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Abstract The computational efficiency of the Wiener
path integral (WPI) technique for determining the
stochastic response of diverse nonlinear dynamical
systems is enhanced herein by relying on advanced
compressive sampling concepts and tools. Specifically,
exploiting the sparsity of appropriately selected expan-
sions for the joint response probability density function
(PDF), and leveraging the localization capabilities of
the WPI technique for direct evaluation of specific PDF
points, yield an underdetermined linear system of equa-
tions to be solved for the PDF expansion coefficients.
This is done by resorting to L ,-norm (0 < p < 1) min-
imization formulations and algorithms, which exhibit
an enhanced sparsity-promoting behavior compared
to standard Lj-norm minimization approaches. This
translates into a significant reduction of the associated
computational cost. In fact, for approximately the same
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accuracy degree, it is shown that the herein developed
technique based on L ,-norm (0 < p < 1) minimiza-
tion requires, in some cases, even up to 40% fewer
boundary value problems to be solved as part of the
solution scheme than a standard L | -norm minimization
approach. The reliability of the technique is demon-
strated by comparing WPI-based response PDF esti-
mates with pertinent Monte Carlo simulation (MCS)
data (10,000 realizations). In this regard, realizations
compatible with the excitation stochastic process are
generated, and response time-histories are obtained by
integrating numerically the nonlinear system equations
of motion. Next, MCS-based PDF estimates are com-
puted based on statistical analysis of the response time-
histories. Several numerical examples are considered
pertaining to various stochastically excited oscillators
exhibiting diverse nonlinear behaviors. These include a
Duffing oscillator, an oscillator with asymmetric non-
linearities, and a nonlinear vibro-impact oscillator.

Keywords Sparse representations - Compressive
sampling - Nonlinear systems - Stochastic dynamics -
Path integral

1 Introduction
Ever-increasing computational power, novel signal
processing techniques, advanced experimental setups,

and progress in emerging and transformative technolo-
gies have contributed to a highly complex mathemat-
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ical modeling of the governing equations of diverse
dynamical systems; see, for instance, indicative exam-
ples from nano-mechanics [1] and energy harvesting
[2]. In fact, developing versatile techniques for deter-
mining system response and reliability statistics, accu-
rately and in a computationally efficient manner, has
been a persistent challenge in the field of stochastic
engineering dynamics; see, indicatively, [3-5] for a
broad perspective on the capabilities and limitations
of various solution techniques developed over the past
six decades.

One of the promising techniques developed recently
by Kougioumtzoglou and co-workers relies on the con-
cept of Wiener path integral (WPI), which relates to the
generalization of integral calculus to functionals (e.g.,
[6-8]). The WPI technique is capable of determining
the joint response transition probability density func-
tion (PDF) of multi-degree-of-freedom (MDOF) sys-
tems exhibiting a wide range of nonlinear/hysteretic
behaviors [9,10]. Further, it can account for diverse
non-white and non-Gaussian stochastic process mod-
eling [11], while its accuracy has been enhanced
recently based on a quadratic approximation of the
WPI functional series expansion [12]. Furthermore,
high-dimensional systems can be readily addressed
by relying on a variational formulation with mixed
fixed/free boundary conditions, which renders the com-
putational cost independent of the total number of
stochastic dimensions [13]. Moreover, it was shown
in [14] that the computational cost can be reduced
drastically by employing sparse representations for the
system response PDF in conjunction with compressive
sampling schemes and group sparsity concepts. Also,
the efficacy of employing global multi-dimensional
bases for determining the non-stationary joint response
PDF in a direct manner was demonstrated in [15].

In this paper, the computational efficiency of the
WPI technique is enhanced by relying on advanced
compressive sampling concepts and tools; see also [16]
for a recent review paper. This is done by employing
sparse expansions for the system response PDF and
by relying on the localization capabilities of the WPI
technique for direct evaluation of specific PDF points.
This yields an underdetermined linear system of alge-
braic equations to be solved via L ,-norm (0 < p < 1)
minimization algorithms for obtaining the PDF expan-
sion coefficient vector. In comparison with the L {-norm
minimization approach proposed in [14], the L ,-norm
(0 < p < 1) minimization formulation developed
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herein exhibits an enhanced sparsity-promoting behav-
ior. This translates into fewer PDF points to be obtained
by the WPI for formulating the underdetermined sys-
tem of equations. In other words, the same degree of
accuracy is attained in estimating the system response
PDF at a reduced computational cost. The reliability
of the technique is demonstrated by comparing WPI-
based results with pertinent Monte Carlo simulation
(MCS) data. This is done in conjunction with vari-
ous stochastically excited oscillators exhibiting diverse
nonlinear behaviors. These include a Duffing oscilla-
tor, an oscillator with asymmetric nonlinearities, and a
nonlinear vibro-impact oscillator.

2 Mathematical formulation
2.1 Wiener path integral technique: selected aspects

In this section, fundamental concepts and basic aspects
of the WPI technique are reviewed for completeness,
in conjunction with a stochastically excited single-
degree-of-freedom (SDOF) nonlinear oscillator for
notation simplicity and tutorial effectiveness. The inter-
ested reader is also directed to [13] for a recent exten-
sion of the technique to address high-dimensional non-
linear systems, as well as to [11] for a generalization
to account for non-white and non-Gaussian stochastic
excitation.

Specifically, consider the governing equation of
motion

X4cx +kx+g(x,x) =w() (1

where x is the nonlinear system response, and a dot over
a variable denotes differentiation with respect to time ¢;
¢, k are the damping and stiffness coefficients, respec-
tively; and g(x, x) is an arbitrary nonlinear function.
The excitation w(#) represents a Gaussian zero-mean
white noise process with a constant power spectrum
value equal to Sp.

Next, following [11] (see also [8] for a broader per-
spective), the joint transition PDF p(x ¢, xr, tr]x;, X;,
t;) of the oscillator response from the initial state
(x;, X;, t;) tothe final state (x s, X, f ) canbe expressed
as a functional integral over the space of all possible
paths C{xy, X7, tr; x;, X;, t;} in the form
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p(xp Xy, trlxi, Xi,t;)

xpXpotp) tf
=/ exp (—/ L(x,)é,)'c')dt) [dx(1)]
{xi % i} i

2)

where dx (1) denotes a functional measure, and L (x, x, X)

represents the Lagrangian functional given by

o FHex+kx+gx, 0P
L(x,x,X)= 4750 & (3)

Further, according to calculus of variations [17] (see
also Appendix for more details), the functional integral
of Eq. (2) can be approximately evaluated by consid-
ering only the "most probable path” x., which satisfies
the condition

Iy
3/ L(x¢, X¢, Xc)dt =0 @)
4

In this regard, Eq. (4) yields the Euler-Lagrange equa-
tion

9L 9 9L 0% 0L )
dx. Ot dx, 012 3%,

in conjunction with the boundary conditions

Xe(t) = xi, ):Cc(ti) :xz» ©6)
xe(ty) =xy, Xe(ty) =xf

Solving Egs. (5)-(6) for x. and substituting into Eq.
(2) yield an approximate closed-form expression for
the transition PDF in the form

Iy
prp gyl i) ~ Cexp [ — f Lixe.dc. i)t | (7)
L,

i

where C is a normalization constant determined by

+00 400
f / pxp, Xp,tplxi, %, tp)dxpdiy =1 (8)
—00 —00

It is noted that the most probable path approxima-
tion has exhibited a relatively high degree of accuracy
in various diverse applications [10,11,13—15]. In fact,
as proved in [18], for the case of linear systems the
most probable path approximation yields the exact joint
response PDF. The interested reader is also directed to
[12] for a recent enhancement of the accuracy degree

of the technique based on a quadratic approximation,
which accounts for fluctuations around the most prob-
able path as well.

2.2 Joint response PDF determination based on sparse
expansions and L ,-norm (0 < p < 1)
minimization

It can be readily seen that a brute-force numerical
implementation of the WPI technique requires the dis-
cretization of the effective PDF domain into NV points in
each dimension, followed by the solution of a boundary
value problem (BVP) described by Egs. (5)-(6) corre-
sponding to each and every point. Clearly, the com-
putational cost increases exponentially with increasing
number of dimensions; see also [13] for a relevant dis-
cussion. Thus, alternative more efficient formulations
have been developed recently by relying on appropri-
ate PDF expansions [15,19]. In this regard, the prob-
lem of evaluating the joint response PDF is recast into
determining the PDF expansion coefficient vector. This
yields a significantly reduced number of BVPs of the
form of Eq. (5) to be solved, ordinarily equal to the
number of the PDF expansion coefficients. As shown
in [14], the required number of BVPs can be further
reduced by resorting to compressive sampling concepts
and tools (e.g., [16,20,21]) for formulating an under-
determined system of algebraic equations to be solved
for the sparse PDF expansion coefficient vector.

In this section, the computational efficiency of the
WPI technique is enhanced by relying on L ,-norm
(0 < p < 1) minimization algorithms for formulat-
ing and solving the underdetermined algebraic system
of equations for the PDF expansion coefficients. This
development can be construed as an extension and gen-
eralization of [14], where the response PDF coefficient
vector was determined based on a rather standard L -
norm minimization formulation. Specifically, a solu-
tion approach based on L ,-norm (0 < p < 1) exhibits
an enhanced sparsity-promoting behavior compared to
L-norm [16], and thus, fewer BVPs need to be solved
for obtaining PDF points to be used in the underde-
termined system of equations for the expansion coeffi-
cients. In fact, as shown in the numerical examples in
Sect. 3, the L -norm (0 < p < 1) approach exhibits
a higher degree of accuracy in estimating the system
response PDF at a reduced computational cost.

@ Springer
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In the ensuing analysis, considering fixed initial con-
ditions at#; = 0, the non-stationary joint response PDF
corresponding to the nonlinear oscillator of Eq. (1) is
expressed in the form

p(x, x, 1) ~ exp(u(x, X, 1)) )
or, alternatively,
plx,x,t) R v(x,x,1) (10)

where w(x,x,t) and v(x,x,t) are approximating
expansions with appropriately selected bases. Indica-
tive candidates include multivariate polynomials [22],
wavelets [23], and positive definite functions [24].
Without loss of generality and based on the findings
in [15], two distinct approximating approaches are
employed in the following in conjunction with Eq. (9)
or Eq. (10).

First, the multivariate polynomial and the wavelet
bases are used for the spatial and the temporal dimen-
sions, respectively, whereas a Kronecker-type expan-
sion (e.g., [25]) of u(x, X, t) in Eq. (9) is considered in
the form

In Eq. (11), ® denotes the Kronecker operator; D; €
RN:*Ni represents an one-dimensional harmonic

wavelet basis [26] corresponding to the time domain;
P € RV»*N» is the monomial basis referring to the spa-
tial domain (x, x); u € RNNox1 represents the mea-
surements u(x, X ,t) = In(p(x, x, t)) obtained by the
WPI technique as described in Sect. 2.1; ¢ € R**!
denotes the coefficient vector to be determined. In this
regard, n = N; N, measurements are required by the
WPI to determine the non-stationary joint response
PDF of the nonlinear system, where N, and N, pertain
to a discretization of the time and the space domains,
respectively. Note, in passing, that a multivariate poly-
nomial expansion is a reasonable choice for a wide
range of nonlinear systems. The rationale relates to the
fact that in many cases the nonlinear response PDF can
be viewed as a perturbation (not necessarily small) from
the corresponding linear system PDF. In fact, the lin-
ear oscillator response PDF is Gaussian, with an expo-
nent represented exactly by a 2"¢-order polynomial
expansion. Thus, it is anticipated that the response PDF
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of various nonlinear oscillators can be captured effi-
ciently by employing a higher-order polynomial expan-
sion, where only few of the higher-order monomials
are active. In other words, a polynomial basis for P
is expected to exhibit sparsity. This attribute has been
exploited already in [14] by utilizing an L-norm min-
imization formulation for determining the PDF expan-
sion coefficients.

Nevertheless, various oscillators exhibit non-smooth
nonlinear behaviors, which cannot be captured effi-
ciently by polynomial approximations. In such cases, a
polynomial basis is not sparse and alternative approxi-
mations need to be explored. In this regard, the strategy
of approximating v in Eq. (10) by utilizing a wavelet
basis both for the spatial and the temporal dimensions,
in conjunction with a Kronecker expansion, is consid-
ered in the ensuing analysis; that is, Eq. (10) takes the
form

v = (Dys1 ® D2 ® Dy)e 12)

where Dy; € RMs1*Ns1 and Dy, € RVs2*Ns2 represent
one-dimensional harmonic wavelet bases correspond-
ing to the spatial domain; and v € RVVr*! represent
the measurements v(x, x,t) = p(x, X, t) obtained by
the WPI technique as described in Sect. 2.1. In this
case, n = Ny Ny N; measurements are required by
the WPI, where Ny and Ny, pertain to a discretization
of the 2-dimensional spatial domain.

Next, a solution approach based on L ,-norm (0 <
p < 1) minimization is developed for determining
the response PDF expansion coefficients. In passing,
note that approaches based on L ,-norm have exhib-
ited superior sparsity-promoting behaviors compared
to L1-norm in a variety of engineering dynamics appli-
cations, such as spectral analysis and estimation under
limited data [27]; see also [16] for a broad perspective.

Specifically, for a given time instant t = ¢; (j =
1,..., Ny) andusingr < n j PDF measurements, where
nj = Np and nj = Ny Ny, referring to Egs. (11) and
(12), respectively, Egs. (11) and (12) are cast into an
underdetermined linear system of equations of the form

Yo,j = ®y; = Ac;j (13)
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where
p; referring to Eq. (11)

y= gl e (14)
v; referring to Eq. (12)

and

A— ®P referring to Eq. (.11) (15)
®(D;; ® D) referring to Eq. (12)

InEgs. (13)—(15), nj and v ; are the n j X 1 measurement
vectors corresponding to time instant ¢ = ¢; ; ® is an
r x nj matrix , which deletes randomly rows from y;
and the expansion basis; and ¢; is the n; x 1 coefficient
vector to be determined corresponding to = ¢;.

Further, an L,-norm (0 < p < 1) minimization
formulation is proposed for solving Eq. (13). This takes
the form
min |CJ'|L1>’ subject to Yo,j = Ac; (16)
In the following, the p = 1/2 norm is used since, as
discussed in [27,28], the sparsest solution is obtained
for 1/2 < p < 1, whereas the sparsity degree remains
relatively unaffected for 0 < p < 1/2. Next, to min-
imize Eq. (16), the Lagrangian L(c;, A) is introduced
as:

1
L(cj,\) =Y _lejil2 + 2T (A¢j — yg ;) (17)

nj

The partial derivatives of Eq. (17) with respect to ¢;
and A become zero for:

¢; = QA'(AQA) 'y (18)
where
Q = diag(|c;|?) (19)

Equation (18) can be solved in an iterative manner, i.e.,
the k" iteration yields

¢ = Q1A (AQ_1A) g (20)
where

) 3
Qy— = diag(|c;x—112) (21)

Note that this algorithm is equivalent to a weighted
L>-norm minimization [29], i.e.,

. 2
mlng Wic5 s

where w; = [cj k-1 |_3/2. Since the solution is sparse,
the values of many c;; will tend toward zero. To avoid
division by zero in w; as the algorithm converges to
a solution, a decreasing parameter € is introduced to
regularize the optimization problem [30]. This yields

subjectto  yo ; = Ac; (22)

Qi—1 = diag(((ej k-1 + /€ - meaH(ICj,k—ll))z)%)
(23)

€ =-1— (24)

where an indicative starting value for €; is ¢g = 0.01.
For each €, Eq. (20) is repeated until satisfying the
condition

Cip—Cik /€
I j.k j.k 12 < J (25)
llejr—1ll2 100

It is remarked that the generalization of the devel-
oped technique to treat MDOF nonlinear systems is
rather straightforward. Specifically, for an m-DOF
system, the expansion in Eq. (9), or alternatively in
Eq. (10), corresponds to the system 2m-variate joint
response PDF. This yields Eq. (13) to be solved for
the expansion coefficient vector based on L ,-norm
(0 < p < 1) minimization. Note that in this case the
dimensions of the measurement vector y, ; and the
basis matrix A are appropriately augmented to account
for the increase in the number of DOFs of the system.

2.3 Mechanization of the technique

The mechanization of the developed stochastic response
determination technique based on L ,-norm (0 < p <
1) minimization comprises the following steps:

(a) Construct the multivariate polynomial basis P for
the spatial domain and the harmonic wavelet basis
D, for the temporal dimension in Eq. (11) (or, alter-
natively, the harmonic wavelet bases Dy, Ds», and
D; in Eq. (12)).

@ Springer
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(b) For a specific t = ¢;, select r points in the spa-
tial domain either randomly, or by utilizing certain
optimality criteria (e.g., [31]).

(¢) Determine the PDF measurement points yj ; in Eq.
(13) by solving Egs. (5)—(6) and utilizing Eq. (7).

(d) Solve Eq. (16) for obtaining the sparse coefficient
VECtor ¢;.

(e) Repeat steps (b-d) for j = 1, .., N; time instants
and substitute ¢ into Eq. (11) (or, alternatively,
Eq. (12)) for determining the non-stationary sys-
tem response PDF.

In passing, note that alternative to Kronecker prod-
uct formulations, such as mesh-free approximation
schemes based on positive definite functions, can be
also employed for approximating the system response
PDF and for deriving an underdetermined linear sys-
tem of algebraic equations in the form of Eq. (13); see
also [15] for a relevant discussion.

3 Numerical examples

In this section, three distinct numerical examples per-
taining to oscillators with diverse nonlinear behaviors
are considered for assessing the reliability of the devel-
oped technique. In this regard, the response PDF deter-
mined by L;,>-norm minimization is compared with
estimates based on L {-norm minimization and on MCS
(10,000 realizations). Clearly, the degree of computa-
tional efficiency enhancement obtained by L/2-norm
minimization depends on a variety of factors, such
as the nonlinearity type and the selected expansion
basis. Nevertheless, for approximately the same accu-
racy degree, it is shown that the herein developed tech-
nique requires, in some cases, even up to 40% fewer
PDF points to be obtained by the WPI than a standard
L1-norm minimization approach.

3.1 Duffing nonlinear oscillator

Consider a Duffing nonlinear oscillator subject to Gaus-
sian white noise, whose dynamics is governed by Eq.
(1) with

g(x, X) = kx> (26)

and ¢ > 0 denotes a parameter accounting for the
nonlinearity degree. The oscillator is considered to
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be initially at rest, whereas an eighth-order polyno-
mial expansion is used for the basis P in Eq. (11).
This translates into n; = N, = 45 coefficients to
be determined for a specific time instant. Also, the
harmonic wavelet basis D; in Eq. (11) has N, = 16
elements. In the following, the parameter values used
are Sp = 0.1911,k = 0.3,c = 1,& = 3. Note that
the exact analytical expression of the stationary joint
response PDF corresponding to the Duffing oscillator
of Eq. (26) is available and given by (e.g., [32])

. 5) = C —c (kx? N ex? N x2 N
= X _— — —_— JR—
P =5P re\ T2 T T

where C is a normalization constant.

Next, Fig. 1 shows the determined polynomial
expansion coefficients for = 1.2s using both r/n; =
0.6 and r/n; = 0.7. It is seen that both the L1,2-norm
and the Lj-norm approaches exhibit high accuracy in
recovering the sparse coefficient vector for r/n; = 0.7
as compared to estimates based on r/n; = 1. How-
ever, the L /2-norm approach appears to yield a sparser
(and more accurate) solution when fewer PDF measure-
ments are used, i.e., for/n; = 0.6. This is further cor-
roborated in Fig. 2, where the response displacement
and velocity PDFs are plotted corresponding to t =
1.25. Comparisons between PDF estimates obtained
by the Li,;-norm and the Li-norm approaches for
r/nj = 0.6, and by MCS data (10,000 realizations),
demonstrate an enhanced accuracy degree exhibited by
the Li/>-norm over the Li-norm. Results based on a
brute-force implementation of the WPI technique rely-
ing on a discretization of the PDF effective domain are
included as well.

Moreover, attention is directed to t = 10s corre-
sponding to the stationary phase of the response pro-
cess. In fact, the exact stationary response PDF is given
by Eq. (27) exhibiting a polynomial representation with
only three active coefficients. In Fig. 3, the exact coeffi-
cient vector pertaining to Eq. (27) is compared with the
coefficient vectors obtained by L1,2-norm and by Li-
norm, both for r/n; = 0.45 and for r/n; = 0.7. It is
seen that even when very few measurements are used,
ie.,r/nj = 0.45, L1,>-normis capable of successfully
determining the expansion coefficients, demonstrating
superior accuracy compared to Li-norm. Note that
approximately the same degree of accuracy is achieved
by L and Ly/-norms for r/n; = 0.7 at the expense,
however, of additional computational cost related to the
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Fig. 1 Joint response PDF polynomial expansion coefficients
corresponding to a Duffing nonlinear oscillator at = 1.2s with
ar/nj=06andbr/n; =0.7

increased number of BVPs to be solved. In other words,
the enhanced sparsity-promoting capabilities of L1 >-
norm compared to Li-norm yield accurate coefficient
vector estimates by requiring fewer PDF measurement
points, i.e., at a reduced computational cost. This is
also supported by corresponding PDF estimates shown
in Fig. 4 for r/n; = 0.45, where comparisons with
pertinent MCS data (10,000 realizations) demonstrate
ahigher degree of accuracy exhibited by the L1 2-norm
over the L-norm.

3.2 Oscillator with asymmetric nonlinearities

An oscillator with asymmetric nonlinearities is consid-
ered in this section to further assess the performance
of the Lj/;-norm minimization formulation in con-
junction with expansion bases exhibiting a moderate
degree of sparsity. Specifically, compared to the Duff-
ing oscillator in Sect. 3.1, more terms in the polynomial
expansion are anticipated to be active due to the oscilla-

0.8
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L
0.6 +Lip

x brute-force WPI

0.2

0
-2 -1.5 1 -0.5 0 0.5 1 1.5 2

Displacement
(a)
0.6
—MCS
05 aLy
+L

x brute-force WPI

&
203

0.2

0.1

3 ;
-2 -1 0 1 2
Velocity
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Fig. 2 Duffing nonlinear oscillator marginal response PDF at
t = 1.2s: a displacement and b velocity; comparisons between
Ly2-norm and Lj-norm approaches for r/n; = 0.6 and MCS
data (10,000 realizations). Results based on a brute-force imple-
mentation of the WPI technique are included as well

tor asymmetric nonlinear behavior, thus yielding a less
sparse coefficient vector.

In this regard, the governing equation of motion is
given by Eq. (1) with:

glx, x) = ekx? (28)

where € denotes a parameter accounting for the nonlin-
earity degree. The Kronecker expansion with an eighth-
order polynomial basis is used, which leads to n; =
N, = 45 coefficients to be determined for a specific
time instant, whereas the harmonic wavelet basis D; in
Eq. (11) comprises N; = 16 elements. In the following,
the parameters So = 0.0637,k = 1,¢c =0.2,¢ = 0.5
are used.

Next, Fig. 5 shows the computed polynomial expan-
sion coefficients for t = 1s using both r/n; = 0.3 and
r/nj = 0.4. Clearly, compared tor/n; = 1, the Ly/>-
norm approach exhibits a higher degree of accuracy

@ Springer
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Fig. 3 Joint response PDF polynomial expansion coefficients
corresponding to a Duffing nonlinear oscillator at ¢t = 10s (sta-
tionary phase) witha r/n; = 0.45and b r/n; = 0.7; compar-
isons with the exact coefficient vector corresponding to Eq. (27)

over Li-norm, especially when the number of avail-
able measurements r/n j decreases. This is readily seen
in Fig. 6, where the response displacement and veloc-
ity PDFs are plotted corresponding to + = 1s. Com-
parisons between PDF estimates obtained by the L1 >-
norm and the L-norm approaches forr/n; = 0.3, and
by MCS data (10,000 realizations) demonstrate supe-
rior accuracy exhibited by the Lj/>-norm over the Li-
norm. Results based on a brute-force implementation
of the WPI technique relying on a discretization of the
PDF effective domain are included as well.

Next, the time instant = 2s is considered for which
the asymmetry in the response PDF is more prevalent
than at ¢+ = 1s. In fact, as also seen in Fig. 7 where
the corresponding coefficient vector is estimated both
for r/n; = 0.7 and for r/n; = 0.8, more polynomial
basis coefficients are active (compared to t = 1s) for
capturing the asymmetric shape of the response PDF
shown in Fig. 8, estimated for r/n; = 0.7 by L;-
norm and by Li,2-norm. Pertinent MCS-based esti-
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Fig. 4 Duffing nonlinear oscillator marginal response PDF at
t = 10s (stationary phase): a displacement and b velocity;
comparisons between Lj,2-norm and L;-norm approaches for
r/nj = 0.45, and the exact solution of Eq. (27)

mates (10,000 realizations) are included as well. Obvi-
ously, even for this case where the target coefficient
vector is less sparse than the one corresponding to the
Duffing oscillator in Sect. 3.1, the L1 2-norm approach
exhibits superior accuracy over L1-norm, especially for
decreasing values of r/n ;. In other words, the same
accuracy degree can be achieved with fewer measure-
ment points, i.e., at a lower computational cost.

3.3 Nonlinear vibro-impact oscillator
In this section, a nonlinear vibro-impact oscillator is
considered, whose governing equation is given by Eq.

(1) with

g(x, x) = nh(x) (29)



Exploiting expansion basis sparsity 3677
20 15
5 L1 (r/nj=0,3) —MGCS
) +L. . (/n=0.3) * brute-force WPI
1/2 j L
10 or/n=1 1
@ ! 1 +L

3
ad S@33@9@9@3383639$$$$$$$$$$$@$$$$$$@$$$8$

PDF expansion coefficients
i
o o
&
®
®

-20
5 10 15 20 25 30 35 40 45
Coefficient index
(a)
20
=0.4

415 . L1 (r/nl 0.4)
5 +L, 2 (r/nj=0.4)
o =
£ 10 or/nj_1
8
S 5 B8
=4
K<) ®
2 (oY) T ) ee;eaeaeaea@maaaeaeaesae&a&sesseaseea@mae;eamaees
8
s -5
&
a-10

-15 e

5 10 15 20 25 30 35 40 45
Coefficient index

(b)

Fig. 5 Joint response PDF polynomial expansion coefficients
corresponding to an oscillator with asymmetric nonlinearities at
t=1swithar/n;=03andbr/n; =04

and

(x—a)? ifx>a
h(x) = ) (30)
0 otherwise

In Egs. (29)-(30), n denotes a parameter accounting for
the nonlinearity degree, and a represents the displace-
ment bound. The interested reader is also directed to
the review paper [33] for more details and for a broader
perspective. Further, the exact stationary joint response
PDF takes the form [33]

x2 }'CZ ()C _ a)5/2
-5~ ¢
202 20Pw? 5/2 .
(. i) = Ce 770 0770 % ifx >a
px, x2 %2
5 2 5 272
Ce 205 20pw;5 ifx <a

€2y
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(b)

Fig. 6 Marginal PDF of an oscillator with asymmetric nonlin-
earities at r = ls: a displacement and b velocity; comparisons
between Lj/2-norm, L-norm approaches for r/n; = 0.3 and
MCS data (10,000 realizations). Results based on a brute-force
implementation of the WPI technique are included as well

where
21./00 2 7 So
k= a)z; = T oy = 32
0 ¢ Sw(z) 0 2ca)% (32)

and C is a normalization constant.

It can be readily seen that due to the form of the
nonlinear function and specifically due to the pres-
ence of the non-integer power in the expression of Eq.
(30), a standard polynomial expansion cannot model
the response PDF exactly. This is obvious in Eq. (31)
where the stationary response PDF comprises a term
of power 5/2. Moreover, depending on the magnitude
of the nonlinearity controlled by parameter 1, the joint
response PDF shape can experience abrupt changes (in
the region around the displacement bound) that may
require higher-order polynomial expansions for their
accurate representation. Clearly, not only a PDF expan-
sion based on a standard polynomial basis is not sparse,
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Fig. 7 Joint response PDF polynomial expansion coefficients
corresponding to an oscillator with asymmetric nonlinearities at
t=2swithar/n;j=07andbr/n; =0.8

but also the monomial basis is prone to ill-conditioning
as noted in [14]. In fact, attempting to use the same
basis for the spatial domain as in examples 3.1 and
3.2, employing both 8th- and 12th-order polynomial
expansions, has led to ill-conditioning of the resulting
interpolation matrix. Therefore, to bypass this limita-
tion, a Kronecker expansion in the form of Eq. (12)
utilizing harmonic wavelets both in the space and the
time domains is used next with Ng; = Ny = 20 and
N; = 16, and parameter values Sp = 1.0192,k =
03,c=0.5,n=5,a=0.5.

Figure 9 shows the computed harmonic wavelet
expansion coefficients corresponding to + = 1.2s,
using both r/n; = 0.3 and /n; = 0.4. Compared to
the solution based on r/n; = 1, itis seen that both the
Li/2-norm and the Li-norm approaches exhibit high
accuracy in recovering the sparse coefficient vector for
r/nj = 0.4. However, the L1 2-norm approach appears
to yield a sparser (and more accurate) solution when
fewer PDF measurements are used, i.e., forr/n; = 0.3.
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Velocity

(b)

Fig. 8 Marginal PDF of an oscillator with asymmetric nonlin-
earities at r = 2s: a displacement and b velocity; comparisons
between Lj/2-norm, L-norm approaches for r/n; = 0.7 and
MCS data (10,000 realizations). Results based on a brute-force
implementation of the WPI technique are included as well

InFig. 10, the corresponding PDF estimates are plot-
ted and compared with pertinent MCS results (10,000
realizations). It is seen that L,2-norm minimization
yields a solution that exhibits better agreement with
MCS data than the one obtained by L 1-norm minimiza-
tion. Results based on a brute-force implementation of
the WPI technique relying on a discretization of the
PDF effective domain are included as well.

Next, attention is directed to = 6.4s corresponding
to the stationary phase of the response process. Simi-
larly to the + = 1.2s case, the estimated coefficient
vector based on Lj/>-norm exhibits better agreement
with the solution based on r/n; = 1 than the estimate
based on L1-norm. This is shown in Fig. 11, where both
r/nj=0.3andr/n; = 0.4 are used. Further, the PDF
estimates based on L1-norm and L -norm are plotted
in Fig. 12 and compared with the exact response PDF
of Eq. (31). It is seen that even for this highly asym-
metric response displacement PDF featuring an abrupt
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Fig. 9 Joint response PDF harmonic wavelet expansion coef-
ficients corresponding to a nonlinear vibro-impact oscillator at
t=12swithar/n; =03andbr/n; =0.4

change in its shape, L1/2-norm minimization provides
a solution of satisfactory accuracy requiring only few
PDF measurements. Also, it consistently outperforms
L-norm minimization in terms of achieved accuracy.
More specifically, referring to the exact joint response
PDF of Eq. (31), the root-mean-square errors corre-
sponding to the estimates obtained based on L- and
L1 2-norms are equal to 5% and 1%, respectively.

4 Concluding remarks

In this paper, the WPI technique for determining the
stochastic response of diverse nonlinear dynamical sys-
tems has been extended and its computational effi-
ciency has been enhanced by relying on sparse rep-
resentations and compressive sampling concepts and
tools. Specifically, relying on the localization capa-
bilities of the WPI technique for evaluating directly
specific points of the joint response PDF, and uti-
lizing appropriately selected bases for expanding the

© brute-force WPI

w +

4 3 2 0 1 2
Displacement

(a)

© brute-force WPI
0.25

Velocity

(b)

Fig. 10 Nonlinear vibro-impact oscillator marginal response
PDF at ¢+ = 1.2s: a displacement and b velocity; comparisons
between Lj,;-norm and Lj-norm approaches for r/n; = 0.3
and MCS data (10,000 realizations). Results based on a brute-
force implementation of the WPI technique are included as well

PDF, has led to an underdetermined system of equa-
tions for the expansion coefficient vector. This has
been solved by employing an L 2-norm minimization
formulation. Notably, the proposed L1,2-norm formu-
lation has exhibited an enhanced sparsity-promoting
behavior compared to an alternative standard L{-norm
minimization approach. In other words, the sparse PDF
expansion coefficient vector can be determined by uti-
lizing fewer PDF points, thus leading to a significant
reduction of the associated computational cost since
fewer BVPs need to be solved numerically. Moreover,
ithas been shown that utilizing the same number of PDF
points obtained by the WPI, L1,2-norm minimization
yields more accurate PDF estimates than an L{-norm
approach. Comparisons with pertinent MCS data have
demonstrated the reliability of the developed technique.
This has been done in conjunction with various stochas-
tically excited oscillators exhibiting diverse nonlinear
behaviors, including a Duffing oscillator, an oscillator
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Fig. 11 Joint response PDF harmonic wavelet expansion coef-
ficients corresponding to a nonlinear vibro-impact oscillator at
t = 6.4s (stationary phase) withar/n; =0.3andbr/n; = 0.4

with asymmetric nonlinearities, and a nonlinear vibro-
impact oscillator.
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Fig. 12 Vibro-impact oscillator marginal response PDF at r =
6.4s (stationary phase): a displacement and b velocity; compar-
isons between L /2-norm and L;-norm approaches for r/n; =
0.3 and the exact solution of Eq. (31)

Appendix

In this Appendix, more details are provided on the
derivation of the Euler-Lagrange Eq. (5) to be solved
in conjunction with the boundary conditions of Eq.
(6) for determining the WPI most probable path
(see also Refs. [11,12]). Specifically, considering the
Lagrangian functional of Eq. (3), the stochastic action
S[x, x, X] is defined as

t
S[x,fc,y'c']:/fL[x,x,)'é]dt (A.1)
t

Next, by utilizing a functional Taylor-type series expan-
sion of the stochastic action S[x, x, X] and by express-
ing x(¢) as

x(t) = x.(t) + X () (A2)
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the stochastic action S is written as: Next, integrating Eq. (A.7) by parts leads to
aL d oL ¥ It TaL I '
Slx] = Slxe + X1 =S[xc]+ 6S[xc, X] [(87 o YT x=x5> (t):|ti + [87 . ¢ )i|ti
1, (A.3)
+58 S[XUX]‘F o o
+/,I. Ox oy, dt O [oy,  di? 0% |, ®
In Eq. (A.3), x.(¢) is the path associated with the maxi- P
mum probability of occurrence and X (), with X (;) = -0
X(tf) = X(t;) = X(ty) = 0, represents the fluctua- (A.8)

tions around x.(¢) (e.g., [8]). In Eq. (A.3), S[x, x, X]
is denoted as S[x] for simplicity, and §S[x., X] rep-
resents the functional differential (or variation) of S
evaluated on x.. Moreover, according to calculus of
variations [17] and considering Egs. (A.1) and (A.3),
the differential § S[x., X] takes the form

o= [* (2] xa 2L
_)C‘7 = _— s
¢ 1t ax X=X, ax X=X,
‘ ‘ (A.4)
oL ..
Lok X)dt
0x x=x,

Further, considering Egs. (2) and (A.1), it is seen that
the maximum probability of occurrence corresponds
to minimum S[x, x, X]. Thus, x.(¢) is associated with
an extremum of the functional S[x, x, X] . In this con-
text, calculus of variations dictates [17] that the first
variation of S[x, x, X¥] vanishes for x(¢) = x.(¢), i.e.,

8S[xe, X1 =0 (A.5)

Therefore, Eq. (A.3) becomes
1
S[x] = S[xc]+ 5823[%, X1+ ... (A.6)

Furthermore, combining Eq. (A.4) and the extremality
condition of Eq. (A.5) yields

/’f oL
‘ dx

i

oL
ox

d
dt

42
—2X>dz =0
x=x, dt

X=X¢ X=Xc¢

A7
oL ( )

where, since X (;) = X(t7) = X(t;) = X(t7) = 0,
the terms <7 and o] vanish. Thus, Eq. (A.8) yields
the Euler—Lagrange Eq. (5) to be solved in conjunction
with the boundary conditions of Eq. (6) for determining
the WPI most probable path x..

Note that x, can be used, at least in principle, for
evaluating the higher-order terms in the expansion of
Eq. (A.6). However, in the majority of practical imple-
mentations of the WPI technique, only the first term
S[x.] is retained in the expansion of Eq. (A.6), since
the evaluation of higher-order terms exhibits consider-
able analytical and computational challenges. In fact,
in the most probable path approximation shown in
Eq. (7) the remaining terms in the expansion of Eq.
(A.6) are treated collectively as a constant C. The
interested reader is also directed to [12], where a
quadratic approximation was developed for the WPI
that accounts explicitly for the contribution also of the
second variation term in Eq. (A.6).

References

1. Eom, K., Park, H.S., Yoon, D.S., Kwon, T.: Nanomechani-
cal resonators and their applications in biological/chemical
detection: Nanomechanics principles. Phys. Rep. 503(4-5),
115-163 (2011)

2. Daqgaq, M.F,, Masana, R., Erturk, A., Dane Quinn, D.: On the
role of nonlinearities in vibratory energy harvesting: a crit-
ical review and discussion. Appl. Mech. Rev. 66(4), (2014)

3. Roberts, J.B., Spanos, P.D.: Random Vibration and Statisti-
cal Linearization. Dover, New York (2003)

4. Li, J., Chen, J.: Stochastic Dynamics of Structures. Wiley,
New York (2009)

5. Grigoriu, M.: Stochastic Systems: Uncertainty Quantifica-
tion and Propagation. Springer, Berlin (2012)

6. Daniell, PJ.: Integrals in an infinite number of dimensions.
Ann. Math. pp 281-288, (1919)

7. Wiener, N.: The average of an analytic functional. Proc. Natl.
Acad. Sci. U. S. America 7(9), 253 (1921)

@ Springer



3682

Y. Zhang et al.

8.

10.

11.

12.

13.

14.

15.

16.

17.

19.

Chaichian, M., Demichev, A.: Path Integrals in Physics: Vol-
ume I Stochastic Processes and Quantum Mechanics. CRC
Press, Boca Raton (2001)

. Kougioumtzoglou, I., Spanos, P.: An analytical Wiener path

integral technique for non-stationary response determination
of nonlinear oscillators. Probab. Eng. Mech. 28, 125-131
(2012)

Petromichelakis, 1., Psaros, A.F., Kougioumtzoglou, I.A.:
Stochastic response determination of nonlinear structural
systems with singular diffusion matrices: A Wiener path
integral variational formulation with constraints. Probab.
Eng. Mech. 60, 103044 (2020)

Psaros, A.F., Brudastova, O., Malara, G., Kougioumtzoglou,
L.A.: Wiener path integral based response determination of
nonlinear systems subject to non-white, non-Gaussian, and
non-stationary stochastic excitation. J. Sound Vib. 433, 314—
333 (2018)

Psaros, A.F., Kougioumtzoglou, I.A.: Functional series
expansions and quadratic approximations for enhancing the
accuracy of the Wiener path integral technique. J. Eng.
Mech. 146(7), 04020065 (2020)

Petromichelakis, I., Kougioumtzoglou, I.A.: Addressing the
curse of dimensionality in stochastic dynamics: a Wiener
path integral variational formulation with free boundaries.
Proc. R. Soc. A 476, 20200385 (2020)

Psaros, A.F., Kougioumtzoglou, I.A., Petromichelakis,
I.: Sparse representations and compressive sampling for
enhancing the computational efficiency of the Wiener path
integral technique. Mech. Syst. Signal Process. 111, 87-101
(2018)

Psaros, A.F., Petromichelakis, 1., Kougioumtzoglou, I.A.:
Wiener path integrals and multi-dimensional global bases
for non-stationary stochastic response determination of
structural systems. Mech. Syst. Signal Process. 128, 551—
571 (2019)

Kougioumtzoglou, I.A., Petromichelakis, 1., Psaros,
AF.: Sparse representations and compressive sampling
approaches in engineering mechanics: A review of theoret-
ical concepts and diverse applications. Probab. Eng. Mech.
61, 103082 (2020)

Ewing, G.M.: Calculus of Variations with Applications.
Dover Publications, Mineola (1985)

. Psaros, A.E, Zhao, Y., Kougioumtzoglou, I.A.: An exact

closed-form solution for linear multi-degree-of-freedom
systems under Gaussian white noise via the Wiener path
integral technique. Probab. Eng. Mech. 60, 103040 (2020)
Kougioumtzoglou, IA., Di Matteo, A., Spanos, PD., Pirrotta,
A.,DiPaola, M.: An efficient Wiener path integral technique
formulation for stochastic response determination of non-
linear mdof systems. J. Appl. Mech. 82(10):101005: 1-7,
(2015)

@ Springer

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Rish, I., Grabarnik, G.: Sparse Modeling: Theory, Algo-
rithms, and Applications. CRC Press, Boca RatonBoca
Raton (2014)

Foucart, S., Rauhut, H.: A mathematical introduction to
compressive sensing. Bull. Am. Math. 54(2017), 151-165
(2017)

Olver, PJ.: On multivariate interpolation. Stud. Appl. Math.
116(2), 201-240 (2006)

Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier,
Amsterdam (1999)

Fasshauer, G.E.: Positive definite kernels: past, present and
future. Dolomites Res. Notes Approx. 4, 21-63 (2011)
Caiafa, C.F.,, Cichocki, A.: Computing sparse representa-
tions of multidimensional signals using kronecker bases.
Neural Comput. 25(1), 186-220 (2013)

Newland, D.E.: Harmonic and musical wavelets. Proc. R.
Soc. Lond. Ser. A Math. Phys. Sci. 444(1922), 605-620
(1994)

Zhang, Y., Comerford, L., Kougioumtzoglou, I.A., Beer, M.:
Lp-norm minimization for stochastic process power spec-
trum estimation subject to incomplete data. Mech. Syst. Sig-
nal Process. 101, 361-376 (2018)

Xu, Z., Zhang, H., Wang, Y., Chang, X., Liang, Y.: L 1/2
regularization. Sci. China Inf. Sci. 53(6), 1159-1169 (2010)
Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction
from limited data using focuss: A re-weighted minimum
norm algorithm. IEEE Trans. Signal Process. 45(3), 600—
616 (1997)

Chartrand, R., Yin, W.: Iteratively reweighted algorithms
for compressive sensing. In: 2008 IEEE international con-
ference on acoustics, speech and signal processing, IEEE,
pp 3869-3872, (2008)

Van Barel, M., Humet, M., Sorber, L.: Approximating opti-
mal point configurations for multivariate polynomial inter-
polation. Electron. Trans. Numer. Anal. 42, 41-63 (2014)
Lin, Y.K.: Probabilistic Theory of Structural Dynamics.
McGraw-Hill, New York (1967)

Dimentberg, M., Iourtchenko, D.: Random vibrations with
impacts: a review. Nonlinear Dyn. 36(2), 229-254 (2004)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.



	Exploiting expansion basis sparsity for efficient stochastic response determination of nonlinear systems via the Wiener path integral technique
	Abstract
	1 Introduction
	2 Mathematical formulation
	2.1 Wiener path integral technique: selected aspects 
	2.2 Joint response PDF determination based on sparse expansions and  Lp -norm  ( 0<p<1 )  minimization 
	2.3 Mechanization of the technique 

	3 Numerical examples
	3.1 Duffing nonlinear oscillator 
	3.2 Oscillator with asymmetric nonlinearities
	3.3 Nonlinear vibro-impact oscillator

	4 Concluding remarks
	Acknowledgements
	Appendix
	References


