, ẋc, ẍc)dt = 0 (4)

In this regard, Eq. (4) yields the Euler–Lagrange equa-

tion

∂L

∂xc

−
∂

∂t

∂L

∂ ẋc

+
∂2

∂t2

∂L

∂ ẍc

= 0 (5)

in conjunction with the boundary conditions

xc(ti ) = xi , ẋc(ti ) = ẋi ,

xc(t f ) = x f , ẋc(t f ) = ẋ f

(6)

Solving Eqs. (5)–(6) for xc and substituting into Eq.

(2) yield an approximate closed-form expression for

the transition PDF in the form

p(x f , ẋ f , t f |xi , ẋi , ti ) ≈ Cexp

(

−
∫ t f

ti

L(xc, ẋc, ẍc)dt

)

(7)

where C is a normalization constant determined by

∫ +∞

−∞

∫ +∞

−∞
p(x f , ẋ f , t f |xi , ẋi , ti )dx f dẋ f = 1 (8)

It is noted that the most probable path approxima-

tion has exhibited a relatively high degree of accuracy

in various diverse applications [10,11,13–15]. In fact,

as proved in [18], for the case of linear systems the

most probable path approximation yields the exact joint

response PDF. The interested reader is also directed to

[12] for a recent enhancement of the accuracy degree

of the technique based on a quadratic approximation,

which accounts for fluctuations around the most prob-

able path as well.

2.2 Joint response PDF determination based on sparse

expansions and L p-norm (0 < p < 1)

minimization

It can be readily seen that a brute-force numerical

implementation of the WPI technique requires the dis-

cretization of the effective PDF domain into N points in

each dimension, followed by the solution of a boundary

value problem (BVP) described by Eqs. (5)–(6) corre-

sponding to each and every point. Clearly, the com-

putational cost increases exponentially with increasing

number of dimensions; see also [13] for a relevant dis-

cussion. Thus, alternative more efficient formulations

have been developed recently by relying on appropri-

ate PDF expansions [15,19]. In this regard, the prob-

lem of evaluating the joint response PDF is recast into

determining the PDF expansion coefficient vector. This

yields a significantly reduced number of BVPs of the

form of Eq. (5) to be solved, ordinarily equal to the

number of the PDF expansion coefficients. As shown

in [14], the required number of BVPs can be further

reduced by resorting to compressive sampling concepts

and tools (e.g., [16,20,21]) for formulating an under-

determined system of algebraic equations to be solved

for the sparse PDF expansion coefficient vector.

In this section, the computational efficiency of the

WPI technique is enhanced by relying on L p-norm

(0 < p < 1) minimization algorithms for formulat-

ing and solving the underdetermined algebraic system

of equations for the PDF expansion coefficients. This

development can be construed as an extension and gen-

eralization of [14], where the response PDF coefficient

vector was determined based on a rather standard L1-

norm minimization formulation. Specifically, a solu-

tion approach based on L p-norm (0 < p < 1) exhibits

an enhanced sparsity-promoting behavior compared to

L1-norm [16], and thus, fewer BVPs need to be solved

for obtaining PDF points to be used in the underde-

termined system of equations for the expansion coeffi-

cients. In fact, as shown in the numerical examples in

Sect. 3, the L p-norm (0 < p < 1) approach exhibits

a higher degree of accuracy in estimating the system

response PDF at a reduced computational cost.
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In the ensuing analysis, considering fixed initial con-

ditions at ti = 0, the non-stationary joint response PDF

corresponding to the nonlinear oscillator of Eq. (1) is

expressed in the form

p(x, ẋ, t) ≈ exp(μ(x, ẋ, t)) (9)

or, alternatively,

p(x, ẋ, t) ≈ ν(x, ẋ, t) (10)

where μ(x, ẋ, t) and ν(x, ẋ, t) are approximating

expansions with appropriately selected bases. Indica-

tive candidates include multivariate polynomials [22],

wavelets [23], and positive definite functions [24].

Without loss of generality and based on the findings

in [15], two distinct approximating approaches are

employed in the following in conjunction with Eq. (9)

or Eq. (10).

First, the multivariate polynomial and the wavelet

bases are used for the spatial and the temporal dimen-

sions, respectively, whereas a Kronecker-type expan-

sion (e.g., [25]) of μ(x, ẋ, t) in Eq. (9) is considered in

the form

μ = (P ⊗ Dt )c (11)

In Eq. (11), ⊗ denotes the Kronecker operator; Dt ∈
R

Nt ×Nt represents an one-dimensional harmonic

wavelet basis [26] corresponding to the time domain;

P ∈ R
Np×Np is the monomial basis referring to the spa-

tial domain (x, ẋ); μ ∈ R
Nt Np×1 represents the mea-

surements μ(x, ẋ , t) = ln(p(x, ẋ, t)) obtained by the

WPI technique as described in Sect. 2.1; c ∈ R
n×1

denotes the coefficient vector to be determined. In this

regard, n = Nt Np measurements are required by the

WPI to determine the non-stationary joint response

PDF of the nonlinear system, where Nt and Np pertain

to a discretization of the time and the space domains,

respectively. Note, in passing, that a multivariate poly-

nomial expansion is a reasonable choice for a wide

range of nonlinear systems. The rationale relates to the

fact that in many cases the nonlinear response PDF can

be viewed as a perturbation (not necessarily small) from

the corresponding linear system PDF. In fact, the lin-

ear oscillator response PDF is Gaussian, with an expo-

nent represented exactly by a 2nd -order polynomial

expansion. Thus, it is anticipated that the response PDF

of various nonlinear oscillators can be captured effi-

ciently by employing a higher-order polynomial expan-

sion, where only few of the higher-order monomials

are active. In other words, a polynomial basis for P

is expected to exhibit sparsity. This attribute has been

exploited already in [14] by utilizing an L1-norm min-

imization formulation for determining the PDF expan-

sion coefficients.

Nevertheless, various oscillators exhibit non-smooth

nonlinear behaviors, which cannot be captured effi-

ciently by polynomial approximations. In such cases, a

polynomial basis is not sparse and alternative approxi-

mations need to be explored. In this regard, the strategy

of approximating ν in Eq. (10) by utilizing a wavelet

basis both for the spatial and the temporal dimensions,

in conjunction with a Kronecker expansion, is consid-

ered in the ensuing analysis; that is, Eq. (10) takes the

form

ν = (Ds1 ⊗ Ds2 ⊗ Dt )c (12)

where Ds1 ∈ R
Ns1×Ns1 and Ds2 ∈ R

Ns2×Ns2 represent

one-dimensional harmonic wavelet bases correspond-

ing to the spatial domain; and ν ∈ R
Nt Np×1 represent

the measurements ν(x, ẋ, t) = p(x, ẋ, t) obtained by

the WPI technique as described in Sect. 2.1. In this

case, n = Ns1 Ns2 Nt measurements are required by

the WPI, where Ns1 and Ns2 pertain to a discretization

of the 2-dimensional spatial domain.

Next, a solution approach based on L p-norm (0 <

p < 1) minimization is developed for determining

the response PDF expansion coefficients. In passing,

note that approaches based on L p-norm have exhib-

ited superior sparsity-promoting behaviors compared

to L1-norm in a variety of engineering dynamics appli-

cations, such as spectral analysis and estimation under

limited data [27]; see also [16] for a broad perspective.

Specifically, for a given time instant t = t j ( j =
1, ..., Nt ) and using r < n j PDF measurements, where

n j = Np and n j = Ns1 Ns2 referring to Eqs. (11) and

(12), respectively, Eqs. (11) and (12) are cast into an

underdetermined linear system of equations of the form

y0, j = � y j = Ac j (13)
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where

y j =
{

μ j referring to Eq. (11)

ν j referring to Eq. (12)
(14)

and

A =
{

�P referring to Eq. (11)

�(Ds1 ⊗ Ds2) referring to Eq. (12)
(15)

In Eqs. (13)–(15),μ j and ν j are the n j ×1 measurement

vectors corresponding to time instant t = t j ; � is an

r × n j matrix , which deletes randomly rows from y j

and the expansion basis; and c j is the n j ×1 coefficient

vector to be determined corresponding to t = t j .

Further, an L p-norm (0 < p < 1) minimization

formulation is proposed for solving Eq. (13). This takes

the form

min |c j |L p , subject to y0, j = Ac j (16)

In the following, the p = 1/2 norm is used since, as

discussed in [27,28], the sparsest solution is obtained

for 1/2 ≤ p < 1, whereas the sparsity degree remains

relatively unaffected for 0 < p < 1/2. Next, to min-

imize Eq. (16), the Lagrangian L(c j , λ) is introduced

as:

L(c j , λ) =
∑

n j

|c j,i |
1
2 + λT (Ac j − y0, j ) (17)

The partial derivatives of Eq. (17) with respect to c j

and λ become zero for:

c j = QA′(AQA′)−1
y0, j (18)

where

Q = diag(|c j |
3
2 ) (19)

Equation (18) can be solved in an iterative manner, i.e.,

the kth iteration yields

c j,k = Qk−1A′(AQk−1A′)−1
y0, j (20)

where

Qk−1 = diag(|c j,k−1|
3
2 ) (21)

Note that this algorithm is equivalent to a weighted

L2-norm minimization [29], i.e.,

min
∑

ωi c
2
j,i , subject to y0, j = Ac j (22)

where ωi = |c j,i,k−1|−3/2. Since the solution is sparse,

the values of many c j,i will tend toward zero. To avoid

division by zero in ωi as the algorithm converges to

a solution, a decreasing parameter ε is introduced to

regularize the optimization problem [30]. This yields

Qk−1 = diag(((|c j,k−1| + √
ε j · mean(|c j,k−1|))2)

3
4 )

(23)

with

ε j =
ε j−1

10
(24)

where an indicative starting value for ε j is ε0 = 0.01.

For each ε j , Eq. (20) is repeated until satisfying the

condition

‖c j,k − c j,k−1‖2

‖c j,k−1‖2
<

√
ε j

100
(25)

It is remarked that the generalization of the devel-

oped technique to treat MDOF nonlinear systems is

rather straightforward. Specifically, for an m-DOF

system, the expansion in Eq. (9), or alternatively in

Eq. (10), corresponds to the system 2m-variate joint

response PDF. This yields Eq. (13) to be solved for

the expansion coefficient vector based on L p-norm

(0 < p < 1) minimization. Note that in this case the

dimensions of the measurement vector y0, j and the

basis matrix A are appropriately augmented to account

for the increase in the number of DOFs of the system.

2.3 Mechanization of the technique

The mechanization of the developed stochastic response

determination technique based on L p-norm (0 < p <

1) minimization comprises the following steps:

(a) Construct the multivariate polynomial basis P for

the spatial domain and the harmonic wavelet basis

Dt for the temporal dimension in Eq. (11) (or, alter-

natively, the harmonic wavelet bases Ds1, Ds2, and

Dt in Eq. (12)).
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(b) For a specific t = t j , select r points in the spa-

tial domain either randomly, or by utilizing certain

optimality criteria (e.g., [31]).

(c) Determine the PDF measurement points y0, j in Eq.

(13) by solving Eqs. (5)–(6) and utilizing Eq. (7).

(d) Solve Eq. (16) for obtaining the sparse coefficient

vector c j .

(e) Repeat steps (b-d) for j = 1, .., Nt time instants

and substitute c into Eq. (11) (or, alternatively,

Eq. (12)) for determining the non-stationary sys-

tem response PDF.

In passing, note that alternative to Kronecker prod-

uct formulations, such as mesh-free approximation

schemes based on positive definite functions, can be

also employed for approximating the system response

PDF and for deriving an underdetermined linear sys-

tem of algebraic equations in the form of Eq. (13); see

also [15] for a relevant discussion.

3 Numerical examples

In this section, three distinct numerical examples per-

taining to oscillators with diverse nonlinear behaviors

are considered for assessing the reliability of the devel-

oped technique. In this regard, the response PDF deter-

mined by L1/2-norm minimization is compared with

estimates based on L1-norm minimization and on MCS

(10,000 realizations). Clearly, the degree of computa-

tional efficiency enhancement obtained by L1/2-norm

minimization depends on a variety of factors, such

as the nonlinearity type and the selected expansion

basis. Nevertheless, for approximately the same accu-

racy degree, it is shown that the herein developed tech-

nique requires, in some cases, even up to 40% fewer

PDF points to be obtained by the WPI than a standard

L1-norm minimization approach.

3.1 Duffing nonlinear oscillator

Consider a Duffing nonlinear oscillator subject to Gaus-

sian white noise, whose dynamics is governed by Eq.

(1) with

g(x, ẋ) = εkx3 (26)

and ε > 0 denotes a parameter accounting for the

nonlinearity degree. The oscillator is considered to

be initially at rest, whereas an eighth-order polyno-

mial expansion is used for the basis P in Eq. (11).

This translates into n j = Np = 45 coefficients to

be determined for a specific time instant. Also, the

harmonic wavelet basis Dt in Eq. (11) has Nt = 16

elements. In the following, the parameter values used

are S0 = 0.1911, k = 0.3, c = 1, ε = 5
3
. Note that

the exact analytical expression of the stationary joint

response PDF corresponding to the Duffing oscillator

of Eq. (26) is available and given by (e.g., [32])

p(x, ẋ) = Cexp

[
−c

π S0

(
kx2

2
+

εx4

4
+

ẋ2

2

)]

(27)

where C is a normalization constant.

Next, Fig. 1 shows the determined polynomial

expansion coefficients for t = 1.2s using both r/n j =
0.6 and r/n j = 0.7. It is seen that both the L1/2-norm

and the L1-norm approaches exhibit high accuracy in

recovering the sparse coefficient vector for r/n j = 0.7

as compared to estimates based on r/n j = 1. How-

ever, the L1/2-norm approach appears to yield a sparser

(and more accurate) solution when fewer PDF measure-

ments are used, i.e., for r/n j = 0.6. This is further cor-

roborated in Fig. 2, where the response displacement

and velocity PDFs are plotted corresponding to t =
1.2s. Comparisons between PDF estimates obtained

by the L1/2-norm and the L1-norm approaches for

r/n j = 0.6, and by MCS data (10,000 realizations),

demonstrate an enhanced accuracy degree exhibited by

the L1/2-norm over the L1-norm. Results based on a

brute-force implementation of the WPI technique rely-

ing on a discretization of the PDF effective domain are

included as well.

Moreover, attention is directed to t = 10s corre-

sponding to the stationary phase of the response pro-

cess. In fact, the exact stationary response PDF is given

by Eq. (27) exhibiting a polynomial representation with

only three active coefficients. In Fig. 3, the exact coeffi-

cient vector pertaining to Eq. (27) is compared with the

coefficient vectors obtained by L1/2-norm and by L1-

norm, both for r/n j = 0.45 and for r/n j = 0.7. It is

seen that even when very few measurements are used,

i.e., r/n j = 0.45, L1/2-norm is capable of successfully

determining the expansion coefficients, demonstrating

superior accuracy compared to L1-norm. Note that

approximately the same degree of accuracy is achieved

by L1 and L1/2-norms for r/n j = 0.7 at the expense,

however, of additional computational cost related to the
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Fig. 1 Joint response PDF polynomial expansion coefficients

corresponding to a Duffing nonlinear oscillator at t = 1.2s with

a r/n j = 0.6 and b r/n j = 0.7

increased number of BVPs to be solved. In other words,

the enhanced sparsity-promoting capabilities of L1/2-

norm compared to L1-norm yield accurate coefficient

vector estimates by requiring fewer PDF measurement

points, i.e., at a reduced computational cost. This is

also supported by corresponding PDF estimates shown

in Fig. 4 for r/n j = 0.45, where comparisons with

pertinent MCS data (10,000 realizations) demonstrate

a higher degree of accuracy exhibited by the L1/2-norm

over the L1-norm.

3.2 Oscillator with asymmetric nonlinearities

An oscillator with asymmetric nonlinearities is consid-

ered in this section to further assess the performance

of the L1/2-norm minimization formulation in con-

junction with expansion bases exhibiting a moderate

degree of sparsity. Specifically, compared to the Duff-

ing oscillator in Sect. 3.1, more terms in the polynomial

expansion are anticipated to be active due to the oscilla-

Fig. 2 Duffing nonlinear oscillator marginal response PDF at

t = 1.2s: a displacement and b velocity; comparisons between

L1/2-norm and L1-norm approaches for r/n j = 0.6 and MCS

data (10,000 realizations). Results based on a brute-force imple-

mentation of the WPI technique are included as well

tor asymmetric nonlinear behavior, thus yielding a less

sparse coefficient vector.

In this regard, the governing equation of motion is

given by Eq. (1) with:

g(x, ẋ) = εkx2 (28)

where ε denotes a parameter accounting for the nonlin-

earity degree. The Kronecker expansion with an eighth-

order polynomial basis is used, which leads to n j =
Np = 45 coefficients to be determined for a specific

time instant, whereas the harmonic wavelet basis Dt in

Eq. (11) comprises Nt = 16 elements. In the following,

the parameters S0 = 0.0637, k = 1, c = 0.2, ε = 0.5

are used.

Next, Fig. 5 shows the computed polynomial expan-

sion coefficients for t = 1s using both r/n j = 0.3 and

r/n j = 0.4. Clearly, compared to r/n j = 1 , the L1/2-

norm approach exhibits a higher degree of accuracy
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Fig. 3 Joint response PDF polynomial expansion coefficients

corresponding to a Duffing nonlinear oscillator at t = 10s (sta-

tionary phase) with a r/n j = 0.45 and b r/n j = 0.7; compar-

isons with the exact coefficient vector corresponding to Eq. (27)

over L1-norm, especially when the number of avail-

able measurements r/n j decreases. This is readily seen

in Fig. 6, where the response displacement and veloc-

ity PDFs are plotted corresponding to t = 1s. Com-

parisons between PDF estimates obtained by the L1/2-

norm and the L1-norm approaches for r/n j = 0.3, and

by MCS data (10,000 realizations) demonstrate supe-

rior accuracy exhibited by the L1/2-norm over the L1-

norm. Results based on a brute-force implementation

of the WPI technique relying on a discretization of the

PDF effective domain are included as well.

Next, the time instant t = 2s is considered for which

the asymmetry in the response PDF is more prevalent

than at t = 1s. In fact, as also seen in Fig. 7 where

the corresponding coefficient vector is estimated both

for r/n j = 0.7 and for r/n j = 0.8, more polynomial

basis coefficients are active (compared to t = 1s) for

capturing the asymmetric shape of the response PDF

shown in Fig. 8, estimated for r/n j = 0.7 by L1-

norm and by L1/2-norm. Pertinent MCS-based esti-

Fig. 4 Duffing nonlinear oscillator marginal response PDF at

t = 10s (stationary phase): a displacement and b velocity;

comparisons between L1/2-norm and L1-norm approaches for

r/n j = 0.45, and the exact solution of Eq. (27)

mates (10,000 realizations) are included as well. Obvi-

ously, even for this case where the target coefficient

vector is less sparse than the one corresponding to the

Duffing oscillator in Sect. 3.1, the L1/2-norm approach

exhibits superior accuracy over L1-norm, especially for

decreasing values of r/n j . In other words, the same

accuracy degree can be achieved with fewer measure-

ment points, i.e., at a lower computational cost.

3.3 Nonlinear vibro-impact oscillator

In this section, a nonlinear vibro-impact oscillator is

considered, whose governing equation is given by Eq.

(1) with

g(x, ẋ) = ηh(x) (29)
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Fig. 5 Joint response PDF polynomial expansion coefficients

corresponding to an oscillator with asymmetric nonlinearities at

t = 1s with a r/n j = 0.3 and b r/n j = 0.4

and

h(x) =
{

(x − a)3/2 if x ≥ a

0 otherwise
(30)

In Eqs. (29)–(30), η denotes a parameter accounting for

the nonlinearity degree, and a represents the displace-

ment bound. The interested reader is also directed to

the review paper [33] for more details and for a broader

perspective. Further, the exact stationary joint response

PDF takes the form [33]

p(x, ẋ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

Ce

−
x2

2σ 2
0

−
ẋ2

2σ 2
0 ω2

0

−ζ
(x − a)5/2

σ
5/2
0 if x ≥ a

Ce

−
x2

2σ 2
0

−
ẋ2

2σ 2
0 ω2

0 if x < a

(31)

Fig. 6 Marginal PDF of an oscillator with asymmetric nonlin-

earities at t = 1s: a displacement and b velocity; comparisons

between L1/2-norm, L1-norm approaches for r/n j = 0.3 and

MCS data (10,000 realizations). Results based on a brute-force

implementation of the WPI technique are included as well

where

k = ω2
0; ζ =

2η
√

σ0

5ω2
0

; σ 2
0 =

π S0

2cω2
0

(32)

and C is a normalization constant.

It can be readily seen that due to the form of the

nonlinear function and specifically due to the pres-

ence of the non-integer power in the expression of Eq.

(30), a standard polynomial expansion cannot model

the response PDF exactly. This is obvious in Eq. (31)

where the stationary response PDF comprises a term

of power 5/2. Moreover, depending on the magnitude

of the nonlinearity controlled by parameter η, the joint

response PDF shape can experience abrupt changes (in

the region around the displacement bound) that may

require higher-order polynomial expansions for their

accurate representation. Clearly, not only a PDF expan-

sion based on a standard polynomial basis is not sparse,
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Fig. 7 Joint response PDF polynomial expansion coefficients

corresponding to an oscillator with asymmetric nonlinearities at

t = 2s with a r/n j = 0.7 and b r/n j = 0.8

but also the monomial basis is prone to ill-conditioning

as noted in [14]. In fact, attempting to use the same

basis for the spatial domain as in examples 3.1 and

3.2, employing both 8th- and 12th-order polynomial

expansions, has led to ill-conditioning of the resulting

interpolation matrix. Therefore, to bypass this limita-

tion, a Kronecker expansion in the form of Eq. (12)

utilizing harmonic wavelets both in the space and the

time domains is used next with Ns1 = Ns2 = 20 and

Nt = 16, and parameter values S0 = 1.0192, k =
0.3, c = 0.5, η = 5, a = 0.5.

Figure 9 shows the computed harmonic wavelet

expansion coefficients corresponding to t = 1.2s,

using both r/n j = 0.3 and r/n j = 0.4. Compared to

the solution based on r/n j = 1, it is seen that both the

L1/2-norm and the L1-norm approaches exhibit high

accuracy in recovering the sparse coefficient vector for

r/n j = 0.4. However, the L1/2-norm approach appears

to yield a sparser (and more accurate) solution when

fewer PDF measurements are used, i.e., for r/n j = 0.3.

Fig. 8 Marginal PDF of an oscillator with asymmetric nonlin-

earities at t = 2s: a displacement and b velocity; comparisons

between L1/2-norm, L1-norm approaches for r/n j = 0.7 and

MCS data (10,000 realizations). Results based on a brute-force

implementation of the WPI technique are included as well

In Fig. 10, the corresponding PDF estimates are plot-

ted and compared with pertinent MCS results (10,000

realizations). It is seen that L1/2-norm minimization

yields a solution that exhibits better agreement with

MCS data than the one obtained by L1-norm minimiza-

tion. Results based on a brute-force implementation of

the WPI technique relying on a discretization of the

PDF effective domain are included as well.

Next, attention is directed to t = 6.4s corresponding

to the stationary phase of the response process. Simi-

larly to the t = 1.2s case, the estimated coefficient

vector based on L1/2-norm exhibits better agreement

with the solution based on r/n j = 1 than the estimate

based on L1-norm. This is shown in Fig. 11, where both

r/n j = 0.3 and r/n j = 0.4 are used. Further, the PDF

estimates based on L1-norm and L1/2-norm are plotted

in Fig. 12 and compared with the exact response PDF

of Eq. (31). It is seen that even for this highly asym-

metric response displacement PDF featuring an abrupt
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Fig. 9 Joint response PDF harmonic wavelet expansion coef-

ficients corresponding to a nonlinear vibro-impact oscillator at

t = 1.2s with a r/n j = 0.3 and b r/n j = 0.4

change in its shape, L1/2-norm minimization provides

a solution of satisfactory accuracy requiring only few

PDF measurements. Also, it consistently outperforms

L1-norm minimization in terms of achieved accuracy.

More specifically, referring to the exact joint response

PDF of Eq. (31), the root-mean-square errors corre-

sponding to the estimates obtained based on L1- and

L1/2-norms are equal to 5% and 1%, respectively.

4 Concluding remarks

In this paper, the WPI technique for determining the

stochastic response of diverse nonlinear dynamical sys-

tems has been extended and its computational effi-

ciency has been enhanced by relying on sparse rep-

resentations and compressive sampling concepts and

tools. Specifically, relying on the localization capa-

bilities of the WPI technique for evaluating directly

specific points of the joint response PDF, and uti-

lizing appropriately selected bases for expanding the

Fig. 10 Nonlinear vibro-impact oscillator marginal response

PDF at t = 1.2s: a displacement and b velocity; comparisons

between L1/2-norm and L1-norm approaches for r/n j = 0.3

and MCS data (10,000 realizations). Results based on a brute-

force implementation of the WPI technique are included as well

PDF, has led to an underdetermined system of equa-

tions for the expansion coefficient vector. This has

been solved by employing an L1/2-norm minimization

formulation. Notably, the proposed L1/2-norm formu-

lation has exhibited an enhanced sparsity-promoting

behavior compared to an alternative standard L1-norm

minimization approach. In other words, the sparse PDF

expansion coefficient vector can be determined by uti-

lizing fewer PDF points, thus leading to a significant

reduction of the associated computational cost since

fewer BVPs need to be solved numerically. Moreover,

it has been shown that utilizing the same number of PDF

points obtained by the WPI, L1/2-norm minimization

yields more accurate PDF estimates than an L1-norm

approach. Comparisons with pertinent MCS data have

demonstrated the reliability of the developed technique.

This has been done in conjunction with various stochas-

tically excited oscillators exhibiting diverse nonlinear

behaviors, including a Duffing oscillator, an oscillator
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Fig. 11 Joint response PDF harmonic wavelet expansion coef-

ficients corresponding to a nonlinear vibro-impact oscillator at

t = 6.4s (stationary phase) with a r/n j = 0.3 and b r/n j = 0.4

with asymmetric nonlinearities, and a nonlinear vibro-

impact oscillator.
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Appendix

In this Appendix, more details are provided on the

derivation of the Euler–Lagrange Eq. (5) to be solved

in conjunction with the boundary conditions of Eq.

(6) for determining the WPI most probable path

(see also Refs. [11,12]). Specifically, considering the

Lagrangian functional of Eq. (3), the stochastic action

S[x, ẋ, ẍ] is defined as

S[x, ẋ, ẍ] =
∫ t f

ti

L[x, ẋ, ẍ]dt (A.1)

Next, by utilizing a functional Taylor-type series expan-

sion of the stochastic action S[x, ẋ, ẍ] and by express-

ing x(t) as

x(t) = xc(t) + X (t) (A.2)
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the stochastic action S is written as:

S[x] = S[xc + X ] =S[xc] + δS[xc, X ]

+
1

2!
δ2S[xc, X ] + ...

(A.3)

In Eq. (A.3), xc(t) is the path associated with the maxi-

mum probability of occurrence and X (t), with X (ti ) =
X (t f ) = Ẋ(ti ) = Ẋ(t f ) = 0, represents the fluctua-

tions around xc(t) (e.g., [8]). In Eq. (A.3), S[x, ẋ, ẍ]
is denoted as S[x] for simplicity, and δS[xc, X ] rep-

resents the functional differential (or variation) of S

evaluated on xc. Moreover, according to calculus of

variations [17] and considering Eqs. (A.1) and (A.3),

the differential δS[xc, X ] takes the form

δS[xc, X ] =
∫ t f

ti

(
∂L

∂x

∣
∣
∣
∣
x=xc

X +
∂L

∂ ẋ

∣
∣
∣
∣
x=xc

Ẋ

+
∂L

∂ ẍ

∣
∣
∣
∣
x=xc

Ẍ

)

dt

(A.4)

Further, considering Eqs. (2) and (A.1), it is seen that

the maximum probability of occurrence corresponds

to minimum S[x, ẋ, ẍ]. Thus, xc(t) is associated with

an extremum of the functional S[x, ẋ, ẍ] . In this con-

text, calculus of variations dictates [17] that the first

variation of S[x, ẋ, ẍ] vanishes for x(t) = xc(t), i.e.,

δS[xc, X ] = 0 (A.5)

Therefore, Eq. (A.3) becomes

S[x] = S[xc] +
1

2!
δ2S[xc, X ] + ... (A.6)

Furthermore, combining Eq. (A.4) and the extremality

condition of Eq. (A.5) yields

∫ t f

ti

(
∂L

∂x

∣
∣
∣
∣
x=xc

X +
∂L

∂ ẋ

∣
∣
∣
∣
x=xc

d

dt
X

+
∂L

∂ ẍ

∣
∣
∣
∣
x=xc

d2

dt2
X

)

dt = 0

(A.7)

Next, integrating Eq. (A.7) by parts leads to

[(
∂L

∂ ẋ

∣
∣
∣
∣
x=xc

−
d

dt

∂L

∂ ẍ

∣
∣
∣
∣
x=xc

)

X (t)

]t f

ti
︸ ︷︷ ︸

A0

+
[

∂L

∂ ẍ

∣
∣
∣
∣
x=xc

Ẋ(t)

]t f

ti
︸ ︷︷ ︸

A1

+
∫ t f

ti

(
∂L

∂x

∣
∣
∣
∣
x=xc

−
d

dt

∂L

∂ ẋ

∣
∣
∣
∣
x=xc

+
d2

dt2

∂L

∂ ẍ

∣
∣
∣
∣
x=xc

)

X (t)dt

︸ ︷︷ ︸

B

= 0

(A.8)

where, since X (ti ) = X (t f ) = Ẋ(ti ) = Ẋ(t f ) = 0,

the terms A0 and A1 vanish. Thus, Eq. (A.8) yields

the Euler–Lagrange Eq. (5) to be solved in conjunction

with the boundary conditions of Eq. (6) for determining

the WPI most probable path xc.

Note that xc can be used, at least in principle, for

evaluating the higher-order terms in the expansion of

Eq. (A.6). However, in the majority of practical imple-

mentations of the WPI technique, only the first term

S[xc] is retained in the expansion of Eq. (A.6), since

the evaluation of higher-order terms exhibits consider-

able analytical and computational challenges. In fact,

in the most probable path approximation shown in

Eq. (7) the remaining terms in the expansion of Eq.

(A.6) are treated collectively as a constant C . The

interested reader is also directed to [12], where a

quadratic approximation was developed for the WPI

that accounts explicitly for the contribution also of the

second variation term in Eq. (A.6).
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